RC1:

The preprint describes a machine-learning model (“Auto-ML”) trained to diagnose the convective
boundary layer height (CBLH) evolution over one day. Generally, I think the choices described to
add physical grounding to the ML model are well-motivated, though the paper description of them
as providing ‘implicit physical constraints’ may be a bit of a reach. The paper would be much
stronger if it included a baseline method of CBLH prediction; without one it lacks context for
judging the Auto-ML skill.

Reply: We appreciate the reviewers' constructive feedback on the physical basis of the ML model.
We agree that the term "implicit physical constraints" may be too broad and will revise it to
"implicit thermodynamic physical constraints." To contextualize AutoML's capabilities, we have
added the Linear Regression algorithm results as a benchmark in the supplement to highlight
AutoML's performance and discussed in the revised manuscript.

Specific comments:

1. Simply including LTS and surface fluxes as inputs and using the full day of CBLH as targets
does not guarantee that the ML model will learn the correct physical constraints. It is fair to say
that these choices introduce more physical grounding into the ML problem setup, but I think that
describing these as “Implicit physical constraints” in the title and section 2.5 is too far-reaching.

Reply: We agree that including LTS and surface fluxes as inputs with full-day CBLH targets does
not ensure the ML model captures all physical constraints. Morning boundary layer growth is
thermodynamically driven, while afternoon CBLH peaks involve entrainment, typically
parameterized (~0.2) but lacking direct physical representation. We revised it as “implicit
thermodynamic physical constraints” in the title and further discussed in Section 2.4.

2. My reading of the multisite analyses in 3.3 and 3.6 is that generalizing the model to different
sites is limited by the flux input differences and site-specific differences and that training the ML
model on the site it is to be used on is needed to achieve the best skill. This seems to contradict the
abstract (“transferability across ARM Southern Great Plains sites... confirm the model’s
robustness”).

Reply: We appreciate the reviewer’s suggestion. The core finding of our study is that current ML
models for CBLH prediction exhibit limited transferability across sites due to site-specific factors.
By using on thermodynamics as a primary driver, our model achieves improved transferability
across ARM Southern Great Plains sites, as stated in the abstract. However, model performance
(R?) declines with distance, which is physically reasonable due to variations in non-
thermodynamic factors such as terrain and vegetation, beyond just flux differences. To address
your concern, we changed the abstract to “The model's generalizability across multiple sites at the
ARM SGP site demonstrates its potential for transfer to greater distances, offering a scalable
approach for enhancing boundary layer parameterization in atmospheric models”, consistent with
findings in Sections 3.3 and 3.6.



3. There is no baseline for comparison to assess how much skill the ML models are adding. I
suggest including a simple baseline R2 and MAE as calculated using the training set mean CBLH
target (over full time range, and also seasonal for that analysis) and including this baseline on the
skill figures and tables. This would add context for how much of an improvement the AutoML
model is providing.

Reply: Thank you for this highly constructive suggestion, which significantly enhances the
article's readability. We have incorporated a Linear Regression algorithm as a baseline to
demonstrate the extent of improvement provided by AutoML. For details, see Text S1 and S3 and
Figures S1 and S3 in the Supporting Information.

4. In the description of input and output data in Sec 2.6, I would add a sentence explicitly stating
the dimensionality of the input and output data. Related to this point, it sounds like aside from
sunrise and sunset times, each input has (n_timestamps_in_day) values in the full input vector.
However, later in the interpretability section, single importance scores are given for each input,
which confused me. Are SHAP values calculated for each timestamp of an input and averaged
together? Please clarify in the text.

Reply: We appreciate the reviewer’s feedback. We have added a sentence in Section 2.5 (section
2.6 in the first manuscript) explicitly stating the dimensionality of the input and output data. Indeed,
aside from sunrise and sunset times, each input consists of n_timestamps_in_day values in the full
input vector. For the interpretability section, we clarify that SHAP values are calculated to reflect
the relative importance of each input variable across the entire day, not at individual timestamps.
We have revised the text to make this clear and avoid confusion in section 3.4.1.

5. What was the best model out of the set in table 2 chosen by the AutoML? This should be added
to the text. Was it one of the two models in section 3.4? Did any other models in Table 2 also have
comparably good skill, or were some significantly worse? Some discussion of the best performing
architecture is warranted as could relate to the model's ability to generalize. e.g. one would expect
a tree-based model to have difficulty generalizing as the output distribution is bounded by its
training set.

Reply: Thank you for the reviewer’s insightful suggestions. The best model selected by AutoML
varied across different sites and even with different training data splits for the same site, making
it inconsistent to highlight a single model. To avoid misleading readers, we treated the AutoML
process as a black box and did not specify a single best model in the initial draft. We have now
included the best model, which is the “ExtraTreesRegressor” from Section 3.4, as clarified in
Section 3.1. In Table S1 (Original manuscript Table 2), many models exhibited comparable
performance, with R? differences within 0.01. We have added a discussion in the revised
manuscript noting that, with limited training data, tree-based models generally outperformed
neural network architectures. AutoML underperforms in winter may relate to generalization
challenges, as tree-based models’ outputs are constrained by their training set.



6. The methods section should include some information about the computational resources used
in training. This affects the space of model hyperparameters that can be explored by the Auto-ML
algorithm. In particular the tree depth in the tree-based methods is directly related to the
distribution of possible model outputs.

Reply: Thank you for the suggestion. We have added Section 2.3 to describe the computational
resources used: “Windows 11 OS, Intel® Core™ i9-10900 CPU @ 2.8 GHz, 32 GB RAM.” We
agree that hyperparameters, such as tree depth in tree-based methods, influence the AutoML model
search space and output distribution. However, a comprehensive exploration of hyperparameter
tuning for each model would be computationally intensive and impractical. Therefore, this study
employs default hyperparameters to facilitate model comparisons. Our related work
(DOI:10.3390/rs17081399, 2025a) provides a detailed discussion on the effects of tree depth,
learning rate, and number of estimators. These findings do not impact the generality of the results
presented here.

7. In the interpretability section, there should be some discussion of whether the results were
surprising or expected given prior knowledge of boundary layer processes. E.g. “In spring and
autumn, while a comparable pattern exists, the differences between predicted and observed values
are smaller, suggesting lower variability (or complexity) in meteorological conditions compared
to summer." and “Potential reasons include:... distinct entrainment processes in summer compared
to other seasons”. I am not familiar with boundary layer processes, so for readers like me: Is it
implied that it is already known that summer has lower variability in conditions and distinct
entrainment processes, or are those the authors’ hypotheses to explain their findings?

Reply: Thank you for your insightful and valuable feedback. We address this below and have
incorporated a detailed discussion in Section 3.5.2 of the revised manuscript.

We fully concur that explicitly addressing whether observed patterns align with prior knowledge—
or represent interpretive hypotheses—will aid readers unfamiliar with these processes, fostering a
more accessible and rigorous discussion. The peak convective boundary layer height (CBLH) in
summer (~2 km; Fig. 8b2) exceeds that in winter (~1 km), consistent with established literature.
However, no prior studies have employed thermodynamic parameters to predict CBLH, rendering
this approach novel. At the same time, we delineate our interpretations of summer-specific
discrepancies—e.g., the pronounced widening of the interquartile range (IQR) in JJA, potentially
driven by unmodeled wind-driven advection and enhanced entrainment from intense convective
activity—as hypotheses grounded in process-based reasoning, rather than established consensus,
to underscore the contributions of this work.

These revisions are complemented by the addition of a new panel (Figure 8c), which visually
contrasts absolute and relative differences diurnally and seasonally, enabling clearer discernment
of scale-dependent patterns and their implications—for instance, highlighting how relative
discrepancies exceed 0.5 in autumn and winter mornings/evenings, while remaining below 0.1
during midday across seasons. We now emphasize that the winter-summer contrasts in CBLH
scale and IQR are consistent with known seasonal forcings on boundary layer development,
whereas the diurnal sensitivities and summer-specific variabilities represent novel insights, which
we attribute to unresolved complex interactions like advection and entrainment.



To further guide future refinements, we propose incorporating parameters such as entrainment
rates,tempuature and wind profiles to mitigate these gaps. We believe these enhancements not only
directly address your query by distinguishing expected patterns from our proposed explanations
but also elevate the manuscript's scientific depth.

We believe these clarifications and revisions strengthen the interpretability of our results and
address the reviewer’s concerns comprehensively. Thank you again for your constructive feedback,
which has helped refine the manuscript.

8. I appreciate the breakdown of the results into the seasonal comparisons in section 3.5.2 and
discussion of the physical processes affecting the CBLH and its variability. Here and in other
sections, I think the writers did a good job of explaining how the physical processes involved in
boundary layer changes might explain their findings.

Reply: Thank you for the positive feedback on Section 3.5.2 and our discussion of physical
processes linking boundary layer dynamics to CBLH variability.

9. The readability would be greatly improved if the main text section related to
importance/interpretablity just focused on the main takeaway (LTS dominates) and left the rest to
an appendix. Similarly for the section about ECOR vs EBBR flux results; I did not feel the findings
were salient to the main points of the paper.

Reply: We appreciate the reviewer’s feedback on readability. The main focus of the paper is not
solely to highlight LTS dominance but to demonstrate the accuracy and multi-site applicability of
thermodynamic implicit constraints for full-day CBLH predictions, including seasonal
comparisons. The comparison of ECOR and EBBR fluxes addresses a key challenge in
atmospheric science regarding data assimilation, a potential further goal of using ML in this study.
To improve readability and emphasize the main theme, we have moved Previous article manuscript
Sections 2.3, Sections 2.4, Sections 3.1.2 and 3.2.2, along with Table2, Figures 5 and 7, to the
supplementary materials.

Other comments:

10. Please define the variables in equation 4.

Reply: Added.

11. Hyperparameters for the ExtraTreesRegressor in Sec 3.4 should be provided.

Reply: Added.



12. Why is only JJA used in the comparison of the different ML methods in 3.4? Is it because the
authors specifically wanted to study the season with higher DL-derived CBLH variability? Please
clarify in the text.

Reply: We thank the reviewer for the comment. The choice of JJA in Section 3.4 was driven by
its higher DL-derived CBLH variability and the greater availability of data, ensuring more robust
results. We have added a clarification in the first paragraph of Section 3.4: “JJA was selected due
to its higher DL-derived CBLH variability and larger data volume, enhancing result reliability.”

13. Table 4: What is being shown in the rows labeled by the inputs? Feature importance? Please
clarify in the caption.

Reply: Fixed. Yes, it is “Feature importance”.

14. In the conclusion, L849 states the ML model “significantly improves the accuracy and
generalizability of CBLH predictions across diverse sites and seasons.” This ought to be edited as
without a baseline for comparison, it is unclear this improvement is relative to.

Reply: We added the baseline. The statement on L849 has been revised to: “This implicit
thermodynamic physically constrained Auto-ML approach selects the best-performing machine
learning model based on the dataset, improving the accuracy and generalizability of CBLH
predictions across diverse sites.”



RC2:

Review of the article titled “Machine Learning model for inverting convective
boundary layer height with implicit physical constraints and its multi-site
applicability” by Chu and coauthors for publication in Atmos. Chem. Phys.

1. The authors have used boundary layer (BL) height from the doppler lidar (DL),
surface fluxes from eddy correlation (ECOR) and energy balance Bowen Ratio
(EBBR), and thermodynamic stability from Atmospheric Emitted Radiance
Interferometer (AERI) to construct a machine learning (ML) model for predicting
BL height. The data from ARM SGP site, and other ancillary sites around SGP have
been used. The main premise of the paper is using the off-the-shelf interfaces like
TPOT and AutoKeras for training and validation, thereby leaving Al to pick the ML
model. After model identification, the authors have applied the model to predict BL
height over different seasons and different sites. The article is relatively well-written
and fits the journals scope. However, I believe that the article lacks physical depth,
and could be improved. Much of the discussion is on simply adapting the data for
TPOT and AutoKeras, which is not novel. The paper is also too long at this point,
some of the discussion is more suitable for a dissertation rather than a paper. So,
mentioning few things below that can improve the article further.

Reply: Thank you for your thorough review and constructive feedback. We revised the paper
accordingly, which have significantly improved the manuscript's quality and alignment with ACP's
submission standards. We acknowledge the concern regarding the lack of physical depth and the
manuscript's length. To address this, we have streamlined the discussion by focusing on the novel
aspects of the ML model application and moved less critical content, such as the introduction to
machine learning and EBBR-related details, to the supplementary materials. Discussions on
machine learning-related content are intended to facilitate better understanding for readers
unfamiliar with machine learning. This revision enhances conciseness and clarity while
maintaining the paper's focus on the use of the machine learning model for CBLH prediction across
seasons and sites.

2. I like that you are trying to use some physical constraints as input parameters to
improve the ML model. LTS, time, and sun parameters are a good start (Line 345).
However, through previous research it has been shown that presence of elevated
humidity above the BL can also affect the BL development through radiative effects,
and same is true for high-level clouds. These effects in some part will be reflected in
the ECOR fluxes, but with a time delay. In addition, wind speed, wind direction,
wind shear and wind veer have also been shown to be very important. So maybe you
can include the following parameters in your input models, as they are also available



at the ARM sites: wind speed, wind direction, wind shear, wind veer, surface
upwelling and downwelling longwave and shortwave radiation. Surface
meteorological variables will also be good to include. I understand that including
cloud properties might be hard, but given the strong expertise of authors Deng, Xue
and Wang, they can include ceilometer cloud fraction and base height in it. This
might significantly improve the model, and the shapely analysis will tell which
parameters are important. Thank you.

Reply: Thank you for your positive feedback and valuable suggestions. We agree that
incorporating additional parameters such as wind speed, wind direction, wind shear, wind veer,
surface longwave and shortwave radiation, and ceilometer-derived cloud fraction and base height
could enhance the model’s performance. This paper focused on measurements readily avaiable
from both observations and model simulations. We have revised the manuscript’s conclusion to
reflect these future research goals and will use SHAP analysis to assess their importance. Thank
you for your insightful recommendations.

3. The authors have used AutoKeras and TPOT for selecting the best model, which
is great. Given the small amount of data used in this work, the tree-based models
could also be employed in TPOT. It will be good if you can tell us what model and
the associated hyperparameters was picked by these two frameworks. I cannot tell if
they training was done online, and if so the batch sizes etc. The hyperparameters
then should be scrutinized to understand whether any more improvement can be
made. On the same topic, it will be good if the authors can mention if they explicitly
or the two frameworks implicitly regularized (normalized, bias correct etc.) the input
parameters. I assume the (Line 345) sunrise and sunset times and time variable could
be normalized by 24.

Reply: Thank you for your insightful and valuable feedback. In the revised manuscript, we have
detailed the models selected by AutoKeras and TPOT, along with their associated hyperparameters,
in Section 3.4. All training was conducted locally, and we have included a detailed description of
the hardware environment in Section 2.3. Regarding input parameter regularization, both
frameworks implicitly normalize inputs, ensuring that explicit normalization of sunrise, sunset,
and time variables by 24 does not affect the results. We have clarified this in the revised manuscript
in in Section 2.5 (section 2.6 in the first manuscript).

4. Figure 4 onwards: these are nice figures, but maybe you can add another panel
showing the time evolution of the difference between DL CBLH and predicted
CBLH. This will truly tell if the model accurately captures the daytime evolution.



Reply: Thank you for the excellent suggestion. Accordingly, we have incorporated figures
illustrating the temporal evolution of the discrepancies between the DL-derived CBLH and the
predicted CBLH into Figure 4c and Supplementary Figure S5.

5. Figure 10: The connection between convective boundary layer and surface fluxes
is clear during summer months, but I cannot tell how it works in winter months. Can
you please elaborate on the number of samples going into this figure, especially for
the colder seasons. It is difficult to assess as to how accurate the surface fluxes might
be when the environment is cold and the surface is frozen. Otherwise, you can
control for it by using temperature and advection in your input parameters. Thank
you.

Reply: Thank you for your insightful and valuable feedback. In Figure 10 (now Figure 8 in the
revised manuscript), we have specified the winter (DJF) sample size as 240 points, one-third of
the summer sample size (720 points). Winter performance is indeed the weakest, with an R? of
0.736. We agree that assessing surface flux accuracy in cold, frozen conditions is challenging, but
for clear and scattering cloud cases used in this study, the monthly mean sensible and latent heat
fluxes are still up to ~200 and ~100 W/m2 in the winter (DJF). The consistent temporal evolutions
of convective boundary layer and fluxes are still clear in winter at the SGP site. We have
incorporated this discussion in Section 3.5.2 of the revised manuscript. In future work, we plan to
include temperature and advection as input parameters to improve model performance.
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Figure: Monthly mean temporal variations of sensible heat flux (SHF) and latent heat flux (LHF) at site C1. E13
(EBBR: Energy Balance Bowen Ratio system, for measuring sensible and latent heat fluxes via the Bowen ratio
method) and E14 (ECOR: Eddy Correlation system, for measuring turbulent fluxes via the eddy covariance method)
are both located within 1 km of the C1 site and can thus be regarded as co-located with C1.



