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Abstract. Methane emissions from Northern high-latitude wetlands are associated with large uncertainties, especially in the

rapidly warming climate. Satellite observations of column-averaged methane concentrations (XCH4) in the atmosphere ex-

hibit variability due to time-varying sources and sinks. In this study, we investigate how environmental variables, such as

temperature, soil moisture, snow cover, and the hydroxyl radical (OH) sink of methane, explain the seasonal variability of

column-averaged methane concentrations (XCH4) observed from space over Northern high-latitude wetland areas. We use5

XCH4 data obtained from the TROPOMI instrument aboard the Sentinel-5 Precursor satellite, retrieved using the Weighting

Function Modified Differential Optical Absorption Spectroscopy (WFMD) algorithm. Environmental variables are derived pri-

marily from meteorological reanalysis datasets, with satellite-based data used for snow cover and soil freeze-thaw dynamics,

and modeled data for the OH sink. Our analysis focuses on five case study regions, including two in Finland and three in Rus-

sian Siberia, covering the period from 2018 to 2023. Our findings reveal that environmental variables have a systematic impact10

on XCH4 variability: the seasonal variability is most strongly influenced by snow cover and soil water volume, while daily

variability is primarily affected by soil temperature. Our results are largely consistent with in-situ-based local studies but the

role of snow is more pronounced. Our results demonstrate how satellite XCH4 observations can be used to study the seasonal

variability of atmospheric methane over large wetland regions. The results imply that satellite observations of atmospheric

composition, along with other Earth Observations as well as meteorological reanalysis data can be jointly informative of the15

processes controlling the emissions in Northern high latitudes.

1 Introduction

Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG), in terms of its total radiative forcing,

following carbon dioxide (CO2). In recent decades, methane concentrations in the atmosphere have experienced a rapid growth

rate, the drivers of which are being debated (e.g.Turner et al. 2017; Skeie et al. 2023). Globally, approximately 65% of methane20

emissions are anthropogenic, with agriculture and waste management being the primary contributors (Saunois et al., 2024;
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Jackson et al., 2024). The main natural source is wetlands and inland freshwater systems. The main sink of methane is chem-

ical loss by hydroxyl radicals (OH), primarily in the troposphere. According to Saunois et al. (2020, 2024) 65% of the global

emissions originate from south of 30◦N, and methane emissions from high latitudes (north of 60◦N) represent only 4% of

the global total. However, uncertainties in the high-latitude regions are notably larger, with atmospheric measurement-based25

top-down estimates having uncertainties exceeding ±20%, compared to less than ±5% globally. Since 1979, the high North-

ern latitudes have been warming nearly four times faster than the global average (Rantanen et al., 2022), a phenomenon with

potentially significant consequences for methane emissions in these sensitive areas: for example, a warming climate can lead

to an extended growing season or longer shoulder seasons, during which emissions are higher on a monthly basis, compared to

colder months (Zona et al., 2015; Bao et al., 2021; Rößger et al., 2022). Additionally, warming can directly increase methane30

emissions from specific land cover types (Rehder et al., 2023), or thaw permafrost, potentially leading to rising emissions: con-

tinuous permafrost regions, for instance, have shown lower emissions compared to discontinuous permafrost regions (Erkkilä

et al., 2023; Rößger et al., 2022).

Seasonal variability in methane concentration in the Northern Hemisphere is driven by the seasonality of its sinks and

sources, while in the Southern Hemisphere, the sink dominates (East et al., 2024). Although anthropogenic methane emissions35

show some seasonal variability in the high latitudes (Tsuruta et al., 2023), likely related to factors such as gas production or

biomass burning (Berchet et al., 2015), natural emissions show much stronger seasonal variability, mainly driven by wetland

emissions (East et al., 2024; Tsuruta et al., 2023). Methane emissions from wetlands are influenced by wetland conditions and

environmental variables, including, for example, temperature (Howard et al., 2020; Rinne et al., 2018; Kittler et al., 2017),

soil moisture and water table level (Virkkala et al., 2024), and snow cover together with soil frost (Rößger et al., 2022; Zona40

et al., 2015; Mastepanov et al., 2013; Rinne et al., 2007). The methane emissions from wetlands are primarily driven by anaer-

obic processes, where methanogens produce methane by reducing carbon dioxide with hydrogen or breaking down acetate

(Bridgham et al., 2013). Such processes are sensitive to environmental conditions that can limit microbial activity, particularly

through changes in water availability. Both overly dry and overly wet soils can reduce microbial activity, as suitable moisture

levels are required for microbial decomposition. Freezing of the soil, in particular, can limit the availability of liquid water,45

slowing microbial processes. Furthermore, the main sink of methane, oxidation by OH radicals, has a strong seasonality driven

by the number of OH radicals, which is influenced by seasonal variations in their production: OH is primarily produced by the

photolysis of ozone in the presence of water vapor, and its concentration fluctuates with factors such as temperature, humidity,

and UV radiation (Zhao et al., 2019; Travis et al., 2020). These meteorological factors vary seasonally especially in the mid-

dle and high latitudes, leading to seasonal variation of the OH sink. Additionally, when considering methane concentrations50

throughout the atmosphere, transport must be accounted for due to methane’s lifetime of approximately nine years (Saunois

et al., 2024). Transport patterns can affect the seasonal variability of methane over long time scales, and changes in transport

patterns and emissions in other regions might influence observed concentrations elsewhere (Dowd et al., 2023).

Methane concentrations have often been studied using in situ measurements and models. In situ measurements can accurately

measure the methane concentration or flux at a single point close to the ground or in a tower. Their advantage lies in their high55

accuracy and continuous time series, allowing the use of a network of stations for precise calculations of the regional or global
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methane budget. However, gaps in the measurement network hamper the precise localization of emissions and the results

are difficult to extrapolate to larger areas. This is because in situ measurements often represent specific conditions, such as

particular land cover, vegetation type, soil humidity, and local climate. Additionally, these measurements require electricity

and access to the measurement site and, therefore, the flux measurements are often limited to the thaw and snow-free seasons60

due to maintenance reasons. Models, on the other hand, can describe large-scale phenomena, but they require comprehensive

observations to model processes accurately.

The use of satellites in GHG studies has been possible since the 2000s. Satellite observations of methane concentrations

in the near-infrared wavelengths started in 2002, when SCIAMACHY onboard Envisat was launched (Buchwitz et al., 2005).

The Greenhouse Gases Observing Satellite (GOSAT), launched in 2009, was the first satellite dedicated to GHG observations65

(Kuze et al., 2009), followed by the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5

Precursor satellite in 2017. In addition to these missions, small satellites such as GHGSat also measure methane concentrations,

but their utility for large-scale analysis is limited due to their narrow swath and infrequent revisit times. From SCIAMACHY

to TROPOMI, both spatial and temporal resolutions have significantly improved; for example, pixel sizes have decreased from

tens of kilometres to a few kilometres, and revisit times have reduced from several days to one day.70

Satellites observe column-averaged dry-air mole fraction of methane (XCH4), which is retrieved from solar radiation in

the near-infrared wavelengths reflected by the atmosphere or ground surface. Therefore, satellite observations of methane are

dependent on sunlight. At high latitudes, the lack of sunlight causes a so-called winter gap in GHG satellite observations, as

measurements cannot be conducted due to the sun being close to or beyond the horizon. In addition to large solar zenith angles,

cloud cover presents challenges for retrieval algorithms. Additionally, surfaces with a spectrally dependent reflectance, such75

as snow cover (Mikkonen et al., 2024), can introduce retrieval errors (Lorente et al., 2022). Despite these factors that limit

data availability in the Northern high latitudes, updated and improved retrieval algorithms and the high spatial coverage of

TROPOMI have reduced the length of the winter data gap at high latitudes. For the latest version of Weighting Function Mod-

ified Differential Optical Absorption Spectroscopy retrievals (WFMD v1.8; Schneising et al. 2019, 2023), the observational

coverage is, in principle, gapless when considering areas above 50°N overall (Lindqvist et al., 2024). Satellite observations of80

methane have been used in a wide range of studies, for example, to identify the location and intensity of local point sources

(Vanselow et al., 2024; Barré et al., 2021), as well as to investigate variations in methane trends (Hachmeister et al., 2024;

Kivimäki et al., 2019). Additionally, methane satellite retrievals have been widely utilized to inform inversion models on

methane concentrations (Tsuruta et al., 2023; Liang et al., 2023; Pandey et al., 2016).

In this study, we investigate how environmental variables explain the seasonal variability of satellite-observed column-85

averaged methane concentrations over high-latitude wetland areas. Our aim is to determine how environmental variables,

related to methane emissions, together with methane loss by OH, influence total-column concentrations. Based on the in situ

measurement findings presented above, we focus particularly on the roles of temperature, soil moisture, snow cover, soil

freeze and thaw, and the impact of the OH sink, while also examining whether our results align with these in situ findings.

We concentrate on high-latitude wetland areas because, as shown by East et al. (2024), ensemble forward model runs are90

not always able to accurately reproduce the seasonal methane cycle in the Northern Hemisphere due to incomplete wetland
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emission inventories. Satellite observations of methane would be valuable in complementing inversion results, as they could

provide new insights that help reduce uncertainties in the global methane budget and ultimately improve our understanding of

the increasing and varying methane trend. In Section 2, we introduce the datasets used, followed by the methods in Sect. 3.

Section 4 presents and discussed the results and the conclusions are presented in Sect. 5.95

2 Data sets

2.1 TROPOMI WFMD XCH4 product

The TROPOspheric Monitoring Instrument (TROPOMI) on board the Copernicus Sentinel-5 Precursor (S5P) satellite was

launched in October 2017 and it is dedicated to produce observations for air quality and climate monitoring. With its wide

swath of approximately 2600 km, a daily global coverage can be attained. Currently, two retrieval algorithms are generated100

to retrieve the column-averaged dry-air mole fraction of methane (XCH4) from the near-infrared spectra: the operational

TROPOMI XCH4 product, developed by the SRON Netherlands Institute for Space Research (Hu et al., 2018; Lorente et al.,

2021), and the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFMD) algorithm, developed by

the University of Bremen (Schneising et al., 2019, 2023). In this study, we use XCH4 concentrations retrieved by the WFMD

algorithm due to its accuracy and suitability for our analysis. The WFMD v1.8 product shows no seasonal bias when comparing105

to high-latitude ground-based observations and AirCore data, resulting in lower mean bias and standard deviation (Lindqvist

et al., 2024). Furthermore, the WFMD product provides significantly more data from high Northern latitudes, particularly

during the spring months, and features a shorter winter gap.

The WFMD algorithm retrieves simultaneously the column-averaged dry-air mole fractions of CH4 and carbon monoxide

(CO). The WFMD algorithm employs a linear least-squares retrieval which uses scaling or shifting of pre-selected atmospheric110

vertical profiles. The linearised radiative transfer model is fitted to the measured sun-normalised radiance to obtain the vertical

columns of CH4 and CO. The retrieval uses look-up tables for fast solutions and accounts for a range of typical atmospheric

conditions, e.g. different solar zenith angles, surface albedos, and temperatures. The latest version of WFMD, version 1.8,

includes significant changes compared to the previous version aimed at improving retrieval performance for different spec-

tral albedos and updating the digital elevation model to reduce bias associated with topography, especially at high latitudes115

(Schneising et al., 2023; Hachmeister et al., 2022). In addition, the quality filter was refined in the post-processing, which

improved cloud filtering over the Arctic. The improvement was particularly pronounced for water areas in the Arctic, but the

precision of the cloud-free classification for land observations also increased significantly. At the time of writing of this paper,

WFMD v1.8 is the latest available retrieval version.

2.2 IMS Daily Northern Hemisphere Snow and Ice Analysis product120

Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover and sea ice analysis products from the U.S. National

Ice Center (USNIC) are derived from a variety of different data sources, including satellite images and in situ observations.
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The daily data set is available since February 1997 and it is produced in three different spatial resolutions: 1 km, 4 km, and 24

km. The data have a four-class classification method for a surface refarding snow and ice: open water, land without snow, sea

or lake ice, and snow-covered land.125

In our analysis, we used only data over land, i.e. land without snow and snow-covered land classes. We used the 24 km

resolution data version for the time period from 2018 to 2023 (U.S. National Ice Center., 2008).

2.3 The Copernicus Global Land Monitoring Service Snow Water Equivalent product

The Copernicus Global Land Service Snow Water Equivalent (SWE) product provides daily estimates of the equivalent amount

of liquid water stored in the snowpack across the Northern Hemisphere, with a spatial resolution of 5 km (Takala et al., 2011;130

Luojus et al., 2021). Snow presence is identified using optical satellite observations, while SWE values are derived through

assimilation of passive microwave satellite data and snow depth measurements. Areas covered by lakes, sea ice, mountains,

glaciers, and permanent ice are excluded from the dataset. The daily dataset is available since January 2006 and is updated in

near real-time.

To describe the amount of snow in our case study regions we used SWE data from 2018 to 2023.135

2.4 SMOS Level 3 Soil Freeze and Thaw product

The European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) Soil Freeze and Thaw (F/T) product provides

an operational satellite-derived, Level 3 soil freeze and thaw state dataset across the Northern Hemisphere (Rautiainen et al.,

2016; ESA, 2023). The observations from the SMOS satellite, primarily designed to measure soil moisture over land and

surface salinity over oceans, are the basis for the F/T product. This dataset is generated by the Finnish Meteorological Institute140

using SMOS Level 3 gridded brightness temperature data provided by the Centre Aval de Traitement des Données SMOS

(CATDS) (CATDS, 2022; Al Bitar et al., 2017).

The processing algorithm for the SMOS F/T product integrates two auxiliary datasets, 2-meter air temperature and snow

cover data, to refine the accuracy of the freeze-thaw classifications and mitigate obvious misclassifications. The soil state is

categorized into three levels: frozen, partially frozen, and thawed soil.145

The product covers the time period from 2010 to the present, with daily operational updates available at a latency of approxi-

mately one day, ensuring its relevance for ongoing research and applications. The data resolution is 25 km× 25 km, structured

on the Equal-Area Scalable Earth (EASE2) grid. For this study, we utilized SMOS v3 data for the years 2019–2023, focusing

on ascending orbit data, as these are less affected by radio frequency interference (RFI) over the Eurasian continent Oliva et al.

(2016) compared to the descending orbits. Since late 2022, the war in Ukraine has significantly increased RFI, particularly150

over Europe, leading to a substantial reduction in usable data in 2023. This has affected the analysis and results presented in

this paper.
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2.5 ERA5 reanalysis data

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces the ERA5 reanalysis, which is widely used as

a global meteorologica dataset for scientific purposes (Hersbach et al., 2020). ERA5 provides large data sets of variables related155

to atmosphere, ocean-waves and land-surface quantities. Reanalysis is a scientific method where the global past observations

are integrated into a current advanced computer models, allowing the reconstruction of past atmospheric or land conditions

globally, even over areas without in situ observations. ERA5 is based on Integrated Forecasting System (IFS) and is therefore

primarily an atmospheric model, but it is coupled with a land surface model and a wave model to estimate land and ocean

parameters. ERA5 Land (Muñoz Sabater et al., 2021) variables are generated using advanced data assimilation techniques that160

integrate various observations to provide accurate and high-resolution land surface data. The horizontal resolution of ERA5

is 31 km and there are 137 vertical layers and the current hourly data on single levels cover time the period from 1940 to

present. For the public reanalysis product, the data have been regridded for 0.25◦ x 0.25◦ regular grid. ERA5 is widely used

for meteorological research and has been developed since 1950.

For this study, we used hourly data on single levels from 2018 to 2023 (Hersbach et al., 2018). The obtained variables were165

2m temperature, soil temperature and volumetric soil water at Layer 1. Layer 1 represents the soil depth between 0–7 cm,

where the surface is located at 0 cm. In the model, the 2m temperature is calculated by interpolating between the lowest model

level and the Earth’s surface. Soil temperature represents the temperature at the middle of the layer, calculated by estimating

heat transfer between the layers. The soil water volume takes into account soil texture and classification, soil depth, and the

underlying groundwater level (ECMWF, 2018).170

2.6 CH4 loss by OH radicals

The tropospheric OH concentrations were estimated based on Spivakovsky et al. (2000), but scaled by 0.92 globally following

the optimized estimates using methyl chloroform data (Huijnen et al., 2010; Houweling et al., 2014). The stratospheric OH

loss was calculated based on Brühl and Crutzen (1993). The CH4 loss based on the OH fields was calculated using the global

Eulerian atmospheric chemistry transport model TM5 (Krol et al., 2005). TM5 was run at the resolution of 6◦ x 4◦ (latitude x175

longitude) x 25 vertical levels globally constrained by 3-hourly interpolated ECMWF ERA5 meteorological fields, and using

posterior CH4 fluxes from CTE-CH4 (Tsuruta et al., 2017; Saunois et al., 2024). The chemical reactions were calculated off-

line, such that the prescribed OH fields and reaction rates were used in the simulation. The monthly total OH losses were

calculated for the entire latitude zone 57◦N–70◦N.

3 Methods180

The methods used to define the case study areas, process the data sets, and study the links between the environmental variables

and the variability of XCH4 are described as follows. First, the case study areas were defined based on wetland data. Next,

the gap filling process and the fitting of the seasonal cycle to the XCH4 time series are explained. The methods for gridding
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Figure 1. Northern Finland (1), Southern Finland (2), Northern Siberia (3), Middle Siberia (4) and Southern Siberia (5) case study areas

marked over BAWLD total wetland coverage map.

Table 1. Total wetland fraction and three most significant wetland types in the five case study regions based on BAWLD wetland data

(Olefeldt et al., 2021). In some of the regions, there are also other wetland types. Therefore, the total fraction does not necessarily match the

sum of the three types listed here.

Total wetland (%) Bog (%) Permafrost bog (%) Fen(%)

Northern Finland

66–69.5◦N, 18–30◦E
26.5 11.2 0.4 13.8

Southern Finland

62.5–66◦N, 21.5–32◦E
23.3 12.6 0.0 10.0

Northern Siberia

63–67◦N, 61–88◦E
40.2 5.5 19.1 8.8

Middle Siberia

60–63◦N, 61–88◦E
45.8 20.8 1.2 19.7

Southern Siberia

57–60◦N, 61–88◦E
40.8 21.0 0.0 16.9

and averaging environmental variables to align them with the XCH4 time series are then outlined. Finally, the application of

random forest feature importance and permutation importance to study the connections between the time series are described.185
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Figure 2. (a) TROPOMI WFMD daily median XCH4 (blue dots), gap-filled XCH4 values (grey dots) and fitted seasonal cycle and trend,

and their uncertainties (red and shaded red) for Middle Siberia. (b) shows the same for the detrended time series.

3.1 Defining the case study areas

To investigate how environmental variables explain the seasonal variability of XCH4 over Northern high latitude wetland areas,

we needed to define case study regions that are both representative of wetland areas and exhibit seasonality in environmental

variables. A general challenge in defining a case study area, is that one hand it has to be large enough to host a sufficiently

representative set of concentration observations but on the other hand small enough so that the area is to some extent homo-190

geneous when considering the emissions and sinks. After testing, we decided to concentrate on five areas over the Northern

Eurasia. The areas are shown in Fig. 1 and are called Northern Finland, Southern Finland, Northern Siberia, Middle Siberia,

and Southern Siberia. The borders of the case study areas were defined based on The Boreal-Arctic Wetland and Lake Dataset

(BAWLD, Olefeldt et al., 2021). Figure 1 shows the case study areas over BAWLD total wetland fraction map. In addition,

the latitude and longitude borders of the areas are listed in Table 1. The total wetland and wetland type fractions for each case195

study area are also listed in Table 1. Based on the map in Fig. 1 and Table 1, for the Siberian case study areas, the total wetland

fraction is over 40% and for the Finnish case study areas it is over 20%. The main wetland type is fen for Northern Finland, and

bog for Southern Finland and Middle and Southern Siberia. Northern Siberia is the only area where permafrost bog is the main

wetland type and also where the permafrost bog fraction is significant. The border between the Northern and Middle Siberia

case study regions was defined in such a way that it separates areas where permafrost bog or bog is the dominant bog type.200
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3.2 Time series gap filling and fitting of the seasonal cycle of XCH4

Before applying gap filling and fitting the seasonal cycle of XCH4, we collected all quality-flagged TROPOMI WFMD v1.8

data for each case study area, covering the period from January 2018 to April 2024. For each day, we calculated the regional

daily median XCH4, along with its standard deviation and the number of observations per day, based on all observations within

the area for that day. To minimize the influence of potential outliers, the daily median was calculated only for days with more205

than three observations. This restriction excluded a few individual spring dates. After calculating the daily medians, we applied

a Kalman filter for gap filling, and the seasonal cycle was fitted using NOAA’s curve fitting routine (CCGCRV; Thoning et al.

1989; NOAA 2012). CCGCRV is a non-linear fitting routine, developed by Thoning et al. (1989) to smooth and separate the

seasonal cycle and long-term trend of CO2 from the Mauna Loa in situ measurements. CCGCRV fits the long-term trend with

third order polynomial function and the seasonal cycle is modelled with harmonic functions;210

y = a0 + a1x + a2x
2 +

4∑

n=1

[a2n+1 sin(2nπx) + a2n+2 cos(2nπx)] (1)

where the terms a0, a1, a2 represent the trend components, while the summation term captures the seasonal variation through

the sine and cosine functions. The function is fitted with linear least squares regression routine that also gives the covariance

of the fitting parameters and therefore the uncertainty of the parameters estimated. The fitting process produces a constant

seasonal cycle, and to account for interannual and short-term variations, the residuals are filtered (NOAA, 2012; Pickers215

and Manning, 2015). CCGCRV gives as output the fitted trend, harmonic seasonal cycle with no interannual variability and

smoothed seasonal cycle, where the interannual and short term variations are included. When considering the seasonal cycle of

methane, CCGCRV has been previously used, for example, to study the decreasing seasonal cycle of methane in the Northern

high latitudes (Dowd et al., 2023) and the year-to-year anomalies of satellite observations of methane in tropical wetlands

(Parker et al., 2018).220

The fit for each individual day in the CCGCRV method can be described as a combination of the function fit, which repre-

sents the harmonic cycle without interannual variability, and the filtered residuals, which accounts for interannual and short-

term variations. Similarly, the uncertainty of each component can be estimated by combining the variances of these different

elements (NOAA, 2012). For example, the uncertainty of the smoothed seasonal cycle is calculated by combining the variances

of the function fit and the residual filter:225

σ2
smooth = σ2

function + σ2
filter. (2)

Likewise, the uncertainty of the trend can be determined by combining the variances of the polynomial fit and the filter (NOAA,

2012).

Pickers and Manning (2015) investigated the possible biases related to three different curve fitting programs, CCGCRV being

one of them. Pickers and Manning (2015) concluded and generated general recommendations on the use of these curve fitting230

programs and their suitability for time series analysis. Based on these recommendations we considered CCGCRV suitable for

our analysis, as it was recommended to in cases where the year-to-year anomalies or the magnitude or timing of the seasonal
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cycle are studied. To avoid the limitations of CCGCRV related to missing observations, it was suggested by Pickers and

Manning (2015) that the data are gap-filled before applying CCGCRV, as CCGCRV only interpolates over the gaps.

We experimented different gap filling methods and studied their effect on the seasonal cycle in the Middle Siberia. The235

methods tested included the interpolation that CCGCRV can perform on its own, as well as Kalman filtering. For the Kalman

filter, we experimented with several different parameter settings. Based on our analysis, the timing and the shape of the har-

monic cycle fitted by Eq. (1) were quite similar regardless of the gap-filling method. The main differences in the fitted cycles

were related to the amplitude of the seasonal cycle, as the winter maximum often coincided with a winter data gap, and the

timing of this maximum also varied slightly between fits. Based on our tests, we decided to use the Kalman filter for gap240

filling, as it initially provided the lowest chi-squared values for the function fit and the smallest residual standard deviation.

The Kalman filter settings were further optimized to minimize the chi-squared value and the residual standard deviation. The

defined Kalman filter settings were kept similar for each case study area. For the analysis, the winter gap was excluded to avoid

drawing conclusions from periods without observations. This, along with the effect and contribution of the gap-filling method

on the results, is discussed in Sect. 4.245

After filling the data gaps using the Kalman filter, we applied CCGCRV to the gap-filled time series for each study region,

and calculated the uncertainties of the smoothed seasonal cycles. Figure 2 shows an example of the XCH4 daily medians,

gap-filled values, the fitted smoothed seasonal cycle with its uncertainty, and the fitted trend for Middle Siberia. Similar figures

for other case study areas can be found in Appendix A, specifically in Figs. A1, A2, A3 and A4.

To investigate the spring time seasonal minima and maxima of the XCH4 seasonal cycle in relation to factors such as250

snowmelt, we needed to determine the dates of these minima and maxima, along with their uncertainty estimates. To calculate

the uncertainty estimates, we utilized the fitted harmonic seasonal cycle and the parameters an provided by the CCGCRV fit (as

shown in Eq. (1)), along with the uncertainty estimates derived from the covariance matrix using a Monte Carlo approach. We

sampled 10,000 states of the fitted cycle and calculated the dates of the minima and maxima for each state using the find_peaks

function from the Python scipy.signal package. For each minimum and maximum, we computed the standard deviation across255

these 10,000 states and used these standard deviations as the uncertainty estimates for the results presented in Sect. 4. The

distribution of the values around each individual minimum and maximum was found to be Gaussian, allowing us to use the

computed standard deviation for each minimum and maximum reliably as an uncertainty estimate.

3.3 Gridding and averaging of environmental variables

As environmental datasets in this study, we used the SMOS freeze/thaw state (F/T), IMS snow state (snow), The Copernicus260

Global Land Service Snow Water Equivalent product (SWE), ERA 2 m temperature (T/2m), ERA5 soil temperature at layer 1

(T/soil), ERA5 volumetric soil water at layer 1 (soil W) and CH4 loss by OH (OH). These datasets are described in detail in

Sect. 2, where, for example, the spatial and temporal resolutions are provided for each dataset. Abbreviations in parentheses

corresponding to the variable names used in Sect. 4.

All environmental data were initially collected for the case study areas, presented in Sect. 3.1, and daily mean values along265

with their standard deviations were calculated over the areas. The environmental data sets were not gap filled, as they consist
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Figure 3. Black line shows the daily mean and the filled grey area the standard deviation of (a) soil freeze-thaw state, (b) snow cover state,

(c) snow water equivalent, (d) layer 1 soil water volume, (e) 2 meter air temperature, (f) layer 1 soil temperature and (g) CH4 loss by OH for

Middle Siberia. The abbreviation mentioned in parentheses in the title of each subfigure is the abbreviation to be used for that environmental

variable in the results.
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of daily time series. Variations in the temporal and spatial resolution of the datasets required slight adjustments in averaging

methods. SMOS F/T and IMS snow cover are categorical datasets: SMOS F/T has three categories, while IMS has two. For

SMOS, we defined frozen as 1, partially frozen as 0.5, and thawed soil as 0. We then averaged these values across each case

study area to obtain the regional mean soil freeze-thaw state. In the IMS snow cover data, snow-covered areas were defined270

as 1 and snow-free areas as 0, which allowed us to calculate the average snow cover fraction for each area. Snow water

equivalent data has a daily temporal resolution, allowing us to calculate daily area-averaged values directly. For temperatures

and soil water volume, derived from the ERA5 reanalysis data, hourly means were first calculated for each area, and from

these hourly means, daily average temperatures and their standard deviations were computed. For the CH4 loss by OH, there

is no variability between years or a within month, as it has already been calculated for the 57◦N–70◦N latitude band, making275

it consistent regardless of the study area or year. Figure 3 illustrates the environmental time series for Middle Siberia. Similar

figures for other case study areas can be found in Appendix B, specifically in Figs. B1, B2, B3, and B4.

The environmental datasets have relatively coarse spatial resolution, with the smallest grid cell size being 5 km in the SWE

data and the largest being approximately 27.8 km in the ERA5 data along the longitude direction. The environmental variables

in this case, such as snow cover or temperature, can vary significantly within these grid cells, depending on factors such as280

land type. For example, a transition from forest to wetland within a grid cell can lead to substantial variation in the variables.

Therefore, in addition to the variability of environmental variables within the case study area, it is important to consider that

there may also be variability within the grid cells.

For seasonal timing comparison (Sect. 4.2) we required estimates of the start and end dates of snow cover melt and beginning

of decreasing SWE, along with their uncertainties. We defined the start of snow cover melt as the date when the IMS snow285

state over the area was below 0.9, and snow cover was considered completely melted when the mean snow cover fell below

0.1. To estimate uncertainties for these dates, we examined when the mean snow cover±1σ uncertainty fell below 0.9 for melt

onset and below 0.1 for complete melt. This approach provided uncertainty bounds in both directions for the start and end

dates of snow cover melt. To obtain the date when SWE begins to decrease significantly, we normalized the SWE data for each

study area for each winter and identified the first day in spring when the normalized SWE was below 0.75; this day was used290

to represent the beginning of SWE decline. The uncertainties for this timing were estimated similarly to those for snow cover

melt, by identifying the days when the mean SWE ±1σ uncertainty dropped below 0.75.

3.4 Random forest feature importance and permutation importance

To study the links between the environmental variables and variability of XCH4 on the daily level, we applied random forest re-

gression method, using two different importance metrics: random forest feature importance (RFFI) and permutation importance295

(PI) methods, within the random forest model. Here, the environmental variables act as features in the random forest, allow-

ing us to assess their individual contributions to XCH4 variability. In general, random forest is a robust and well-established

ensemble learning method that averages multiple decision trees to avoid overfitting and to improve the accuracy of the results

(Breiman, 2001). RFFI and PI are importance metrics that can be used to evaluate the relationship between environmental vari-

ables and the seasonal variability of XCH4. RFFI measures variable importance based on tree structure, while PI evaluates it by300
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shuffling values within the variable, assessing the resulting impact on model performance. By analysing these scores together

we can study the connections of environmental variables and seasonal variability XCH4 in more detail, as the scores provide

different types of information and the calculated importance either can support each other or highlight some differences.

The first method, RFFI, measures how each variable contributes to the decision-making process within the random forest

model. RFFI is normalized to provide a relative ranking of variable importance so that the sum of importance values over305

the variables is one. The second method, PI, describes the performance of the model when the values of each environmental

variable are shuffled. PI directly measures the impact of each environmental variable on the random forest model’s predictive

accuracy, which provides additional information about the relevance of each environmental variable by showing how much

the prediction error increases when a particular variable is disrupted. It is important to note that the calculated RFFI and

PI importance values are not directly comparable as they measure different aspects and their units are different. Using both310

methods together allows for a more comprehensive understanding of variable importance by comparing the effects of different

importance methods and settings on the results. Additionally, it should be noted that high correlations between environmental

variables can influence the RFFI results, as highly correlated variables may share the importance assigned by the model,

making it difficult to distinguish their individual contributions to the model. In contrast, PI is less sensitive to correlations as

it measures the independent impact of each variable on model performance, although it may still be affected by the shared315

information problem in cases of highly correlated features. For this reason, it is also good to use two importance methods, as

the environmental variables are usually correlated to some extent. The random forest model performance requires a large data

volume; therefore, we collected data from all of the case study regions. The total number of daily median XCH4 from all of the

case study regions was 4935, distributed to Northern Finland, Southern Finland, Northern Siberia, Middle Siberia, Southern

Siberia with 720, 715, 1118, 1134, 1248 daily medians, respectively.320

We studied separately the relationship of environmental variables and the fitted seasonal cycle of XCH4 (Fig. 2(b) red

line), and the relationship of environmental variables and detrended daily XCH4 medians (Fig. 2(b) blue dots) to estimate the

potentially different drivers for the variability in different time scales. For both, we conducted the same methods: only those

days when we had TROPOMI XCH4 observations were considered. Therefore, the analysis and results can be considered to

apply only to the spring-summer-fall period as we are missing XCH4 values from winter time.325

To obtain the results of this study we used scikit-learn Python module and its built-in methods and functions for fitting the

model and to calculate RFFI and PI (Pedregosa et al., 2011). The random forest model was set up with 100 decision trees

and trained using 80% of the available data, with the remaining 20% used for testing the model’s performance. The model

was implemented without pruning. We tested different numbers of trees, but the model’s performance did not significantly

improve as the number of trees increased. Given the relatively small size of the dataset it was important to keep the number of330

trees small enough. For the results presented in Sect. 4.1, the number of features to consider when determining the best split

(parameter ’max_features’) was set to ’sqrt’, meaning the number of features considered at each split was the square root of

the total number of features in the model. The choice of ’max_features’ was based on a sensitivity analysis that assessed model

performance and root mean square error (RMSE) using cross-validation. In addition to ’sqrt’, we also tested with ’n_features”,

where all features are considered when determining the best split. The choice of the number of features had no effect on the335
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ranking of the feature importances, indicating robust identification of key drivers regardless of the model configuration. Model

performance improved slightly with ’sqrt”, increasing the model’s coefficient of determination (R2) from 0.840 to 0.851 for

the seasonal cycle, and from 0.317 to 0.322 for daily medians. The RMSE decreased for the seasonal cycle from 8.05± 2.84

ppb to 7.93± 2.94 ppb, while it increased slightly for daily medians from 14.09± 1.21 ppb to 14.16± 1.17 ppb. Although the

changes in performance metrics were small when altering the ’max_features’ parameter, ’sqrt’ was chosen because it increases340

tree diversity, reduces the risk of overfitting, and generally improves model generalization. For permutation importance, we

defined the number of reputations to be 50 to obtain a robust estimate of each variable’s contribution.

To evaluate the uncertainty of RFFI and PI we fitted the random forest model 1000 times using different random seeds. The

final feature importance values that are presented in the results in Sect. 4.1, were calculated as the average of these thousand

fits and the uncertainties of the importance values were estimated by calculating the standard deviation of the sample.345

Among the environmental variables that we use in our analysis, the following were highly (i.e. correlation coefficient |r| ≥
0.85) correlated: snow cover and snow water equivalent (r = 0.89), snow cover and soil freeze-thaw state (r = 0.91), snow

cover and soil temperature (r =−0.85), snow water equivalent and soil freeze-thaw state (r = 0.96), 2 meter air temperature

and soil temperature (r = 0.93), and soil temperature and OH (r = 0.87). These high correlations can mostly be explained by

physical mechanisms and are not surprising. It is important take these correlations into account, especially when analysing the350

RFFI results.

4 Results and discussion

4.1 Links between environmental variables and XCH4

Our aim is to study the links between environmental variables and the seasonal variability of XCH4 and to estimate the

potentially different drivers for the variability in different time scales. The time scales we consider include the fitted seasonal355

cycle, which captures the seasonal changes but cannot detect short-term variations or extremes, and day-to-day variability,

which is more sensitive to small-scale atmospheric changes and can exhibit larger fluctuations than the seasonal cycle. In

addition, we study the daily median – seasonal cycle difference, which describes how the daily value differs from the seasonal

value and is used in our analysis to strengthen the results; the daily median – seasonal cycle can be thought in a way as methane

anoamaly respect to the seasonal cycle. The methane XCH4 data used in this study (WFMD v.1.8) performs well compared360

to reference data sets across all seasons (Lindqvist et al., 2024), indicating its reliability in capturing both seasonal and daily

variability across all available time periods. The mean daily median – seasonal cycle difference varied between the case study

areas, ranging from 2.0 ppb to 3.9 ppb. This difference is generally highest during spring, when day-to-day variability peaks,

with methane concentrations showing notably stronger low values on individual days (for example, Fig. 2 for the year 2018),

and, additionally, the concentration drops sharply from the winter maximum to the winter minimum (for example, Fig. 2 for365

the year 2022).

The analysis is performed by applying random forest regression method using RFFI and PI importance metrics. Figure 4

shows PI and RFFI of each studied environmental variable on the detrended XCH4 daily medians ((a) and (b)), fitted XCH4
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Figure 4. Permutation and random forest feature importance metrics for XCH4 seasonal cycle ((a) and (b)), XCH4 daily median ((c) and

(d)), and XCH4 daily median – seasonal cycle difference ((e) and (f)). The importances are ordered based on the permutation importance,

the most important being the uppermost and the lowest being the least important. The importances are calculated as an average from 1000

random forest fits and the uncertainties (black lines) are the standard deviations of those fits.

seasonal cycle ((c) and (d)) and for daily median – seasonal cycle difference ((e) and (f)). The environmental variables are

ordered in the y-axis based on their PI rankings. Black line shows the uncertainty of the importance. Figure 5 shows the370

ranking of environmental variables based on their importance to different XCH4 components; the higher bar signifying higher

significance. Each colour represents each XCH4 component and the shade of the colour is based on the used importance

method.
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Figure 5. The ranking of environmental variables based on their importance to XCH4 variability. The height of each bar represents the

variable’s rank: a higher bar indicates greater importance. Each colour indicates different XCH4 component (blue: daily median; red: fitted

seasonal cycle; grey: daily median – seasonal cycle difference) and the shade of the colour the used importance method (darker: PI; lighter:

RFFI).

Based on Figs. 4 and 5, for the XCH4 seasonal cycle, both PI and RFFI show somehow similar patterns, SWE and soil water

volume being the most important environmental variables. The order of importance for soil freeze-thaw state, air temperature,375

snow cover, soil temperature and OH varies slightly between PI and RFFI but all of these variables are less significant than

SWE and soil moisture according to both methods. For the XCH4 daily medians and the difference between daily medians and

the seasonal cycle, PI and RFFI produce somewhat similar results: according to both methods, soil temperature is the most

important environmental variable for both XCH4 variables. For PI, this is clearer than for RFFI, and the order of importance for

other environmental variables differs between the methods. Based on RFFI, OH is the second most important for XCH4 daily380

medians, while based on PI, it is SWE. According to PI, the importance of other environmental variables than soil temperature

and SWE are minimal, while based on RFFI, each environmental variable has some effect. For the daily median – seasonal

cycle difference, soil temperature is the most important variable based on both RFFI and PI. This is somewhat expected, as

soil temperature was not significant for the XCH4 seasonal cycle, but it was for the daily medians, and SWE was important

for both. Interestingly, for the difference, the soil water volume, which was a significant factor in the seasonal cycle, does not385

appear as an important variable for the daily median – seasonal cycle difference.

However, the analysis also reveals that the RFFI results may not be as reliable for interpretation as those based on PI. As

noted in Sect. 3.4, the correlation between environmental variables can affect their relative importance when considering RFFI,

making it difficult to distinguish their individual contributions. This issue is particularly evident, for example, in the XCH4

daily median results, where RFFI suggests that OH is the second most important variable, with an importance value very390

close to that of soil temperature (Fig. 4 (d)). In contrast, PI ranks OH as the third most important, with a clear difference in

importance compared to soil temperature. According to correlation analysis, OH and soil temperature are highly correlated

(r = 0.87), which leads to challenges in distinguishing their individual importance in the RFFI results. Given these concerns,
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and considering the challenges RFFI faces when the features are correlated, we focus on the PI results and use RFFI results as

supporting information for variables that are not as strongly correlated. It should also be noted that due to the high correlation395

of the variables, the PI values could still be affected to some (but to a much lesser) extent by the issue of shared information

between features (see Sect. 3.4).

The similarities and discrepancies between PI and RFFI importance scores suggest that, for XCH4 seasonal cycle, the random

forest model performs relatively steadily, with SWE and soil water volume being the main drivers of the seasonal cycle’s phase.

However, for the short-term XCH4 variability, the model is less stable, indicating that the mechanisms behind daily variability400

are more complex and that short-term environmental variability has little systematic impact in the total column. Nonetheless,

soil temperature plays clearly a large role in short-term variability. This difference between the seasonal cycle and daily median

results is consistent with the sensitivity analysis of the random forest model presented in Sect. 3.4, where it was found that

model’s performance was stable across different configurations but was clearly better for seasonal cycle than for daily medians.

The driving factors and conditions of the seasonal variability of methane emissions from different land and vegetation types405

has been previously widely studied with in situ measurements and modelled CH4 fluxes and concentrations. As stated in

the introduction, the seasonal variability of the column-averaged dry-air mole fraction of methane is a combination of the

seasonality of CH4 emissions and sinks, and transport patterns. Therefore, the results from local flux studies cannot be directly

compared to our findings, although fluxes influence the XCH4 concentrations. Next, we will compare our results with previous

findings from in situ and model studies, and examine how the dependencies of methane on environmental variables identified410

in those studies are reflected in our results.

East et al. (2024) studied the hemispheric differences and the drivers of the seasonality of methane concentrations based on

model simulations. They showed that in the Southern Hemisphere the seasonal cycle is smooth and driven by the OH sink but

the seasonal cycle in the Northern Hemisphere is asymmetric and has a sharp increase during summer. Based on their results

with chemical transport model, they found that the magnitude, latitudinal distribution and seasonality of wetland emissions are415

critical for the seasonality of methane in the Northern Hemisphere as they determine the timing and magnitude of the summer

increase. Our findings further specify those of East et al. (2024), as our results print out the importance of soil water volume,

snow cover, and soil temperature; these variables are all important factors for methane production in high latitude wetlands,

either directly or indirectly, by influencing the soil water cycle and temperature.

Snow and frost require similar conditions, specifically temperatures below zero degrees Celsius. Moreover, they are closely420

interconnected: snow acts as an insulating layer, influencing soil freezing and thawing. For methane emissions, snow plays an

important role as it slows down methane from entering the atmosphere from the soil. Snow also contributes to soil thawing,

as water from melted snow thaws the soil from above and increases the soil water volume. Studies that have carried out

measurements outside the growing season have mainly focused on quantifying fluxes during the cold season and comparing

them to annual emissions. However, only few studies have directly studied the relationship between snow and methane fluxes,425

partly due to the difficulty in accessing in situ observation sites during the winter months. The cold season emissions can cover

a major part of the annual emissions, despite snow and soil frost (e.g, Zona et al. 2015; Rößger et al. 2022). The emissions

during the cold season are relatively stable, with a monthly distribution accounting 4–8% of the annual emissions (Rößger
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et al., 2022). However, since the cold season lasts in some parts of high latitudes from early October to early May, a significant

amount of emissions is accumulated over this time period and therefore the cold season emissions are important to the annual430

methane budget in these areas. As mentioned in Sect. 2.4, the quality of SMOS F/T product data near Russia is affected by

RFI interference. However, it was observed that in our case, the interference significantly impacted the data quality only for

the year 2023. Our earlier results, which did not yet include data from 2023, were consistent with the current findings. This

consistency suggests that the interference has not impacted our results, which is logical given the relatively low importance of

soil freezing (Fig. 4).435

From the studies that have been directly investigating the connections between snow and methane, Mastepanov et al. (2013)

found that the springtime increase in CH4 flux was strongly correlated with the date of snowmelt. Additionally, Rößger et al.

(2022) reported that earlier snowmelt and higher early summer temperatures in June has increased the early summer CH4

fluxes in Siberian Tundra. Both Zona et al. (2015) and Rößger et al. (2022) showed a significant rise in methane emissions

over a wetland following the spring thaw, and then strong monthly emissions that lasted over the thaw season. They both440

defined the seasons based on temperatures, either air or soil. Our results show that for the XCH4 seasonal cycle, snow is a

more determining factor than for XCH4 daily medians; the amount of snow determines the phase of the XCH4 seasonal cycle

together with soil moisture. However, Mastepanov et al. (2013) and Rößger et al. (2022) examined the effects of snow on small,

well-defined land types, whereas in our study, the SWE data resolution is 5 km, approximately the same as the TROPOMI pixel

size. Despite this relatively small grid size, it still encompasses various land types with differing melting timings. Additionally,445

when averaging across the entire case study area, further variability arises due to the diverse land types present. As shown

in Sect. 3.1 in Table 1, none of the areas had a total wetland fraction exceeding 50%, indicating that more than half of the

area consists of non-wetland types. In Section 4.2, we further address this uncertainty by calculating case study area specific

uncertainties.

The effect of soil moisture on methane emissions is a complex process, and the results are significantly influenced by fac-450

tors such as wetland type or the time period (month, season, year) being studied. For example, Kittler et al. (2017) compared

methane emissions from a drained area to a more moist control area at moist tussock tundra that is located on Siberian per-

mafrost area. They showed that the annual amount of methane emissions is correlated with drainage; in the drained area, annual

methane emissions were lower than in the moist control areas. On the other hand, Zona et al. (2015) studied emissions from

the Alaskan tundra and showed that, at the driest sites, cold-season emissions dominated the annual emissions. Based on our455

importance analysis, soil water volume, which describes soil moisture, is strongly linked to the seasonal variability of XCH4.

However, its influence in the shorter-term variability is more complex, making it difficult to capture using simple statistical

measures, such as the Pearson correlation coefficient. This complexity may arise from relatively strong day-to-day variability in

soil moisture during the summer, as well as significant local variations, such as differences in soil types (e.g., Kittler et al. 2017

and their comparison between two adjacent areas). Since the environmental variables used in this study are relatively sparse460

in spatial grid resolution and are then averaged over larger areas, there are inevitably many different land and wetland types

within each grid cell and within the case study area. Furthermore, the soil water volume in Layer 1 represents soil moisture

in the topsoil, and it is possible that methane emissions during the summer are more influenced by water table depth, which
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changes more slowly than topsoil moisture. The Layer 1 was chosen because it represents the soil properties in the 0–7 cm

layer, while Layer 2 represents the 7–28 cm depth, and we wanted to select the layer closest to the surface. Both layers were not465

chosen because their correlation was really close to one, which would have made the interpretation of PI and RFFI importance

values more difficult. In permafrost areas, the active permafrost layer depth might also have an effect. To study the effect of

soil moisture on XCH4 at a more detailed level, it would likely be necessary to consider different soil types individually, per-

mafrost areas, and the relationship between soil moisture and individual XCH4 satellite observations. Additionally, spatially

representative data on water table depth would be valuable, as methane emissions continue when the water table drops below470

the 7 cm depth observed in topsoil moisture, but they cease in deeply drained soils and turn into a methane sink. In permafrost

regions, it would also be valuable to study the seasonal development of active layer depth, as it determines the thickness of

the soil layer emitting methane. We tested the analysis using satellite-based soil moisture data (Dorigo et al., 2017), but the

main issue was that it is not daily data, and there were significant data gaps during springtime. This prevented a comprehensive

analysis with that data and was the reason to use ERA5 soil water volume instead.475

Based on flux studies, it can be stated that during the growing season, there is a positive correlation between methane

flux and soil temperature (e.g., Mastepanov et al., 2013; Howard et al., 2020; Kittler et al., 2017). This relationship is linked to

microbiological activity, which is enhanced by higher soil temperatures, leading to increased methane emissions from wetlands.

According to both PI and RFFI scores, soil temperature is the most important factor influencing the detrended XCH4 daily

medians, although for PI, the uncertainty range is high. Nevertheless, soil temperature remains the most important within480

this range. Zona et al. (2015) showed that when the soil temperature is below zero, CH4 emissions are small, but as the soil

temperature increases toward zero and above, methane emissions begin to rise, with the highest emissions occurring during

July and August. Similarly, Kittler et al. (2017) showed that emissions peak during July and August and follow the temperature.

We examined the correlation between soil temperature and the detrended XCH4 daily median for each month separately and

found that, during the period from May to August, the correlation between the daily mean soil temperature and the detrended485

XCH4 daily median was moderate, with Pearson correlation coefficients of 0.34, 0.39, 0.48, and 0.32, respectively. During the

other months, the correlation was not larger than 0.3, but in April and October, it ranged between 0.2 and 0.3. Although the

Pearson correlation coefficients are relatively low, our results regarding the significance of soil temperature are consistent with

previous research, which shows that temperature affects methane emissions. We observe this in the XCH4 data, and the low

correlations may be attributed to the fact that methane emissions may respond with a delay to changes in temperature. The490

random forest model, which can incorporate time lags, likely explains why, despite the low correlations, soil temperature still

shows significant importance in the model.

OH became a significant factor based on the RFFI importance score for XCH4 daily medians, likely due to its high correlation

with soil temperature (r = 0.87). As noted in Sect. 3.4, highly correlated variables may share the assigned importance in the

random forest model when using RFFI. However, PI importance score is not as sensitive as RFFI for this sharing effect,495

and in the PI scores, OH ranks as the third most important factor, though it has significantly less influence compared to soil

temperature or SWE (Figs. 4 and 5). In addition, it should be noted that we used monthly zonal mean CH4 loss values from

TM5, calculated for the latitude zone 57◦N–70◦N (see Sect. 2.6). The method used is a simplification; we assumed that the
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Figure 6. Scatter plots show (a) onset of snowmelt (y-axis) versus the day of the year when the XCH4 seasonal cycle reaches its minimum

(x-axis), and (b) the end of snowmelt (y-axis) versus the day of the local maxima in XCH4 (x-axis). Both figures also display the one-to-one

line in gray dots, a linear fit as a black dotted line, and an Orthogonal Distance Regression (ODR) fit as a black dashed line. The ODR fit

accounts for uncertainties in both directions, with all uncertainties calculated based on the data.

large-scale OH loss is sufficient to examine the variability of XCH4 in this study. This is based on the assumption that OH

loss would not vary significantly spatially between the study areas at a monthly resolution. However, this assumption does500

not take into account that OH concentrations depend on factors such as the amount of UV radiation and humidity (Lelieveld

et al., 2016; Zhao et al., 2019), and therefore, it has also shorter-term and interannual variability. As we concentrate on the

Northern high latitudes, we are dealing with spectrally and temporally variable surfaces, particularly seasonal snow cover,

which can influence OH levels due to varying UV reflection from the surface. For instance, Prinn et al. (2001) presented that

during El Niño–Southern Oscillation (ENSO) events, increased cloud cover corresponds to lower OH concentrations, likely505

due to reduced UV radiation near the surface. Consequently, snow cover may impact not only methane fluxes but also the

atmospheric methane sink indirectly. A more detailed and deeper evaluation the effectiveness of the OH sink would require

more accurate OH estimation or the use of new proxies to demonstrate small-scale variations in OH concentrations. Given

that the lifetime of OH is very short, typically approximately one second, and it is highly sensitive to disturbances in both its

sources and sinks (Wolfe et al., 2019) it is challenging to measure OH concentrations or reliably model its concentration spatial510

variability in the atmosphere. Until now, atmospheric measurements of methyl chloroform have often been used as a proxy

for OH concentration; however, this approach is becoming increasingly difficult as methyl chloroform concentrations decline

(Zhang et al., 2018).
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4.2 Seasonal timing of XCH4 minima and maxima in relation to snow

Snow influences wetland methane emissions in multiple ways, for instance, it acts as an insulating layer for the soil, affecting515

soil temperatures and freezing processes, thereby directly impacting methane production in the soil. Snow also slows down

the methane emissions from entering to the atmosphere from the soil. In spring, as snow melts, a pulse of methane emissions

is often observed, resulting from methane that accumulated beneath the snow and ice during winter being released after the

snowmelt and soil melt (Rinne et al., 2007). Additionally, soil moisture is closely linked to snowmelt in spring; Figs. B3, 3, and

B4 show that in the Siberian case study areas, soil water volume typically increases sharply to a distinct peak during the period520

between the onset and the end of snowmelt. This increase in soil water volume is linked directly to melting snow. In Northern

and Southern Finland, this pattern is less distinct, though similar features can still be observed to some extent (Figs.B1 and

B2).

Our results in Sect. 4.1 showed that the seasonal cycle of XCH4 is also influenced by snow. To further investigate the

temporal connection between snow and the seasonal cycle of XCH4, we focused on spring, particularly in the minimum XCH4525

in early spring and the local maxima in late spring or early summer, along snowmelt. The focus on spring was chosen because

the annual maximum often coincides with time when TROPOMI observations are not possible, and the onset of snow cover

frequently falls within this timeframe (Fig. C1), complicating the analysis. The impact of the winter gap on our analysis and

the added value of increasing satellite observations during the winter gap in XCH4 data are discussed in more detail at the

end of this section. For the analysis, we defined the end of snowmelt based on snow cover, rather than SWE, because it is a530

simpler method for determination, and in SWE time series, it is observed that significant amounts of snow may still fall after

SWE approaches zero, for example, in Fig. 3(c) in the spring of 2020. When determining the end of snowmelt based on snow

cover, these situations were more precisely defined. The onset of snowmelt, however, must be defined through the start of SWE

reduction, as SWE begins to decrease much earlier than snow cover (Fig. C1). Threshold-based methods for defining the onset

and end of snowmelt are described in Sect. 3.3.535

The seasonal cycle of XCH4 reaches its minimum in early spring and its maximum during the autumn or winter. Toward

the end of spring, in certain years, local minima and maxima in the XCH4 cycle are observed across specific case study areas,

coinciding with the timing of snowmelt (Fig. C1). Figure 6 shows (a) the day of minimum XCH4 relative to onset of snowmelt,

and (b) the day of local maxima in XCH4 compared to the end of snowmelt. Both plots include a linear fit, represented by a

dotted line, and an Orthogonal Distance Regression (ODR) fit, indicated by a dashed line. The ODR approach accounts for540

uncertainties in both the x and y directions. Both figures also display the Pearson correlation coefficient r and the coefficient

of determination r2. Uncertainties related to the timing of snowmelt and the phase of the XCH4 seasonal cycle are calculated

as presented in detail in Sections 3.2 and 3.3.

Based on Fig. 6(a), the onset of snowmelt correlates with the day of the XCH4 minimum, within uncertainties. However,

in the Southern Finland case study area, a few outliers are observed, specifically in the springs of 2020 and 2021 (Fig. 6(a)),545

when SWE showed a gradual decline without a clear, rapid drop, and substantial variability was present within the region (Fig.

C1). The correlation between the onset of snowmelt and the day of minimum XCH4 is moderate, with a correlation coefficient
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of 0.54. When the two Southern Finland outlier years are excluded, however, the correlation strengthens substantially, with

a coefficient of 0.74. The correlation between the day of the local maxima in XCH4 and the end of snowmelt is moderately

strong, with a Pearson correlation coefficient of 0.66. Both the linear and ODR fits are close to the 1:1 line, suggesting that the550

local maxima in XCH4 generally occur around the time when the snow cover has fully melted.

In situ and modeling studies have mainly focused on the effect of soil freeze and thaw on methane emissions rather than on

the impact of snow (e.g., Bao et al., 2021; Tenkanen et al., 2021). Based on previous studies, we were not able to draw clear

conclusions regarding whether the coinciding of onset of snowmelt and the day of minimum XCH4 is a result of each other.

This uncertainty originates from limited knowledge about the amount of methane released during the early stages of snowmelt,555

when snow cover persists and the soil may still be frozen. The correlation between the day of local maxima in XCH4 and the

end of snowmelt is likely related to the connections between snow and methane, as presented in Sect. 4.1, where we referenced,

for example, Mastepanov et al. (2013), who showed a strong correlation between the springtime increase in CH4 and the date

of snowmelt. In addition, Rinne et al. (2007) observed emission pulse during intense melting.

Although our importance analysis (Sect. 4.1) did not show that the loss of CH4 due to the OH sink significantly affects the560

seasonal variability of XCH4, Fig. C1 shows that the day of the local XCH4 minimum often coincides with or occurs in July,

when the CH4 loss by OH is at its maximum (e.g., Fig. 3). When considering methane concentrations in high-latitude northern

wetland areas, wetland methane emissions are most intense during the summer and growing season, while the the effect of

OH sink in reducing methane concentrations is also at its highest. These effects essentially counteract each other. Although we

were not able to directly observe or demonstrate this opposing influence from our results, it should still be considered when565

interpreting the findings. This also highlights the importance of incorporating more accurate OH fields or utilizing new proxies

for OH, as discussed in Sect. 4.1, to enable a more precise analysis.

Bao et al. (2021) showed that the hourly mean emissions during spring thaw are lower than those during autumn freeze

at high-latitude tundra sites. Additionally, the mean duration of spring thaw is typically less than a month, whereas autumn

freeze lasts nearly two months. Since the effects of spring snowmelt are evident in the seasonal cycle of XCH4 based on our570

analysis, it is reasonable to expect that the impact of autumn snow onset or soil freeze could also be detectable if we had the

necessary observations. Based on Fig. C1, the winter gap begins between late October and mid-November and ends between

mid-February and late March, depending on the year and case study area. The winter gap occurs because Northern regions

experience very large solar zenith angles (SZA) during this period, with a period of no sunlight at all in areas above the Arctic

Circle. The interannual variation in the winter gap duration is mostly driven by cloud cover and other meteorological conditions.575

These winter challenges are similar to what is expected for the upcoming missions, e.g Copernicu’s Sentinel-5, CO2M, and

GOSAT-GW. Consequently, reducing the winter gap and analyzing the effect of autumn freeze on XCH4 remains a particularly

challenging task. However, for instance, methane observations in the thermal-infrared range could be used to address this,

especially if combined with data from current shortwave infrared observations, or active observations (e.g. upcoming MERLIN

mission).580
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5 Conclusions

Studies directly utilizing GHG satellite observations provide valuable information to complement inversion results and offer

new insights that can ultimately help reduce uncertainties in the global methane budget while improving our understanding

of the increasing and variable trends in methane concentrations. To deepen our knowledge of the factors directly influencing

observed methane concentrations, this study investigated the dominant environmental variables that explain the seasonal vari-585

ability of column-averaged methane. Based on previous in situ measurement based studies, we focus our analysis on snow,

soil freeze and thaw, temperature, soil moisture and the impact of the OH sink. Based on our results, we further study the

connections between the snowmelt and the phase of the seasonal cycle of XCH4. Our analysis covers the period from 2018 to

2023 and focuses on five case study areas, including two in Finland and three in Siberia.

Our results suggest that the main drivers of the seasonal variability of column-averaged methane (XCH4) over Northern590

high latitude wetland areas are soil moisture and snow, especially snow water equivalent. During the period when the soil is

thawed, the main driver of day-to-day variability in XCH4 is soil temperature. Other environmental variables considered in this

study showed some effect on the seasonal cycle and day-to-day variability of XCH4, but their influence was less significant

compared to snow and soil moisture. These findings are based on satellite data analysis and cover much larger areas than in

situ measurements but still the results align with and are further validated by previous in situ and model studies.595

Our analysis reveals that the phase of the XCH4 seasonal cycle is closely linked to snowmelt timing. Specifically, the

minimum in XCH4 occurs around the onset of snowmelt, and the local maxima in XCH4 coincide with the end of snowmelt,

with Pearson correlation coefficients of 0.54 and 0.66, respectively. While we cannot conclusively attribute the increase in

XCH4 between the minimum and local maxima solely to the reduction in snow cover, the timing of these events appears to be

strongly correlated, likely due to the insulating effect of snow while it remains on the ground, and then the subsequent water600

entering the soil as snow begins to melt. Overall, our findings suggest that XCH4 observations can be used to study the seasonal

variability of methane on a large scale.

Our analysis focused exclusively on spring because the onset of snowfall in autumn coincides with the beginning of the

winter gap in satellite methane observations, making it challenging to reliably study the seasonal cycle of XCH4 during a

period for which we have no data. Obtaining observations from autumn and winter would be crucial to determine whether605

we can detect the onset of freezing and snow cover from the XCH4 seasonal cycle. Additionally, accurately quantifying the

amplitude of the XCH4 seasonal cycle is important, as it is directly linked to the magnitude of CH4 fluxes. In addition to

studying the emissions, the analysis of the OH sink could be improved and better understood, particularly concerning day-to-

day variability and the impact of the summer maximum on methane concentrations in conjunction with strong emissions. This

could be done, for example, by studying and applying potential new proxies to describe the effectiveness of the OH sink. This610

study demonstrates how the combination of different satellite, and model, datasets can be used to investigate the underlying

physical processes driving environmental phenomena.
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Data availability. The WFMD XCH4 data is available at https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/. IMS snow

cover data is available at https://noaadata.apps.nsidc.org/NOAA/G02156/. The Copernicus Global Land Monitoring Service SWE product is

available at https://land.copernicus.eu/en/products/snow/snow-water-equivalent-v1-0-5km#download. ERA5 2 m temperature, soil temper-615

ature and soil water volume at layer 1 are available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=

overview.
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Figure A1. (a) TROPOMI WFMD daily median XCH4 (blue dots), gap-filled XCH4 values (grey dots) and fitted seasonal cycle and trend,

and their uncertainties (red and shaded red) for Northern Finland. (b) shows the same for the detrended time series.

Appendix A: XCH4 time series and fitted seasonal cycles
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Figure A2. (a) TROPOMI WFMD daily median XCH4 (blue dots), gap-filled XCH4 values (grey dots) and fitted seasonal cycle and trend,

and their uncertainties (red and shaded red) for Southern Finland. (b) shows the same for the detrended time series.
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Figure A3. (a) TROPOMI WFMD daily median XCH4 (blue dots), gap-filled XCH4 values (grey dots) and fitted seasonal cycle and trend,

and their uncertainties (red and shaded red) for Northern Siberia. (b) shows the same for the detrended time series.
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Figure A4. (a) TROPOMI WFMD daily median XCH4 (blue dots), gap-filled XCH4 values (grey dots) and fitted seasonal cycle and trend,

and their uncertainties (red and shaded red) for Southern Siberia. (b) shows the same for the detrended time series.
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Figure B1. Black line shows the daily mean and the filled grey area the standard deviation of (a) soil freeze-thaw state, (b) snow cover state,

(c) snow water equivalent, (d) layer 1 soil water volume, (e) 2 meter air temperature, (f) layer 1 soil temperature and (g) CH4 loss by OH for

Northern Finland.

Appendix B: Environmental time series
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Figure B2. Black line shows the daily mean and the filled grey area the standard deviation of (a) soil freeze-thaw state, (b) snow cover state,

(c) snow water equivalent, (d) layer 1 soil water volume, (e) 2 meter air temperature, (f) layer 1 soil temperature and (g) CH4 loss by OH for

Southern Finland.
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Figure B3. Black line shows the daily mean and the filled grey area the standard deviation of (a) soil freeze-thaw state, (b) snow cover state,

(c) snow water equivalent, (d) layer 1 soil water volume, (e) 2 meter air temperature, (f) layer 1 soil temperature and (g) CH4 loss by OH for

Northern Siberia.
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Figure B4. Black line shows the daily mean and the filled grey area the standard deviation of (a) soil freeze-thaw state, (b) snow cover state,

(c) snow water equivalent, (d) layer 1 soil water volume, (e) 2 meter air temperature, (f) layer 1 soil temperature and (g) CH4 loss by OH for

Southern Siberia.
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Figure C1. Snow melt and start of snow accumulation, and day XCH4 minimas anx maximas time series

Appendix C: Day of year time series620
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