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Abstract. Precipitation dynamics critically regulate Earth's hydrological cycle and climate system, yet 

the mechanisms driving decadal-scale variations in light rain remain poorly quantified. Our analysis of a 10 

23-year (2000–2022) national-scale dataset reveals contrasting trends in light precipitation occurrence: a 

significant decline (1.0 days yr⁻¹, p < 0.05) during 2000–2013 followed by a pronounced increase (1.9 

days yr⁻¹, p < 0.01) in 2013–2022. Cross-temporal analysis demonstrates a national wide inverse 

correlation (r = -0.55, p < 0.01) between aerosol concentrations and light rain frequency in the China’s 

Emission Control Era, when the PM2.5 shows an upward trajectory before 2013 followed by a markedly 15 

downward decline thereafter, providing a natural experiment to quantify aerosol effects in precipitation. 

Through multi-algorithm machine learning and causal inference modeling, we further identify aerosol-

cloud microphysical processes as the dominant driver, with PM2.5 concentration changes explaining 59-

63% of the decadal trends of light rain. As a result, the PM2.5 reduction (increase) enhances (reduces) 

light rain frequency by +1.97 (-2.08) days yr⁻¹. Meteorological factors showed negligible temporal 20 

variability and thus insignificant explanatory power (<10% for each individual factor) over a decadal 

scale. Our findings establish, for the first time, the quantifiable aerosol microphysical effect on light 

precipitation trends, highlighting dual benefits for China's emission control policies that PM2.5 reduction 
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in 2013–2022 simultaneously enhanced light rain frequency while improving air quality. This work offers 

critical insights for aligning air pollution mitigation with climate adaptation strategies. 25 

1 Introduction 

Precipitation serves as a pivotal physical process linking weather, climate, and the hydrological cycle. 

Understanding the changes in precipitation and its influence mechanisms and factors are thus of great 

significance. Light rain, a primary component of precipitation, is defined as precipitation with a daily 

accumulation between 0.1 and 10 mm, following the China Meteorological Administration (CMA) 30 

standard(Dunkerley, 2021). Despite its relatively low intensity, the cumulative amount of light rain still 

accounts for a significant proportion of 20%~40% in total annual precipitation (Wang et al., 2021; Yuan 

et al., 2024). In addition, light rain account for more than 70% of total number of rainy days, making a 

significant contribution to effective precipitation in China (Fu et al., 2008; Qian et al., 2009a). Compared 

to heavy precipitation, light rain can more easily infiltrate into the soil, and thereby plays a crucial role in 35 

maintaining soil moisture, irrigating plants, and preventing forest fires(Trenberth et al., 2003). Previously, 

the notable decrease in trace precipitation events or drizzle events during the years of 1950-2000 has 

already manifested in China (Li et al., 2008; Qian et al., 2009b), In the context of climate change and 

carbon emission reduction, the amount and frequency of light rain may change in China, thereby affecting 

the climate and hydrological cycle. 40 

In recent years, studies have analysed the characteristics and influencing factors of trends in light 

rain changes in China based on long-term meteorological and aerosol dataset (Qian et al., 2009a; Jiang et 

al. 2014; Ma et al., 2015). Research has shown that in most regions of China, particularly the eastern 
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regions, there has been a trend of decreasing light rain days and amounts since 1960, seasonal variations 

have maintained the same trend as the annual average, with winter exhibiting more significant changes in 45 

light rain days compared to other seasons (Huang and Wen, 2013; Ma et al., 2015; Wu, 2015; Zhang et 

al., 2019). Although many studies have revealed the characteristics of long-term changes in light rain 

days in China, it is still with big challenges to identify the driving factors. Some research have focused 

on the analysing the relationship between long-term trends in meteorological factors or PM2.5 

concentrations and changes in light rain days (Fu and Dan, 2014; Wu et al., 2016; Bastin et al., 2019; 50 

Zhang et al., 2019). Studies generally indicate that rising temperatures, increasing aerosol pollution, and 

decreased relative humidity tend to suppress the occurrence of light rain (Fu and Dan, 2014; Zhou et al., 

2020; Luo et al., 2024). Lu et al. (2014) pointed out that variations and changes in rainfall total can be 

dominated by changes in moisture and temperature. Studies have indicated that annual changes in the 

number of light rain days are influenced mainly by changes in water vapor content over the eastern China 55 

(Wu, 2015). However, it was pointed out that the correlation between large-scale water vapor transport 

and light rain is not significant (Qian et al., 2009a). Statistical analysis also revealed positive correlations 

between the light rain days and relative humidity (Wu et al., 2015; Zhang et al., 2019). Actually, the 

decrease in relative humidity is primarily a result of rising temperature (Song et al., 2017; Zhou et al., 

2020). Some researchers argue that the increase in temperature reduces light rain days by affecting the 60 

dew point temperature, as the air with the same water vapor content is more difficult to condense into 

precipitation in a warmer environment than in a colder one (Qian et al., 2007). Huang et al. (Huang and 

Wen, 2013; Huang et al., 2014) analysed the probable cause for the change of light rain events and 

suggested that when atmospheric stability strengthens, it will promote an increase in light rain events, 
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whereas when atmospheric stability decreases, light rain events decrease. However, studies have also 65 

shown that stable atmospheric conditions are detrimental to the development of warm clouds, thereby 

suppressing the occurrence of light rain (Li et al., 2017).  

In addition, some studies have focused on exploring the relationship between aerosol pollution and 

the number of light rainfall days. Aerosols can affect precipitation by serving as cloud condensation nuclei 

(known as Aerosol-Cloud Interactions, ACIs) or by altering the radiative energy budget of the 70 

atmosphere-earth system (Aerosol-Radiation Interactions, ARIs) (Ramanathan et al., 2001; Rosenfeld et 

al., 2008; Li et al., 2017). Research based on observational data suggests a negative correlation in the 

diurnal variation of aerosols concentration and light rainfall events due to Twomey effect (Choi et al., 

2008; Fu and Dan, 2014). However, a study in the TengChong area found that while the number of light 

rainfall days showed a decreasing trend, visibility improved annually (Wu et al., 2016). Results from 75 

model simulations of aerosol effects indicate that light rainfall will decrease in heavily polluted areas, 

primarily due to the cloud microphysical effects of aerosols (Qian et al., 2009a; Wang et al., 2016; Shao 

et al., 2022), the atmospheric conditions with high aerosol loading can significantly increase the cloud 

droplet number concentration and reduce cloud droplet sizes compared to clean conditions. This can lead 

to a significant decline in raindrop concentration and delay raindrop formation because smaller cloud 80 

droplets are less efficient in the collision and coalescence processes (Twomey, 1977; Qian et al., 2009a). 

Additionally, the increase in aerosol particles concentration has a significant impact on precipitation in 

China due to the aerosol radiation effect. Fan et al. (2015)found that the light rainfall was significantly 

suppressed in the southwestern region of China based on WRF-Chem simulation. They further showed 
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that this is may be attributed to the weakening of near-surface shortwave radiation by the aerosol radiation 85 

effect, which enhances tropospheric stability and reduces the occurrence of precipitation (Liu et al., 2022). 

Overall, there remains significant uncertainty regarding the mechanisms influencing the occurrence 

of light rain. Most previous studies have primarily focused on the analysis of a single or very limited 

factors, and the relative importance of various influencing factors to the light rainfall was mostly 

qualitatively assessed, lacking a quantitative and comprehensive evaluation. Additionally, studies on light 90 

rain days often limited to time periods when the aerosol pollution was continuously intensified in China, 

e.g. from around 1960s to around 2010s. A comprehensive investigation on the changes of light rainfall 

frequency in the most recent years of China’s emission control era and its driving factors has not yet been 

conducted. Given the significant changes in PM2.5 pollution in China before and after stringent emission 

reduction measures, as well as the background of intensified global warming and increasing number of 95 

extreme weather events, the trends and influencing factors of the light rain may undergo changes. 

Therefore, this study aims to obtain insights on the mechanisms affecting the changes of light rainfall 

days over China by combining multi datasets, multi-algorithm machine learning and causal inference 

modeling. The study period has been focused on the years of 2000-2022, a period during which PM2.5 

concentrations show a significant upward trajectory before 2013 followed by a markedly downward 100 

decline thereafter (see Section 3.1), providing a natural experiment to quantify aerosol effects in 

precipitation. Section 2 presents the methods and data; In Section 3.1, we present the long-term variations 

in the light rain frequency as well as the influencing factors over the studied period. In Section 3.2 & 3.3, 

we utilize the machine learning techniques (XGBoost and SHapley Additive exPlanations, SHAP) to 

quantify the importance of each individual factor to the occurrence of light rain. In Section 3.4, we 105 
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discussed the key factors driving the long-term trends of the light rain frequency during the two periods. 

We finally incorporate Structural Equation Model (SEM) to derive insights on physical mechanisms and 

interactions between the various factors and the light rain occurrence. 

2 Data and Methods 

2.1 Data 110 

In this study, the frequency of number of light rain days was calculated based on the dataset of CPC

 Global Unified Gauge-Based Analysis of Daily Precipitation (CPC-Global) (https://psl.noaa.gov/data/g

ridded/data.cpc.globalprecip.html). The CPC-Global dataset is with a spatial resolution of 0.5° ×0.5° an

d produced based on assimilation and interpolation of observations from 30,000 stations by National Oc

eanic and Atmospheric Administration (NOAA) through the CPC Unified Precipitation Project (Xie et a115 

l., 2010). The daily ERA5 reanalysis data from 2000 to 2022 provided by the European Centre for Medi

um-range Weather Forecasts (ECMWF) was also used in this study (https://cds.climate.copernicus.eu/). 

These data include the relative humidity (RH) at 850 hpa, temperature (T) at 2 m height, the wind speed 

(WS) at 850 hpa, total column cloud liquid water (TCLW), low cloud cover (LCC), convective available

 potential energy (CAPE) and evaporation (E). The horizontal resolution for the meteorological data is 0.120 

25° × 0.25°. The PM2.5 data are obtained from the China High Air Pollutants dataset (CHAP) at a spatial

 resolution of 1 km ×1 km from 2000 to 2022 (Wei et al., 2021, 2019; Wei, 2024). 
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2.2 Methods 

In this study We defined the light rain event as the daily precipitation is between 0.1 and 10 mm 

(Qian et al., 2009b; Huang and Wen, 2013; Wu et al., 2015) which is referenced from the standards of the 125 

CMA.  

To better demonstrate the effect of changes in PM2.5 and other meteorological parameters on changes 

of the number of light rain days, we conducted the following analysis using data based on two periods 

from 2000 to 2013 and from 2013 to 2022 these two periods. The year 2013 was selected as the breakpoint 

because it marks a definitive shift in China's air pollution policy with the implementation of the national 130 

"Air Pollution Prevention and Control Action Plan", which led to a proven reversal in the long-term trend 

of PM2.5 concentrations nationwide (Wei et al., 2021). Moreover, the frequency of light rain in most 

regions of China, especially those heavily affected by human activities, also showed a change pattern of 

first decreasing and then increasing before and after 2013 (Fig. 1, Fig. 2). The XGBoost model was 

applied separately to the two periods (2000 – 2013 and 2013 – 2022) rather than to the entire dataset. This 135 

approach was chosen because the underlying physical relationships between the predictors and light rain 

are expected to differ significantly between the pollution-accumulating and pollution-abatement regimes. 

Training separate models prevents the estimation of a misleading “average” relationship and allows for a 

more accurate quantification of the distinct drivers operative in each period. Least squares technique 

(linear regression) is firstly employed to estimate the annual trends of light rain days and the examined 140 

factors. Additionally, the extreme gradient boosting (XGBoost) model is applied to examine the impact 

of these factors, including PM2.5, RH, WS, T, E, TCLW, CAPE, and LCC, on the number of light rain 

days. The selection of these specific factors is grounded in their well-established physical linkages to light 
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rain processes, as extensively documented in prior studies (Qian et al., 2009a; Huang and Wen, 2013; Li 

et al., 2017). Briefly, PM2.5 is included to quantify aerosol impacts on cloud microphysics, while the 145 

meteorological variables collectively represent the thermodynamic, moisture, dynamic, and cloud-related 

conditions that are fundamental to light rain formation. This approach ensures our model captures the key 

mechanistic drivers identified in the literature. 

The importance of each parameter affecting the accuracy of the light rain days prediction is assessed. 

The XGBoost model, which is a powerful and reliable machine learning technique, optimizes the gradient 150 

boosted decision tree algorithm to solve regression and classification problems (Chen and Guestrin, 2016). 

It offers several advantages, such as handling missing values, preventing overfitting, enhancing 

computing speed and accuracy, and has been widely applied in predicting air pollutants and emissions 

(Gui et al., 2020; Si and Du, 2020, 2020). Previous studies have shown that XGBoost performs well with 

relatively small-scale datasets (Cheng et al., 2021; 2023). This work used 5-fold cross-validation of the 155 

training set to test the performance of the XGBoost model and defined the parameter search space to 

determine the optimal model parameters, finally generating the prediction results. The predicted 

frequency of the number of light rain days by the XGBoost method exhibit high consistency with the 

observed values, with mean R2 of 0.83 and 0.90 (Fig. S3). Through K-fold cross-validation evaluation, 

each model achieved a mean coefficient of determination (R²) of 0.80 on the cross-regional dataset, 160 

demonstrating robust generalization performance across different geospatial scales. Then, the drivers of 

the long-term variations of the light rain days over the two periods were further explored. For this, the 

annual trend (depicted by slope obtained based on linear fitting) of daily data for each individual factor 

as well as the frequency of light rain days were firstly calculated as the input variables and target 
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parameter respectively. The result shows good performance with mean R2 of 0.90 (Fig. S6), The K-fold 165 

cross-validation (R2 > 0.88) results also demonstrate robust performance across different datasets. 

SHAP is a machine learning interpretability technique based on coalitional game theory (Lundberg 

and Lee, 2017), with its core mechanism lying in the mathematical quantification of feature contributions. 

Within the SHAP framework, SHAP values essentially represent a formalized mathematical deformation 

of Shapley values, which decompose model predictions to attribute the deviation of each sample’s 170 

predicted outcome to the contributions of individual features. The explanation could be specified as: 

g(z′) =  ∅0 + ∑ ∅jz′jg
M
j                    

 

where g is the explanation model，𝑧′ ∈ {0,1}𝑀  is the simplified features，M is the maximum 

coalition size, and ∅𝑗 ∈ 𝑅 is the weighted average of all marginal contributions for a predictor variable j, 175 

the Shapley values. 

This method is particularly effective for identifying the relative importance of predictor variables in 

XGBoost models, providing feature attribution analysis that integrates global consistency with local 

interpretability. Compared to feature importance methods such as the gain method or split count, SHAP 

not only reveals key driving factors through global importance rankings but also visualizes feature 180 

contribution distributions at the individual sample level, enabling an interpretability analysis of the 

interaction between model prediction and characteristic effect. 

SEM is a method that is usually used to test hypotheses on relationships of multi factors within a 

complex system (Lamb et al., 2014; Ganjurjav et al., 2021). These hypotheses are articulated in the form 

of a series of regression equations, known as structural equations. This model enables the simultaneous 185 

analysis of multiple variables with causal relationships and overcomes the limitations of traditional 
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multivariate analytical techniques such as multivariate analysis of variance and correlation analysis. One 

of the most important advantages of SEM is its capacity to disentangle complex interdependencies among 

multiple parameters. This is achieved by estimating the independent (direct) effect of each variable while 

simultaneously accounting for its correlations with other variables in the model. When constructing an 190 

SEM, hypotheses about causal relationships between variables are first formulated based on theoretical 

and prior research findings, and then the result is adjusted according to whether the fit indices meet 

statistical criteria. The key indices for evaluating SEM model fit include the Comparative Fit Index (CFI), 

Root Mean Square Error of Approximation (RMSEA), and Standardized Root Mean Square Residual 

(SRMR). In general, when CFI approaches 1, 0 ≤ RMSEA ≤ 0.05, and 0 ≤ SRMR ≤ 0.08, the model 195 

indicates a very good fit (Schreiber et al., 2006, Ma et al., 2022). In addition, the chi-square test (χ²) and 

Adjusted Goodness of Fit Index (AGFI) are also commonly used for model evaluation. In this study, the 

final model fitting results showed that CFI was 0.998 and RMSEA was 0.033, which indicates that the 

SEM had a very good fit with the data and that the model fit was almost ideal. 

3 Results 200 

3.1 Nationwide inverse correlation of long-term changes between aerosol concentrations and light 

rain frequency 

Figure 1 illustrates the spatial distributions and long-term trends of light precipitation frequency and 

PM2.5 mass concentrations across China during the studied periods (2000 – 2022). Statistically significant 

decreasing trends in light rain days (mean rate: 1.0 days yr⁻¹, p < 0.05) were observed nationwide during 205 
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2000 – 2013, with the most pronounced decline in southern China (2.3 days yr⁻¹, p < 0.01) (Fig. 1). 

Conversely, a reversal trend emerged during 2013 – 2022, showing continent-wide increases (1.9 days 

yr⁻¹, p < 0.01), particularly in southwestern China and the Yangtze River Basin (central-eastern regions), 

where the growth rate reached 2.6 days yr⁻¹. The data analysis also reveals an inverse correlation between 

light precipitation trends and PM2.5 variations: a substantial significant PM2.5 increase (0.39 μg m⁻³ yr⁻¹, 210 

p < 0.01) occurred during 2000 – 2013, contrasting with a substantial significant decline (2.5 μg m⁻³ yr⁻¹, 

p < 0.01) post - 2013. Actually, the rapid decrease in PM2.5 mass concentration since 2013 have been 

widely observed due to the implementation of the national “Air Pollution Prevention and Control Action 

Plan” in China (Zhang et al., 2020; Wei et al., 2021; Bai et al., 2024; Zhang et al., 2024). Note that, before 

2013, the national average annual light rain days showed significant interannual fluctuations, with the 215 

lowest number of light rain days recorded in 2007 (Fig. 1a). This makes it seem as if 2007 was a turning 

point where the trend of light rain frequency shifted from decreasing to increasing. However, when the 

analysis is focused on specific different regions, it is found that the turning point of light rain frequency 

still occurred in 2013 (Fig. 2). Considering the variation trend of PM2.5 comprehensively, this study 

divides the research period into two phases of 2001–2013 and 2013–2022. 220 
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Figure 1. National trend and spatial patterns of light rain and PM2.5. (a) Nationally averaged time series 

of light rain days (blue lines) and PM2.5 mass concentration (red lines) from 2000 to 2022. The dashed 

lines represent the piecewise linear trends for the periods 2000–2013 and 2013–2022, with the slopes 

indicated. Trends significant at the 95% confidence level are marked with **. (b) Spatial distribution of 225 

the trends of light rain, PM2.5 and spatial correlation between PM2.5 and light rain days in 2000–2013 and 

2013–2022. This map of China is created based on same-origin data provided by the Tianditu Platform 

(www.tianditu.gov.cn). (black dots indicate passing the 95% significance test). 

 

In particular, this inverse relationship is most evident in six anthropogenically influenced regions 230 

(Fig. 2): North China (NC), South China (SC), East China (EC), Southwest China (SWC), Central-South 

China (CSC), and the Fenwei Plain (FW). This regional division is based on established frameworks that 

consider distinct physiographic (e.g., topographic basins, climate zones) and anthropogenic (e.g., 
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population density, industrial activity) characteristics (Chen et al., 2024). For instance, the Fenwei Plain 

(FW) is treated separately from North China (NC) due to its unique enclosed topography that fosters 235 

pollution accumulation, despite some similarities in overall trends.  

 

Figure 2. The fitted variation trends of light rain days (blue lines) and the fitted variation trends of PM2.5 

(red lines) in different six selected regions. The middle map shows the spatial distribution of average light 

rain days during 2000–2022 and the six selected study regions. 240 

Since previous studies attribute light rain suppression in polluted regions to aerosol-cloud 

microphysical interactions (Qian et al., 2009b; Wang et al., 2016; Shao et al., 2022), our analysis suggests 

that the observed decadal shifts in light precipitation (2000 – 2013 decline vs. 2013 – 2022 increase) are 

likely driven by long-term aerosol concentration variability. Notably, regions with minimal anthropogenic 
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activities (e.g., Inner Mongolia and northwestern China) exhibited no significant PM2.5-light rain 245 

correlations but with good correlations with meteorological factors (e.g., RH) (Fig. 1, Fig. S2), implying 

contributions from non-aerosol factors. 

Figure 3 depicts the long-term trends of meteorological factors (T, RH, CAPE, E, LCC, TCLW, and 

WS) potentially associated with light rain variability in China during 2000 – 2013 and 2013 – 2022, while 

the statistical significance (p < 0.05) of these trends is shown in Supplementary Fig. S1. A key observation 250 

is that, in contrast to the strong and statistically significant nationwide trends seen in PM2.5, the trends of 

these meteorological parameters are characterized by pronounced spatial heterogeneity and largely 

insignificant changes over large portions of China. For the E, from 2000 to 2013, approximately 60% of 

regions exhibited insignificant trends, only with the significant decline (p < 0.05) observed in 

southwestern China and the Qinghai-Tibet Plateau (Fig. S2). During 2013 – 2022, E just decreased 255 

significantly in very few areas of northeastern China and northern Xinjiang, areas concurrent with RH 

increases (Cong et al., 2009). Conversely, large areas of southeastern China experienced nonsignificant 

E reductions. Notably, E-enhanced regions seems expanded in recent decades, likely attributable to global 

warming effects (IPCC, 2021). However, the enhanment is not statistically significant (Fig. S2). Analysis 

reveals that 56% of Chinese regions showed T increases slightly during 2000 – 2013, with accelerated 260 

warming rates post - 2013. The CAPE demonstrated weakened trends across southeastern China during 

2000 – 2013, while remaining stable in western/northwestern regions. This spatial pattern aligns with 

anthropogenic aerosol impacts. The aggravated aerosol pollution over 2000 - 2013 likely suppressed 

convection in densely populated eastern China via microphysical mechanisms (Zhao et al., 2006). 

However, PM2.5 reductions since 2013 moderated CAPE declines, with some regions (e.g., middle-lower 265 
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Yangtze River) even exhibiting strengthening trends, indicating meteorological sensitivity to aerosol 

loading changes. The TCLW decreased only in the Yangtze River Basin and Tibetan Plateau during 2000 

– 2013, but reversed to increasing trends post - 2013. There are no evident variations (statistically 

insignificant) in TCLW elsewhere during the two periods (Fig. S2). Nationwide WS reductions 

(statistically nonsignificant) were observed during both periods, though southeastern China experienced 270 

accelerated declines post - 2013, potentially linked to persistent particulate pollution and urbanization 

processes (Zhang and Wang, 2021). The RH declines affected less than 30% of China during 2000 – 2013, 

most prominently in the Tibetan Plateau, northeastern/southwestern China. During 2013 – 2022, it is 

observed with nonsignificant RH variations becoming dominant nationwide. The LCC trends spatially 

mirrored RH patterns, likely underscoring their coupled responses to anthropogenic and climatic drivers. 275 

While these meteorological parameters exhibited spatially variable trends, their magnitudes were 

generally much smaller than PM2.5 variations. Subsequent sections will quantitatively evaluate their 

combined impacts on light rain frequency. 
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Figure 3. The fitted variation trends of other affecting factors of E, T, CAPE, TCLW, WS RH, and LCC 280 

of China over 2000 - 2013 and 2013 - 2022. 

3.2 Quantifying the relative contributions of individual factors to light precipitation events 

To elucidate the influence of aerosols and meteorological parameters on light precipitation events, 

variable importance metrics were derived using the machine learning - based XGBoost algorithm. 

Considering that the temporal variation trends of these factors are not identical, we presented and analyzed 285 

the conditions of the two research periods (2000–2013 and 2013–2022) (Fig. 4) – this was done to 

compare and explore whether the relative contribution or importance of each factor to precipitation has 

changed across different stages. The XGBoost-based model demonstrates robust predictive capability, 

achieving a correlation coefficient of 0.83 and 0.90 (Slope: 0.80, 0.85 p < 0.01) between predicted and 



17 

 

observed light precipitation events (Fig. S3). This validation ensures the reliability of subsequent 290 

parameter importance evaluations for elucidating meteorological drivers of light rain. Figure 4 quantifies 

the relative contributions of the PM2.5 and meteorological factors (RH, T, E, TCLW, CAPE, LCC, WS) 

to light rain occurrence during 2000 – 2013 and 2013 – 2022. Nationwide, RH exerted the dominant 

influence, accounting for 32% of light rain variability across both periods. The PM2.5, T, and E followed 

as key drivers, with mean contributions of 15.5%/11.7%/11.7% in 2000 – 2013 and 12.1%/10.5%/11.5% 295 

in 2013 – 2022 respectively. Notably, the contribution of PM2.5 declined from 15.5% to 12.1% (a 3.4% 

decrease, p < 0.05), coinciding with China's stringent emission controls (Shao et al., 2022; Wang et al., 

2016). Conversely, the contributions of TCLW and CAPE increased significantly from 7.2%/9.4% in 

2000 – 2013 to 13.6%/10.6% in 2013 – 2022 (p < 0.01). LCC and WS remained negligibly minor factors 

(< 6% contribution). Moreover, spatial heterogeneity (Fig. 3) revealed no substantial differences in factor 300 

contributions between the two periods, except for PM2.5 and TCLW. Conspicuously, the meteorological 

factors exhibited statistically insignificant temporal trends, implying stable physical mechanisms 

underlying their impacts on light rain. 
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Figure 4. The relative contribution of RH, PM2.5 mass concentration, T, E, TCLW, CAPE, LCC and WS 305 

to light rain events over 2000 - 2013 and 2013 - 2022. 

Spatial heterogeneity characterizes the relative importance of meteorological factors (Fig. 5). For 

instance, the RH exerts critical influence in southeastern and northwestern China, peaking at 50% 

contribution in southern regions. This spatial pattern aligns with established findings showing significant 

RH - light rain day correlations in southern China (Wu et al., 2015; S. Zhang et al., 2019; Zhou et al., 310 

2020). Conversely, the contribution of RH diminishes to ~10% in northern regions, likely attributable to 

lower atmospheric moisture content (Fig. 5b). In contrast, PM2.5 emerges as the dominant driver in 

northern China, especially in North China Plain (NCP), where aerosol concentrations exceed those in 
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pristine western regions (Fig. S4). This aerosol-mediated regulation aligns with cloud microphysical 

mechanisms suppressing light precipitation (Qian et al., 2009b; Yang et al., 2016). The E demonstrates 315 

pronounced influence in arid Inner Mongolia and northwestern China, consistent with hydrological 

sensitivity in water - limited ecosystems (Chen Yaning et al., 2014; Yang Yaqing et al., 2024). The E - 

light rain relationship weakens eastward, reflecting enhanced soil moisture buffering in humid regions. 

The TCLW assumes greater significance in western and northeastern China, where the water vapor 

content is relatively low, the warm cloud precipitation process, which relies on the growth of liquid water 320 

and the collision and coalescence of water droplets, makes the TCLW a crucial factor for the occurrence 

of light rain (Gao et al., 2016). Notably, importance of TCLW increased significantly ( + 18%) in NCP 

and northeastern China post - 2013, coinciding with PM2.5 reductions that reduced cloud condensation 

nuclei (CCN) and elevated cloud droplet coalescence efficiency (Twomey, 1977; Guo et al., 2019). 

Consequently, even small changes in TCLW can directly reflect the occurrence of light rain. These 325 

findings underscore the complexity of regional meteorological controls, necessitating regionalized 

analyses for mechanistic correlation. 
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Figure 5. Comparison of the contribution of individual factors to light rain events over 2000 - 2013 and 

2013 - 2022 in the selected six regions of China.  330 

3.3 Comparison of the relative contributions of individual factors to light precipitation events in 

selected regions of China 

The analysis is further conducted in the six typical areas with elevated anthropogenic emissions. As 

shown in Fig. 5, there are large differences in the dominant factors affecting light rain frequency across 

regions. The RH plays a leading role in SC, EC, SWC, and CSC regions, with mean contributions of 335 

~40%. In FW and NC regions, RH contributions diminish to 15–20%, whereas PM2.5 contributions 

increase markedly (20–30%), exceeding the national average by approximately twofold. This 

anthropogenic imprint is amplified in other high-emission regions (CSC, SWC, EC), where PM2.5 exhibits 
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considerable influence. Other factors (CAPE, WS, T, E, LCC) show no substantial variations in 

contributions (< 10%) across the six regions. These findings indicate the dominant role of anthropogenic 340 

emissions in light rain occurrence within heavily polluted areas. Notably, impact of PM2.5 declined 

slightly in NC and FW during 2013 – 2022 compared to 2000 – 2013, aligning with China's pollution 

controls. The declines are consistent with decreases in the national average but showing steeper reductions. 

Concurrently, TCLW gained prominence in most regions (except CSC) post - 2013, increasing its 

contribution to near 30%. These results underscore aerosol-cloud microphysical effects as critical 345 

regulators of light precipitation in polluted regions. 

3.4 Factors and mechanisms that drive the long-term trends of light rain frequency 

To elucidate the drivers of long-term trends in light rain day frequency described in Section 3.1, we 

systematically investigated the relative contributions of multi-factors using an integrated machine 

learning (XGBoost), interpretability technique (SHAP)and SEM framework (Fig. 6). As stated previously, 350 

considering that the temporal variation trends of these factors are not identical, we presented and analysed 

the conditions of the two research periods (2000–2013 and 2013–2022) – this was done to compare and 

explore whether the driving factors of influencing the precipitation long-term trends has changed across 

different stages. Therefore, this dual-method approach quantifies both observed patterns (e.g., downward 

trends in 2000–2013 vs. upward trends post - 2013) and underlying causal mechanisms. The results show 355 

good performance of our established model for predicting the trends of light rain frequency (with 

correlation coefficient R2=0.90 between the measured and predicted trends of light rain frequency) (Fig. 

S5). 
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Figure 6. Factors that drive the long-term trends of light rain frequency in the selected six regions of 360 

China. The small graphs embedded in the middle are the average trends of light rain frequency over 2000 

- 2022 in the six regions, and the grey lines represent the fitted trend of light rain days from 2000 to 2013, 

while the blue lines depict the fitted trend for the period of 2013 - 2022. 

The results demonstrate aerosol dominant role in driving long-term trends in light precipitation 

frequency across both periods, contributing 59–63% to the interannual variability of annual light rain days 365 

(Fig. 6). Specifically, the increasing trend in PM2.5 concentrations in 2000 - 2013 has led to varying 

magnitudes of decreases in the number of light rain days in the six regions, 0.65 days yr-1 (NC), 2.22 days 

yr-1 (EC), 1.64 days yr-1 (SC), 2.04 days yr-1 (CSC), 3.0 days yr-1 (SWC), and 1.0 days yr-1 (FW). (Fig. 

7). Conversely, the pronounced decrease in PM2.5 levels from 2013 to 2022 has increased the light rain 

days of 0.7 days yr-1 (NC), 2.42 days yr-1 (EC), 1.66 days yr-1 (SC), 1.85 days yr-1 (CSC), 2.62 days yr-1 370 

(SWC), and 1.0 days yr-1 (FW) (Fig. 7). Note that, compared to the period of 2000 - 2013, the relative 
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importance of the variations in PM2.5 in affecting the light rain in recent years of 2013 - 2022 becomes 

more prominent likely associated with the rapid nationwide decrease of aerosol concentrations since 2013. 

This aligns with Twomey's cloud albedo effect (Twomey, 1977), where elevated aerosol loadings 

suppress light precipitation via cloud microphysical feedbacks (Qian et al., 2009b; Wang et al., 2016; 375 

Shao et al., 2022). Reduced aerosol concentrations post - 2013 attenuated these suppression effects, 

enhancing light rain frequency through improved cloud droplet coalescence efficiency. Machine learning-

based analysis further elucidates this underlying microphysical aerosol-mediated mechanism (Figs. 6,7), 

revealing aerosols dominant influence on light precipitation. These findings reconcile national-scale 

aerosol-light rain described in Section 3.1 with microphysical process dynamics. Averaging the regional 380 

results from Fig. 7, the national mean contribution of PM2.5 was -2.08 days yr-1 during 2000-2013 and 

+1.97 days yr-1 during 2013-2022. 

 

Figure 7. Quantified contribution of each factor to the long-term changes of light rain days in the six 

selected regions of China over the periods of 2000 - 2013 and 2013 - 2022. 385 
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Other meteorological factors, such as RH and LCC, demonstrated significant positive correlations 

with light rain day frequency in most regions (Figs. S7-11). Our trend analysis in Section 3.1revealed that 

they, along with the new insights from regional analysis (Fig. 8), exhibited statistically insignificant long-

term changes over the study period. Consequently, their quantified contributions to interannual variability 

were negligible (<10%), further supporting the conclusion that aerosols were the dominant driver of the 390 

observed trend reversal. Notably, in NC, the TCLW showed considerable importance in regulating the 

long-term variations of light rain frequency, explaining 26% of light rain days decline (about - 0.49 days 

yr-1) over 2000 - 2013 and 25% of the light rain increase (about + 0.48 days yr-1) during 2013 - 2022. 

Similar patterns were observed in FW, likely attributable to shared climatic and pollution regimes between 

these two northern regions. 395 

 

Figure 8. The regional average long-term trends of each individual factor in the selected six regions of 

China. The black asterisk (*) represent the fitted trend that passes the significance test. 
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4 Discussion and conclusion 

To systematically validate our findings, we conducted supplementary analyses using SHAP and 400 

SEM (Figs. 9-10). Results consistently demonstrate that PM2.5 long-term trends exert the most critical 

influence on light rain day variability across the six regions. Notably, negative SHAP values ( − 0.40 to 

− 3.82,depending on regional variations) emerge under elevated PM2.5 concentrations ( > 40 μg m⁻³), 

indicating aerosol-mediated suppression of light precipitation via cloud microphysical 

feedbacks(Twomey, 1977). Conversely, positive SHAP values (+ 0.38 to + 3.48) correspond to PM2.5 405 

reductions (< 30 μg m⁻³), reflecting enhanced light rain frequency through improved cloud droplet 

coalescence efficiency. These findings corroborate XGBoost-derived conclusions, reinforcing the 

robustness of aerosol-driven mechanisms in light precipitation regulation. The SEM analysis further 

corroborates aerosols direct suppression effect on light rain frequency, demonstrating a significant 

negative correlation (r = -0.29, p < 0.01; Fig. 10). SEM also elucidates indirect pathways through which 410 

PM2.5 modulates precipitation by altering key meteorological factors. For example, PM2.5 exhibits an 

inverse correlation with total column water vapor (TCLW; r = -0.23, p < 0.05), indicating aerosol-

mediated cloud liquid water reduction (Fig. 10). Mechanistically, elevated aerosols reduce TCLW 

through two synergistic pathways, firstly, the increased aerosols enhanced cloud droplet evaporation due 

to radiative heating (the semi-direct effect) (Hansen et al., 1997; Johnson et al., 2004; Huang et al., 2014; 415 

Fan et al., 2015); second, Elevated aerosol loading can reduce TCLW by enhancing cloud-top radiative 

cooling and turbulent entrainment, which introduce dry air into the cloud, promote droplet evaporation, 

and decrease cloud water content (Wang et al., 2003; Ackerman et al., 2004; Bretherton et al., 2007; Xue 

et al., 2008; Williams and Igel, 2021; Fons et al., 2023). In addition, increased aerosol concentrations 
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suppress evaporation (E; r = -0.14, p < 0.05), reflecting radiative cooling effects that reduce atmospheric 420 

moisture (Niu et al., 2010). These combined effects diminish liquid water accumulation and cloud droplet 

growth, ultimately suppressing light precipitation. Furthermore, SEM reveals aerosols-RH coupling 

interaction (r = -0.42, p < 0.001), confirming aerosols dual regulatory roles in direct microphysical 

suppression and indirect climatic feedbacks. 

 425 

Figure 9. The SHAP values of each individual factor to the long-term trends of light rain days in the six 

selected regions of China. 

 

PM2.5

T

TCLW

CAPE

RH

E

LCC

WS

-1 -0.5 0.5 20

Shap_values

High

Low

F
a

c
to

rs
_

v
a

lu
e

s

PM2.5

T

TCLW

CAPE

RH

E

LCC

WS

-2 -1 1 20

Shap_values

High

Low

F
a

c
to

rs
_

v
a

lu
e

s

PM2.5

T

TCLW

CAPE

RH

E

LCC

WS

-2 -1 1 20

Shap_values

High

Low

F
a

c
to

rs
_

v
a

lu
e

s

PM2.5

T

TCLW

CAPE

RH

E

LCC

WS

-2 -1 1 20
Shap_values

High

Low

F
a

c
to

rs
_

v
a

lu
e

s

PM2.5

T

TCLW

CAPE

RH

E

LCC

WS

-2 -1 1 20
Shap_values

High

Low

F
a

c
to

rs
_

v
a

lu
e

s

PM2.5

T

TCLW

CAPE

RH

E

LCC

WS

-1 -0.5 0.5 10
Shap_values

High

Low

F
a

c
to

rs
_

v
a

lu
e

s

NC EC SC

CSC
FWSWC



27 

 

 

Figure 10. SEM to determine the effects of factors on light rain days. The numbers next to the arrows 430 

represent normalized path coefficients. All the paths’ coefficients in the model were highly significant (p 

< 0.001). 

Note that, the SEM analysis demonstrates a significant positive correlation between TCLW and 

precipitation (r = 0.41, p < 0.01) (Fig. 10).  While in highly polluted regions (e.g., NC and FW), elevated 

TCLW values exhibit negative SHAP values, suggesting aerosol-mediated suppression of light 435 

precipitation. This inverse relationship may stem from enhanced convective precipitation efficiency under 

extreme aerosol loading in northern China (Li et al., 2011), where cloud water is preferentially partitioned 

into precipitation rather than sustaining liquid water accumulation. Conversely, in other regions, TCLW 

increases correlate positively with light rain frequency, which is in accordance with the results of previous 

studies (Liu et al., 2011; Wu et al., 2017; Y. Zhang et al., 2019) indicating distinct aerosol thresholds 440 

governing cloud microphysical processes. These findings also align with the mechanism proposed by 

(Zhang et al., 2019). Further analysis reveals that models constructed with warm-season data demonstrate 
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robust performance (Figs. S12.13), with prediction outcomes exhibiting high consistency with those 

derived from annual datasets. This finding validates, at a seasonal scale, the cross-seasonal stability of 

PM2.5 concentration impact on light rainfall frequency (Figs. S14 - 17). 445 

In conclusion, our long-term observational analysis (2000 – 2022) reveals a declining trend in light 

rain occurrences (− 1.0 days yr⁻¹, p < 0.05) during 2000–2013, followed by a significant reversal to 

increasing trends (+ 1.9 days yr⁻¹, p < 0.01) post - 2013. This decadal shift exhibits an inverse correlation 

between aerosol loading and light rain frequency across most regions of China, consistent with 

anthropogenic aerosol impacts on cloud microphysics. Machine learning (XGBoost-SHAP) and SEM 450 

jointly demonstrate aerosol’s dominant role in driving these trends, with mechanistic insights into cloud 

droplet coalescence suppression. Meteorological factors (RH, LCC) show non-significant interannual 

variability (Δ < 0.1 days yr⁻¹, p > 0.1), indicating negligible contributions to light rain variability over a 

decade scale. The study reveals dual benefits of China's emission reduction measures on improving air 

quality and responding to extreme precipitation weather. Despite our model yielding new insights into 455 

the aerosols role in affecting the long-term changes of light rainfall in China, there remain uncertainties 

due to limitations in the model algorithms, variable selection and data resolution. In future work, 

consideration can be given to incorporating more variables and utilizing different reanalysis datasets to 

improve the model performance. 

 460 
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