Snow accumulation rates at Concordia Station, Antarctica, observed by stake farms

Stefanini et al., 2025

Editor: Lei Geng

5 Reviewer #1

The Antarctic surface mass balance is a key factor and an important source of uncertainty in understanding the current total Antarctic mass balance and its contribution to global sea level rise, and thus deserves to be studied fully. However, Antarctic SMB measurements remain challenging due to its isolated location and harsh environment, which is even more evident in the Antarctic interior, although some continuous measurements have been maintained at South Pole, Vostok, and Dome F, etc. This study utilized stake farms installed around Concordia Station by Italy and France, combined with reanalysis and regional climate models to assess the SMB in the vicinity of Dome C, providing important information about the interior Antarctic SMB. Overall, this study is well done, but there are still some places that need to be enhanced to make the study completer and more meaningful. Therefore, I would recommend the authors to make a major revision of the manuscript before it can be published.

15 Thanks to devote time to the review of our manuscript and for the helpful suggestions.

Specific comments:

1. L27-28: In the Abstract, the authors should specifically point out what kind of effects of buildings on SMB, e.g. whether it increases or decreases the snow accumulation rate? Do the buildings primarily influence the snow blowing or snow falling process? If possible, explain in detail the dynamical mechanisms by which buildings located upwind may have an impact on snowfall.

This part has been added to the abstract, after line 27: "In the hyper-arid environment of Dome C, snow accumulation is largely governed by post-depositional processes such as wind redistribution and clear-sky precipitation. Elevated buildings alter the wind field, enhancing erosion beneath them and forming snowdrifts leeward and laterally, which may explain accumulation differences between the ITA and FRA stake fields."

- Introduction: The authors have described the significance and some advances on Antarctic SMB measurements, to which I suggest some additions. On the one hand, please add more articles on the factors and mechanisms affecting snow accumulation variations in Antarctic interior, which can include the Dome C, South Pole, Vostok, Dome A and Dome F. On the other hand, there are a number of findings based on deep ice cores and stake farms available at these stations (e.g., Fujita et al., 2011; Lazzara et al., 2012), suggesting that the authors include them in the introduction. Moreover, I recommended the authors to cite two papers (Wang et al., 2021; 2023), they integrated the Antarctic SMB observations and Automatic Weather Stations, which can provide more details for the Introduction and make it completer. In the quality-controlled SMB dataset, in addition to stakes and stake farms, SMB measurements based on other means, such as snow pits, ice cores, ultrasonic sounders, and ground-penetrating radar were collected. They also introduce some AWS instrument installation, sensor and data quality control standards, which includes the Dome C and may be useful for introducing AWS accuracy in this study. A few are listed here, and I suggest that authors actively search for more literature and summarize them.
 - Fujita, S., Holmlund, P., Andersson, I., et al. (2011). Spatial and temporal variability of snow accumulation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML, The Cryosphere, 5, 1057–1081, https://doi.org/10.5194/tc-5-1057-2011.

Lazzara, M. A., Keller, L. M., Markle, T., & Gallagher, J. (2012). Fifty-year Amundsen–Scott South Pole station surface climatology. Atmospheric Research, 118, 240-259.

Wang, Y., Ding, M., Reijmer, C. H., et al. (2021). The AntSMB dataset: a comprehensive compilation of surface mass balance field observations over the Antarctic Ice Sheet, Earth Syst. Sci. Data, 13, 3057–3074, https://doi.org/10.5194/essd-13-3057-2021.

Wang, Y., Zhang, X., Ning, W., et al. (2023). The AntAWS dataset: a compilation of Antarctic automatic weather station observations, Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023.

This part has been added to the Introduction section, after line 43:

"A large fraction (two thirds) of the annual accumulation at Dome C comes from clear-sky precipitation, such as diamond dust and vapor condensation, rather than conventional snowfall events (Stenni et al., 2016). While snowfall and diamond dust provide the baseline input, post-depositional processes exert the greatest influence on spatial and temporal variability. Inland accumulation is primarily driven by fluctuations in snowfall, which dominate interannual variability in SMB (Noël et al., 2023). However, the apparent uniformity of precipitation over tens to hundreds of kilometres is disrupted by wind and surface processes, which modulate local accumulation through redistribution across microtopographic features (Fujita et al., 2011). Wind is consistently identified as the dominant control across the East Antarctic Plateau. Processes such as drifting snow, erosion, and redistribution create highly variable features including sastrugi, dunes, and megadunes, which contribute to substantial local heterogeneity (Frezzotti et al., 2005; Eisen et al., 2008). Sublimation—both surface and wind-driven further reduces accumulation, and in particularly dry areas like Dome C, Dome Fuji, and Vostok, it may cancel out a significant fraction of snowfall (Eisen et al., 2008). Over the central plateau, katabatic winds actively shape the surface, driving strong spatial variability even where precipitation is minimal (Lazzara et al., 2012). At the South Pole, for instance, annual accumulation decreased significantly from 1983 to 2010, largely attributed to changes in wind and sublimation patterns rather than reductions in snowfall (Lazzara et al., 2012). Topographic effects are also critical: Dome sites generally exhibit lower spatial variability (3–9%) compared to regions with complex surface morphology, where variability may exceed 40% (Eisen et al., 2008). Small-scale features such as sastrugi, wind crusts, and megadunes introduce accumulation noise two to four times the mean, occasionally resulting in multi-year ablation (Frezzotti et al., 2005). On larger spatial scales, Dome Fuji records demonstrate how accumulation differences are strongly correlated with position relative to ice divides and prevailing wind directions, and are further modulated by elevation and distance from moisture sources (Oyabu et al., 2023). Overall, spatial variability at kilometre scales is an order of magnitude greater than temporal variability at decadal to secular scales (Frezzotti et al., 2005). This highlights why dome sites such as Dome C are often favoured for paleoclimate reconstructions: their relatively stable conditions reduce the noise introduced by local post-depositional processes, even though wind redistribution and sublimation remain significant factors (Frezzotti et al., 2005)."

70 Furthermore, when discussing the AWSs, this part has been added at line 60:

"Besides, stations are unevenly distributed: clustered near coastal regions, with only a few inland installed on the East Antarctic Plateau, including Dome C, Dome F, Vostok, and other interior sites (Wang et al., 2023). AWSs, by capturing long-term records of key drivers—such as wind, humidity, and temperature—enhance our understanding of how atmospheric processes impact SMB in remote high-plateau regions. Long-term SMB observations are rare but invaluable. Some AWSs are equipped with ultrasonic sensors to measure snow surface height changes by detecting the vertical distance to the surface, but the uncertainty of the measurements is not sufficient to properly examine the small snow accumulation events that usually occur in the interior of the East Antarctic Plateau (Wang et al., 2021). The AntSMB dataset comprises observations from 675 sites across Antarctica, including daily, annual, and multi-year records derived from ice cores, snow pits, stake farms, ultrasonic sounders, and ground-penetrating radar. The dataset reveals large spatial heterogeneity in accumulation driven by local processes like wind redistribution, slope effects, and surface roughness, which are pronounced across interior plateau sites. By integrating multiple measurement types (e.g. stakes, cores, radar), the dataset allows quantification of the relative impact of precipitation supply, erosion/deposition, and surface sublimation, clarifying which processes dominate at interior sites (Eisen et al. 2008; Wang et al., 2021). The combined analysis of GPR profiles, firn cores, and stake measurements indicates that Dome C exhibits remarkable spatial homogeneity at the regional scale, with only minor local variations in snow accumulation

- primarily driven by surface microtopography and prevailing wind patterns (Urbini et al., 2008). Temporal variability in accumulation rates appears limited over decadal to centennial scales, as confirmed by firn-core records, although interannual fluctuations linked to episodic wind-driven redistribution are evident. The consistency between point-scale observations and GPR-derived stratigraphy supports the reliability of radar methods for spatial interpolation in this area. Overall, the low flow velocity, minimal surface undulation, and stable accumulation regime reaffirm Dome C as an optimal site for deep ice core drilling and long-term paleoclimate reconstructions (Urbini et al., 2008)."
 - 3. Data and methods: 2.2 Reanalysis and regional climate models: Please detail how SMB or snow accumulation rates from reanalysis (or regional climate models) are calculated. Is it precipitation minus evaporation? I see a similar description in the Results, but they should have been made clear in the second section.

The sentence "SMB has been calculated as the sum of the snowfall and snow deposition minus snow sublimation" has been added at the end of Section 2.2.

4. I would strongly encourage the authors to go into more detail about the sites and sensors, their measurement metrics and possible errors in section 2.4. Perhaps a table could be created.

The following text and table have been added to the text, after line 173:

"Hourly wind speed and direction are derived from the observations of the Italian AWS Concordia (75.105°S 123.309°E, 3230 100 m, approximately 850 m far from the Station), managed by the Italian Antarctic Meteo-Climatological Observatory of the PNRA, which are available for the 2005-2023 period; a Vaisala Milos 520 model station is installed 3 m above the ground and unheated equipped with both heated and aerovane. and an ultrasonic wind sensor (https://www.climantartide.it/strumenti/aws/Concordia/index.php?lang=en). Details on sensors and technical data are reported in Table 1. Wind speed and direction are provided hourly, with a resolution of 1 knot and 10 degrees respectively. Wind speed is then reported in m/s. Other AWSs are present in the Dome C area, but this is the only one with heated sensors, not affected by frost.

	Vaisala WAA151 1	WAV151 ¹	WS425 ²	
	wind speed	wind direction	wind speed	wind direction
Sensor/transducer type	Cup anemometer/opto- chopper	Optical code disc	Ultrasonic wind sensor	
Observation range	0.4–75 m/s	0–360° (at wind speed 0.4–75 m/s)	0 – 65 m/s	0–360°
Starting threshold	< 0.5 m/s	< 0.4 m/s	virtually zero	virtually zero
Resolution	0.1 m/s	±2.8°	0.1 m/s	1°
Accuracy	max ±0.5 m/s (within 0.4–60 m/s)	Better than ±3°	±0.135 m/s	±2.0°

^[1] https://docs.vaisala.com/v/u/B210382EN-J/en-US

95

Table 1. Description of the wind sensors of the Concordia AWS used in this study."

Moreover, this part has been added in Section 2.1, after line 106, to describe the man-made structures present in the area:

^[2] WS425 Users Guide M210361EN-E

"The facility consists of a winter station made up of two interconnected cylinders linked to the power plant, and a summer camp (which also serves as an emergency camp during winter). Each cylinder of the winter station has a diameter of 18.5 m and a height of 11 m (2955 m³), and is divided into three floors, providing a total of 250 m² of usable surface. The total height above the ice exceeds 14 m, since each structure rests on six large adjustable iron supports designed to compensate for variations in ice thickness (https://www.pnra.aq/it/stazione-concordia). The main structures and facilities are shown in Figure 1. ATMOS and PHYSICS are shelters located near the Italian stake farms composed of 8 and 4 coupled containers, respectively (https://www.pnra.aq/it/laboratori-e-facilities-concordia, an aerial view of the facility is shown in Figure S1). Besides, every year several tons of snow are cleared from the buildings and other structures, including the towers and the summer camp, and transported north using a Pisten Bully.

- 120 Finally, Figure 1 has been modified accordingly and Figure S1 now shows a photograph of Concordia Station.
 - 5. Results: I would suggest that the authors place sections 4.1 and 4.2 in the Results rather than in the Discussion. In terms of content, they are more of a description of the Results.

Sections 4.1 and 4.2 have been moved to the Results part, now they are Section 3.3 and 3.4, respectively.

- 6. L222: This algorithm may artificially create some differences between reanalyzes, regional climate models and stake farms.
 125 Considering the temporal and spatial continuity of the simulation results, it is recommended that the authors divide the accumulation period based on measurements (possibly based on French stake farms). Although not all the datasets are available with daily resolution, the authors should have added at least some results from products capable of providing daily resolution data as a validation, such as ERA5 and MERRA-2.
- The comparison between the temporal evolution of accumulation derived from our algorithm with results from products that provide daily resolution data, specifically ERA5 and MERRA-2, has already been performed. The yearly comparisons were performed to assess the consistency of our results and are presented in the Supplementary Material (Table S1). We considered the timing of accumulation periods based on available measurements, i.e., those from the French stake farms, to the extent allowed by the data coverage.
- 7. L370-376: I don't think the description here is adequate, please explain in conjunction with simulations or other studies how buildings have affected the snow accumulation rate, especially when the atmospheric aquifer is not primarily concentrated in the lower atmosphere. Also, is the main effect of buildings reducing or increasing snowfall, or changing the wind scouring of deposited snow? This is similar to the 1st comment. --L378: ablation-->wind ablation.

This explanation has been added to the text:

"Model tests using real snow particles in cold-climate wind tunnels demonstrate that airflow accelerates beneath buildings elevated above the snow surface, which causes increased surface stress and erosion directly beneath the structure. Snow eroded upwind is deposited downwind of the building, forming concentrated drifts in the wake region. This redistribution results in reduced accumulation immediately near the building and increased snow loads farther leeward (Mitsuhashi et al., 1983; Kwok et al., 1992; Delpech et al., 1998; Yamagishi et al., 2012), with the building elevation, shape, and roof inclination also playing a role (Yamagishi et al., 2012). However, further leeward, a slight scouring zone emerges with less accumulation with respect to the adjacent zones (Moore et al., 1994, Thiis, 2003; Nara et al., 2025), where the ITA stake farm is located. Beyond the turbulent wake, wind resumes its ambient plateau flow regime. Besides, under this hyper-arid conditions, post-depositional processes like wind drift, sublimation, and hoar frost formation often dominate over the initial snowfall in determining the final surface accumulation (Frezzotti et al., 2005). Additionally, a large fraction of the annual accumulation (two thirds) comes from clear-sky precipitation, such as diamond dust and vapor condensation, rather than conventional snowfall events (Stenni et al., 2016).

Furthermore, enhanced snow accumulation zones develop on both side of the buildings, extending also leeward at a great distance from them, more than 10 times the height of the structures, forming a horseshoe shape (Thiis, 2003; Nara et al., 2025). This effect could explain the higher accumulation in the ITA field with respect to the FRA one when snowfall and wind from

the north occur: FRA is probably well beyond the turbulent wake leeward the buildings, but ITA is likely affected by increased accumulation due to lateral snowdrifts."

8. L381-383: "Besides, black carbon produced by the Station can also affect the albedo causing differences in surface temperature, sublimation, and surface hoar frost formation, impacting the final snow accumulation". It's an interesting thing, so is it possible to provide more descriptions about how to influence them (Just cite more papers to explain it). In particular, I would like to know what is the source of these black carbon? Also, if they have a large effect on the surface temperature, sublimation, and surface hoar frost formation, even the surface mass balance, does this mean that expedition activities will obviously affect the ice, and what should be done to minimize this effect?

The snowpack's energy budget and photochemistry are strongly influenced by how solar radiation penetrates the snow. Light decreases exponentially with depth, governed by the asymptotic flux extinction coefficient, which —like albedo— depends on snow grain shape and size (Bohren and Barkstrom, 1974). Even trace amounts of impurities can markedly reduce light penetration (Warren et al., 2006). Since the establishment of Concordia Station in 2003, elevated black carbon (BC) levels have been detected in the surrounding snowpack, over three times higher than pre-2003 values (Warren et al., 2006). This contamination reduces light penetration, resulting in a shallower e-folding depth compared with pristine snow (Warren et al., 2006; France et al., 2011; Libois et al., 2013). The station has adopted measures to reduce black carbon, and while its impact is not currently being evaluated, it is certainly not negligible.

- Helmig et al. (2020) reported that, despite sampling snow pits in the clean-air sector ~1 km southwest of the Station, exhaust plumes from camp activities —mainly power generation—reached the site on ~50 occasions during their 1.2-year study. They observed sharp spikes in NO_x concentrations, up to 1,000 times ambient background. However, they did not measure BC deposition, nor did they assess snow albedo, grain size, or surface temperature. Their focus remained on photochemical tracers (NO_x, O₃) and snow chemistry, rather than radiative or thermodynamic effects.
- By contrast, studies near coastal Antarctic Peninsula stations with greater human activity, including popular tourist landing sites, show that BC deposition can reduce albedo, accelerate melting, and contribute to surface warming (Δalbedo ≈ 0.001–0.004; local forcing ~0.25–1 W/m²) (Cordero et al., 2022). Yet, Concordia Station lies on the high Antarctic Plateau, far more remote, where BC emissions and deposition are orders of magnitude lower than at coastal facilities. To date, no evidence clearly demonstrates that BC from Concordia Station significantly affects local albedo, snow grain size, or surface temperature.
- 180 In conclusion, while NO_x and O₃ impacts from station activities are documented, direct evidence linking Concordia's BC emissions to snow radiative properties remains absent. Potential impacts can be inferred from other Antarctic studies, but such extrapolations remain hypothetical and beyond the aim of this analysis. These concepts, summarized, have been added to the manuscript.
- 9. Discussion: I don't think the sections 4.3 and 4.4 are well delineated. A more sensible approach would be to first describe the effects of wind on snow accumulation rates, and then discuss their interaction with station buildings in more detail in the second section.

Sections 4.3 and 4.4 have been swapped as suggested.

155

160

165

10. Current analyses of the effect of wind on snow accumulation rates have focused on resolving the differences between the two stake farms, and whether it is possible to provide more information on whether wind direction, wind speed, or other surface
 processes influence the overall accumulation rate results than spatial variability.

Morphology certainly affects observations, and its effects should emerge if the disturbance were regular. However, no statistically significant difference was found between the two axes of the stake cross, either in terms of mean values or variability. Moreover, a preliminary analysis of surface elevation fluctuations from the REMA dataset suggests the presence of 200–400 m wide undulations, which appear to have remained stationary over the past 15 years.

11. The authors discussed the effects of a number of localized factors on Dome C snow accumulation rates, and as the authors cited a few studies, these have actually been mentioned before. Therefore, to add an innovative point, I suggest that the authors

add some results to discuss the factors controlling the variability or interannual fluctuations in snow accumulation rates (since the authors claim that there is not a significant trend), and that studies could be carried out in terms of factors such as local temperatures and clear-sky precipitation, then to discuss the impacts of large-scale forcing such as SAM and ENSO on the snow accumulation rate.

We appreciate the reviewer's suggestion regarding the potential influence of large-scale climate modes such as SAM and ENSO on snow accumulation variability at Dome C. However, this analysis goes beyond the scope of the present work, which focuses primarily on local-scale factors influencing recent accumulation patterns. Additionally, the length of the available time series is not sufficient to robustly investigate potential links with the periodicities associated with SAM and ENSO. We agree that this is an interesting direction for future research.

12. Figure 12: Explain any reference for the selection of the threshold.

200

205

215

230

The method for selecting the threshold has been added to the caption.

13. L439-L441: Such events have been widely watched and studied, and I encourage authors to analyze the accumulation values during several extreme events and judge their contribution to the annual accumulation values, based on observational data available at monthly resolution.

We thank the reviewer for this constructive suggestion. We agree that investigating the contribution of extreme events to annual accumulation would be valuable. However, such an analysis requires a longer and more complete record of high-resolution observational data, which is currently not available with sufficient temporal coverage for Dome C. As our study is based on a relatively short time series, it does not allow for a robust assessment of the frequency or impact of such events on interannual variability. Nonetheless, we acknowledge the importance of this aspect and will mention it as a promising avenue for future research.

- 14. A small question: the anomalies calculated in this manuscript are relative anomalies (%), could absolute anomalies (cm or mm) be provided for comparison? These can be placed in the supplementary file.
- The Figure S2b has been added to the Supplementary material, showing the yearly SMB anomaly with respect to the 2004-2003 climatology, in mm of water equivalent.
 - 15. Improvement of the figure: Figure 1: This figure could be improved. First, the font of a), b) and c) is too big compared to the rest of the information on this figure and I would suggest that the authors adjust the font size. Also, it is recommended that the three subfigures be placed on one page after stitching them together instead of splitting them on two pages.
 - --Figure 1 and Figure 2: I suggest that the author remove the white area from the figure that doesn't present any information.
- 225 -- Figures 4 and 5 can be stitched together as sub-figures, which can be easily compared by readers.

Font of Figure 1 has been modified, and the images have been merged in a single figure. Moreover, more information has been added to Figure 1, and white space has been removed from Figures 1 and 2. Figures 4 and 5 have been stitched together.

Reviewer #2

235 General comments

This manuscript presents scientific data on snow accumulation at Concordia Station, Antarctica, collected by stake farms from 2004 to 2024. They reveal the SMB at the site, which is new data. Therefore, this manuscript is worthy of publication. However, I found several issues in this manuscript.

Thanks to devote time to the review of our manuscript and for the helpful suggestions.

240 Specific comments

245

1. Snow density for SMB calculations, Lines 53-56 and Line 178

Two densities are introduced to calculate the SMB from stake data in previous studies: upper 2 m by Takahashi et al. (1994) and surface to the bottom of the annual snow layer by Kameda et al. (1997) and Satow et al. (1999) in Lines 53–55. As briefly described in Line 178, Takahashi and Kameda (2007) first propose that the appropriate snow density for SMB from stake data is the mean snow density at the stake base during the snow stake measurement period, which is the snow density for SMB considering snow compaction. Kameda et al. (2008) used the density for SMB calculations at Dome Fuji. Thus, it is better to add Takahashi and Kameda (2007) and Kameda et al. (2008) at Line 54, immediately preceding Ekaykin et al. (2020).

The specification has been added as suggested.

- 2. Lines 156–157
- The first paper to consider snow density in relation to snow compaction during stake measurements is Takahashi and Kameda (2007). Thus, after line 157, it would be better to add this paper for reference.

The reference has been added to the text.

- 3. Line 163
- I think "hundreds of meters" from the surface is ice, not snow. I think the deepest snow (permeable material) at Dome C is around 100 m, not "hundreds of meters".

Correct, "ice" was added to the text to include the deeper layers.

4. Line 178

Takahashi et al (2007) -> Takahashi and Kameda (2007)

Corrected.

260 5. SMB (cm) in Fig. 4, 5, 7a, 7b, 8

The y-axes of these figures are SMB (cm). Is it a water equivalent value or a snow equivalent value? To eliminate misunderstandings, the term "surface mass balance (SMB)" is often used in previous papers. The unit of SMB is kg m-2 a-1. If you use the unit in the y-axis in these figures, it is clear that the value is the same as mm in water equivalent.

The values show simply the snow buildup as measured at the stakes, the labels and the captions of the figures have been modified accordingly.

6. Line 260

What is +26.6 %%? I think a "%" should be omitted.

Corrected.

7. Line 240.

270 Is the p-value of 0.40 correct?

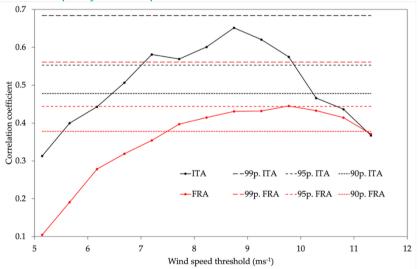
Yes, it is correct, it indicates that the two datasets, FRA and FRAb, are compatible. Otherwise, the t-test would have provided a p-value < 0.05.

8. Line 378

I think "erosion" is a more appropriate term than "ablation", because there is no water at Dome C even in the summer season.

275 All the occurrences of "ablation" have been replaced with "erosion" throughout the text.

9. Line 379


Kameda et al. (2008) used "the negative and zero SMB" for expressing the condition. Please consider using this term to express the same phenomenon.

The suggested term has been used.

280 10. Lines 384-387

It is better to add figures to express the relation described in the text.

A figure has been added, after line 387, showing the linear correlation coefficients between the yearly fraction of stakes with negative and zero SMB and the frequency of wind speed values at the AWS above certain thresholds:

"Figure 10. Linear correlation coefficients between the yearly fraction of stakes with negative and zero SB and the frequency of wind speed values at the AWS above certain thresholds. 99%, 95%, and 90% confidence levels for each stake farm are shown."

11. Line 399

285

Fujii and Kusunoki (1982) and Takahashi et al (1992) will be good references for sublimation at the snow surface at the Antarctic ice sheet.

Please consider to add these papers for reference.

Fujii, Y., and K. Kusunoki (1982), The role of sublimation and condensation in the formation of ice sheet surface at Mizuho Station, Antarctica, J. Geophys. Res., 87(C6), 4293–4300, doi:10.1029/JC087iC06p04293.

Takahashi, S. Endoh, T., Azuma, N. and Meshida, S (1992): Bare ice fields developed in the inland part of the Antarctica. Proc. NIPR Symp. Polar Meteorology and Glaciology, 5, 128-139.

References have been added to the text.

295

300

305

310

315

Reviewer #3

325

330

355

360

This paper deals with snow accumulation data provided by several stake farms distributed around Dome C. This is probably one of the sites located in the inner East Antarctic Ice Sheet which is most studied from this point of view. With many data available from ice cores, geophysical prospecting, and previous studies on stake farms. From this point of view the site is thus extremely important in the field of Inner Antarctica snow accumulation estimation.

The authors present new data returned from novel stake farms that have been monitored in the last years. The core of the study is the comparison between these new farms and previous ones, including a comparison with data derived from reanalyses and models.

Notable discrepancies are noted among the different farms which cannot be related to the well-known precipitation gradient that characterizes the Dome C area. Several hypotheses are made to explain such differences and in the end the explanation provided by the author is that several processes are responsible for the variability observed in the data. The existence of the cited gradient, the different size of the farms (with impacts on uncertainties and variability of annual data), the effect of buildings on snow accumulation/erosion.

In general the paper is well written, it is scientifically solid and the data are carefully analyzed and interpreted. I would probably suggest to deepen a little bit the part where reanalyses -derived data are described. Considering the peculiar features of the site, it is not clear how the authors calculated snow deposition, erosion, sublimation using reanalyses data. Please provide more information on this.

Thanks to devote time to the review of our manuscript and for the helpful suggestions.

This sentence has been added at the end of Section 2.2: "SMB has been calculated as the sum of the snowfall and snow deposition minus snow sublimation".

My second concern, which is the most notable one, is about the general "story" behind the manuscript. The current title is "Snow accumulation rates at Concordia Station, Antarctica, observed by stake farms". Reading this title and the general structure of the paper, in particular the introduction, one can think that the key message of the present work is to provide new estimate for snow annual accumulation for an important site of inner East Antarctica. This is only partially true in my opinion. The main argument of this work is to discuss in details the parameters which can influence the estimation of snow accumulation using multiple stake farms distributed around a single site. This is now not clear, in particular if a reader only focuses on the title/abstract and introduction. I suggest to the author to change a bit these key elements of the manuscript, focusing more on the parameters which introduce variability in data gathered from stake farms. Adopting a title like "On the factors which influence the estimation of snow accumulation rates at a site in inner East Antarctica: lessons learned at Dome C", would surely help the readers to understand what they will find in this nice and detailed manuscript. Of course changing the title and in general the "scientific narrative", it would be needed to change also some other parts of the manuscript, in particular the introduction.

The title has been changed to "Challenges in Surface Mass Balance Estimation at Dome C: Stake Farm Comparisons, Measurement Uncertainties, and Station-Induced biases". Moreover, this part has been added to the Introduction, after line 43:

"A large fraction (two thirds) of the annual accumulation at Dome C comes from clear-sky precipitation, such as diamond dust and vapor condensation, rather than conventional snowfall events (Stenni et al., 2016). While snowfall and diamond dust provide the baseline input, post-depositional processes exert the greatest influence on spatial and temporal variability. Inland accumulation is primarily driven by fluctuations in snowfall, which dominate interannual variability in SMB (Noël et al., 2023). However, the apparent uniformity of precipitation over tens to hundreds of kilometres is disrupted by wind and surface processes, which modulate local accumulation through redistribution across microtopographic features (Fujita et al., 2011). These effects are often amplified when high-precipitation episodes coincide with strong wind events, which also modulate local accumulation through redistribution across microtopographic features shaped by underlying bedrock (Fujita et al., 2011). Wind is consistently identified as the dominant control across the East Antarctic Plateau. Processes such as drifting

snow, erosion, and redistribution create highly variable features including sastrugi, dunes, and megadunes, which contribute to substantial local heterogeneity (Frezzotti et al., 2005; Eisen et al., 2008). Sublimation—both surface and wind-driven further reduces accumulation, and in particularly dry areas like Dome C, Dome Fuji, and Vostok, it may cancel out a significant fraction of snowfall (Eisen et al., 2008). Over the central plateau, katabatic winds actively shape the surface, driving strong spatial variability even where precipitation is minimal (Lazzara et al., 2012). At the South Pole, for instance, annual accumulation decreased significantly from 1983 to 2010, largely attributed to changes in wind and sublimation patterns rather than reductions in snowfall (Lazzara et al., 2012). Topographic effects are also critical: Dome sites generally exhibit lower spatial variability (3–9%) compared to regions with complex surface morphology, where variability may exceed 40% (Eisen et al., 2008). Small-scale features such as sastrugi, wind crusts, and megadunes introduce accumulation noise two to four times the mean, occasionally resulting in multi-year ablation (Frezzotti et al., 2005). On larger spatial scales, Dome Fuji records demonstrate how accumulation differences are strongly correlated with position relative to ice divides and prevailing wind directions, and are further modulated by elevation and distance from moisture sources (Oyabu et al., 2023). Overall, spatial variability at kilometre scales is an order of magnitude greater than temporal variability at decadal to secular scales (Frezzotti et al., 2005). This highlights why dome sites such as Dome C are often favoured for paleoclimate reconstructions: their relatively stable conditions reduce the noise introduced by local post-depositional processes, even though wind redistribution and sublimation remain significant factors (Frezzotti et al., 2005)."

Line 15-20: I don't think it is necessary to provide such detailed information about the stake farm position in the abstract. There is the materials section for this. I would just say that in this work you are going to compare results from the different available farms around Dome C, providing some basic data about the temporal interval which is considered here.

380 Indications of the stake farm positions have been removed from the abstract.

Line 35: "for understanding"?

Corrected.

365

370

375

385

390

395

Public comment #1

Dear Claudio, congratulations with this manuscript, it is brilliant!

Thanks to devote time to the review of our manuscript and for the helpful suggestions.

400 I have a couple of comments, see below:

Section 2.1, Italian stake farms: as I can see from the text, the size of the farms is something like 60 by 70 m. If so, the farms are comparable in size with the largest snow dunes traveling across the snow surface. This fact can add the noise to the interannual ITA SMB time-series, which may explain a larger inter-annual variability at ITA farms (Fig. 5).

Morphology certainly affects observations, and its effects should emerge if the disturbance were regular. However, no statistically significant difference was found between the two axes of the stake cross, either in terms of mean values or variability. Moreover, a preliminary analysis of surface elevation fluctuations from the REMA dataset suggests the presence of 200–400 m wide undulations, which appear to have remained stationary over the past 15 years.

Then, the distance between stakes at these farms is 10 m which is close to the distance of noise correlation. It means that the observation at a single stake is not independent from the adjacent stakes, and the effective number of datapoints is ≤ 13 .

410 I tried to apply the same procedure described in Section 3.1 of your 2023 article on Vostok. We calculated the mean correlation coefficient between the time series of annual build-up measured from 2011 to 2023 at adjacent stakes (i.e., 10 m apart) and at stakes separated by 20 m or more. The difference between the two correlation coefficients is not statistically significant at the 95% confidence level. Furthermore, the same analysis was applied to the French stake farms, specifically comparing the annual build-up in 2017–2023 at FRA and FRAb for adjacent stakes. The difference in correlation coefficients between pairs of stakes separated by 2 m (i.e., a stake from the old network and the corresponding one from the new network) and those separated by 40 m is also not statistically significant. These results suggest that stakes can be positioned even closer together than the spacing used in the ITA network so far.

Taking this into account, and also considering the information in Section 4.3 (the farms are too close to the Station?), is it better not to use the ITA data in further analyses?

- 420 Striking a balance between the significance of the collected observations and logistical constraints is essential. The current stake field is accessible year-round and, to maintain this accessibility, it must remain within 1 km of the Station. A second stake field is under consideration, possibly located northwest of the Station, in an area less affected by buildings and with the potential for a higher number of stakes. However, even the FRA and FRAb stake farms are not without issues, as the influence of nearby buildings is still noticeable there.
- 425 Also a few small ones:

Line 46 - "SMB is a small difference between large fluxes». I am not sure what you mean here exactly. SMB is (in a first approximation) a difference between precipitation and sublimation, the latter being relatively small fraction (like 10-20 %) of the first. It is the total Antarctic ice sheet mass balance which is a small difference of two huge fluxes, total snow accumulation (SMB integrated over the area) and ice ablation on the AIS's edges.

430 Absolutely right, the sentence was referred to the total mass balance, not SMB, that phrase has been removed.

Lines 54-56 – here you describe how we make a correction for snow compaction at Vostok, but this paragraph is about defining the density of an annual layer in order to calculate SMB in water equivalent. For this we measure the mean density in the upper 20 cm of snow thickness in a number of random points across the stake farm.

The lines have been changed as suggested.

435 Line 72 – I cannot find Vandecrux et al., 2024 in the reference list.

The reference has been added to the list.

Line 109 – as I can see in Figure 1b, the length of each farm's profile is about 1 km, 25 stakes in each profile. It means an average distance between stakes is 40 m, not 25 m.

It was a misprint, 40 m is correct.

440 Lines 175-176 — it is better to say that each snow layer within this thickness is compressed under the weight of the overlying snow.

Corrected as suggested.

Tables 2 and 4 – there are negative values in the lower limits of the confidence intervals of the compaction corrections which is not possible physically. Probably it's better to set forcibly the lower limits to zero?

Thank you for the advice. We decided to adopt a different solution; since the compaction corrections are positive values, we used a gamma distribution instead of a Gaussian one. The new estimates are nearly the same with respect to the previous ones, but they are now strictly positive.