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Abstract. We develop a new Earth System model configuration framed into the ICON
architecture, which provides the baseline for the next generation of climate predictions and
projections (hereafter ICON XPP - where XPP stands for eXtended Predictions and
Projections). i o j I st

~ICON XPP comprises the atmospheric
component as-used-forof the numerical weather prediction (ICON NWP), the ICON ocean and
land surface components, and an ensemble-variational data assimilation system, all adjusted to
an Earth System model for pursuing climate research and operational climate forecasting. Here;
tTwo baseline configurations are presented: 1)-ene-with a 160 km atmosphere and a 40 km
ocean resolution, and 2)ene-with 80 km atmosphere and 20 km ocean resolution.;-and-a A-first

evaluationispursued-based-enthe CMIP DECK (Diagnostic, Evaluation and Characterization
of Klima) experimentation framework is used for a first evaluation. Emphasis-is-given-to-the

ICON XPP is-able-te-depicts the basic properties of the coupled climate. The pre-industrial
climate shows a top-of-atmosphere balanced radiation budget at-the-top-ef-atmesphere-and a

mean global near-surface temperature of about-13.8-14.0 °C. The ocean shows circulation

strengths in the range of the observed values, such as the AMOC at 16-18 Sv and the flows
through the common passages. The current climate is characterized by a trend in the global
mean temperature of ~1.2 °C since the 1850s, elese-similar to what-isfound-in-reference

datasets. RegionallyAt—regional-—seale—hewever, the hydroclimate differs greatlydeviates
strenghy from observed conditions. For example, the inter-tropical convergence zone (ITCZ)

has-is-deminated-by a double peak and awith-a—particelar wet southern subtropical branch

acrossever the oceans. Further, the elimate--the-Southern Ocean sea surface temperature hasis
characterized-by a strong positive mean bias; with the-sea-surface-temperatures-tee-high up to

5 °C higher than observations.

Key-dDynamical processes-are-presented, such as the-El Nifio/Southern Oscillation (ENSO)
whese-everal-perfermancefits—with-theperforms similarly to CMIP6-like coupled models.

Houweve n tho nracan onfio on ha gmnan de 2/ o
Wy ta d t

ENSO—feedbacks—are—underestimated—Further,—tTropical waves and the Madden-Julian

Oscillation are well captured-weH, and the 40-km atmospheric configuration has a spontaneous
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weak quasi-biennial oscillation—is—found—in—the—40—km—atmesphere—configuration. The
atmospheric dynamics atin the northern extra-tropics of both configurations is—particularky

noteworthy-—CON-XPPR-exhibitsrepresent well-a-good-representation-of the position of the jet

Stream_ =.=' LHa \/ a alalliala narn A 3 ala —Close N\/@ adaton NOW ..

lower—reselution—Overall, ICON XPP performs similarly to at-a-simiartevel-in-the-tested
chimate-simulations-as-climate models performed in CMIP6 making it and-forms-a good basis
for appheationin-the-areas-of-climate forecasts and projections, as-weH-asand climate research.

1. Introduction

For more than a decade, the Max Planck Institute Earth System model (MPI-ESM) has been
used for climate predictions and projections and climate research. Climate predictions (here
spanning the time range from seasons to 10 years ahead) based on MPI-ESM provide reliable
forecast skill (Marotzke et al., 2016) and are routinely operated by the Deutscher Wetterdienst
(DWD) (Frohlich et al., 2020). Further, MPI-ESM contributed to previous phases of the
Coupled Model Intercomparison Project (CMIP) through various configurations (e.g.,
Giorgettaetal., 2013; Gutjahr et al., 2019; Jungclaus et al., 2013; Mauritsen et al., 2019; Mller
et al., 2018). However, MPI-ESM will no longer be supported, and has been substituted by the

ICON (ICOsahedral Nonhydrostatic) model framework. Since-2020,a-new-modeling-initiative

the lCON-framework-(MaHer-etal2025)-An-outcome of this-initiative 15 ICON XPP - where

XPP stands for eXtended Predictions and Projections -; is a newly developed coupled Earth

System model configuration based on the ICON framework,—+SON-XPRP-wiH becoming the
baseline for the next generation climate predictions, and provides the model platform for the
contribution to the CMIP7 (Dunne et al., 2024). Here, we present ICON XPP, from the design
of the configurations to a first evaluation of the Earth System state-based-en-the CVHRP-DECK

ak;—2016). Special attention is given to monitoring certain aspects of the tropical and extra-
tropical mean climate, and-the-stratesphereincluding-and key modes of variability-and-thetr
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ICON XPP advances the achievementsbuHds—upon—accomphishments of previous ICON

initiatives for-the-individual-related to sub-components of the Earth System modeleempenents
(Giorgetta et al., 2018; Korn, 2017; Korn et al., 2022; Nabel et al., 2020; Reick et al., 2021,
Schneck et al., 2022; Zangl et al., 2015), and a fully-coupled Earth System model (Jungclaus

et al., 2022). Although these configurations are based on the same dynamical core and code
infrastructure of ICON, their sub-grid scale closure and parameterization differ and depend on

whether they are used for weather or climate scales. Since 2020, a new modeling initiative

integrates numerical weather forecast (NWP), climate predictions and climate projections

based on the ICON framework into a single model system (Mdller et al., 2025). An outcome

of this initiative is The-designof ICON XPP aims-atintegrating scalesfrom-weatherto-climate
into-a-single-medel-system-—H-is-developed-by that combinesing some of the well-established
numerical—weather—prediction—(NWP)} and climate model components, and by

synchronizesation-of the physical parameterizations among weather and climate timescales

(Mdller et al., 2025). ICON XPP consists of the atmospheric component used for operational
weather forecasts at the DWD (ICON NWP), which has achieved superior quality of weather
forecasting compared to previous NWP model generations, as well as the ICON ocean and sea-

ice model-{Kern-etal-2022) and the land component JSBACH-(Reick-etal2021)-coupled-to
TCON-NWP,

A central aim of ICON XPP is to substitute MPI-ESM for climate predictions, upcoming
climate projections and provision of basic research on fundamental climate properties. Climate
predictions with the MPI-ESM have demonstrated skill at various timescales from seasons to
multiple decades. On seasonal timescales, MPI-ESM shows prediction skill for various
dominant modes of climate variability such as the EI Nifio/Southern Oscillation (ENSO)
(Frohlich et al., 2020) and the North Atlantic Oscillation (NAO) (Dobrynin et al., 2018;

Dobrynin et al., 2022)TeenﬁnemaléealHemperamm—and—pFeapimiaﬁkpaﬁemsfand%

Europe{Beobide-Arsuagaetal—2023) MPI-ESM has also been alse-used for the assessment

of decadal climate predictions_and is used to conduct operational forecasts-to-achieve—an
operationalworkflew (Hettrich et al., 2021; Marotzke et al., 2016). Decadal prediction skill in

the model has been shown to arise from near-term memory in the North Atlantic Ocean heat

4
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content and from the externally-forced long-term trendsFheprincipal-drivers;such-as-the-near-

forcing have manifested the near-term climate predictions skills in MPI-ESM (i.e., Marotzke

et al., 2016 and references therein). In addition, actual predictions skill is assessed-found for
key processes, such as the Quasi-Biennial Oscillation (QBO) (Pohlmann et al., 2013), storm
tracks in the northern hemisphere extra-tropics (Kruschke et al., 2016; Schuster et al., 2019),
and the NAO (Athanasiadis et al., 2020; Smith et al., 2020)-Further, skitksfeund-for climate
impacts, such as continental-scale surface temperature (Mller et al., 2012) and associated
extremes (Borchert et al., 2019; Wallberg et al., 2025), and Earth System
cemponentsprocesses, such as the carbon uptake in the ocean (Li et al., 2016). Recently, MPI-
ESM has been used to extend the prediction skill to a multi-decadal timescale (Dusterhus and
Brune, 2024). A principal ambition is that ICON XPP is able to cover predictions at all
timescales from months to centennialsmulti-decades. Given these targets, special emphasis is
put on incorporating and improving model components particularly suitable for climate
predictions. Though this attempt is quite broad, first initiatives led to the inclusion of a higher-
resolving stratosphere, and special attention was paid to the key properties in the tropics and

the extra-tropics.

While the development and evaluation of ICON XPP for operational climate prediction and
CMIPY is still in progress, here we present its principal development lines and fundamental
properties of the coupled Earth System state. We use the DECK-experimental design - which
has been developed as a guideline to improve and compare among coupled Earth System
models (Eyring et al., 2016)—and-apply-it-to-different ICON-XPP configurations. We present
the basic model description and ways towards tuning the model climate, followed by an
evaluation of the basic climate state, trends, and climate sensitivity in the DECK experiments.

While—desighingln ICON XPP, we paid special attention to fast and flexible model
configurations, to perform long integrations and large ensembles, in contrast to current high-
resolution ICON model initiatives. Long-time integrations are particularly useful while testing
the parameter space finding an equilibrium state of the coupled system, but also for probing
the ideal setting for improving key dynamics. Large ensembles are the standard procedure in
simulations of climate projections, and to assess reliability in the ensemble forecasts and
eventually to improve the signal-to-noise ratio by adequate methodologies (Dobrynin et al.,

2018; Smith et al., 2019). Further, large ensembles are essential for the assessment of the

5
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transient climate variability (Maher et al., 2019). The ICON XPP configurations presented here

are designed to run several simulated decades per day and are suitable for the aforementioned

tasks.

2. Model Description, Configurations, and Tuning

2.1 Model Components

ICON XPP ecombines-integrates Earth System components that have been established for
operational weather forecasting and climate application, and here are plugged together for the

first time. In the following, the components that form ICON XPP are described in more detail.
ICON NWP

The atmospheric component of ICON XPP is based on the operational configuration of ICON
NWP (Zangl et al., 2015). In ICON NWP, the basic non-hydrostatic model equation system is
solved on atriangular grid. The vertical grid of ICON is a terrain-following hybrid sigma height
grid (Giorgetta et al., 2018; Leuenberger et al., 2010), with a model top at 75 km. The
centerpiece is the dynamical core, in which the model equations are integrated forward in time,
followed by the numerical advection schemes and physical parameterizations (for details see
Prill et al., 2024). ICON NWP uses the physics packages from the operational regional model
COSMO (Doms and Schattler, 2004), and from the ECMWF Integrated Forecast System
(Zéngl et al., 2015). For radiation, the ecRad scheme is used in ICON NWP (Hogan and Bozzo,
2018). An overview of the physical parameterizations is given in Mdller et al. (2025, Table 1).

ICON Land
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ICON XPP uses the land surface component of ICON (ICON Land). ICON Land uses-includes
the JSBACH land-surface model developed for predecessors of ICON XPP such as MPI-ESM
(Reick et al., 2021; Reick et al., 2013), and other land-surface model such as TERRA (from

the Latin for “earth™), which is implemented into the operational configuration of ICON NWP.
JSBACH version 3 (JSBACHv3) operated as a part of MPI-ESM in both, concentration and
emission-driven modes, and demonstrated a good performance of terrestrial carbon cycle in
CMIP6 (Hajima et al., 2024). JSBACH version 4 (JSBACHv4) includes climate-relevant

physical and biogeochemical processes, such as a full carbon cycle, dynamic vegetation, and

land-cover changes for the land use. In addition, the soil physics in JSBACHv4 are improved
in permafrost regions compared to JSBACHv3. The land--surface model can be used in stand-

alone mode, as well as in the fully coupled Earth System models (Jungclaus et al., 2022).

For ICON XPP, JSBACH is newly implemented together with its parameterization of the
vertical diffusion as an implicitly coupled module of ICON NWP. As TERRA, JSBACH
accounts for subgrid heterogeneity. However, in contrast to TERRA in which tiles are treated
externally, JSBACH uses them internally to account for the different land--surface types and
plant functional types (PFTs) as a basis for biogeochemical processes. -Therefore, a new
interface layer is developed between JSBACH, its vertical diffusion scheme, and the rest of the
NWP parameterizations. This new interface layer results in the adjustment of code for other
sub-components. For example, parts of the sea-ice thermodynamics scheme are re-
implemented, and the coupling to the ocean is generalized.

Hydrological Discharge Model

A hydrological discharge (HD) model is used in ICON XPP to route water from the land model
JSBACH to the river mouths feeding into the ocean model ICON O. In ICON XPP, we can
choose between two HD model versions. One is the internal HD model integrated within
JSBACH. This HD model operates at the same horizontal resolution and time step as JSBACH,
maintaining coherence between land and hydrological processes. Automatic generation of HD
parameters for ICON grids based on high resolution digital elevation data (Riddick, 2021;
Riddick et al., 2018) allows HD application on any spatial resolution using none or minimal

manual adjustments. This model is used for ICON XPP in the fast-lower-resolved configuration

(see section 2.2).
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For-the-higher-resolvedICONXPP—configuration,—aA new version of the HD model with
relatively high resolution of 0.5° is used-externally connected to JSBACH (Hagemann et al.,

2023)._And this is only used in high-resolution ICON XPP configurations. The HD model- is
a separate model component coupled via YAC (Yet Another Coupler) (Hanke et al., 2016) with
both, the land-surface and the ocean model components. In this setup, the 8-5-degree-HD model

is coupled to the atmosphere and the ocean with daily intervals. The land-surface scheme from
of ICON NWP handles surface and subsurface runoff, which are interpolated by YAC onto the
HD latitude-longitude grid. This approach offers the advantage of being independent of the

land-surface model, allowing HD to work with other lané-models such as TERRA. It will also

easily allow future applications using the HD model at its higher resolution of 1/12°
(Hagemann et al., 2020), and taking advantage of ongoing developments in riverine transport
of biogeochemical tracers (e.g., Elizalde et al., 2025).

ICON O/Sea-Ice

The ocean component of ICON solves the hydrostatic Boussinesq equations of large-scale
ocean dynamics with a free surface (Korn, 2017; Korn et al., 2022). ICON O uses the same
horizontal grid and data structures as the atmosphere. For the vertical grid, the actual model
uses depth-based coordinates such as z or z*-coordinates as the default option (Korn et al.,
2022). For ICON XPP, we use the uniformly vertical-distributed grid with the z*-coordinate.
Further, a newly developed sea-ice dynamics is applied thatwhich operates on the native ICON
grid (Mehlmann et al., 2021; Mehlmann and Korn, 2021). The sea-ice dynamic is based on
FESIM (Danilov et al., 2015)(DaniovS—et.al—2015). Sea-ice thermodynamic is calculated

in the atmospheric part and uses the zero-layer model (Semtner Jr., 1976; Mironov et al., 2012).

Melting potential and conductive heat flux are passed to the ocean component by use of the

YAC coupler.

HAMOCC

The ocean biogeochemistry component in ICON XPP is represented by the HAMburg Ocean
Carbon Cycle model, HAMOCCS6 (llyina et al., 2013; Paulsen et al., 2017), featuring biology
and inorganic carbon chemistry processes in the water column and sediment. The growth of
bulk phytoplankton is limited by temperature and light as well as by the availability of nutrients

including nitrate, phosphate, and iron linked by constant Redfield ratios across organic
8
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compartments. The growth of nitrogen-fixing cyanobacteria is parameterized analogously to
that of the bulk phytoplankton, albeit at a lower rate and is extended by representing their
buoyancy. Detritus is explicitly separated into opal- and calcium carbonate-producing
phytoplankton fractions. Zooplankton growth function is limited by the grazed phytoplankton,
mortality, and metabolic activity. The dissolved organic matter pool is shaped by the exudation
of phytoplankton, cyanobacteria, and zooplankton. All the biogeochemical tracers are
transported by the flow field. HAMOCC has been extensively evaluated as part of MPI-ESM
(e.g., Li et al., 2023; Mauritsen et al., 2019; Mdller et al., 2018; Nielsen et al., 2024) and
implemented in previous configurations of the ICON-based models (Hohenegger et al., 2023;
Jungclaus et al., 2022). Compared to its predecessors, HAMOCC in ICON XPP incorporates a
prognostic calculation for marine aggregate sinking speeds (Maerz et al., 2020), providing an
improved distribution of particulate organic carbon fluxes critical to the ocean biological pump.

2.2 Configuration

We use the latest ICON model version (ICON release 2024.07). Two configurations have been
developed, differing mainly in spatial resolutions. ©ne—The first is a high-resolution

configuration, intended for operational climate prediction and projections.; It utilizes the
atmospheric model ICON NWP with approximately 80 km horizontal grid spacing (r2b5) and
130 vertical levels (L130) (Niemeier et al., 2023). The vertical spacing of the layers increases
up to a value of 500 m at an altitude of about 14 km and stays constant (500 m) until an altitude
of 35 km. Above this height the vertical distance increases until the model top at 75 km altitude
(Fig. 1). This configuration uses the externally calculated HD model as described above. The
ocean model operates at a resolution of about 20 km (r2b7) with 72 vertical levels (L72). The
integration time steps for ICON NWP and ICON O are 450 seconds and 20 minutes,
respectively. The coupling interval between the atmosphere and ocean is 60 minutes. Due to
its high resolution and frequent computation intervals, this configuration is computationally
expensive, but a throughput of ~45 simulated years per day on 100 nodes ensures long
integrations. The experiments are run on the CPU-partition of athe Levante High-Performance
Computing system at the Deutsche Klimarechenzentrum (DKRZ), with each node consisting
of 2 CPUs and 64128 cores_in total. This configuration is named “80/20” hereafter to reflect

the grid-scale of the atmospheric and ocean components.
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The second configuration is with -addition-a-fast-configuration-with coarser resolutions and

was developed to allow more efficient simulations. In this configuration ICON NWP is run
with a 160 km grid (r2b4) with-and 90 vertical levels (L90) and model top at 75 km, while
ICON O operates on a 40 km grid (r2b6). The HD model is implemented internally to JSBACH.

Additionally, the ocean model’s time step is increased to 30 minutes as-compared to the 80/20

configuration-te-30-minutes. The coupling interval between the atmosphere and ocean is 30
minutes—fer—this—cenfiguration. This faster—configuration is designed for running large
ensembles and long integrations and has a throughput of ~85 simulated years per day on 40

computing nodes. This configuration is referred to as “160/40” hereafter.

10
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Figure 1: Full-level height (km) and vertical grid spacing (m) of the vertical grids of ICON XPP 160/40 and 80/20.
For-each-grid-tTwo profiles are shown_for each grid resolution, one starts at sea level {triangle-dewn}-and one
starts at a height of ~ 5 km representing the grid over mountains-(triangle-tp).

2.3 Tuning

The model configurations are tuned towards pre-industrial climate targets. The targets mainly
consider-the-thermedynamic—state—of-the—atmosphere—depicted—by the top-of-atmosphere
(TOA) radiation balance and global-mean temperature at 2 metremeters (GMT)-, and the
ocean-eryesphere—by-the strength of the Atlantic meridional overturning circulation (AMOC)

and sea-ice properties. The thermodynamic state of the atmosphere is mainly controlled by

parameters in the convection, microphysics and cloud cover parameterization schemes. The
ocean state is controlled by the horizontal and vertical diffusion, eddy parameterizations, and

sea-ice parameters. A series of tailored pre-industrial control experiments are employed to find

the optimal parameterization values. First, a wider range of convection, microphysics and cloud

cover parameters are examined to estimate their impacts on the TOA radiation balance and

12
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GMT. Then, with the resulting subset of atmospheric and oceanic parameters the ocean-

circulation and sea-ice distributions are adjusted. With the optimized parameters a hew spin-

up is started. The values of the optimized parameter values are shown in {Table 1}.

The spin-up is started from the Polar Science Center hydrographic climatology (PHC3.0)
(Steele et al., 2001). Fhe-top-ef-the-atmesphere{TOA) radiation values are well-balanced with
values of 0.2 W /m?2 (-0.1 W /m?*2) for the 160/40 (80/20) configuration. A glebal-mean-near-
surface-temperature (GMT) of ~13.8 °C is achieved for both configurations. Figures 2a and 2b
show the evolution of the radiation and GMT. The figures illustrate that the atmosphere reaches
quasi-equilibrium after ~200 years, despite small trends towards lower temperatures remaining
at the end of the simulations. The ocean state is also well-balanced as indicated by the AMOC
@at 26° N and 1000 m depth (Fig. 2c), but requires ~500-600 years to reach equilibrium. In
160/40 a small negative trend ofremainsfor the AMOC remains at the end of the simulation.

The tuning of the ocean biogeochemistry is carried out after the- spin-up of the coupled
configuration. The target is to limit drifts in the biogeochemical tracer fields and fluxes and to
drive the model closer to observations. HAMOCC tracers are initialized from a tuned stand-
alone 40 km ocean setup, which was spun up for ~1000 years in a pre-industrial climate. The
HAMOCC tuning parameters were changed accounting for the ocean circulation in the coupled
model. The appropriate weathering rates were updated during the simulation, -to compensate

for the loss of carbon and nutrients from the water column to the sediment;.

Table 1: Parameter values used for tuning the ICON XPP configuration towards the pre-industrial climate targets.

The table only shows parameters which values differ with respect to the ICON NWP configurations (160/40 and
80/20) and ICON O default values. The “Default” column shows values for ICON NWP and ICON O that are in

the ICON release (2024.07) and the namelist document therein. The units are given in squared bracket and

dimensionless otherwise.

Parameter Values Process 160km/40km 80km/20km Default
ICON NWP
Entrainment rate [m'l] Convection 0.0021 0.0028 0.00195
(tune_entrorg)
Cloud cover parameter Cloud microphysics 3.35 3.6 25

(tune_box_lig_asy)

13



Turbulent diffusion Vertical diffusion 1.0 1.0 4.0
(f_theta_decay)

ICON O
TKE mixing (c_k) Vertical diffusion 0.05 0.1 0.1
Minimum interior mixing Vertical diffusion 1.0e-5 1.0e-6 1.0e-6
[m?s 2] (tke_min)
Biharmonic viscosity Horizontal velocity 3.5e12 0.027 /
parameter [m4s'1] diffusion (no scaling) (scaling with
edge length)
Gent&McWilliams [m%s1]  EddY i 400 400 ( 100? 100
parameterization corresp. to
(tracer_GM_kappa) km grid-length)
Redi [mzs'l] Eddy o 400 400 1000
(tracer_isoneutral) parameterization (corresp. to 400
- km grid-length)
Sea-ice parameter Sea-ice melting 0.25 0.25 0.5
(leadclosel)
Sea-ice parameter Sea- ice freezing 0.666 0.0 0.0 (Hibler)

(leadclose?)

326
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Figure 2: Climate equilibrium in CTRL indicated by the evolution of (a) TOA net radiation (W m=?), (b) GMT
(°C), (c) Atlantic meridional overturning circulation (Sv), and (d) the northern hemisphere sea-ice volume (km?%)-

Units-are-in{a)} W-m?-(B)-°C{e)-Svand-{d)-km?®. In each figure, 80/20 is shown in red and 160/40 is shown in

blue. The vertical lines in (c) indicate the initialization dates for HIST. In (d) solid/dashed lines represent northern

hemispheric winter/summer.

3. Mean Climate, Trends and Climate Sensitivity

3.1 DECK Experiments

We perform DECK experiments, which have become a common tool for coordinating a
comparable design of global climate model simulations (Eyring et al., 2016). Pre-industrial
control simulations (CTRL) for each configuration are performed based on the spin-up

experiments. Fer-each-configuration-a-The spin-up and CTRL experiments consist of a total
length of 1000 years arepursued. Further, ensembles of experiments with historical forcing

from CMIP6 (HIST) are used to analyzse the present-day evolution of climate. The initial
17
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conditions for the historical experiments are based on the coupled control climate with a 50-
year lag for subsequent members. Finally, the climate sensitivity is estimated by a 1 % CO
increase until doubling (1%CO3) and an abrupt 4 x CO (4xCO2) experiments. Table 2 gives

an overview of an-the experiments-everview.

Table 2: List of experiments, short description and number of simulated years of DECK experiments for both

configurations. For HIST three ensemble members are performed for the period 1850-2014.

Experiment List Description Number of simulated
years
Spin-up and pre-industrial control  Started from Levitus and external forcing 1000
simulation (CTRL) only
Historical simulation (HIST) Started from CTRL with transient external 1850-2014
forcing
1 % increase of CO2 (1%CO») Atmospheric CO, concentration prescribed 150

to increase at 1 % yr”’

4x abrupt CO2 (4xCO2) Atmospheric CO, concentration abruptly 150
guadrupled and then held constant
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3.2 Pre-industrial Control Climate

The CTRL experiments reveal bias distributions well-known in coupled climate models. Near-
surface temperatures in both configurations exhibit warm biases in the upwelling region at the
coastal western boundaries (Fig. 3). A cold tongue is visible in both configurations in the
tropical Pacific, and a further-cold bias hot spot is found along the North Atlantic Current. The
Southern Ocean marks an area with a very pronounced warm bias up to 5 °C (3 °C) in 160/40
(80/20), which appears relatively large compared to the CMIP6 multi-model mean (2-2.5K)
(Luo et al., 2023) and the previous model generations (Mdller et al., 2018, Jungclaus et al.,
2022). Preliminary analysis of the sources of these biases petntpoints towards a too deep ocean
mixed layer in the Weddell Sea associated with a strong vertical mixing (not shown). In
addition, the atmosphere reveals a strong short-wave net radiation bias over the Southern

Ocean, which is related to the appearance-presence of tee-few clouds. The cloud bias is also

found in an AMIP-typeatmosphere-only simulation and reveals that in this area the clouds

comprise too little cloud water and too much cloud ice. Fe-disentangle-the-atmesphericand

oceanic effects on the Southern Ocean bias is still under investigation. The global standard
deviation of the global errors is ~2.4 °C for 160/40 and ~1.7 °C for 80/20, which indicates a

substantial effect by the resolution increase. Such a resolution effect on the mean error is also
found in the MPI-ESM (Mdiller et al., 2018).

The sea-ice simulations reveal reasonable distributions in the northern hemisphere peak-winter
season with 2-3 m sea-ice thickness in the central Arctic and 0.1-0.2 m within the Labrador
Sea (Fig. 4, shown only for 80/20, but it is similar in 160/40). During the minimum-summer
seasons in the northern and southern hemisphere both configurations show only little sea-ice
thickness. The sea-ice volume of 80/20 in the peak-northern hemisphere winter seasons is about

30 x 10% kmi3-in-the-nerthern-hemisphere (Fig. 2d), which is comparable with the PIOMAS
arctic sea-ice volume reanalysis (30-35 x 10% km® April value during 1980s) (Zhang and

Rothrock, 2003), and 13 x 10° km?® in the southern hemisphere winter season (not shown).
During hemispheric summer seasons, the sea-ice volume drops to 5 x 10® km? in the Arctic
(PIOMAS ~15 x 10% km? September values during the 1980s) (Schweiger et al., 2011) and 0.5
x 10% km? in the Antarctic region. The 160/40 configuration generally produces much more sea

ice compared to 80/20 (Fig. 2d red curves), which can also be inferred from the surface
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temperatures in high latitudes (Fig. 3a). In fact, since the PIOMAS reanalysis depicts the

current state of the climate, the preindustrial sea-ice thickness is expected to be larger.

The state of the ocean circulation of the two configurations is described by the overturning
circulations in the Atlantic and Indo-Pacific regions (Fig. 5) and transport through various

ocean passages that are important for various climate sub-systems (Table 3). For the last 500

years of simulation, Fthe overturning circulations in the Atlantic at 26° N and 1000 m depth
shows_values between—peak—maghitudes—of ~15-20-14-17 Sv for 80/20 and 16-19 Sv for

160/40at-26°-N-at-1000-m-depth, which is comparable to the RAPID array (~17 +/-4 Sv)
(Frajka-Williams et al., 2019). The two configurations show a mono-cell structure with a

northward transport of water masses in upper and mid-levels and southward transport in deeper
levels. In the Pacific, the surface values indicate the subtropical cells at the northern and
southern hemisphere. At deeper levels a basin-wide mid-depth outflow occurs in both

configurations.

The transports through the passages in both configurations are mostly simulated within the
observational uncertainty found in the literature (see tTable 3 for values and references). The
transport through Bering Strait -is a key element of the Arctic freshwater budget, and the values
are close to the estimates by Woodgate et al. (2006) and Woodgate et al. (2012). The exchange
of water masses between the Atlantic Ocean and the Nordic Seas plays a vital role in driving
the global overturning circulation. The simulated transport rates are consistent with the
circulation pattern described by Hansen et al. (2008). Similarly, the Indonesian Throughflow
is a key component of the warm-water branch of the global conveyor belt. Although the
simulated transport in this region is slightly underestimated compared to the values reported
by Gordon et al. (2010), it still aligns reasonably well with observational estimates. These
transports are similar to what is found in MPI-ESM (cf Table 5 in Miller et al., 2018) and
ICON-ESM (cf Table 4 in Jungclaus et al., 2022). The Drake Passage transport is notably
underestimated in 80/20, both when compared to the traditional estimate of around 135 Sv
(Cunningham et al., 2003; Nowlin Jr. and Klinck, 1986) and to the more recent compilation by
Donohue et al. (2016).
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Figure 4: SAverage sea-ice thickness for 80/20 for (a, b) the northern and (c, d) southern hemisphere for (a, c)
winter (December, January, February {- DJF) and (b, d) summer (June, July, August-{- JJA)-for-806/20. The same
30-year timeshiee-time window of CTRL as in fFigure 3 is used. Units are in [m].

(a) 160/40 km - Atlantic MOC - (b) 80/20 km - Atlantic MOC

Depth [km]
w
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Figure 5: The overturning circulation in the Atlantic (a,b) and Indio-Pacific (c,d) for 160/40 (a,c) and 80/20 (b,d).
For both, the same 30-year timeslice-time window of CTRL as Figure 3 is used. Units are in Sverdrup [10° kg s

1.

The state of the ocean circulation in the North Atlantic is closely related to the deep-water

mixing in the Labrador Sea and Irminger Sea, and at higher latitudes in the Norwegian and

Greenland Seas. The deep convection of the Labrador Sea and Irminger Sea can drive the deep-

water formation, and is suggested to impact on the AMOC. The mixing in the Norwegian and

Greenland Seas contribute to the Arctic overflows and Atlantic bottom water. The mixed-layer

depth in March is used here as a proxy for deep-water mixing (Fig. 6). It shows that the 80/20

configuration provides deep mixed layers in the Labrador Sea with maximum values of up to

2500 m. In the Irminger Sea, the mixed-layer depth reaches values of up to 1000 m. The

maximum of the deep mixed layers in the 160/40 configuration is shifted to the Irminger Sea

and reaches values of about 2500 m. The shift of the maximum values of the mixed-layer depth

is closely related to the production of sea ice, which is larger in this configuration compared to

the 80/20 configuration (see Fig 1d). The values of mixed-layer depths are generally higher

compared to recent climate estimates for which maximum values of ~1000 m in the Labrador

Sea and Irminger Sea are suggested (e.g., Konigk et al., 2021). Finally, the mixed-layer depths

in the Norwegian Sea are similar in both configurations and reach values of up to 2000 m.
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Figure 6: The mixed-layer depth in March of CTRL for (a) 160/40 and (b) 80/20. The MLD criterion (“mlotst”

model diagnostic) is the difference threshold of 0.03 kg m= in potential density increase from the surface ocean.

Units are in meters [m].

Fhe-eOcean biogeochemicalstry parameters for the 80/20 configuration areis shown in Fig.
67.; Average depicting-the-phosphate concentrations, total alkalinity, and dissolved inorganic

carbon (DIC) at the surface are compared to the Global Ocean Data Analysis Project
(GLODAP) version 2 database (Olsen et al., 2016). The spatial patterns of biogeochemistry
fields are captured, with bias patterns similar to other Earth System models and previous ICON-
ESM simulations (Jungclaus et al., 2022). Surface phosphate concentration is underestimated
in the eastern equatorial Pacific and Southern Ocean, and overestimated along the southern
Chilean coast. The bias in surface alkalinity and DIC is relatively small in most regions, with
higher biases observed in coastal regions due to under-representation of coastal carbon
dynamics (Mathis et al., 2022). The global pattern of surface alkalinity bias follows the bias in
sea-surface salinity, with negative salinity bias leading to negative alkalinity bias. Since the
model is forced with constant pre-industrial atmosphere COg, the surface DIC in the model
adjusts to the surface alkalinity. Therefore, the bias in surface alkalinity is compensated by the
bias in surface DIC, maintaining a correct ocean pCO- field. The simulated global flux of CO>
into the ocean is approximately 0.1 PgC /year, close to the equilibrium levels at pre-industrial

conditions.
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Figure 67: Simulated phosphate concentrations (upper), surface total alkalinity (middle) and DIC at-the-surface
(lower) for 80/20 climatology (left) and corresponding difference to reference data from the Global Ocean Data
Analysis Project version 2 database (right). The GLODAP phosphate and alkalinity values are climatological
means and the DIC is from pre-industrial estimates. The analysis is based on a 30-year time window of the CTRL

experiment.

The performance of the land carbon model is illustrated by a—plet—efthe gross primary

productivity (GPP) for CTRL simulations in the 160/40 and 80/20 configurations (Fig. 78).
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The spatial GPP patterns in both configurations look very similar, with tropical productivity
being much higher than extra-tropical productivity;—as—expected. The patterns reflect the
simulated biases in tropical precipitation (e.g., over eastern and central South America), but are
otherwise very similar to the pattern simulated with MPI-ESM in CMIP6. The total annual
productivity fluxes are 114.5 + 1.8 PgCyr* and 112.9 + 1.6 PgCyr* in the 160/40 configuration
and the 80/20 configuration, respectively. Both model configurations are well within the
CMIP6 model range for the pre-industrial period and close to the AR6-estimate-ef-pre-industrial
GPP estimate of-in 113 PgCyr? (Canadell et al., 2021).

CTRL 160/40 CTRL 80/20

GPP [kg m-2 yr-1]

Figure 87: 30-years mean of yearly accumulated gross primary productivity (GPP) for CTRL-ef+tCON-XPP in the
(a) 160/40 and (b) 80/20 configurations.

Table 3: Simulated and observed net volume transports across sections (positive means northward).

Units are in [Sv].

Ocean Passage 160/40 80/20 Observations

Bering Strait
(Woodgate et al., 2006; 1.0 1.1 0.7-1.1

Woodgate et al., 2012)

Fram Strait
(Fieg et al., 2010) -1.5 -2.0 -1.75+5.01
Danmark Strait
(Hansen et al., 2008; -5.0 -5.2 -4.8;
Jochumsen et al., 2012) -34+14

Iceland-Scotland

(Hansen et al., 2008; Rossby 49 5.1 4.8;
and Flagg, 2012) 4.6 +0.25
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Indonesian Throughflow

(Gordon et al., 2010) 12.4 12 11.6-15.7
Drake Passage
(Donohue et al., 2016; 152.1 111 134.0 + 14.0;
Nowlin Jr. and Klinck, 1986) 173.3+£10.7

3.3 Transient Climate - 1850 to present

To recreate the climate of the historical period from 1850 to present, we employed external
forcings from CMIPG6, as the CMIP7 input data were not yet available at the time of these
experiments. Specifically, we included yearly anthropogenic land cover changes, volcanic
aerosol, and anthropogenic aerosol, which were added to the baseline aerosol concentrations
of the pre-industrial period. Additionally, monthly ozone data and annual greenhouse gas

concentrations were incorporated to reflect the evolving atmospheric composition over time.

All experiments were conducted using the tuned-namehist-parameters derived from the CTRL
experiments (see Section 3.2). For each of the configurations, a small ensemble of three
members was generated. Each ensemble member was initialized from the corresponding CTRL
experiment. The members differ only in their starting points, which were selected from various
time points with the distance of 50 (160/80) and 25 years (80/20) apart in the CTRL period.

Figure 98 shows the temporal evolution of GMT and global mean total precipitation. The
development of GMT is close to observations from the 1960s onwards, and in the 2010s is
about ~1.2 °C above 1850-1900. The increase is in the range of observed warming of 0.9-1.2
°C (Gulev et al., 2021). The global mean total precipitation shows a substantial positive bias in
both configurations compared to GPCP and ERAD5, and is on the upper end of all CMIP6
models. The global distribution of the bias reveals a strong double-ITCZ in the tropical Pacific
with values up to 6 mm/day within the southern hemispheric branch, and particularly high

values in the tropical Atlantic. Over the tropical continental regions strong dry bias occurs,

such as in the Amazon region and over Indonesia (Fig. 9d and f). The precipitation bias in the

tropical Pacific imposes a limitation for the global climate because it covers a large region of

the globe in a rain-dominated area. Although the causes of the double-ITCZ are currently

unclear, some models have modified the clouds microphysics, vertical entrainment rates,

convection schemes or the atmospheric energy balance to reduce this feature (e.g., Ma et al.,

2023; Renand Zhou, 2024); however, no generalized modification can be applied to all models.
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In addition, we show the vertical temperature bias compared to ERAS5 foref the two

configurations (Fig. 109). The bias structures are characterized by cold biases of the tropical
atmosphere above the boundary layers, cold biases at tropopause levels, and warm biases at the
surface in the high latitudes. The tropical cold bias reaches up to -1 °C in the 160/40
configuration accompanied with upper-level positive biases in the sub-tropics. The cold bias in
80/20 is increased up to -2 °C and reaches the sub-tropical regions. The positive surface bias is
relatively large over the Southern Hemisphere with values up to 5 °C in both configurations

and are in line with surface temperature distribution in Figure 3.
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Figure 98 Evolution of (a) the global mean near-surface temperature (Kelvin) and (b) the global mean total
precipitation (mm day™) from the three historical ensembles HIST for the 160/40 (orange) and the 80/20
configuration (blue). The evolutions are compared with CMIP6 models (grey) and respective
observations/reanalyzses (black). Geographical distribution of absolute values of (c, €) total precipitation and (d,
f) precipitation bias with respect to ERA5 for one member of the (c, d) 160/40 and (e, f)- 80/20 configuration,

averaged for the period 1979-2008 both in (mm/day). Details on reference data sets are given in Table 4.
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Figure 109: (a) Annual mean zonal mean temperature in the troposphere for the period 1979-2008 for ERA5 and
biases for HIST for one member of the (b) 160/40 and (c) 80/20 resolutions. Units are [°C].

A summary of the model performance is given in Fig. 11, which compares several key

dynamical and thermodynamical variables with the CMIP6 model ensemble. Smaller root

mean squared errors (RMSE) are found for many dynamical and thermodynamical quantities

by increasing the resolution from the 160/40 to the 80/20 configuration. A similar impact of

resolution is found for previous model versions, such as for MPI-ESM (Miller et al., 2018).

Exceptions to the reduction of RMSE with resolution are variables describing the cloud

properties and liquid water path, which underlines a systematic bias in the configurations with

respect to the long-term mean hydrosphere. The 80/20 ensemble exhibits a relatively strong

performance among the CMIP6 models for dynamical variables, such as zonal wind and

temperatures in the mid- and upper troposphere.
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Figure 110: The performance matrix for the 160/40 and 80/20 configurationsresetutiens-(rightmost columns) and
CMIP6 models (left columns) for key dynamical and thermodynamical variables. Shown are normalized relative
space—time root mean square errors (RMSES) of the climatological seasonal cycle with respect to reference
observational data sets. The normalization is done relative to the ensemble median of all models, with positive
values (red) denoting a higher RMSE and thus worse performance, while negative values (blue) denote a lower
RMSE than the ensemble median and thus a better performance. The considered time period is 2000-2014 for the
models, for the observational reference data the time period had to be adjusted to the available time frame (see
Table 4 for details). Boxes with a diagonal split indicate that two different reference data sets are used, with the
first mentioned reference in the top left corner. The variables shown are the absorbed solar radiation (asr;
reference: CERES-EBAF), ice water path (clivi; references: ESACCI-CLOUD, MODIS), total cloud cover (clt;
references: ESACCI-CLOUD, PATMOS-x), condensed water path (clwvi; references: MODIS, ESACCI-
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Table 4: Observational reference data sets used in Fig. 117.

CLOUD), specific humidity at 400hPa (hus400; reference: ERADS), liquid water path (Iwp; references: ESACCI-
CLOUD, MODIS), total precipitation (pr; references: GPCP-SG, ERAS), water vapor path (prw; reference:
ESACCI-WATERVAPOUR), TOA outgoing longwave radiation (rlut; reference: CERES-EBAF), TOA outgoing
shortwave radiation (rsut; reference: CERES-EBAF), temperature at 200 hPa (ta200; reference: ERA5) and 850
hPa (ta850; reference: ERAb), surface temperature (tas; references: HadCRUT5, ERA5), zonal wind stress (tauu;
reference: ERAB), and zonal wind at 200 hPa (ua200; reference: ERA5) and 850hPa (ua850; reference: ERAD).

Reference data sets Type Variables Time range  Reference
used in
Figure 7
Absorbed solar radiation (asr)
CERES-EBAF Ed4.2  Satellite TOA outgoing longwave radiation (rlut) ~ 2001-2014 Loeb et al.
TOA outgoing shortwave radiation (rsut) (2018)
Specific humidity (hus)
ERA5 Reanalysis Total precipitation (pr) 2000-2014 Hersbach et al.
Air temperature (ta) (2020)
Near-surface air temperature (tas)
Zonal wind stress (tauu)
Zonal wind (ua)
Ice water path (clivi)
ESACCI-CLOUD Satellite Condensed water path (clwvi) 2000-2014  Stengel et al.
Total cloud cover (clt) (2020)
Liquid water path (lwp)
ESACCI- Satellite Water vapor path (prw) 2003-2014 Schroder et al.
WATERVAPOUR (2023)
GPCP-SG v2.3 Satellite - Precipitation (pr) 2000-2014  Adler et al.
gauge (2017)
HadCRUT5 v5.0.1.0 Ground Near-surface air temperature (tas) 2000-2014  Morice et al.
(analysis) (2021)
MERRA2 Reanalysis Near-surface air temperature (tas) ~ Not used Gelaro et al.
(2017)
Ice water path (clivi)
MODIS Satellite Condensed water path (clwvi) 2003-2014 Platnick et al.
Liquid water path (Iwp) (2003)
PATMOS-x Satellite Total cloud cover (clt) 2000-2014  Heidinger et
al. (2014)
578
579 3.4 Climate Sensitivity
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Climate sensitivity describes the response of the climate system to radiative forcing and is a
critical parameter that determines the key-indicator-for-future evolution of climate. Two metrics

are commonly used: the transient climate response (TCR) and the equilibrium climate
sensitivity (ECS).

TCR is determined from the 1%CO> experiment as the global mean surface air temperature
increases (relative to the CTRL experiment) around the time of doubling CO2. Following
Meehl et al. (2020) and Jungclaus et al. (2022), a 20-year average is taken around the doubling
of COz in order to reduce the potential influence of internal variability. The TCR is 1.7 K for
the 160/40 configuration and 1.6 K for the 80/20 configuration (Fig. 121a and b). The
assessment of climate sensitivity in CMIP6 models shows a best estimate of TCR=1.8 K with

a very likely range of 1.2 to 2.4 K.

ECS is approximated with the so-called “effective climate sensitivity” (Gregory, 2004) using
an idealized experiment where the atmospheric CO2 concentration is abruptly quadrupled
(4xCO0O»). For this, a linear regression is applied between the global mean surface air
temperature change (relative to the CTRL experiment) and the net downward radiative flux at
the top-of-atmosphere over 150 years of the simulation (see Fig. 124c and d). The extrapolation
of the regression line to zero net radiation gives the temperature response with quadruple
increase in CO», which is then divided by two to get an estimate for the ECS. This results in an
ECS of 2.47 K for boththe 160/40 configurations-and-2.32-K-for-the-80/20-configuration. The
assessment of climate sensitivity in CMIP6 models shows a best estimate of ECS=3 K with a
very likely range of 2 to 5 K (Forster et al., 2021). The climate sensitivity of ICON XPP falls

within these CMIP6 ranges, tending towards the lower end of the spectrum.
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Figure 124: Estimating climate sensitivity. The Transient Climate Response (TCR) is estimated from the global
mean surface air temperature anomaly at the time of CO, doubling (at year 70) in the 1%CO, experiment for (a)
160/40 and (b) 80/20. The Equilibrium Climate Sensitivity (ECS) as diagnosed from the scatterplot between TOA
net radiance and global mean surface temperature anomaly, including a linear regression for (c) 160/40 and (d)
80/20. ECS is estimated from 150 years of the 4xCO, experiments (black line), but since the assumption of linear
feedback is only an approximation, the regression lines and the estimated ECS values for the first 20 years (blue

line) and the last 130 years (orange line) are shown for completeness.

4. Key dynamical processes in the tropics, extra-tropics and stratosphere

ICON XPP is intended to be the successor of MPI-ESM for climate prediction research and
operational forecasts. A principal foundation of climate predictions is based on the reliable
description of the prineiplemajor modes of climate variability and their associated background
mean state. Examples of such modes of variability are the Madden-Julian Oscillation (MJO),
ENSO, and the Quasi-Biennial Oscillation (QBO) in the tropics, or the NAO and its relation to

the extra-tropical jet position in the extra-tropics. While designing the model configurations,
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we therefore put special emphasis on monitoring certain aspects of the mean climate which are

directly related to the majorprinciple modes.

4.1- Tropics

In contrast to the mid-latitudes, the release of latent heat is the main source of energy in the
tropical atmospheres. This occurs in conjunction with convective cloud systems embedded in
large-scale circulations. The diabatic heating associated with tropical precipitation not only
leads to a localizsed response in the atmospheric circulation, but can also cause a remote

response through the excitation of equatorial waves.
4.1.1 Tropical Waves and Madden-Julian Oscillation

Equatorially trapped waves are a fundamental property of tropical dynamics and appear as
solutions of the shallow water equations which are either symmetric or asymmetric about the
equator. Among others, the observed disturbances in the clouds can be associated with
equatorial trapped waves (Wheeler and Kiladis, 1999). By creating the wavenumber-frequency
spectrum of the outgoing longwave radiation (OLR), modes of tropical variability can be
analyzsed in more detail (Wheeler and Kiladis, 1999). Fhe-We use the OLR as it is generally

assumed that is a reasonable proxy for deep tropical convection and precipitationefOLR

The principal nature of the tropical spectrum is red in both zonal wavenumber and frequency,

with highest power at the lowest frequency and lowest zonal wavenumber. Thus, an estimated
background spectrum is removed prior to the analysis of tropical waves. Mest-efTypically,; the
peaks then follow the dispersion curves of equatorial trapped waves;—which-are-alse—catled
disturbances-are—alse-presentin-the-spectra- Most of the preferred modes of variability are
observed in the symmetric component,-are such as the MJO (eastward zonal wavenumber 1-5,
frequencies of about <= 1/(30 days)), Kelvin waves (eastward zonal wavenumber), Equatorial
Rossby waves (ER, westward zonal wavenumber) and westward inertio-gravity modes (WIG,
westward zonal wavenumber, frequencies < 3 days). In general, the wavenumber-frequency
spectrum has a lower spectral power in the model compared to ERA5 (Fig. 132). However,
except for the WIG, the preferred modes of variability in ICON XPP {Fig-12-b;¢} match with
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the observations {Fig—12a)-quite well-with-an-mprovementin-the-Kelvinwavesforthe-higher

Most of the signals in the antisymmetric component can be associated with Mixed Rossby-
Gravity waves (MRG) and Eastward Inertia Gravity waves (EIG) (Fig. 132d-f). Again, the
modes of variability of the antisymmetric component are found in ICON XPP. ;-and-impreve

representation of the equatorial waves compared to ICON-ESM (Jungclaus et al., 2022).
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Figure 132: Averaged—w\Wavenumber-frequency OLR spectra for the symmetric components (top) and
asymmetric components (bottom) averaged between 15° S and 15° N for (a,d) ERA5, (b,e) 160/40 and (c,f) 80/20.

Solid lines represent the dispersion curves of the odd (top) and even (bottom) meridional mode-numbered

equatorial waves for the three equivalent depths of h = 12, 25, and 50 m [as in Wheeler and Kiladis, 1999]. For

ICON XPP, high frequency output of a 10-year period (2000-2010) of one realization is used for both

configurations.
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4.1.2 El Nifio/Southern Oscillation (ENSO)

The EI Nifio/Southern Oscillation (ENSO) is one of the key processes for climate predictions
on seasonal to annual time scales, and is routinely predicted in numerous operational forecast
systems. However, ENSO is determined by the complex interplay of the mean climate state in
the tropical Pacific, the internal ENSO dynamics (Guilyardi et al., 2020), and also by global
remote influences, for example the Atlantic and Indian Oceans (Cai et al., 2019). In many
forecast systems and their underlying Earth system models, the mean state and trends of the
tropical Pacific - and thus the ENSO dynamics - are only inadequately represented (Guilyardi
et al., 2020). CMIP-like models show long-term mean errors (*cold tongue bias™) and strongly

underestimated ENSO feedbacks. The cold tongue bias refers to the excessive cooling along

the equatorial Pacific, a common systematic error in climate models (Li and Xie, 2014). The

MPI-ESM, for example, clearly has weak Bjerknes feedbacks and atmospheric damping in
conjunction with a strong tropical Pacific cold bias (Bayr et al., 2018). This has an impact on
the simulated development of an ENSO event. A balanced interplay between the mean state
and the ENSO dynamics in the tropics can therefore be assumed as a basic prerequisite for

successful ENSO predictions.

We investigate ENSO during the tuning process with a particular focus not only on isolated
ENSO performance (e.g., amplitude, seasonality-ete), but also consider the ENSO dynamics
(feedbacks) and the ENSO relation to the mean state bias. We apply the ENSO metric package
developed by CLIVAR-(Planten-et-al—2021), which is designed to evaluate the model with
respect to the basic state, ENSO performance and their feedbacks, as well as the ENSO
teleconnections_(Planton et al., 2021). Nine3-4-related A regression of SST anomalies to the
Nino3.4 index for both configurations clearly exhibit an ENSO pattern in the tropical Pacific

for both configurations (Fig. 143). The strongest anomalies are found in the central-to eastern

Pacific similar to the reference. However, Aas in many coupled models, the ENSO activity in

ICON XPP exhibits a stronger westward extension of the SST anomalies than observed
(Capotondi et al., 2020).

Figure 154 gives more details of ENSO for the two configurations. Fig. 154a shows a general
summary of several metrics from the CLIVAR ENSO package and illustrates ENSO-related
mean states, performance, feedbacks and teleconnections in ICON XPP relative to the CMIP6
models. The Mvalues within the box indicate that ENSO in ICON XPP is within 90-%
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confidence intervals of the CMIP6 model ensemble. Positive values that are outside the box
show that the experiments have a significantly weaker performance than the CMIP6 models.
Clearly, for the performance and; feedbacks-and-teleconnection metrics ENSO in ICON XPP
is within the range of the CMIP6 models. The ENSO-related mean state and teleconnection

summary, however, indicates a larger bias compared to the CMIP6 ensemble. A general
improvement is found for all metrics for higher resolution experiments (80/20) compared to
the 160/40 runs.

We further examine ENSO by looking into the individual metrics. The mean SST illustrates
that the model configurations are about 1.5-2 °C colder than the reference, mainly in the
western and central Pacific, associated with the cold-tongue bias (Fig. 154b). The west-east

SST qgradient is about 4 °C and the SST slope is close to what is shown in the TropFlux

reference. In the western Pacific edge (150° E-160° E), the SST gradients are relatively steep

in both configurations. In the eastern Pacific edge (240° E-270° E), the SST gradient reverses

in both configurations. The ENSO-related zonal wind stress substantially improves in the

higher-resolved configuration compared to the 160/40 resolution (Fig 15c). In 80/20 the

magnitudes are much closer to the reference, and the minimum is shifted eastward closer to

what is observed. The-west-east-SST-gradient-is-about-4>C-and-is—close-to-whatis-shewn-in

and-shifted-teo-far-westwared—In addition, we show the zonal mean total precipitation for the
Pacific (Fig. 154d). The distributions clearly reveal a double-1TCZ in both configurations, with

a strong deviation from observations shown in the Southern Pacific. The bias is relatively large
in both configurations with values up to 4-5 mm /day-. The double ITCZ bias is found in many
coupled models, and is linked with their ENSO characteristics, such as the ENSO seasonal
phase-locking stmulation-(Liao et al., 2023).

The ENSO characteristics of the two configurations are shown in Figure 145e-g. The ENSO
amplitude - defined as the standard deviation of SST anomalies - across the tropical-equatorial

Pacific shows weaker values in the eastern part and stronger values in the western part (Fig.

145e) associated with-mean-state-wind-stress-distribution(Fig.—14¢). The amplitude of the
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Nino3.4 index appears a bit weak and is about 2/3 of the observational amplitude. During the
peak season of ENSO the Nino3.4 index is about 0.7 and 0.8 °C in 160/40 and 80/20 compared
to 1.2 °C in TropFflux (Fig. 154f). In addition, the ENSO skewness shows larger (smaller)
values in the western (eastern) Pacific and indicates a western shift of the peak ENSO (Fig.
1549).

Finally, we-show-the ENSO feedbacks are shown in -sinee-they-characterize-the-dynamical

evolution—of-ENSO—(Fig. 154h-j). A positive wind stress-SST relationship explains an
anomalous zonal wind with the SST propagation along the tropical-equatorial Pacific. For

example, during EI Nifio, a stronger wind stress anomaly (weaker trade winds) is associated
with eastward propagation of SST anomalies. This relationship is captured in both
configurations, but with less amplitude and the maximum regression coefficients appear shifted
eastward compared to observations (Fig. 154h). The wind stress is furthermore related to
thermocline depth, meaning that for example during El Nifio there is a shallowing (deepending)
of the thermocline depth in the western (central-to-eastern) Pacific (Fig. 154i, here the
thermocline depth is illustrated by the sea surface height-SSH)}. In both configurations, the
negative wind stress-SSH relationship in the western Pacific is absent, while positive regression
coefficients are found in the central-to-eastern Pacific. In the central-to-eastern Pacific, the
80/20 configuration shows regression coefficients relatively-closer to observation. Finally, the
negative SST-heat flux relationship illustrates the atmospheric damping effect, i.e. in case of
El Nifio, a warm SST anomaly results in a stronger updraft and cloud cover increase which in
turn reduces the net incoming radiation at the surface (Fig. 154j). In ICON XPP, this feedback
is strongly underestimated which reflects a systematic bias in the heat fluxes, in particular in
the central-to-western Pacific. This is a common bias found in many CMIP models, in which
a weak atmospheric heat flux damping compensates the weak Bjerknes feedback (Bayr et al.,
2018). The weak SST-heat flux relationship in ICON XPP is dominated by the shortwave

radiation fluxes (not shown), similar to what is found in other models (Bayr et al., 2018).

In summary, ICON XPP generates an ENSO with typical characteristics and dynamics known

from observations. However,~with-the-current-parameter-setting ICON XPP performs weaker

amplitudes and feedbacks compared to observations with the current parameter setting, but an
stgatficantimprovement is found for 80/20 compared to 160/40. We also find structural biases

similar to the long-standing errors of many coupled models. Here, the overall performance with

respect to the CMIP6 models reveal pronounced biases in both configurations, closely

39



62
63

764
765
766
767
768
769
770
771
772
773
774

775

776
77
778
779
780
781

associated with the precipitation bias. However, in other key diagnostics -— performance and;
feedbacks-and-teleconnections - ENSO in ICON XPP is within the range of the CMIP6 models.

It is worth noting that in some aspects both configurations share similar features. An example
is the precipitation bias which clearly indicates a pronounced double-1TCZ, or the weak ENSO
amplitudes in both configurations. This points towards systematic errors covered in both

configurations. Thus, the much faster and cheaper configuration can be used to more easily

explore the space of hyperparameters to identify potential tuning improvements for the ENSO

representation. Giv

point towards the role of cloud properties and microphysics in modulating the surface radiation
budget that affect and-have-an-effect-on-the atmospheric damping and the SST- wind stress

feedbacks. This work is in progress.
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Figure 143: Regression between the Nino3.4 index and SST anomalies (SSTA) for December for one member of
(a) 160/40, (b) 80/20, and (c) and TropFlux. The Nino3.4 index is defined as the area-averaged SST anomaly over
5° N to 5° S and 170° W to 120° W. Also shown are the differences between (d) 160/40 and TropFlux, and (e)
80/20 and TropFlux. Units are in [°C/°C]. The regression is calculated with the CLIVAR ENSO metric package
(see Planton et al. (2021) for details)._As reference in (c-e) TropFlux is used (Praveen Kumar et al., 2012).

TropFlux consists of daily and monthly fluxes, SST and wind stress for the tropical region for 30° S to 30° N, and
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Figure 154: Description of ENSO. (a) An overall summary of different categories of the ENSO metrics
(climatology, characteristics, feedbacks and teleconnections) for (red) the 160/40 and (blue) 80/20 ensemble
members together with the CMIP6 models. See Planton et al. (2021) for all metrics and their definitions. Further
shown are specific metrics for (b-e) ENSO-related climatology, (e-g) the ENSO characteristics, and (h-j) the
ENSO feedbacks for all ensemble members of (red) the 160/40 and (blue) 80/20 configurations, and (black) an
observational reference. The mean states are illustrated by (b) SST averaged for 5° N to 5° S, (c) the-zonal wind
stress averaged for 5° N te—5to 5° S, and (d) the-precipitation averaged for 150° W to 90° W. The ENSO
characteristics are described by (e) the zonal structure of the standard deviation of the Nino3.4 SST anomalies
(SSTA) averaged for 5° N to 5° S, (f) the standard deviation of SSTA as a function of calendar months, (g) the
skewness of SSTA in the equatorial Pacific averaged for 5° N to 5° S. ENSO is further analyzsed by the Bjerknes

feedbacks, here shown by (h) the regression of zonal wind-stress anomalies (meridional 5° S to 5° N average)
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onto SSTA in the eastern equatorial Pacific (Nifio3 region averaged), and (i) the regression of sea-surface height
(SSH) anomalies (meridional 5° S to 5° N average) on to wind-stress anomalies (Nifio3 region averaged). The
atmospheric damping is illustrated by (j) the regression_of the total atmospheric surface heat flux anomalies on
SSTA, both 5° N to 5° S averaged. The plots are calculated based on the CLIVAR ENSO metric package (Planton
et al., 2021). As references this package uses GPCPv2.3 for precipitation, AVISO for SSH, and TropFflux

otherwise (Praveen Kumar et al., 2012).

4.2 Extra-tropics - Zonal mean zonal wind and jets

The extra-tropical jets provide a substantial guideline for synoptic-scale disturbances. Among
others, the extra-tropical storm paths are aligned to the position and magnitude of the seasonally
and yearly varying jet positions and impact weather and climate further downstream. In
addition, the time-averaged tropospheric jets act as a wave-guide for Rossby-like traveling
waves propagating from the tropical regions to the extra-topics, and thereby have a control on
the mid-Ilatitude dynamics (Branstator, 2002). In the extra-tropics, the zonal and meridional jet

variation mark—a—fundamental-propertyare closely linked toef the major modes of climate
variability, i.e. the NAO (Woollings et al., 2015), and its predictability (i.e., Strommen et al.,

2023). The NAO constitutes a principal driver of the North Atlantic and European climate, and
meanwhile-seasonal-and-decadal-prediction-skil-s-established-in various prediction systems
and underlying coupled models (Doblas-Reyes et al., 2003), and seasonal and decadal
prediction skill of the NAO is established (Athanasiadis et al., 2020; Dobrynin et al., 2018;
Miiller et al., 2005; Scaife et al., 2014; Smith et al., 2020).

However, climate models still provide biases in the representation of the zonal wind, and
associated jets and storm tracks. For example, CMIP6 models are generally able to reproduce
storm tracks, however, they appear too zonal over the Pacific and Atlantic (Priestley et al.,
2020). Over the southern hemisphere, the-climate models tend to shift jet positions and storm
tracks too far equatorwards. There is a general improvement #3of the biases from CMIP5 to
CMIP6, which arises from the tendency of using higher model resolutions, but their bias
structures still persist (Priestley et al., 2023). In MPI-ESM used for CMIP6, the mean zonal
wind and storm track biases are reduced by doubling the atmospheric resolutions. The bias
reduction is mainly induced by an improved wave-activity flux and eddy-driven effects on the
mean zonal wind, particularly at the exit of the Northern hemisphere jet-exits (Muller et al.,

2018). However, a relatively strong zonal wind bias persists in the higher-resolved model
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version. In this respect, the underestimation of eddy-driven effects on the mean zonal wind is

found in many climate models (i.e., Smith et al., 2022).

In ICON XPP, the zonal mean zonal wind biases in the extra-tropics appear smaller compared
to its predecessors ICON-ESM (Jungclaus et al., 2022) and MPI-ESM (Muller et al., 2018). In

the 80/20 configuration, a zonal mean zonal wind bias of 1-2 m s*/s is found at the northern

hemisphere jet position (Fig. 165), and of 2-4 m_s*/s in the low resolution (160/40). For
comparison in MPI-ESM, zonal mean zonal wind biases are about twice as large and amount
to 2-4 m s'/s and >4 m s°Y/s for similar resolutions compared to ICON XPP (cf Fig. 9 in Miiller
et al., 2018). For ICON-ESM, a bias of up to 10 m s*/s is found in their 160/40 configuration
(cf Fig. 12 in Jungclaus et al., 2022). In the tropics, there are alternating significant positive
and negative wind biases varying with height. The biases are smaller compared to ICON-ESM
but of similar magnitude compared to MPI-ESM.

To understand the reasons for the relatively small biases of the northern hemisphere zonal
winds, we further examine the eddy-mediated effects on the jets. Figure 176 shows the mean
zonal wind at a level where the jet maximum occurs and corresponding divergence of 2-6 day
bandpass-filtered eddy-momentum fluxes. The divergence is calculated based on the horizontal
components of the E-vector averaged over 200-300 hPa (Hoskins et al., 1983). The net effect

of the divergence is a westerly acceleration_of the mean flow, whereas a convergence is

associated with increased easterlies. ERA5S reveals maximum—divergence of the E-vector

downstream of the maximum zonal windat-thejet-exits, which indicatesive forjetextension-by
eddy-momentum-fluxes—The-figure further shews-that momentum fluxes are able to force the

jets towards the north-eastward direction. In ICON XPP, eddy-momentum fluxes are found

similar to ERAS and the jet is forced towards a north-eastward direction. That is different to
precursors of ICON XPP, where momentum fluxes and respective jets appear more zonally
oriented. The magnitudes of the divergence of the momentum fluxes in 160/40 are higher than

in ERAS5, but fits very well in 80/20. This diagnostic underlines the good performancewel-

behavier of the synoptic properties in ICON XPP for the mean state of the jet. It can be expected
that this has a positive impact on storm-track pathways and associated impact on downstream

regional climate.
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Figure 156: (a) Annual man zonal mean zonal wind in the troposphere for the period 1979-2008 for ERA5 and
biases for the (b) 160/40 and (c) 80/20 resolutions. Units are [m s].
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Figure 176: The effect of transient eddies on the mean state. Shown is the divergence of the E-Vector (shading)
and the mean zonal wind (contours); for winter means (DJF) in (2) ERAS for the {period 2000-2010,) and 10-year
averages for the ICON XPP (b) 160/40 and (c) 80/20 resolutions. The E-Vector is calculated by V(u? +
v2, —uv), where u and v are 2-6 day band-pass filtered zonal and meridional wind anomalies. The E-vector and
mean zonal wind are averaged between 200-300 hPa. Positive values of the divergence indicate a transfer of

momentum to the mean state.

4.3 Stratosphere - QBO—Polar—\ortex—and-Sudden—StratesphericWarmingsQuasi-

Biennial Oscillation
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Developments in recent decades have shown that seasonal and long-range climate predictions
benefit from resolving the stratosphere at depth, as the variability of the stratosphere is not only

affected by the lower atmosphere and surface climate, but also by intrinsic interactions (e.g.,

Domeisen et al., 2020; Manzini et al., 2014; Scaife et al., 2022). The quasi-biennial oscillation

(MSSWi-are is a key processes in this respect.

The QBO is an important component of the Earth's climate, controlling equatorial zonal winds
and temperature deviations from the global mean. Its teleconnections to surface climate occur
in various pathways (Gray, 2018). In the tropics, a link between the tropical stratosphere and
the MJO has been revealed as the phase of the QBO modulates the MJO (e.g., Martin et al.,
2021). In addition, the QBO modulates the winter stratospheric polar vortex in the Northern
Hemisphere, which has implications for the troposphere (Holton and Tan, 1982). Both the QBO
and the variability of the stratospheric polar vortex are examples of predictability originating

in the stratosphere.

The observed QBO is characterized by descending alternating easterly and westerly jets in the

tropical stratosphere and their downward propagation into the troposphere, as shown by the

zonally averaged zonal wind-(Fig—17a)—These-jets-are-even-mere-pronounced-tn-the-wind

anomalies—shown-as-deviationsfrom-the-long-term-average (Fig. 187ad). In the ICON XPP
160/40 configuration, with-90-vertical-levels;-the descending winds are weakly easterly winds

with a high periodicity of roughly 12 months at 32 km (~ 10 hPa), compared to roughly 28
months in observations (Fig. 187b). For the higher resolution 80/20 with-an-inereased-number
ofvertical-levels,—a QBO is present_and the period increases to 17 months, although the

amplitudes still appear smaller than observations,—ane-the—frequency—is—stil-higher—than
observed (Fig. 178cf). A gquasi-permanent easterly wind in the lower-to-middle stratosphere is

prominent in both resolutions (Fig. 18b, ¢). In order to assess the OBO independently from the

climatological state, the long-term mean is removed from the QBO time series (Fig. 18e, f).

The zonal wind anomalies emphasize that ICON XPP is capable of developing spontaneous
QBO phases and their downward propagation (Fig. 187e, f). However, in 160/240 with 90

vertical levels only, the QBO appearsis+aere disruptive and the downward propagation is not

well established (Fig. 187e). ir-agreement-with-previousfindings,-an-iherease-of-the-rumber

abverteal-lovelsimprovosthoroprosoptation-otthe-O20-(Fig—1/o-H—The long-term mean
equatorial zonal mean wind_in the model configurations-is—eharacterized-by further exhibit

47




06
07

09
10

11
12
13
14
15
16
17
18
19
20
21
22

923

24
25
926

strong easterly winds;-which-can-be-seen-in-the-resultingprofile at an altitude of about 20 km
height-in-the-histerical-simulations-of LCON-XPR. These easterly winds can act as a permanent

wave filter for vertical wave propagation, resulting in a perturbed wave forcing above that
height and; hindering the QBO development in ICON_XPP. The reason for the development of
this easterly jet is unclear, but seems related to-be-connected-en the horizontal resolution.

In atmosphere-only experiments (160 km, 130 levels), the frequency of the QBO phases has
been examined in the pastis-tnpreved (Niemeier et al., 2023). In theseir experiments the QBO
is well established and benefit from increasing the number of vertical levels. The lower vertical

resolution of 90 levels is found too coarse to generate an internally generated QBO. Further, in

the atmosphere-only experiments a much smaller time step was used, which seems to further

improve the QBO (360 seconds in atmosphere-only experiments compared to 450 seconds in

the coupled configurations). However, the reasons for such impact are yet not fully understood.

In addition to the OBO, the atmosphere-only experiments reveal a well-represented

stratospheric transport.- . and, As an example, the transport of

the water vapour cloud after the Honga Tonga eruption is found very close to observations
(Niemeier et al., 2023). i

A . N
1980 1981 1982 1983 1984 1985 1986 1987 1988 1980 1981 1982 1983 1984 1985 1986 1987 1988
time [y] time [y]

160/40 L9O ) 160/40 L90O

height [m]

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1982 1983 1984 1985 1986 1987
time [y] time [y]

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
time [y] time [y]

zonal wind [m/s] u - [mys]

Figure 18%: Zonal mean zonal wind averaged between 5° S and 5° N in (a) ERA5, (b) 160/40 with 90 vertical
levels (L90) and (c) 80/20 with 130 vertical levels (L130) and (d), (e), (f) the corresponding deviation of the long-
term mean (1979-2008). Here the period 1979-1989 is shown. Units are in [m s™].
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5. Discussion and Conclusion

ICON XPP is a newly developed Earth System model configuration based on the ICON
modeling framework. It merges accomplishments from the recent operational numerical
weather prediction model (ICON NWP) with well-established climate components for the
ocean, land and ocean-biogeochemistry into a new Earth System model configuration. Here,
we discussed two baseline configurations which serve as a starting point for accommodating

ICON for Earth System predictions and projections, and future model development.

ICON XPP in the presented configurations reaches typical targets of a coupled climate
simulation, such as a pre-industrial stable climate equilibrium with radiation balance and a

target global mean temperature. Though the presented configurations share some long-standing
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biases typical forin coupled models, such as the-warm biases in the coastal upwelling regions,
the overall fidelity of ICON XPP fits in the CMIP6 ensemble..—as-diagnosed-by—a-few key
parameters: This is noteworthy since a major newly implemented component is the atmospheric
model component ICON NWP, originally designed for numerical weather prediction, and
which is tested here for the first time in a coupled Earth System configuration. Furthermore,
the climate sensitivity, albeit weak, fits within the assessed range of the CMIP6 models, and
creates confidence in ICON XPP projections. The simulated trends of the global temperature;
are close to observations_and; underline the model's suitability to simulate various climate

scenarios.

The model configurations are able to capture the principal features of coupled circulations in
the tropics. A prominent example is ENSO, which reveals typical characteristics and dynamics
known from observations,—n—both—cenfigurations. We highlighted the use of a more
sophisticated evaluation of ENSO, by not only looking at certain characteristics (amplitude,
spectra, skewness, etc.), but also considering the ENSO dynamics (feedbacks) and its link to
the mean bias. Although ENSO amplitudes and basic feedbacks appear weak, the overall
fidelity of ENSO in ICON XPP fits within the CMIP6 models. Further examples of key
processes in the tropics are the tropical waves and Madden-Julian Oscillation, which—analyzed
by-the-wavenumber-frequeney—analbysis— are captured quite well in both configurations. In
addition, ICON XPP is capable of developing spontaneous QBO phases, which clearly benefits
from the higher vertical resolution in the 80/20 configuration.

An outstanding result of the current evaluation is the state of the northern-hemisphere extra-
tropical dynamics. Here, ICON XPP reveals a strong reduction of the tropospheric zonal mean
zonal wind biases, and the location of the mean jets are placed close to what is found in
observations. A closer examination of the synoptic-scale eddies reveals that ICON XPP is able
to depict the shape and magnitude of the transfer of momentum onto the mean flow close to
what is found in ERA5. The momentum transfer leads to a northeastward elongation of the
mean jet in ICON XPP, whereas predecessor model generations reveal a strong zonal
distribution. This could have consequences for the storm tracks and their downstream impacts,
which are known to exhibit a biased southern pathway in the ICON XPP precursors. We
hypothesize that this improvement is linked to the enhanced accuracy in resolving synoptic
disturbances within the ICON NWP model.
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However, the current ICON XPP configurations are characterized by some strong biases with
global implications. These include a warm bias of up to 5° C in the Southern Ocean, associated
with little sea- ice. This is Aaccompanied with this-are-a particularly deep ocean mixed layer
at the Antarctic boundaries near the Weddell Sea and strong biases in the atmospheric net
radiation and cloud covers (not shown). Errors of this magnitude inevitably lead to the need to
adjust the model. In order to achieve the global mean temperature target, it was necessary to
counterbalance the Southern Ocean warming by adjustment of cloud parameters, e.g. reducing
the entrainment rate. Further, the Southern Ocean plays an important role in remote regions of
the climate system. Recent studies reveal the global role of the observed Southern Ocean
cooling trends and their teleconnections, such as to tropical regions and the southeast Pacific
cooling (Kang et al., 2023). However, many climate models notoriously fail to capture the
recent SST trend in the Southern Ocean. Also, all coupled model and climate prediction
systems are not able to capture the Pacific cooling trend with consequences on forecasting the
Pacific climate such as ENSO (e.g., L' Heureux et al., 2022). Therefore, an improvement of the
Southern Ocean climate may be of great relevance for remote regional climate and their
predictions.

The tropical precipitation distribution reveals the long-standing double ITCZ, as found in many
CMIP6-like models. In our configurations, however, the magnitudes are relatively large
compared to the CMIP6 ensemble. Such a bias ultimately imposes an influence on regional and
global climate. An example is ENSO, which provides-has a strong relationship te-with the
precipitation bias in the current ICON XPP configuration. Further, a strong dry bias in the
Amazonian region is found in the current configurations. Such bias imposes an impact on the
modeling of land vegetation and the global carbon cycle. The reasons for the tropical
precipitation bias are yet unclear. However, since during the tuning process the precipitation
distribution has not received much attention, we expect some improvements in subsequent
versions of ICON XPP.

ICON XPP forms the basis for future developments in the areas of climate predictions and
projections. Some initiatives have already been established for this purpose. One project was
initiated to support ICON XPP's preliminary research into climate predictions. Here, data
assimilation methods and hindcasts are being tested with ICON XPP, as well as their
possibilities for special applications. The aim is, among others, to use ICON XPP for

operational climate predictions. Another initiative prepares ICON XPP as a national
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contribution to CMIP7. For this, ICON XPP will be more thoroughly tuned with respect to the
aforementioned biases. In addition, corresponding DECK experiments with CMIP7 forcing
will be prepared and carried out;and-thei—data—disseminated. A basic requirement for both
initiatives is that the model is able to calculate as many model years and ensemble members as
possible, in as little real time as possible. The high runtime performance of the current
configurations with throughput of ~80 simulated years per day (SYPD, 100 nodes) for 160/40
and ~45 SYPD (64 nodes) for 80/20 - run on a CPU-partition of the DKRZ HPC - meet this

requirement.

In summary, ICON XPP is an Earth System model configuration, able to run long integrations
and large-ensemble experiments, making it suitable for climate predictions and projections,

and for climate research for which a large throughput is required.
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(Mdller et al., 2024). ICON is available to the community under a permissive open source

licenese (BSD-3C). Please follow the instructions on the ICON web-page (https://www.icon-

model.org/). ERAS data (Hersbach et al., 2020) was downloaded from the Copernicus Climate
Change Service (Hersbach et al., 2023a, 2023b). The results contain modified Copernicus
Climate Change Service information 2025. Neither the European Commission nor ECMWEF is
responsible for any use that may be made of the Copernicus information or data it contains.
Figures 6a, 6b, 7, and 8 of this study have been created with the Earth System model Evaluation
Tool (ESMValTool) (Andela et al., 2024a; Righi et al., 2020) and its core dependency
ESMValCore (Andela et al., 2024b). ESMValTool has recently been extended to be able to
process ICON XPP output without any model postprocessing (Schlund et al., 2023). CMIP6
model output required to reproduce the analyses of this paper is available through the Earth

System Grid Foundation (ESGF; https://esgf-metagrid.cloud.dkrz.de/search/cmip6-dkrz/, last
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configuration, last access: 19 February 2025). Observational/reanalysis datasets are not

distributed with ESMValTool that is restricted to the code as open source software, but
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ESMValTool provides a collection of scripts with downloading and processing instructions to
recreate all observational/reanalysis datasets used for Figures €9a, 69b, and 117 (see

https://docs.esmvaltool.org/en/latest/input.ntml#observations, last access: 19 February 2025).
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