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Abstract. Europe and Germany have been hit by severe meteorological droughts in recent years, which have resulted in 

extreme low flow conditions in streams. Climate projections expect an intensification and increase in the frequency of the 10 

associated meteorological drivers. In this study, we investigate the impact of climate change on rare and extreme river droughts 

in a catchment with a pluvial regime, a northern tributary to the Danube (Wörnitz river) and in a river catchment with nivo-

pluvial regime in the Pre-Alps (Ammer river). We employ a unique physically-based modelling chain, where the hydrological 

model WaSiM (Water balance Simulation Model) is driven by 50 members of the single model initial-condition large ensemble 

(SMILE) of the Canadian Regional Climate Model version 5 under the high-emission scenario RCP8.5. This results in a 15 

hydrological SMILE yielding 1500 simulated years for each of the investigated 30-year periods of a reference (1980 – 2009; 

REF), a current (2010 – 2039; CUR), a near future (2040 – 2069; NF), and a far future climate (2070 – 2099; FF). We 

investigate the seasonality, univariate and bivariate return periods of peak low flow and duration, and explore the climatic 

drivers causing the alterations.  

The Wörnitz catchment shows a summer low flow regime, with climate change affecting the seasonality so that the river 20 

droughts are projected to extend further into the autumn. The typical bivariate 100-year event (REF: 7-day peak low flow = 

1.96 m³/s; event duration = 171 d) shifts to a 30-year (CUR), 17-year (NF), and 6-year (FF) event. In the reference climate of 

the Ammer catchment, the intensity of winter low flows dominates over summer low flows. However, this is projected to 

switch during the current climate with more intense summer river droughts in the near and far future. While there is a tendency 

for cold-dry winters to cause low flow conditions in February during the reference climate, future winter low flows shift 25 

towards November/December and are triggered by the hot and dry pre-conditions of an antecedent summerly river drought. 

The most probable bivariate 100-year summer low flow event (REF: 7-day peak low flow = 4.9 m³/s, event duration = 60 d) 

is drastically altered to occur every 34 years (CUR), 8 years (NF), and 2.5 years (FF).  

In both catchments, there is an increase in the autocorrelation of peak low flows from one summer to the next, which 

emphasises the causality and increasing importance of lagged effects and preconditions in the course of climate change. We 30 

identify hotter and drier summer seasons as the main driver, with the positive interdependency between heat and drought in 

climate change intensifying, further exacerbating extremes.                   
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Thereby, the study highlights the opportunities of a hydrological SMILE for the investigation of river droughts. Due to the 

large sample size of the hydrological SMILE, we can robustly assess very rare events and generate bivariate design values 

narrowing down uncertainties of extreme value statistics in the light of a well characterized internal climate variability. In turn, 35 

all results are subject to scenario and model uncertainties, as the simulations are carried out with one hydrological model driven 

by one climate model under one emission scenario. 

1 Introduction 

Droughts over Europe trigger a variety of ecological, economic, and societal impacts (AghaKouchak et al., 2023; Stahl et al., 

2016). Their frequency and intensity are projected to increase in a warmer climate (Naumann et al., 2021). Generally, drought 40 

can be classified into three types (van Loon et al., 2016): meteorological drought, agricultural drought, and hydrological 

drought referring to a precipitation deficit, soil moisture deficit, and streamflow deficit, respectively. Often, they occur in 

temporal order (Stephan et al., 2021), where a meteorological drought leads to a soil moisture deficit, which after some delay 

may induce riverine low flows. The recent European droughts in 2018 – 2023 (Bakke et al., 2020, Blauhut et al., 2022, Toreti 

et al., 2022, Toreti et al., 2023) also caused river low flow. 45 

Riverine low flow directly impacts navigability of waterways, public water supply, agricultural water demand for irrigation, 

industrial water demand for cooling and production, hydropower, and it may negatively affect the water quality (Conradt et 

al., 2023; Dahlmann et al., 2022; Naumann et al., 2021; Otop et al., 2023; Stahl et al., 2016; Stephan et al., 2021; Wolff and 

van Vliet, 2021). Impacts are related to the extremity of the hydrological drought event, which can be diagnosed by intensity 

(streamflow), duration (time below a certain streamflow threshold), and deficit (cumulative deficit during the event; Brunner 50 

et al., 2022; Brunner, 2023). The quantitative measures, how hydrological droughts are assessed cover baseflow, low flow 

indices, flow percentiles, volume deficit, event duration, annual flow minima, or exceedance probabilities (Brunner et al., 

2022; Piniewski et al., 2022).  

While trends in hydrological droughts are already detectable in the observations for some European catchments (Brunner et 

al., 2023; Peña-Angulo et al., 2022), future changes are to be assessed in simulation studies. Decreases in river low flow and 55 

increases in drought duration are projected for Southern and Western Europe, while the opposite development is projected for 

Northern, Eastern Europe and the Alps (Cammalleri et al., 2020; Forzieri et al., 2014; Marx et al., 2018; Roudier et al., 2016). 

In Central Europe, there is less coherence between studies (Piniewski et al., 2022).  

The generation mechanisms of hydrological droughts depend strongly on catchment properties and the local climate (Brunner 

et al., 2022). Van Loon and van Lanen (2012) and van Loon et al. (2015) qualitatively identify eight different types of river 60 

drought generation mechanisms according to the meteorological drivers and seasonality. Brunner et al. (2022) translate this 

typology into a quantitative classification based on precipitation deficits, air temperature, and anomalies of snow-water-

equivalent.  
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Most large catchments in Europe are heavily managed rather than natural (Brown et al., 2018; Hogeboom et al., 2018), and 

adjustment of human regulation may serve as adaptation measures to changing climate conditions (Arheimer et al., 2017; 65 

Bhaduri et al., 2016, Brunner et al., 2019a). Hence, information about future hydrological drought conditions can contribute 

to the dimensioning of reservoirs, dams, and channels, where management strategies rely on design values (Ehsani et al., 2017).  

For such future low flow projections, hydrological models driven by climate model simulations are applied. In a common 

model chain, either one or an ensemble of global earth system models are employed, which may be statistically or dynamically 

downscaled via regional climate models. These climate simulations are run under one or more emission scenarios. Due to 70 

model-inherent biases, a bias adjustment is recommended for hydrological impact modelling (Willkofer et al., 2018). Then, 

one or more hydrological models are set up to simulate streamflow.  

Climate simulations are governed by model uncertainty, scenario uncertainty, and internal climate variability (ICV; Lehner et 

al., 2020), which also propagate non-linearily to the simulated streamflow (Brunner et al., 2021). Furthermore, bias adjustment 

is to be applied with care (Maraun, 2016), where different methods lead to different streamflow results (Teutschbein and 75 

Seibert, 2012; Tootoonchi et al., 2022). Lastly, hydrological models differ, which results in differing streamflow simulations, 

when driven by the same climate (Melsen et al., 2018; Mendoza et al., 2016). Commonly, hydrological studies address one or 

more of these sources of uncertainty. Model uncertainties can be addressed by using ensembles of several climate and 

hydrological models. The limited knowledge about future emissions can be accounted for by applying a range of emission 

scenarios or warming levels. Single model initial-condition large ensembles (SMILE) are employed to address ICV (Deser et 80 

al., 2020). In hydrology, SMILEs are still fairly new, yet they show great potential for exploring variability in mean flows 

(Poschlod et al., 2020) and floods (Brunner et al., 2021; Faghih and Brissette, 2023; Willkofer et al., 2024). Hydroclimatic 

extremes are subject to major uncertainties due to ICV, where the SMILE provides a large sample size, which allows for the 

investigation of very rare events with moderate extreme value statistical uncertainties (Lang and Poschlod, 2024). Hence, in 

this study, we want to explore the potential of a unique hydrological 50-member SMILE for the assessment of extreme 85 

hydrological droughts under climate change. We focus on two example catchments in southern Germany reflecting the 

dichotomy of low flow drivers, where one catchment in the Pre-Alps is influenced by snow and rain dynamics in the reference 

climate (Poschlod and Daloz, 2024), while the runoff generation in the other catchment is mainly rainfall-driven. This study 

aims to investigate the behaviour of very rare hydrological droughts up to 1000-year return periods and the importance of ICV 

for low flow events. We aim to identify shifts of the dominant hydroclimatic drivers and the climate change effects on 90 

seasonality, intensity and frequency of drought events. Further, we illustrate the value of a hydrological SMILE for the 

detection of changes and the robust assessment of extremes. Thereby, we construct bivariate return periods of hydrological 

droughts, considering peak and duration of low flow events, illustrating drastic effects of climate change on such bivariate 

design events. 
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2 Study area and data 95 

2.1 Study catchments 

Rivers in southern Germany show a variety of streamflow regimes (Poschlod et al., 2020). We select the catchment of the river 

Wörnitz at gauge Harburg (Fig. 1), a northern tributary to the Danube. It shows a pluvial regime with the highest (lowest) 

monthly discharge in March (August). The majority of the 1570 km² is elevated between 400 m and 550 m, with middle 

mountain ranges in the west extending until 700 m. The land cover consists of 69 % agricultural areas, 26 % forest, and 5% 100 

artificial surfaces (Loritz et al., 2024). For a reference period of 1980 – 2009, the mean temperature amounts to 8.3 °C and the 

annual precipitation is 820 mm. 

 

Figure 1: Topography and location of the two study catchments Wörnitz (Harburg) and Ammer (Weilheim) in southern Germany. 

Elevation is taken from the European Digital Elevation Model (EU-DEM; EEA, 2018). 105 
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Further, we choose the catchment of the river Ammer at gauge Weilheim (Fig. 1) representative for a nivo-pluvial regime with 

the highest (lowest) monthly discharge in April (February). It covers 608 km² with an elevation range between 550 m and 2150 

m above sea level. Due to the complex topography and its strong north-south gradient, the landscape can be categorized into 

the pre-alpine hill country and moorland in the north and the Swabian-Upper Bavarian foothills of the Alps in the southern 

part of the catchment (Kunstmann et al., 2006). Also, the land cover shows a gradient with agricultural areas (mainly pasture) 110 

in the north and forest in the south, resulting in a half-half distribution averaged over the entire catchment area (Ludwig et al., 

2003; Marx et al., 2006). For the reference climate, the mean annual temperature is 7.0 °C and the annual precipitation amounts 

to 1390 mm. The Ammer is the main tributary to Lake Ammersee (Bueche et al., 2020).  

The choice of the two river catchments is motivated by the fact that, despite their spatial proximity, they represent two 

fundamentally different climates and hydrological regimes resulting in deviating precipitation patterns, importance of snow 115 

dynamics, flow seasonality, and flood dynamics (Poschlod et al., 2020; Poschlod and Daloz, 2024; Willkofer et al., 2024). 

Further, both catchments are headwater catchments with little human influence, and their low flow conditions are well 

reproduced in the hydrological modelling (see next section). 

2.2 Hydrological simulations 

The hydroclimatic modelling chain was designed within the scope of the ClimEx project (Climate Change and Hydrological 120 

Extreme Events) aiming to explore hydrological extremes (Willkofer et al., 2024). For the exploration of extreme events a 

large homogeneous sample size is beneficial. This is achieved by applying a SMILE as driving climate. The Canadian Earth 

System Model version 2 large ensemble (CanESM2-LE) consists of 50 independent ensemble members simulating the global 

climate for 1950 – 2099 at 2.8° resolution under the high-emission scenario RCP8.5 (Fyfe et al., 2017). As this spatial 

resolution is too coarse for hydrological impact assessments, these 50 ensemble members are dynamically downscaled with 125 

the Canadian Regional Climate Model version 5 (CRCM5) at 0.11° resolution (equalling 12 km; Leduc et al., 2019). Further, 

a bias adjustment and statistical downscaling to 500 m resolution are applied. 

The hydrological modelling applies the Water balance simulation Model (WaSiM; Schulla, 2021), a spatially distributed 

hydrological model including modules to simulate evapotranspiration, soil water transfer, groundwater, snow accumulation 

and snow melt, and glaciers. While most of the modules follow physically-based process descriptions, also conceptual 130 

relationships are applied. Based on the water balance, the model computes the generation of discharge and the routing of the 

streams run at 3-hourly time steps (Schulla, 2021).  

For the calibration and validation of the hydrological modelling, a sub-daily climate reference data set at 3-hourly temporal 

resolution and 500 m spatial resolution is created based on meteorological observations (Willkofer et al., 2020). The 

hydrological years of 2004 – 2010 and 1995 – 2002 are then used for the calibration and validation of WaSiM, respectively. 135 

There, the simulated discharge driven by the sub-daily climate reference is compared to observed discharge, provided by the 

state water authority (LfU, 2025). Due to the focus of the ClimEx project on high flows, the calibration is carried out using a 

weighted combination of performance metrics recommended by Moriasi et al. (2007): the Nash and Sutcliffe efficiency (NSE; 
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Nash and Sutcliffe, 1970; 50% weight) and its logarithmic version (logNSE; 15% weight), the Kling-Gupta efficiency (KGE; 

Gupta et al., 2009; 25% weight), and the ratio of root mean squared error to standard deviation (RSR; 10% weight; Willkofer 140 

et al., 2020). This combined objective function is optimized during the calibration process, which involves manual alternation 

of WaSiM parameters governing spatially distributed processes as well as automatic parameter estimation for catchment-

specific parameters (Willkofer et al., 2020). The validation evaluates the performance metrics NSE, logNSE, KGE, and RSR 

as well as the percentage bias of mean flow. After the successful validation, the bias-adjusted CRCM5-LE simulations are 

used to drive the hydrological model resulting in the unique hydrological large ensemble WaSiM-LE.   145 

For a detailed description of the setup, we refer the reader to Leduc et al. (2019) for the climate modelling, to Willkofer et al. 

(2018) for the bias adjustment, to Willkofer et al. (2020) for the WaSiM calibration, and to Poschlod et al. (2020) as well as to 

Willkofer et al. (2024) for the hydrological modelling. 

For this study, we focus on the hydrological simulations between 1980 – 2099 for the Wörnitz and Ammer. We select 1980 – 

2009 as reference period (REF) and divide the simulations into 2010 – 2039 (current climate: CUR), 2040 – 2069 (near future: 150 

NF), and 2070 – 2099 (far future: FF). With 50 ensemble members, this results in 1500 simulated years per 30-year period. 

Both catchments are head catchments, where no major water management structures, such as reservoirs, dams or channels, are 

implemented. The spatial distribution of land use and land cover is assumed to stay constant. As the simulations stemming 

from the ClimEx project are designed to represent floods, we have to ensure their applicability for low flow assessments. The 

validation results for the simulations of these two catchments are given in Table 1 indicating a sufficiently good model 155 

performance. The logNSE values above 0.7 diagnose that low flow conditions are well reproduced during the validation (Parra 

et al., 2019). Flow duration curves (see Fig. S1 in the Supplement) demonstrate that the hydrological model chain is able to 

well represent the characteristics of mean and low flows for the two catchments in this study.   

 

Table 1: Performance metrics of the discharge validating WaSiM against observations. 160 

Catchment NSE logNSE KGE RSR Percentage bias 

Wörnitz (Harburg) 0.84 0.81 0.85 0.40 -11.5% 

Ammer (Weilheim) 0.76 0.71 0.79 0.49 -15.2% 

 

3 Methods 

3.1 Summer and winter low flow 

The German hydrological year extends from November to October, whereas for low flow also April – March is a common 

assessment period (LfU, 2020). Here, we divide the hydrological year into winter half (November – April) and summer half 165 

(May – October).  
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For the quantification of low flow intensity, we apply the lowest discharge per hydrological (half) year, considering 7-day 

windows (L7Q), where the river flow is averaged over a moving window of 7 days and the minimum value is chosen as L7Q. 

The mean of the annual L7Q indices over a longer time period (e.g. 30 years) is referred to as ML7Q. These two metrics are 

used operationally by the low flow monitoring (LfU, 2020). For the event duration, we count the number of consecutive days, 170 

where L7Q is below the ML7Q of the reference period 1980 – 2009. We treat events as separate if they are separated by at 

least one day on which L7Q > ML7Q, as the L7Q index is based on 7-day moving windows. We assign an event to the winter 

(summer) period, if the majority of the event duration is in the winter (summer) half year. We assess summer and winter low 

flows in the Ammer catchment, while only investigating summer low flows in the Wörnitz catchment due to its pronounced 

regime with wet winter seasons.  175 

3.2 Extreme value statistical assessment 

3.2.1 Univariate return levels 

Extreme Value Theory (EVT) is a statistical framework addressing extreme deviations from the median of probability 

distributions. Hence, it is applied to study the behaviour of processes, when they take unusually large or small values (Coles, 

2001). The aim is to derive occurrence probabilities of rare events and their according intensity, size, duration or any other 180 

feature. In Earth system sciences, it is commonly applied to unusually large values (Hamdi et al., 2021), e.g. riverine flood 

discharge (Basso et al., 2021; Villarini et al., 2011), coastal flood water levels (Caruso and Marani, 2022), extreme rainfall 

intensities (Poschlod and Koh, 2024), extreme snow depths (Le Roux et al., 2020), or high temperature (Parey et al., 2019) but 

is also applicable to small values such as low flows (Raynal-Villasenor and Raynal-Gutierrez, 2014) or drought (Naumann et 

al., 2018).  185 

There are two common strategies in classical EVT: Block maxima or minima sampling associated with the Generalized 

Extreme Value (GEV) distribution and Peak over (under) threshold sampling associated with the Generalized Pareto (GP) 

distribution. Note that the practical application of the GEV on minima only slightly differs from the more common application 

on maxima: the minima are negatively transformed before the distribution parameters are fitted. Applying the negative 

transformation, the lowest value of the minima series becomes the highest value of the transformed series and vice versa. Then, 190 

the common workflow of GEV for block maxima can be applied (Hewa et al., 2007). Further note that data censoring due to 

zero flows has to be handled, which however does not occur in our study catchments.   

For the low flow intensity, we sample the L7Q per hydrological half year and apply a negative transformation, which is per 

definition a block maximum sampling. However, the L7Q is not necessarily considered to be “extreme” in any half year. 

Hence, we allow for larger block sizes, such as two or three consecutive winter (summer) half years. Following the Fisher-195 

Tippett-Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943), the GEV distribution describes the block maxima M 

for a sufficiently large sample size. It approximates the exceedance probability 
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Pr(𝑀 ≤ 𝑥)  ≈ G(𝑥;  𝜉) = {
exp(− [1 + 𝜉 (

𝑥−𝜇

𝜎
)]

−1
𝜉⁄

) , 𝜉 ≠ 0

exp(− exp(−
𝑥−𝜇

𝜎
)) , 𝜉 = 0,

    xℝ, 𝜎 > 0,  (1) 

with the parameters µ (location), σ (scale) and ξ (shape). The shape parameter governs the tail behaviour of the distribution. 

The return level z can then be calculated by inverting Eq. (1) (Coles, 2001).  200 

For the event durations, we apply a peak over threshold sampling. There, we sample all values s above a threshold u considering 

them as extreme values (Balkema and de Haan, 1974; Pickands, 1975). For a random variable S, the GP distribution (Davison 

and Smith, 1990; Martins and Stedinger, 2001) describes the exceedances y = s – u with the corresponding cumulative 

distribution function (CDF)      

Pr(𝑆 > 𝑠 | 𝑆 > 𝑢)  ≈ 𝐻(𝑦;  𝜉) = {
1 − (1 +

𝜉𝑦

𝛽
)

−1
𝜉⁄

, 𝜉 ≠ 0, 𝛽 >  0, y > 0

1 − exp (
−𝑦

𝛽
) , 𝜉 = 0, 𝛽 >  0, y > 0

 .     (2) 205 

Thereby, y is defined as the event duration excess over the threshold u. The scale parameter β describes the spread of the 

distribution, and the shape parameter ξ governs the tail behaviour of the GP distribution (Coles, 2001). The calculation of 

return levels requires to account for the exceedance rate, which is the number of events per year 𝑛𝑌. Then, the 𝑁-year return 

level 𝑧𝑁 is derived by 

𝑧𝑁 = {
𝑢 +

𝛽

𝜉
[(𝑁𝑛𝑌𝜁𝑢)𝜉 − 1], 𝜉 ≠ 0, 𝛽 >  0

𝑢 + 𝛽 log(𝑁𝑛𝑌𝜁𝑢) , 𝜉 = 0, 𝛽 >  0, y > 0
 ,     (3) 210 

 

with 𝜁𝑢 = Pr(𝑆 > 𝑢) (Coles, 2001).  

We estimate the GEV and GP parameters in a Bayesian framework applying a Markov chain Monte Carlo algorithm 

(Bocharov, 2022; Foreman-Mackey et al., 2013). We check the goodness of fit via the Anderson-Darling test at the significance 

level of α = 0.05. Within each 30-year period, we assume stationarity as simplification.  215 

The two theoretical frameworks of the GEV and GP do not contradict each other, but rather correspond as one framework can 

be expressed by the other (Goda, 2011; Serinaldi and Kilsby, 2014; Wang and Holmes, 2020). Here, the choice of the respective 

framework is motivated by the data and the definition of intensity (L7Q) and event duration (consecutive days, where L7Q < 

ML7Q).  

3.2.2 Bivariate return levels 220 

For the combination of the extremal behaviour of low flow intensity and event duration, we calculate bivariate return periods. 

Gräler et al. (2013) provide an overview of different approaches to derive multivariate return periods in hydrology with an 

application to flood events. Tu et al. (2018) propose a multivariate design combination of drought properties to better capture 

the impact on regional water supply. Following Tu et al. (2018), we use copulas to describe the bivariate dependence structure. 

With 𝐼  as the unite interval [0,1] , the bivariate copula 𝐶  is the joint distribution on 𝐼2 =  [0,1]2  with uniform margins 225 
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(Zscheischler and Fischer, 2020). Hence, for two random variables 𝑋 and 𝑌 with the CDFs 𝐹𝑋(𝑥) = Pr (𝑋 ≤ 𝑥) and 𝐹𝑌(𝑦) =

Pr (𝑌 ≤ 𝑦), the copula 𝐶 expresses the joint distribution function as (Sklar, 1959; Zscheischler and Seneviratne, 2017) 

𝐹(𝑥, 𝑦) = Pr(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) ,     (3) 

with the marginal CDFs  𝐹𝑋(𝑥) = Pr (𝑋 ≤ 𝑥) and  𝐹𝑌(𝑦) = Pr(𝑌 ≤ 𝑦). Based on the copula fitted to the data, one can directly 

define four “hazard scenarios”, where Salvadori et al. (2016) provide an intuitive graphical representation (Fig. 1 therein). 230 

Here, we explore bivariate exceedance probabilities with the joint survival distribution 

 𝐹̅(𝑥, 𝑦) =  𝐶̂(𝐹̅𝑋(𝑥), 𝐹̅𝑌(𝑦)),       (4) 

following Salvadori et al. (2013) with the marginal survival functions 𝐹̅𝑋 = 1 − 𝐹𝑋 and 𝐹̅𝑌 = 1 − 𝐹𝑌 and the survival copula 

𝐶̂ (AghaKouchak et al., 2014; Zscheischler et al., 2017). For any given (𝑥, 𝑦) ∈ 𝑅2, there is a unique survival critical layer (or 

isoline), on which the set of realizations of 𝑋 and 𝑌 have the same probability 𝑡 ∈ (0,1): 𝐿𝑡
𝐹 =  {(𝑥, 𝑦) ∈  𝑅2: 𝐹̅(𝑥, 𝑦) = 𝑡}, 235 

where 𝐿𝑡
𝐹 is the survival critical layer associated with the probability 𝑡 (AghaKouchak et al., 2014; Salvadori et al., 2011).  

𝐾 is the Kendall’s survival function associated with 𝐹̅ and the probability 𝑡 defined as  

𝐾(𝑡) =  𝑃𝑟(𝐹̅(𝑋, 𝑌) ≥ 𝑡) = 𝑃𝑟(𝐶̂(𝐹̅𝑋(𝑥), 𝐹̅𝑌(𝑦)) ≥ 𝑡) .    (5) 

With an average interarrival time of 1 for 𝑋 and 𝑌, the survival Kendall’s return period 𝜅̅𝑋𝑌is calculated as (AghaKouchak et 

al., 2014) 240 

𝜅̅𝑋𝑌 =
1

1− 𝐾(𝑡)
 .        (6) 

The bivariate survival Kendall’s return period has been applied by AghaKouchak et al. (2014) in order to analyse the 2014 

drought in California and by Zscheischler et al. (2017) in order to explain crop yield variability in Europe based on temperature 

and precipitation. 

In this study, we use the Multivariate Copula Analysis Toolbox (MvCAT; Sadegh et al., 2017) to fit the copula as it considers 245 

26 different bivariate copula families. The copula parameters are estimated via a gradient-based local optimization (Sadegh et 

al., 2017), and the best copula is chosen according to the Bayesian Information Criterion (BIC, Schwarz et al., 1978), which 

measures the trade-off between model fit and model complexity.  

3.2.3 Bivariate design events 

For a given probability 𝑡, there are numerous bivariate combinations on survival the critical layer 𝐿𝑡
𝐹, which are associated 250 

with the same bivariate survival Kendall’s return period. For the selection of a bivariate design event, a common approach is 

to choose the “most likely design scenario” (Gräler et al., 2013; Sadegh et al., 2018). Therefore, weighted samples are drawn 

from the critical layer 𝐿𝑡
𝐹̅, with the copula density function as weight (Sadegh et al., 2018). The bivariate combination with the 

highest density is then chosen as the most likely design scenario. Note that this design pair of peak low flow and low flow 

duration is not necessarily the most impactful realization. However, it can be interpreted as the “typical” bivariate realization, 255 
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where the water management should be designed accordingly to withstand this design scenario for a given return period 

(Salvadori et al., 2014).  

4 Results 

4.1 Climatic and hydrological drivers 

River discharge is driven by catchment-specific features, human management and the climatic conditions. As the first two 260 

factors are kept constant in this simulation experiment, the changes in river discharge and low flow conditions can be attributed 

to climate change. Figure 2 presents the seasonal course of air temperature, precipitation, evaporation, soil moisture in the 

rootzone, snow, and snow storage for the reference climate and future projections. Compared to the reference climate, the 

annual temperature in the Wörnitz catchment is projected to increase by +1.0°C (CUR), +2.3°C (NF), and +4°C (FF), 

respectively. In the Ammer catchment, slightly higher increases are simulated with +1.1°C (CUR), +2.5°C (NF), and +4.3°C 265 

(FF). This leads to an increase of evaporation, especially in the summer season, which in turn induces lower soil moisture 

conditions. The annual precipitation sums change by less than 6 % in the future periods for both catchments. However, the 

seasonality shifts, where precipitation is projected to increase in the winter and decrease in the summer.  
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 270 
Figure 2: Climatic and hydrological drivers in the (a) Wörnitz and (b) Ammer catchments. The centerline of the boxplots shows the 

median over all 50 members and 30 years per period. The boxes represent the inter-quartile range, where the whiskers extend to 

the 5th and 95th percentiles, respectively.  
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Due to the temperature increase and the summerly precipitation decrease, soil moisture conditions during summer are projected 

to be drier in the future. This depletion of soil moisture is even more pronounced for drought years (see the lower whiskers for 275 

the 5th percentile). In the Ammer catchment, the median soil moisture conditions are close to saturation over the whole year 

in the reference climate. For the near and far future, the soils are projected to dry out stronger during summer. In the Wörnitz 

catchment, the soil moisture is projected to decrease in summer and shift the seasonality towards drier soils later in the year. 

Snow dynamics play a minor role in the Wörnitz catchment, with a projected decease of snowfall. In the Ammer catchment, 

snow storage reaches over 50 mm snow water equivalent during February and March of the reference climate. Snowfall and 280 

snow storage are projected to strongly decrease.  

4.2 Drying & Seasonality, duration 

The alterations of the hydroclimatic conditions affect the riverine flow regime and low flow intensities. For the annual L7Q 

with no separation of summer and winter low flow, Figure 3 shows the average drying tendencies with an earlier onset for 

Wörnitz than for Ammer. The annual median over 50 members results in a relatively smooth temporal progression despite 285 

using an extreme metric (L7Q). 

Summer events dominate the annual L7Q in the Wörnitz catchment, with constant shifts towards later in the year with future 

warming (Fig 4). In the Ammer catchment, the low flow events in the reference period are mostly in winter with most events 

in February. In the current climate, the simulations show a broad distribution of events throughout the year, while summer 

events dominate in the two future periods. 290 

 

 

 

Figure 3: “Drying stripes” (inspired by the warming stripes by Hawkins, 2018): With the ML7Q of 1980 – 2009 as reference, the 

temporal course of the annual L7Q (median over the 50 members) visualizes the projections of low flow intensity.     295 
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Figure 4: Seasonality of the annual L7Q events. The violin plots provide kernel density estimates, where the grey line shows the 

median of all events in the respective 30-year period.  

While Figures 3 and 4 focus on the peak low flow intensity and its date, the event duration and its seasonality are also affected 

by a changing climate. For eight categories of event duration (see Table 2), Figure 5 shows the event seasonality for summer 300 

low flows in the Wörnitz catchment as well as summer and winter low flows in the Ammer catchment.   

The summer low flow events are projected to extend towards longer event durations and to shift later in the year (Fig. 5a, b). 

For the Wörnitz, the typical low flow events (highest density in Fig. 5a) in the reference period cover 31 – 120 days centred 

around August and September. In the far future period, prolonged events of 91 – 180 days centred around August to October 

are most common. In the Ammer catchment during the reference period, typical summer low flows cover 1 – 90 days at any 305 

time between May and November (Fig. 5b). Until the far future, they are projected to occur mainly from July to November 

and extend to durations ranging from 31 – 120 days. Winter low flows are shorter and typically last 1 – 60 days at any time 

between November and March.  

Table 2: Categories of event duration visualized in Figure 5. 

Category Event duration (d) 

1 1 to 30 

2 31 to 60 

3 61 to 90 

4 91 to 120 

5 121 to 150 

6 151 to 180 

7 181 to 210 

8 > 211 

 310 
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Figure 5: Seasonality and event duration for summer low flow events in the (a) Wörnitz catchment during summer and Ammer 

catchment during (b) summer and (c) winter. The density colour code depicts the occurrence of low flow events. Inset Numbers (1-

8) indicate the event duration for 8 categories ranging from category 1 (< 30 d) to category 8 (> 211 d). See Table 2 for details. 
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4.3 Return levels of low flow intensity and duration 315 

The L7Q indices are well represented by the GEV distribution (Figure 6) passing the goodness-of-fit test for all time periods 

and catchments. Due to the large sample size of 50 members times 30 annual indices, the extreme value statistical uncertainties 

are small. The L7Q is projected to intensify during summer for both catchments and across all return periods. For the winter 

low flow in the Ammer catchment, the intensification is less pronounced. The current climate only slightly differs from the 

reference period. The near future shows a lower L7Q for 5-year and rarer events. In the far future, a strong decline of the low 320 

flow discharge is projected across all event probabilities.   

For the event duration, the GP distribution is applicable above a duration threshold, which varies over the catchments, seasons 

and time periods. The threshold is in the range of the respective 2- to 15-year return periods (see Figures 6b, d, f; where the 

line starts). Due to the sample size of the WaSiM-LE, the extreme value statistical evaluation shows relatively small 

uncertainties. The width of the confidence intervals depends on the sample size above the chosen threshold.  325 

During summer, event durations are increasing in a warmer climate for both catchments. It is notable, that the GP distributions 

show a light tail (𝜉 < 0) in the Wörnitz catchment, indicating that there is an upper limit for the duration of very rare events 

caused by the interruption of low flow events in the wet months of February and March (Fig. 5a). Three periods (CUR, NF, 

FF) show similar durations for very rare events above the 100-year return period (Fig. 6b). However, the moderate extremes 

up to 5-year events show a strong increase with warming.  330 

In the Ammer catchment, the event durations increase across the different return periods (Fig. 6d), where three periods (REF, 

CUR, NF) show a slightly heavy tailed behaviour (𝜉 > 0). With the strong warming until FF, the durations increase, but the 

distribution shifts towards a light tail. During winter, no clear changes are detected, only a tendency for longer events in the 

future periods.     
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 335 
Figure 6: Univariate return levels of 7-day low-flow discharge peaks L7Q (a, c, e) and event duration (b, d, f) for both study 

catchments.  

The bivariate distribution of L7Q and event duration reveals a high dependence between both event characteristics during the 

summer season (Fig. 7). All possible realizations of bivariate 10-year and 100-year events are given by the grey isolines, where 

the black star marker represents the most likely combination. Hence, a typical 10-year summer low flow event in the Wörnitz 340 

catchment in the reference period (L7Q = 2.44 m³/s; event duration = 95 d) is projected to occur every 5.2 a (CUR), 3.0 a (NF), 
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and 1.7 a (FF). The typical 100-year event (L7Q = 1.96 m³/s; event duration = 171 d) shifts to a 30-year (CUR), 17-year (NF), 

and 6-year (FF) event.  

In the Ammer catchment, the projected changes during summer are even more drastic. The most probable 10-year event is 

characterized by a 7-day peak low flow of 6.2 m³/s and a duration of 24 days. Those characteristics are reached every 6 years 345 

(CUR), 2.5 years (NF), and 1.3 years (FF). This indicates that a moderate extreme event of the reference period is projected to 

become the “new normal” until 2070 – 2099 under high greenhouse gas emissions. The 100-year event (L7Q = 4.9 m³/s, event 

duration = 60 d) is altered to occur every 34 years (CUR), 8 years (NF), and 2.5 years (FF). 

 
Figure 7: Bivariate survival Kendall’s return levels of event duration and L7Q. The grey isolines show the 10-year and 100-year 350 

return levels, where the black star marker represents the most likely combination of L7Q and event duration for the respective 

bivariate return periods. 

In the winter, the dependence between event intensity and duration is less pronounced. The most likely bivariate characteristics 

of a 10-year event during the reference period show similar values as the summerly 10-year event with 6.4 m³/s 7-day peak 

low flow and 18 days. The 100-year event is only slightly more intense (5.8 m³/s) extending to 43 days. Due to the differing 355 

dependence structure, the bivariate return level values deviate stronger from their univariate counterparts of the marginal 
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distributions. Under warmer climate conditions, the 10-year (100-year) events of the reference period occur every 15 (92) 

years in the current climate, 12 (62) years in the near future, and 5 (20) in the far future, respectively.     

5 Discussion 

5.1 Summer low flow   360 

In a warmer climate, the results show more intense peak low flows, longer event durations and an extension of events towards 

later in the year for both study catchments. We refer those changes to the alterations of the hydroclimatic drivers (Fig. 2). In 

the Ammer catchment during the reference period, the rank correlation between the bivariate event rarity and hydroclimatic 

drivers (averaged over the summer half year) shows a weak correlation for temperature, moderate correlations for evaporation, 

precipitation, and the climatic water balance, and strong correlation for the soil moisture (Fig. 8b). The strength of the rank 365 

correlation is projected to increase in a warmer climate, with strong correlation for all drivers in the far future. We reason that 

events prolong in a warmer climate covering larger parts of the summer half year (Fig. 5b), which is why the dependence with 

the governing hydroclimatic drivers increases. Secondly, we find an increase of the autocorrelation of L7Q comparing the 

previous and following summer season (Fig. 9b).     

 370 
Figure 8: Rank correlation between climatic and hydrological drivers and the bivariate event rarity in the summer half year for the 

(a) Wörnitz catchment and (b) Ammer catchment. Drivers are averaged over the summer half year. The climatic water balance is 

defined as precipitation minus potential evaporation. The transparent ranges provide 95% confidence intervals for Kendall’s τ.   
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Figure 9: Lag-1-autocorrelation for L7Q and low flow duration in the summer half year for the (a) Wörnitz catchment and (b) 375 

Ammer catchment. The lag relates to the previous summer half year. The coloured transparent ranges provide 95% confidence 

intervals for the autocorrelation, while the grey transparent range represents no significant autocorrelation (α = 0.05).   

This indicates that the pre-conditions of the previous year gain influence on the conditions in the following year with the 

potential for multi-year river droughts highlighting the importance of lagged effects under climate change for the assessment 

of drought risks (Bevacqua et al., 2024). Furthermore, we find an increase of inter-driver dependence, notably for temperature 380 

and precipitation in both catchments. Figure 10 illustrates that hotter (colder) summers are more likely to be drier (wetter) in 

the future periods. This stronger dependence has also been found for compound hot and dry summers during June, July,  and 

August over Europe (Felsche et al., 2024) propagating to soil moisture droughts (Boehnisch et al., 2025).     

In the Wörnitz catchment, a positive autocorrelation of L7Q is already significant for the reference climate and is projected to 

further increase in the near and far future (Fig. 9a). We also find increases of the dependence between the bivariate event rarity 385 

and hydroclimatic drivers (Fig. 8a), where the changes are however less pronounced than in the Ammer catchment. The rank 

correlation of bivariate event rarity and evaporation drops from a moderate level in the reference and current climate to almost 

zero in the far future (Fig. 8a). We argue that under the high emission scenario, the water availability for evaporation is limited 

especially during dry summers, where the potential evaporation largely exceeds the precipitation. This shift is illustrated by 

Figure 11 within the Budyko framework. Budyko (1951) found that climate aridity governs the long-term partitioning of 390 

precipitation into river discharge and evaporation formalizing the ratio of mean annual evaporation 𝐸  and mean annual 

precipitation 𝑃 as: 

𝐸

𝑃
= [

𝐸𝑝

𝑃
tanh (

𝑃

𝐸𝑝
) (1 − 𝑒−

𝐸𝑝

𝑃 )]
0.5

,     (7) 

with the mean annual potential evaporation 𝐸𝑝 . The framework is based on an empirical foundation, where the resulting 

Budyko curve is found to capture around 90% of the inter-catchment variability in evaporative fractions across various 395 

catchments in Europe (Budyko, 1951). We refer the reader to Berghuijs et al. (2020) for an insightful commentary on the 

Budyko framework. Here, we find that both catchments move along the Budyko curve, towards higher evaporative fractions. 

In the far future, the climate aridity of the Wörnitz catchment shows a spread around 1.0, indicating that it is projected to shift 

to arid conditions until the far future.  
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 400 
Figure 10: Bivariate Scatterplots of summer (May to October) temperature and precipitation. The color scale connects the climatic 

conditions to the respective summer L7Q. 

 
Figure 11: Evaporative fractions in the Budyko framework of both study catchments for four climate periods. Each dot refers to the 

average conditions of one member per 30-year climate period, where the spread of the dots represents the range of internal climate 405 

variability. 

5.2 Winter low flow  

River droughts in cold climates can be caused by different drivers (van Loon et al., 2015). Van Loon and van Lanen (2012) 

have identified eight categories, where three subtypes of cold snow season droughts are governed by cold temperature 

anomalies. Cold temperatures can either induce an earlier onset of the snow season, or extend the season with later snowmelt. 410 
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In mild winter climates, a cold anomaly can affect the water availability during the whole season, as precipitation falls as snow 

preventing from infiltration to the groundwater and runoff to the river (van Loon et al., 2015). Warm snow season droughts 

are governed by temperature and precipitation. In harsh climates, an earlier than normal snowmelt peak can induce a drought 

afterwards. In milder winter climates, joint negative snowmelt anomalies and rainfall deficit can cause low flows. Snowmelt 

droughts and glaciermelt droughts are induced by negative anomalies of meltflow during the respective seasons. Lastly, a 415 

rain-to-snow season drought develops as rainfall deficit during the summer and autumn, which is then acerbated by a rather 

sudden temperature drop during winter, which does not allow the system to recover (van Loon et al., 2015). Compared to the 

investigated catchments in cold climates by van Loon et al. (2015), the reference climate of the Ammer would be a mild winter 

climate with a mean annual air temperature of 7°C without glacier influence. Even though the catchment is considered a mild 

winter climate compared to cold climates, the seasonality of low flows and their intensity shows that winter low flows dominate 420 

in the reference climate (Figs. 4 & 6). However, there is a shift towards dominating summer events in the future climates. Such 

shifts are also projected for nivo-pluvial catchments in Austria under RCP8.5 until end of the century (Hanus et al., 2021).  

Hence, during the reference climate, the Ammer catchment is mostly prone to rain-to-snow season droughts, cold snow season 

droughts with negative temperature anomalies during the winter season, and warm snow season droughts with joint negative 

snowmelt anomalies and rainfall deficit. Due to the mix of potential drivers for these different river drought types, a correlation 425 

analysis between hydroclimatic drivers averaged over the whole winter season and the drought metric will be less conclusive 

than for the summer events (Haslinger et al., 2014). As the dependence structure between L7Q and event duration is weaker 

in winter than in summer (see Fig. 7b and 7c), a correlation analysis is conducted separately for L7Q and event duration instead 

of a single analysis for the bivariate event rarity.  

 430 
Figure 12: Kendall's rank correlation between winter climatic drivers and (a) winter low-flow intensity L7Q, as well as between 

winter climatic drivers and (b) winter low-flow event duration. The transparent ranges provide 95% confidence intervals for 

Kendall’s τ.  
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There, a weak positive rank correlation between temperature and L7Q as well as precipitation and L7Q, and a negative 

correlation between temperature and event duration as well as precipitation and event duration in the reference climate indicate 435 

that there is a tendency for colder and drier winters intensifying and prolonging river droughts (Fig. 12). The sign of correlation 

is projected to switch in the future periods, where warmer winters weakly correlate with more extreme drought events. We 

interpret this as a projected decline of cold snow season droughts in a warmer climate. Furthermore, the same analysis for the 

hydroclimatic drivers of the antecedent summer (Fig. 13) reveals that there is a strong projected increase in the correlation of 

all antecedent drivers and the following winter L7Q. We refer this behaviour to a higher number of L7Q events, which are 440 

preconditioned by intense summer river droughts. Either these river droughts start in summer and extend over the winter, so 

that the longer part is in the winter season and the L7Q event is counted as a “winter L7Q event”. Or an intense summer 

drought extends into the winter, with the longer part in the summer, which is why it would not be counted as a “winter event”. 

However, this event can be interrupted by a wet spell, which increases the L7Q above the ML7Q, followed by another dry 

spell, causing the discharge to decrease below the ML7Q as the system has not recovered yet. Then, the second part of the 445 

event counts as “winter event”. Both described types of the river drought progressions explain the increasing importance of 

antecedent summer conditions for the winter L7Q. However, for the winter event duration the antecedent driver conditions are 

weakly correlated (Fig. 13b). There, the moisture conditions during winter govern the event duration (Fig. 12b). Generally, 

winter event durations stay shorter than their summerly counterparts. In the reference and current climate, snowmelt and 

rainfall lead to a recovery until April for almost all years (see Figs. 2 and 5c). This also applies for the future climates, where 450 

the combination of higher rainfall and low evaporation ends eventual drought events in April (see Figs. 2 and 5c).   

 
Figure 13: Kendall's rank correlation between climatic drivers of the antecedent summer and (a) winter low-flow intensity L7Q, as 

well as between climatic drivers of the antecedent summer and (b) winter low-flow event duration. The transparent ranges provide 

95% confidence intervals for Kendall’s τ.  455 
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5.3 Comparison to existing scientific literature  

Mauser et al. (2008) use a statistical climate simulator to generate climate projections under the medium-emission scenario 

A1B driving the physically-based hydrological model PROMET in the catchments of the Upper Danube. Comparing 1971-

2003 to 2011-2060, they find a strong intensification of river low flows, where 50-year peak low flow is less than half of the 

reference until 2060. Huang et al. (2015) apply a multi-model RCM ensemble featuring 16 simulations (12 simulations from 460 

the project ENSEMBLES and 4 additional simulations) under the medium-emission scenario A1B to drive the hydrological 

model SWIM over central Europe. For the catchment of the Upper Danube, they find that the 16 simulations do not agree on 

changes in 50-year river droughts until 2021 – 2060 and 2061 – 2100. However, more than 60% of the simulations suggest an 

intensification of river droughts in the non-alpine catchments in the far future. Building on the 12-member multi-model 

ensemble from the project ENSEMBLES under the A1B emission scenario, Forzieri et al. (2014) apply the hydrological model 465 

LISFLOOD to investigate climate change effects on the annual minimum flow of 446 river gauges in Europe. Across Europe, 

they find a pronounced spatial gradient for 20-year low flow, with intensification of river droughts in the south and west and 

less extreme peak low flow in the north to north-east. For the catchments of the Upper Danube, increases and decreases of 

river droughts are projected, with the tendencies for intensification in the southern parts.     

Stanzel and Kling (2018) compare the effect of the driving climate of the ENSEMBLES project (21 simulations) and the 470 

EURO-CORDEX ensemble (16 simulations) under medium (RCP4.5) and high (RCP8.5) emission scenarios in the Upper 

Danube catchment. They apply the conceptual hydrological model COSERO and find no significant changes in the 10 th 

percentile of streamflow until 2021 – 2050. In the far future of 2071 – 2100, they report a decrease under RCP8.5 and based 

on the ENSEMBLES simulations, while no changes are simulated for RCP4.5.  

Probst and Mauser (2022) select three simulations from EURO-CORDEX under RCP2.6 and RCP8.5 to drive the hydrological 475 

model PROMET. They find less extreme low flows in the future for the Upper Danube (gauge Achleiten) for all scenarios, 

where the gauge in Achleiten drains the whole Upper Danube catchment and is also strongly governed by the Inn. Hence, the 

comparability to the small catchments in this study is limited.      

Marx et al. (2018) devise a multi-model study over Europe featuring five global climate models under three emission scenarios 

and three hydrological models equalling to 45 hydrological simulations. They analyse the 10th percentile of streamflow as low 480 

flow for the future warming levels of +1.5 K, +2 K, and +3 K. Compared to the baseline of 1971 – 2000, they find no significant 

changes in low flow in the Upper Danube for the catchments north of the Danube, while the projections suggest less extreme 

river droughts in alpine and pre-alpine river catchments south of the Danube. 

In sum, the existing scientific literature on river droughts in the Upper Danube area is ambiguous as the review of Piniewski 

et al. (2022) follows for the whole of central Europe. Our study tends to show a rather strong signal of low flow intensification 485 

compared to other studies in the Upper Danube. However, the selection of river catchments, low flow metrics, the 

differentiation between winter and summer low flow, driving climate models, emissions scenarios, time periods, and 

hydrological models limits the comparability of the studies. 
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5.4 Limitations and benefits of the hydrological SMILE for river drought assessments 

Uncertainties in future climate projections stem from three specific sources: 1) climate model uncertainty, 2) emission scenario 490 

uncertainty, and 3) internal climate variability (ICV; Lehner et al., 2020). For projections of streamflow, further sources of 

uncertainty from add to the overall uncertainty, such as the bias adjustment (Willkofer et al., 2018), hydrological model 

calibration (Herrera et al., 2022), and the model uncertainty of hydrological models (Thébault et al., 2024). In our study, we 

apply only one climate model under one emission scenario, one bias adjustment methodology, one hydrological model 

calibrated by one algorithm on one calibration period. However, the SMILE as driving climate allows us to quantify ICV 495 

(Deser et al., 2020, Maher et al., 2021) and its large sample size enables a robust assessment of extreme low flow events.     

The RCP 8.5 emission scenario represents high-emission scenario (Riahi et al. 2011). Following Hausfather and Peters (2020) 

we would recommend to see this scenario as a worst-case estimate, rather than the most likely scenario. While the RCP 8.5 

tracks the global cumulative emissions well until 2020 (Schwalm et al., 2020), the IPCC AR6 report stated that the likelihood 

of such a high-emission scenario is considered low due to recent developments in the energy sector (Chen et al., 2021). Sarofim 500 

et al. (2024) still stress the utility of high-emission scenarios to assess low-probability/high-impact futures and to represent the 

climate of the 22nd century. In consequence, it is the only scenario to allow for an analysis of extreme event dynamics for the 

full range of global warming levels. 

Compared to the multi-model ensemble of the coordinated downscaling experiment EURO-CORDEX under RCP8.5, the 

driving climate of the CRCM5-LE shows stronger signals of drying and increasing temperatures during summer. During 505 

winter, the CRCM5 projects a stronger increase of precipitation, where the temperature is close to the mean of the 22 EURO-

CORDEX models (von Trentini et al., 2019). Hence, the driving climate of the CRCM5-LE induces a stronger intensification 

of summer low flow events and a less intense increase of winter low flows in comparison to the EURO-CORDEX.  

With their multi-model study, Marx et al. (2018) can assess the contribution of the driving climate and the hydrological 

modelling to the overall uncertainty within low flows. They find a dominating contribution of the driving climate in large parts 510 

of central Europe, whereas hydrological modelling governs uncertainty in the (pre-)alpine catchments. Parajka et al. (2016) 

differentiate between summer low flow and winter low flow regimes for Austrian catchments. They find that both low flow 

regimes show a varying sensitivity to different sources of uncertainty. Investigating different climate scenarios, calibration 

periods, and calibration objective functions, they find that the driving climate is the dominating source of uncertainty for 

summer low flows contributing 76 % of overall uncertainty. For winter low flows, the driving climate is also the largest 515 

contributor (26 %), accompanied by the selection of the calibration period (13 %) and the objective function (13 %). Willkofer 

et al. (2018) show that the choice of the bias adjustment method has a moderate effect on projections of low flow, which ranges 

up to 10 % for a 2-year low flow. 

Troin et al. (2022) assess how the hydrological model structure in the representation of potential evapotranspiration, snow 

dynamics, vertical and lateral flow can affect low flow simulations. They find that the lateral and vertical flow schemes are 520 

most important sources of uncertainty for low flows. This is because aquifers contribute to the streamflow via the baseflow 
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(Beck et al., 2013), which is particularly relevant during periods of low precipitation and low surface runoff. As the upward 

movement of groundwater can influence soil-moisture-climate interactions, depending on the soil type (Vogelbacher et al., 

2024; Shokri and Salvucci, 2011), integrating information on soil characteristics, groundwater level, as well as capillary rise 

and its contribution to soil moisture within the hydro-climatological model chain is particularly valuable for future climate 525 

projections. Shallow groundwater tables can enhance soil moisture storage, potentially mitigating the intensity and frequency 

of droughts (Van Loon and Van Lanen, 2012; Van Loon et al., 2024). In the setup of the study, the hydrological model WaSiM 

captures infiltration, surface runoff and water flow in the unsaturated zone using the Richards equation as well as deep 

percolation and capillary rise of water from the saturated to the unsaturated zone (Schulla, 2021). Lateral groundwater flow is 

represented by calculating the baseflow conceptually based on the saturated hydraulic conductivity, elevation of the water 530 

table and the soil surface (Neukum and Azzam, 2012).  

In addition, changes in land cover and land use may further influence these dynamical interactions between groundwater, soil 

moisture and climate, whereby our model setup assumes static land use and land cover. Teuling et al. (2010) analyse the 

differing responses of grasslands and forests, emphasizing the mitigating effects of forests on the persistence of increased 

temperatures for long-lasting events. Zipper et al. (2019) suggest that land use and land cover changes after the Soviet Union 535 

collapse and European Union formation might have induced drying in the Mediterranean and Eastern Europe regions. For a 

detailed analysis of groundwater, soil moisture, and climate interactions, a fully coupled model chain (e.g. Fersch et al., 2020; 

Maxwell and Kollet, 2008; Naz et al., 2023; Rummler et al., 2022) as well as dynamic scenarios of land cover and land use 

(Huber García et al., 2018) would be beneficial. However, in this study, the climate simulations by the CRCM5-LE drive the 

hydrological model WaSiM without feedback from the hydrological conditions into the climate modelling. Given the scope of 540 

this analysis on large ensembles, a fully coupled model chain featuring dynamic land use and land cover was not incorporated. 

Nevertheless, we emphasize potential changes in land use and land cover as well as the potential contribution of groundwater 

to soil moisture and the interaction with the climate in the interpretation of the results.  

In addition to the sources of uncertainty of the scenario uncertainty and various components of the model uncertainty of the 

climate models and hydrological models discussed above, ICV affects future climate and streamflow projections. Lehner et al. 545 

(2020) compare the contribution of internal variability to overall uncertainty for mean temperature and mean precipitation 

globally and for different regions. They demonstrate that ICV influences projections of precipitation more than of temperature 

and that it can be the dominating source of uncertainty for small regions and local assessments. For regional to local extreme 

events (Poschlod, 2022) and compound events (Bevacqua et al., 2023; Lehner et al., 2024), the contribution of ICV is even 

higher than for mean values. The propagation of this uncertainty source to hydrology is less investigated. Using the WaSiM-550 

LE, Willkofer et al. (2024) report a range of -67 % (-51 %) to +171 % (+ 91 %), when estimating 100-year flood peaks in 98 

catchments in central Europe based on 30 (100) years. Also based on a hydrological SMILE, Faghih and Brissette (2023) 

confirm the strong influence of ICV on flood projections under climate change for 133 catchments across the eastern and 

north-eastern United States. Further, they emphasize that floods in small catchments show a higher sensitivity to ICV than 
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floods in large catchments. For future projections of low flow peaks, they also find a considerable influence of ICV, however 555 

with a more even sensitivity across catchment sizes.   

In our study, we focus less on quantifying the ICV influence, but rather pool the 50 members of the hydro-SMILE to generate 

a robust database for analysing very rare and extreme low flows in terms of their univariate (Fig. 6) and bivariate (Fig. 7) 

characteristics. If we were to use only a single 30-year simulation per time period instead of the large ensemble, we would not 

be able to detect the climate change-induced changes as robustly. When resampling 30 years per time period with replacement 560 

for 100 times, the 100-year low flow intensities and duration are systematically underestimated (Fig. S2). The inner 90-percent-

range of estimated 100-year L7Q spans from -21 % to +32 %, whereas uncertainty is larger with -62 % to +81 % for 100-year 

durations. While the “true” sign of change is detected, with the pooled ensemble representing the “truth”, only a small partition 

of the bootstrapped samples can reveal the significance of future changes. Also, for the bivariate return levels (Fig. 7) or 

trivariate assessments of temperature, precipitation and low flow (Fig. 10) the large sample size of the ensemble is paramount.  565 

6 Conclusion 

Based on the above discussion, we do not recommend a hydro-SMILE as replacement of multi-model assessments, but for the 

focus on very rare events of multivariate extreme event properties. Laaha et al. (2016) suggest a three-pillar approach for the 

projections of low flow. They recommend extrapolation of observational trends, hydrological modelling driven by climate 

simulations under emission scenarios, and extrapolation of changing stochastic rainfall characteristics into the future combined 570 

with rainfall–runoff modelling. They consider the consistency between the three approaches as an indicator of the uncertainty 

of the future projections. Within their third pillar, they apply a stochastic rainfall generator to create an ensemble of 100 runs, 

which are intended to capture climate variability. We argue, that a process-based hydrological SMILE could either enrich the 

third pillar or form a separate fourth pillar, if there is a focus on very rare and extreme events or multivariate event 

characteristics. 575 

We conclude that hydro-SMILEs are an important tool for the investigation of rare river droughts and complex event 

characteristics. As such events are most impactful, a hydro-SMILE, especially when based on a spatially explicit, process-

based impact model, can also be used to design physically-plausible storylines of drought events (Shepherd, 2019; Sillmann 

et al., 2021). Many studies only analyse moderate extreme levels of peak low flow, which might hide climate change induced 

alterations of the low flow (see Fig. 3 until 2050 for the Ammer river compared to Figs. 6c, d and 7b). Hence, we recommend 580 

to distinguish between summer low flow and winter low flow, as rainfall-driven and melt-driven catchments show distinct 

reactions to climate change (Brunner et al., 2019b). A low flow typology could be applied to even better disentangle the effects 

of the climatic and hydrological drivers on different types of low flow genesis (Brunner et al., 2022). Further we suggest to 

analyse the seasonality, low flow duration, or bivariate return levels of peak flow and duration. They show a highly varying 

degree of sensitivity to climate change alterations, but are relevant for the water management. Climate change projections of 585 
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these characteristics can inform decision-makers and adaptation planners for the dimensioning of reservoirs, renaturation of 

rivers, and regulations of groundwater and surface water withdrawal.  
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