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Reviewer #2: 

This is a welcome contribution to the literature on atmospheric rivers as triggers of compound 
flooding.  However, it is unclear if sufficient work has been undertaken at this stage to justify 
publication now. 

The authors note that: "If common landfalling locations shift significantly under future 
warming scenarios, this could explain the difficulty in establishing a statistically robust 
relationship between ARs and CIF events in later warming periods, as such shifts are not 
explicitly accounted for in the current methodology. This highlights the need for further 
research to reduce uncertainties in modeling AR dynamics." 

The authors are to be commended for admitting in the conclusions that: "The results carry 
considerable uncertainty, primarily due to internal climate variability, the exclusion of 
dynamic factors, sample size limitations, and AR detection methods. Future studies can 
improve the methodology by focusing on more characteristics of ARs." 

For those involved in flood risk decision-making, the paper in its present form is much less 
informative and useful than it might be if further research would be undertaken to address 
some of the key uncertainties identified by the authors themselves. 

Response: 

We sincerely thank the reviewer for the constructive feedback. We organized our response 
around the main criticisms raised as follows: 

(a) Justification of the study’s contributions 
(b) Clarification of the uncertainties acknowledged in the current manuscript 

(a) Justifying the contributions 

This study contributes to the field of research substantially by being the first to quantify AR 
driven inland compound flooding under climate change using large ensembles. To date, only two 
studies have explicitly addressed compound effects: one focusing on coastal flooding along the 
Dutch coast (Ridder et al., 2018), and the other on temporal compounding of atmospheric rivers 
in California (Bowers et al., 2024). Further, to our knowledge, no prior research has investigated 
inland compound flooding driven by atmospheric rivers, nor examined the combined influence 
of externally forced climate change and internal climate variability arising from natural 
variability of climate and large-scale climate patterns.  

(b) Clarification of uncertainties 

The uncertainties identified during this study are inherent to the problem being studied and we 
explicitly acknowledge them to highlight future research opportunities. Fully resolving the range 
of uncertainties identified would require separate in depth studies because of their complexity. 
The current body of literature highlights the extent of differences caused by the existence of 
different atmospheric river detection techniques (Ralph et al., 2019; Rutz et al., 2019). Internal 
climate variability is a known irreducible source of error, and numerous studies have examined 
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its influence on modeling various phenomena. This study specifically quantifies and discusses 
the implication of uncertainty from internal variability as a key objective.  The results in the 
submitted work can support future research specifically targeting the relationship between 
internal variability and AR-driven activity, an important direction underscored by the strong link 
we identified between compound events and AR-related flooding.  

In response to the comments on ensemble size, although a large ensemble may increase the 
accuracy of the results, the ensemble size used in this work aligns with prior large scale studies 
and yields consistent results (Hagos et al., 2016; Michaelis et al., 2022; Tseng et al., 2022).  
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