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Abstract. Stratiform liquid cloud profiles are key to deciphering cloud life cycles, microphysical processes, and climate 

change impacts. Nevertheless, remote sensing of cloud vertical structure remains largely unresolved. CloudSat active 

measurements provide cloud microphysical profile products but are restricted to narrow orbital tracks. Multiangle passive 

imagers, such as Polarization and Directionality of Earth’s Reflectance (POLDER), are capable of generating a variety of 15 

cloud properties with broad area coverage; however, they lack key prior knowledge and effective methods for obtaining 

cloud vertical information. Focusing on single-layer cloud profile retrieval, we first reveal the structural characteristics of 

stratiform cloud effective radius (CER) profiles based on global CloudSat data and find that the dominant structures include 

triangle-shaped and monotonically decreasing profiles, which account for approximately 88.5% of global liquid CER 

profiles. Furthermore, we propose a novel approach to estimate the structural characteristics of triangle-shaped profiles from 20 

POLDER observations like the properties of the profile turning point (TP). This approach integrates vertical structure 

morphology recognition with a combination of fitting methods and machine learning models. The cloud profiles are then 

accurately reconstructed using physical parameterization models. Our retrieval results exhibit good consistency with active 

observations, with an RMSE of 1.1μm for TP_CER and 0.1 for the normalized cloud optical thickness at the TP. This 

research advances the parameterization of liquid cloud profiles and enables profile structural characteristic retrieval based on 25 

a multiangle passive imager. Our findings provide valuable insights into improving the understanding and modelling of 

cloud processes in weather and climate systems. 

1 Introduction 

Low stratiform liquid clouds, which cover nearly 30% of the Earth’s surface (Warren et al., 1986; Warren et al., 1988; 

Warren et al., 2007; Wood, 2012; Wood, 2015), play a crucial role in the climate system due to their extensive coverage and 30 

significant radiative effects, including reflecting shortwave solar radiation and absorbing longwave radiation from the Earth 
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(Slingo, 1990; Chen et al., 2000; Greenwald et al., 1995). These clouds are a key component of climate and must be 

accurately represented in general circulation models (GCMs) (Dong and Minnis, 2023; Turner et al., 2007). Compared with 

ice clouds, which have complex vertical structures and high uncertainty, stratiform liquid clouds are relatively homogeneous 

in the horizontal direction and have a certain thickness (Zhang et al., 2010; Mace et al., 2009). Therefore, these clouds are 35 

relatively ideal for studying cloud properties and growth processes using satellite observations and models. 

 

The cloud microphysical profile is an indispensable parameter for describing cloud vertical structures, such as the profile of 

cloud effective radius (CER) and liquid water content (LWC) (Chen et al., 2008). Studies have demonstrated that cloud 

vertical structures are closely linked to the cloud life cycle and precipitation characteristics, atmospheric circulation, cloud–40 

precipitation microphysical processes, and conditions for artificial rainfall (Nakajima et al., 2010a, b; Zhao et al., 2024; 

Breon and Doutriaux-Boucher, 2005; Sinclair et al., 2021). Accurately and comprehensively detecting and quantifying the 

vertical structural characteristics and geographical distribution of clouds is highly important for reducing uncertainties in the 

impact of clouds on climate change and exploring the role of clouds and related feedbacks in complex processes (Rosenfeld 

and Lensky, 1998; Kessler, 1969; Liu et al., 2006). 45 

 

Active remote sensing systems, such as ground-based, satellite-borne, and airborne radars, provide precise vertical 

microphysical cloud data but are constrained by narrow observational swaths (Battaglia et al., 2020; Protat et al., 2009; Fox 

and Illingworth, 1997). In contrast, passive remote sensing enables large-scale cloud monitoring through multispectral 

measurements of reflected solar radiation and emitted thermal radiation, offering broad coverage with high spatiotemporal 50 

resolution (Nakajima et al., 2010a; Letu et al., 2020; Tana et al., 2023; Shi et al., 2025; Letu et al., 2023; Tang et al., 2025). 

However, conventional plane-parallel cloud assumptions in passive satellite cloud retrievals contradict natural three-

dimensional cloud structures (Platnick, 2001; Horváth and Davies, 2004). Integrating passive and active satellite 

measurements can effectively combine their complementary advantages, thereby significantly enhancing the ability of 

passive sensors to retrieve cloud vertical microphysical properties. 55 

 

Polarimetric multiangle imagers are widely regarded as pivotal instruments for acquiring multidimensional information in 

global and regional cloud property retrievals (Wang et al., 2022; Bréon and Goloub, 1998; Shang et al., 2019). Unlike 

conventional passive optical satellite payloads, these advanced sensors synergistically combine multiangle, multipolarization, 

and multispectral characterization capabilities, thereby maximizing observational information for individual pixels and 60 

specific targets (Dubovik et al., 2019). Moreover, the CER can be retrieved more reliably and robustly through polarized 

multiangle observation data, which also provides effective variance information, than through use of the MODIS imager 

(Breon and Doutriaux-Boucher, 2005; Bréon and Goloub, 1998; Shang et al., 2019). These factors significantly increase the 

potential for retrieving cloud vertical properties from passive satellite observations. The POLDER series represents the most 

mature polarimetric multiangle payloads internationally. Although POLDER-3, the final payload launched in 2004, was 65 
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decommissioned in 2013, the upcoming 3MI payload onboard the EUMETSAT Polar System Second Generation (EPS-SG) 

program will effectively inherit and improve POLDER-3's observational capabilities (Fougnie et al., 2018). 

 

While significant research efforts have focused on cloud vertical structure retrieval (Rosenfeld and Lensky, 1998; Chen et al., 

2020; Alexandrov et al., 2020; Barker et al., 2011; Leinonen et al., 2019; Shang et al., 2023), substantial challenges persist in 70 

large-scale vertical microphysical characterization, including insufficient prior knowledge from active sensors to guide 

passive retrieval algorithms and poorly understood correlations between key profile features and other cloud parameters. 

Additionally, comprehensive statistical analyses examining global-scale cloud profiles from structural and morphological 

perspectives are lacking. These gaps highlight the need for enhanced integration of active and passive systems with advanced 

and novel approaches in cloud profile retrieval. To address the above challenges, this paper focuses on quantifying and 75 

retrieving the vertical microphysical characteristics of single-layer stratiform liquid clouds. Using observation data from the 

CloudSat cloud profile radar (CPR), we extract global stratiform liquid cloud profile data over nearly three years. Through a 

novel perspective of analyzing profile shapes and structural characteristics, we aim to compensate for the lack of a priori 

knowledge of cloud profile retrieval by passive observation, to understand the significance of profile shape in the cloud life 

cycle, and to explore the correlation between structural features of the cloud profile and other cloud parameters. Moreover, 80 

this study reports the first retrieval of key cloud profile features from POLDER/Parasol satellite observations and the 

reconstruction of complete cloud profiles. 

2 Datasets 

2.1 CloudSat data 

The main mission of the CloudSat satellite is to detect cloud vertical structures and improve the understanding of cloud 85 

abundance, distribution, structure and radiation characteristics. To date, the CloudSat official website has released 

observations from 2006 to 2020. The instrument carried by CloudSat is the Cloud Profile Radar (CPR), which is a 94-GHz 

millimeter-wave radar with a sensitivity 1,000 times that of a standard weather radar. The CPR transmits energy to the Earth 

and calculates the energy returned by the cloud as a function of distance. Global CER profiles of liquid stratiform clouds are 

derived from the latest version (R05) of CloudSat’s 2B-CWC-RO product. This dataset provides vertical measurements of 90 

hydrometeor water content, number concentration, and effective radius, featuring 125 layers at 240-m vertical resolution 

across a 30-km detection range (Austin, 2007). Moreover, we employ the 2B_CLDCLASS_radar product (R05) of CloudSat 

for cloud layer information, including cloud layer type, cloud layer base height, cloud layer top height, land/sea flag, etc. The 

precipitation flags are obtained from the 2B-CLDCLASS product (R05) of CloudSat. Users can download all standard 

CloudSat products from the official CloudSat Data Processing Center at https://www.cloudsat.cira.colostate.edu. 95 
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As part of the A-train satellite constellation, CloudSat can also offer synergistic observation capabilities with other passive 

sensors, such as MODIS and POLDER. Although CloudSat/CPR is sensitive to hydrometers, uncertainties inevitably exist in 

these products: (1) Near the cloud base, the presence of drizzle or raindrops—due to predefined threshold settings—may 

hinder the ability to reliably distinguish them from cloud droplets, (2) contamination by drizzle and raindrops can cause 100 

deviations in the observed cloud droplet size distribution from the theoretical distribution, thereby introducing errors in the 

retrieval process (Austin, 2007), and (3) due to the limitations of 240-m resolution, it may not be possible to identify ultra-

thin layer structures below 240m. 

2.2 Parasol data 

The POLDER-3/Parasol payload is a multiangle, multipolarized, and multispectral instrument designed for atmospheric 105 

aerosol, cloud, water vapor, and radiation budget studies. Operating from September 2004 to October 2013, POLDER-3 

features three polarized (490, 670, and 865 nm) and six nonpolarized (443, 565, 763, 765, 910, and 1020 nm) observation 

channels, providing atmospheric data from up to 16 angles with a nadir resolution of 5.3×6.2 km (Deschamps et al., 1994). 

Parasol joined the A-Train constellation in 2005, but regrettably, it drifted away from the formation in 2009. Nevertheless, 

the combined POLDER and CloudSat data still hold significant research value. This study employs their observations for the 110 

remote sensing of profiles, offering insights for future sensor combinations such as 3MI and EarthCARE. 

 

Our study uses POLDER-3 Level-1 (L1_B) products and cloud optical thickness parameters from Level-2 (RB2) products as 

input data for estimating the structural characteristics of cloud profiles. Moreover, we employ the CER retrieved by an 

improved primary cloudbow retrieval (PCR) algorithm (Shang et al., 2019) and the cloud-base height and cloud-top height 115 

retrieved based on POLDER data. The PCR algorithm permits an extended range of CER (3–25μm) and EV (0.01–0.29) 

estimates and a higher resolution (40–60 km) in the retrieval by using POLDER polarized measurements from both primary 

and supernumerary cloudbow regions. The retrieval algorithm for cloud base height will be thoroughly described in a 

forthcoming article and is therefore not discussed here 

3 Methodology 120 

The study workflow (Fig. 1) is divided into three main parts: first, classifying the shapes of CER profiles from CloudSat data 

and examining their structural features; second, conducting correlation analyses between the structural features of these 

profiles and other relevant cloud parameters; and third, parameterizing cloud profiles, retrieving their key characteristics and 

reconstructing the complete profile. The methods employed in this study are introduced below. 
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 125 

Figure 1: Research Framework Flowchart (TP_CER represents the cloud effective radius at the profile turning point; TP_NCOT 

represents the normalized cloud optical thickness at the profile turning point; CT_CER represents the cloud effective radius at the 

cloud top; CB_CER represents the cloud effective radius at the cloud base; TP_LWC represents the liquid water content at the 

profile turning point; TP_NH represents the normalized height at the profile turning point; LWC represents the liquid water 

content; CTH represents the cloud-top height; CBH represents the cloud-base height; CGT represents the cloud geometric 130 

thickness.) 

3.1 Cloud profile data preprocessing and shape simplification 

To ensure the accuracy and consistency of the research data and to provide a reliable basis for subsequent analysis, we 

preprocessed the CloudSat profile data. Preprocessing involves mainly data screening and matching, as well as standardizing 

the data to better reveal the structural characteristics of the profiles. Due to the complexity of multilayered clouds and the 135 

dominance of single-layer cases, we limit our investigation to single-layer cloud profiles. Based on global CloudSat data 

product over nearly three years (2013, 2019, and the first eight months of 2020), we extracted approximately 12.47 million 
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CER profiles of single-layer stratocumulus and stratus clouds, with each profile linked to multiple auxiliary cloud parameters. 

The auxiliary information includes profile observation time, geographic coordinates, cloud-top height, cloud-base height, 

geometric thickness, liquid water path, corresponding liquid water content (LWC) profile for each CER profile, cloud type, 140 

land/sea flag, and precipitation flag. Moreover, the normalized optical thickness and normalized height at each layer of the 

profile are calculated for subsequent comparative analysis. Notably, the normalized optical thickness is 0 at the cloud top and 

1 at the cloud base, whereas the normalized height is 1 at the cloud top and 0 at the cloud base. The selection of 2013, 2019, 

and 2020 is not arbitrary but strategically chosen to align with existing polarized multi-angle payload observations. 

Furthermore, since our study focuses on relatively homogeneous and stable single-layer stratiform liquid clouds, localized 145 

atmospheric anomalies do not impact the statistical results presented herein.  

 

Here, we propose a shape simplification scheme primarily based on the Visvalingam-Whyatt line simplification (VM) 

algorithm (Visvalingam, 2016) to extract the essential shape characteristics of profiles. This approach effectively simplifies 

complex profile geometries while preserving their fundamental structure, thereby eliminating interference with the extraction 150 

of key profile features. The VM algorithm, which was originally designed for vector data processing, preserves geometric 

characteristics while reducing the number of data points. The simplification steps include (1) setting a distance threshold 

(decimation factor) as the simplification criterion; (2) calculating the area of triangles formed by consecutive points and 

identifying the smallest area (Amin); and (3) deleting the middle vertex if Amin < A and repeating the process until all areas 

exceed the threshold. This approach minimizes angular changes and maintains the profile’s true form, enabling faster and 155 

more accurate identification of turning points in subsequent analyses. 

3.2 Feature selection and variable screening 

Feature selection and variable screening were conducted for the subsequent retrieval of key profile characteristics through 

correlation analysis. The turning-point cloud effective radius (TP_CER), normalized optical thickness (TP_NCOT), and 

related cloud parameters are extracted from CloudSat-derived CER profiles exhibiting an “increasing-then-decreasing” shape. 160 

The related cloud parameters include cloud-top CER (CT_CER), cloud-base CER (CB_CER), the liquid water path (LWP), 

cloud-top height (CTH), cloud-base height (CBH), cloud geometric thickness (CGT), normalized height at the turning point 

(TP_NH), and liquid water content at the turning point (TP_LWC). The correlation coefficients between these cloud 

parameters and the key CER profile structural characteristics (TP_CER and TP_NCOT) are calculated. The parameter 

combinations that exhibit a high correlation with the key structural characteristics of CER profiles are selected as input 165 

variables for the subsequent model. 

3.3 Retrieval of profile key characteristics and profile reconstruction 

For the retrieval of stratiform liquid cloud profiles, the estimation of key profile characteristics is performed first, followed 

by inputting these key characteristics into a physical parameterization model to reconstruct the complete cloud profile. The 
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estimation methods for the key profile structural features (TP_CER and TP_NCOT) are carefully selected based on the 170 

results of the correlation analysis. When the correlation analysis shows that certain parameters have strong correlations with 

the key profile structural features, a multiple regression model is employed to estimate these features. Conversely, when all 

the parameters exhibit weak correlations with the key profile structural features, we compare the performance of the machine 

learning model with that of multiple regression and select the approach that demonstrates superior accuracy. Additionally, 

different combinations of input parameters are compared to achieve the highest estimation accuracy and computational 175 

efficiency. 

 

The optimal multiple linear regression model is selected based on the number of highly correlated variables in the correlation 

analysis: the selected cloud parameters with higher correlations serve as independent variables (𝑋1, 𝑋2, …, 𝑋𝑘), whereas 

TP_CER is treated as the dependent variable 𝑌 , establishing a multiple linear regression model. The model takes the 180 

following form: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 (1) 

where 𝛽0 is the constant term and 𝛽1, 𝛽2, …, 𝛽𝑘  denote the regression coefficients. Approximately 50% of the CloudSat 

dataset is used as the training set to estimate the regression coefficients through least squares methods and obtain optimal 

model parameters, and the remaining 50% is used for validation. 185 

 

Given its demonstrated high stability in cloud property retrievals and previous testing, the random forest is chosen as the 

primary machine learning model for estimating key features. Compared with multiple decision trees, the random forest 

model trains each tree through random sampling and feature selection. The ratio of the training set to the test set remains 

approximately 1:1, which is consistent with the regression models. Ultimately, the most accurate method and optimal input 190 

parameter combination are applied to POLDER data to retrieve the key structural characteristics of CER profiles. The 

accuracy metrics, including the root mean square error (RMSE), Pearson correlation coefficient ( 𝑅 ), coefficient of 

determination (𝑅2 ) and relative root mean square error (rRMSE), are used to evaluate the accuracy of the parameter 

estimation. 

 195 

To extend profile feature estimation to the scope of passive observations, we constructed a cost function 𝐹 based on L2 

product parameters from POLDER-3 observations covering all pixels within the observational range, as well as passive 

observation L2 product parameters of triangle-shaped profiles in CloudSat observations. The L2 product parameters include 

COT, CGT, the temperature profile (10 layers), and the water vapor profile (9 layers). The cost function is defined as follows: 

𝐹(𝑖, 𝑗, 𝑚) =  ∑ [
𝑃𝑣(𝑖, 𝑗) − 𝑃𝑣(𝑚)

𝑃𝑣(𝑚)
]

2𝑉

𝑣=1

: 𝑚 ∈ [0, 𝑀] (2) 200 
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where 𝑖 and 𝑗 are the row and column numbers of the pixel; 𝑚 is the index of the active-passive synergistic pixel with an 

Inc_Dec profile; and 𝑃𝑣 represents the value of the L2 product parameters. In this study, the threshold for the cost function is 

set to 0.5. If the cost function of a pixel is less than 0.5, the atmospheric environment forming the cloud and the profile shape 

of the cloud within that pixel are similar to the triangle-shaped profiles along the CloudSat observation trajectory. 

 205 

The estimated profile structural characteristics are input into the cloud profile reconstruction model (CPRM) to reconstruct 

complete profiles. The CPM, proposed by Shang et al. (Shang et al., 2023), is a parameterization model derived from 

extensive cloud profile data simulated by the Colorado State University (CSU) Regional Atmospheric Modeling System 

(RAMS). The CPM assumes that the particle radius profile and liquid water content profile are either linear or triangular. It 

identifies eight main parameters necessary to fully describe a cloud profile: cloud geometric thickness (𝑧𝑐), cloud optical 210 

thickness (𝜏), turning-point normalized optical thickness (𝑡𝑚) measured from the cloud top, effective radius at the cloud base 

(𝑟𝑏), effective radius at the cloud top (𝑟𝑡), effective radius at the turning point (𝑟𝑚), effective variance of the gamma particle 

distribution (𝑣𝑒), and slope (𝑘) of the cloud droplet number concentration profile (𝑁). The CPRM is an extension of the CPM, 

designed to reconstruct detailed cloud profiles using limited measurement data from active detection (Shang et al., 2025), 

which can be iteratively computed based on the retrieved key profile structural features (TP_CER and TP_NCOT) until it 215 

converges to a complete profile structure with continuous layer information. 

3.4 Match-up between POLDER and CloudSat data 

To validate the profile structural characteristics retrieved by passive satellite observations, a match-up process between 

POLDER and CloudSat observations is conducted. We focus on March 2007 and identified coincident orbits that contained a 

high number of stratiform cloud profiles exhibiting a triangle-shaped vertical structure in CloudSat data. A specific dataset 220 

from March 2, 2007 (POLDER observation time between 06:41:09 and 07:24:06 UTC) is selected for detailed analysis in 

Section 4.4. The POLDER Level 2 (RB2) product served as the primary dataset for matching with CloudSat observations. 

With a spatial resolution of approximately 16 km, this product is notably coarser than CloudSat's resolution of less than 2 km. 

To establish correspondence between the datasets, the Euclidean distance between each POLDER RB2 pixel center and all 

CloudSat data points within the POLDER RB2 pixel is computed. Owing to the resolution discrepancy, a single POLDER 225 

RB2 pixel often contains multiple CloudSat data points. In such cases, only the CloudSat data point closest to the center of 

the POLDER_RB2 pixel is retained.  

 

Through the matching process, cloud optical thickness (COT), latitude, longitude, and other relevant data are extracted from 

the POLDER RB2 product. These coordinates are then used to extract cloud base height (CBH), cloud top height (CTH), and 230 

cloud-top effective radius (CT_CER) obtained through the retrieval algorithm. CBH and CTH are retrieved from the 

POLDER L1 product, which has a native resolution of 6 km, matching the resolution of the source data. CT_CER is 

retrieved from the POLDER L1 product at a 50 km resolution. 
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4 Results 

4.1 Typical shape and structural characteristic analysis of CER profiles 235 

We conduct categorical statistics based on three criteria, namely, cloud type (stratocumulus/stratus), underlying surface type 

(sea/land), and precipitation occurrence (nonprecipitating/precipitating), to investigate the characteristic effective particle 

profiles across different cloud categories. Fig. 2 presents the results of the quantitative analysis of the spatial distribution and 

categorical proportions of the profile data within our dataset. Spatially, single-layer stratiform liquid cloud profiles occur 

more frequently over mid- to low-latitude oceans in the Southern Hemisphere and high-latitude oceans in the Northern 240 

Hemisphere, whereas generally lower occurrence rates occur over land areas. The striated features apparent in Fig. 2(a) 

result from CloudSat’s narrow-swath observations. Fig. 2(b) more visually illustrates the significant land-ocean disparity: for 

stratiform cloud profiles, the surface type ratio is 88.3% ocean to 11.7% land, whereas for stratocumulus profiles, the ratio is 

84.4% ocean to 15.6% land. For both cloud types, the nonprecipitating-to-precipitating ratio is approximately 2:3, and 

precipitating clouds are slightly more frequent. It should be noted that the CloudSat CWC-RO product is known to miss a 245 

portion of single-layer liquid clouds, either due to masking by surface clutter or because their signal falls below the radar’s 

detection threshold (Lamer et al., 2020; Schulte et al., 2023). As a result, the true ratio of nonprecipitating to precipitating 

clouds is likely higher than reported in this study. The vertical distribution patterns are presented in Fig. 2(c). Notably, 99.46% 

of sea and 99.62% of land liquid stratiform cloud profiles are concentrated within layers 3-11. Based on the above analysis, 

given CloudSat’s vertical resolution of 240 m per bin and the fact that approximately 99.5% of the profiles are concentrated 250 

within 11 bins, this study focuses on single-layer stratiform liquid clouds with a geometric thickness of less than 2.64 km. 
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Figure 2: Distribution and composition of effective data on the investigated liquid stratiform cloud profiles. (a) Geographical 

distribution of effective data; (b) statistical chart of land/sea and precipitation/nonprecipitation composition of effective data; (c) 

distribution and number of profile valid data bins. 255 

 

Through an extensive literature review and visual analysis of CloudSat single-layer liquid cloud profiles, the vertical 

variation of cloud effective radius (CER) can be classified into four distinct shapes based on the monotonicity between 

adjacent layers: (1) triangle shaped (Inc_Dec), increasing then decreasing; (2) monotonically decreasing (Mono_Dec); (3) 

monotonically increasing (Mono_Inc); and (4) decreasing then increasing (Dec_Inc). These shapes depict the vertical 260 

variation in the CER from the cloud base to the top. The four shapes can be simply expressed by the following formulas: 

 Inc_Dec: 𝐶𝐸𝑅1 < 𝐶𝐸𝑅2 < ⋯ < 𝐶𝐸𝑅𝑘 > 𝐶𝐸𝑅𝑘+1 > ⋯ > 𝐶𝐸𝑅𝑁, 1 < 𝑘 < 𝑁 (3) 

 Mono_Dec: 𝐶𝐸𝑅1 > 𝐶𝐸𝑅2 > ⋯ > 𝐶𝐸𝑅𝑁 (4) 

 Mono_Inc: 𝐶𝐸𝑅1 < 𝐶𝐸𝑅2 < ⋯ < 𝐶𝐸𝑅𝑁 (5) 

 Dec_Inc: 𝐶𝐸𝑅1 > 𝐶𝐸𝑅2 > ⋯ > 𝐶𝐸𝑅𝑘 < 𝐶𝐸𝑅𝑘+1 < ⋯ < 𝐶𝐸𝑅𝑁, 1 < 𝑘 < 𝑁 (6) 265 

Where 𝐶𝐸𝑅𝑖 denote the CER at the i-th vertical level (bin), i=1 corresponds to the cloud base and i=N to the cloud top. 

Systematic classification and statistical analysis confirm these patterns (Fig. 3(a)). Collectively, these four shapes account for 

90.1% of the observed CER profiles, with Shapes 2 (Mono_Dec: 48.8%) and 1 (Inc_Dec: 39.7%) being the most prevalent, 

highlighting their dominance in the liquid stratiform cloud life cycle. The remaining 9.1% represent complex-shaped profiles 

that do not conform to these four categories, with further analysis of these cases presented in the Appendix A (Table A4). 270 
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Approximately 60% of these profiles contain only single segments inconsistent with Shapes 1 and 2. Although our profile 

simplification program can reduce complex shapes to simpler forms, there is controversy regarding the specific categories to 

which these shapes belong. Taking Fig. A1 as an example, Complex Shape 1 and Complex Shape 2 can be simplified into 

different primary shapes. Therefore, we believe that these 9.1% of complex profile shapes can be further analyzed in 

subsequent studies, but it is unnecessary to include them in the follow-up parts presented in this study, as their inclusion 275 

would introduce unnecessary errors into our retrieval prior knowledge.  

 

Figure 3: Categorical statistics of stratiform cloud profile shape and the distribution of CER and normalized optical thickness at 

the TP of Inc_Dec (Shape 1) profiles. (a) Shape of all profile data; (b) shape of land/sea profile data; (c) TP_CER of stratiform 

cloud profiles; (d) TP_NCOT of stratiform cloud profiles. 280 

 

These shapes correspond to distinct development stages of the cloud life cycle (Fig. 4). Initial updrafts drive adiabatic 

growth, leading to a reduction in droplet size with increasing optical thickness. Mature clouds exhibit enhanced evaporation 

at the cloud top due to dry air entrainment, further reducing droplet size (Shape 1, Fig. 4(a)). In contrast, collision-

coalescence near the cloud base promotes droplet growth and spectral broadening (Shape 2, Fig. 4(d)). The distinction 285 

between Fig. 4(c) and (d) lies in the presence of precipitation below the cloud base, which results in larger base particle sizes. 

If precipitation-induced droplet accumulation in the lower cloud layer reduces droplet size (based on Fig. 4(d)), the resulting 

pattern resembles that in Fig. 4(b). 
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Since the Inc_Dec shape is more complex than the Mono_Dec shape is and more structural characteristics require 290 

investigation (e.g., turning points of profiles), this study focuses specifically on analyzing the structural characteristics of 

Inc_Dec profiles. The analysis establishes a foundation for subsequent feature parameterization and estimation. Unlike other 

shapes, the key parameters essential for describing Inc_Dec profiles are the turning-point CER (TP_CER) and the turning-

point normalized optical thickness (TP_NCOT). Fig. 3(c) shows the TP_CER distribution for Inc_Dec profiles. 

Nonprecipitating stratiform clouds exhibit a single-peak TP_CER distribution between 8 and 25μm, peaking near 12μm. 295 

Precipitating stratiform clouds exhibit a single-peak TP_CER distribution between 10 and 25μm, peaking near 17μm. The 

analysis reveals several key results: (1) precipitating cloud profiles present larger (by 3–5μm) TP_CERs than 

nonprecipitating clouds do, and (2) oceanic stratiform cloud profiles present a narrower TP_CER range than their land 

counterparts do. 

 300 

The distributions of TP_NCOT for stratocumulus and stratus clouds are shown in Fig. 3(d). TP_NCOT indicates the position 

of the TP within the cloud profile. The key observations include the following: (1) the TP_NCOT of liquid stratiform clouds 

exhibits a multipeak distribution; (2) nonprecipitating cloud TPs are concentrated in the upper optical thickness region 

(NCOT: 0–0.5), while land-precipitating cloud TPs show a symmetric distribution around NCOT=0.5, and oceanic-

precipitating cloud TPs are distributed predominantly between 0.5 and 1. This suggests that precipitating cloud TPs occur 305 

closer to the cloud base than nonprecipitating clouds do, which is consistent with the cloud life cycle illustrated in Fig. 3. (3) 

The peak of the oceanic precipitating cloud distribution clusters around NCOT=0.5. 
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Figure 4: Schematic diagram of the cloud life cycle stages corresponding to different profile shapes. (a) and (b) represent cloud 

droplet development corresponding to Inc_Dec (triangle-shaped) profiles; (c) and (d) represent cloud droplet development 310 

corresponding to Mono_Dec profiles. 

4.2 Correlation analysis of profile structural features 

During the profile retrieval process, to determine the main structure of the cloud profile, it is necessary to obtain the relevant 

information at the profile TP, as well as at the bottom of the cloud. Many previous studies have focused on the retrieval of 

cloud bottom parameters; however, few studies have explored cloud profile TP information, so we would like to establish a 315 

parameterized scheme and estimation method for cloud profile TP-related information. To further investigate the correlation 

between the structural features of the profile and other cloud parameters, we initially examined the relationships of both 

TP_CER and TP_NCOT with other cloud parameters for Inc_Dec profiles. The study randomly selected 4800 data points for 

each of the eight stratiform clouds to be analyzed, and the correlations between the TP_CERs of the eight stratiform clouds 

and the nine cloud parameters are presented in Fig. 5(a). For different types of clouds, TP_CER has a strong correlation with 320 

cloud-base CER and the liquid water path (LWP), which generally range from 0.75 to 0.92, among which the cloud-base 

CER has the highest correlation with the TP_CER of the stratiform cloud profiles. Moreover, TP_CER also has a strong 

correlation with the liquid water content at the TP (TP_LWC), and the correlation between stratiform cloud TP_CER and 
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TP_LWC fluctuates over a wider range, between 0.462 and 0.784. The cloud-base height, TP_NH, and TP_NCOT have 

weak correlations with TP_CER, with correlations in the range of -0.26 to 0.13. The cloud-top CER and cloud-top height 325 

have different degrees of correlation for the TP_CERs of different types of clouds: the correlation of the cloud-top CER is 

greater for the TP_CER of nonprecipitating stratiform clouds (0.42–0.51) than that of precipitating stratiform clouds (0.23–

0.27), and the correlation of cloud-top height with the TP_CER of the sea stratocumulus and stratus profiles is greater (0.41–

0.49) than that with the land stratiform clouds (0.18–0.29). 

 330 

Figure 5: Correlation of TP parameters with other cloud parameters. (a) correlation of turning point CER with other cloud 

parameters; (b) correlation of the normalized optical thickness at turning point with other cloud parameters. The nine cloud 

parameters corresponding to the vertical axis are, from top to bottom: cloud top CER (CT_CER), cloud bottom CER (CB_CER), 

liquid water path (LWP), cloud top height (CTH), cloud bottom height (CBH), cloud geometric thickness (CGT), normalized 

height at the turning point (TP_NH), normalized optical thickness at the turning point (TP_NCOT), and liquid water content at 335 

the turning point (TP_LWC). The nine types of clouds corresponding to the horizontal axis are, from left to right: land non-

precipitation stratocumulus (Land_Sc_np), sea non-precipitation stratocumulus (Sea_Sc_np), land precipitation stratocumulus 

(Land_Sc_p), sea precipitation stratocumulus (Sea_Sc_p), land non-precipitation stratus (Land_St_np), sea non-precipitation 

stratus (Sea_St_np), land precipitation stratus (Land_St_p), sea precipitation stratus (Sea_St_p). 

 340 

Fig. 5(b) shows the correlations between the TP_NCOT of stratiform cloud profiles and other cloud parameters. In marked 

contrast to TP_CER, the correlations of almost all cloud parameters with TP_NCOT, except for TP_NH, are relatively weak, 

and almost all of them are in the range of ±0.3. Since both TP_NH and TP_NCOT indicate where the TP occurs in the cloud, 
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it is understandable why they are highly correlated. The weak correlation for TP_NCOT stems from the fact that the TP 

position is largely independent of common cloud parameters such as droplet size, cloud water content, and cloud thickness. 345 

Instead, it is primarily influenced by microphysical processes like cloud-top entrainment and precipitation formation, leading 

to a relatively random distribution of TP_NCOT within the cloud layer. This inherent randomness makes it inherently 

difficult to estimate TP_NCOT using conventional correlation-based method. 

 

To further investigate several parameters that are highly correlated with TP_CER and their relative distributions with respect 350 

to TP_CER, we randomly selected 4800 samples with four cloud characteristics (Land Nonprecip, Sea Nonprecip, Land 

Precip, and Sea Precip) to generate scatter density plots. The relative distributions of parameters highly correlated with the 

TP_CER of stratiform cloud profiles are shown in Fig. 6(a)-6(p). As illustrated in Fig. 6(a)-(d), the scatter points are located 

mostly below and close to the 1:1 line, indicating a strong linear correlation between the CB_CER and TP_CER of the 

profile. For sea cloud profiles, TP_CER also shows a strong linear correlation with the LWP. In contrast, Fig. 6(e) and (g) 355 

show that, for land clouds, while TP_CER still strongly correlates with the LWP, the scatter density plot exhibits a vertical 

distribution along TP_CER, with points diverging from the density center toward both sides. Sea cloud scatter points, 

however, show a radial distribution pattern, dispersing symmetrically from the center. In Fig. 6(i)–(l), the scatter points form 

nearly horizontal stripes, with most points concentrated around several CGT values. This is due to CloudSat’s measurement 

method, which results in a discontinuous discrete distribution of CGT, thereby lowering the linear correlation between CGT 360 

and TP_CER. TP_LWC shows a high linear correlation with TP_CER, with multiple density centers visible in the scatter 

density plots. As shown in Fig. 6(m), (n), and (p), nearly all plots exhibit two density centers. The two density centers 

observed in the relationship between the TP_CER and TP_LWC reflect two distinct cloud microphysical regimes. One is 

primarily driven by condensational growth, which tends to occur under low aerosol and stable conditions, resulting in higher 

LWC for a given droplet size. The other is dominated by collision-coalescence, typical in relative high aerosol and 365 

dynamically active environments, leading to lower LWC for the same droplet size.  
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Figure 6: Relative distribution of cloud parameters (high correlation with TP_CER) and profile TP_CER. The green × represents 

binned median of the parameter represented by the vertical axis; the black line segment represents binned median of the 370 

parameter represented by the vertical axis ±σ. 

4.3 Estimation of key structural features of CER profiles 

Based on the previous analysis, CB_CER and the LWP clearly have good linear correlations with TP_CER. Therefore, we 

employ multiple linear regression to estimate TP_CER for cloud profiles with four different characteristics using CB_CER 

and the LWP as parameters. The goal is to derive empirical fitting formulas for TP_CER based on these two parameters. 375 

Three combinations of dependent variables were selected: (1) CB_CER and the LWP, (2) CB_CER alone, and (3) the LWP 

alone. For all four cloud types, using the combination of CB_CER and the LWP for multiple linear regression clearly yields 

the highest accuracy for estimating TP_CER. The validation results of TP_CER estimation, shown in Fig. 7, indicate that the 

RMSEs are 1.19 for Sea Nonprecip, 1.30 for Sea Precip, 1.75 for Land Nonprecip, and 1.96 for Land Precip. The estimation 

accuracy for sea cloud profiles is greater than that for land cloud profiles. Additionally, for sea cloud profiles, the use of both 380 

parameters for estimation significantly improves accuracy compared with the use of only one parameter. However, for land 

cloud profiles, the accuracy of TP_CER estimation using only CB_CER is comparable to the accuracy when both CB_CER 
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and the LWP are used, suggesting that CB_CER alone is sufficient for estimating TP_CER for land cloud profiles. The final 

empirical fitting coefficient, predictive performance and more specific verification results are shown in the Appendix A. 

 385 

Figure 7: Accuracy verification contour plots of the optimal TP_CER estimation method for four different types of clouds (sea 

nonprecipitating, sea precipitating, land nonprecipitating, and land precipitating). 

 

In addition to TP_CER, we use random forest and multiple linear regression methods, considering various parameter 

combinations to estimate TP_NCOT, according to the relatively weak correlation between other cloud parameters and 390 

TP_NCOT. The results indicate that the random forest method performs well for estimating TP_NCOT. The highest 

accuracy for estimating TP_NCOT is achieved by combining four parameters—CB_CER, CT_CER, CGT, and the LWP—

with RMSEs ranging from 0.1 to 0.12 and an R value of approximately 0.6, as shown in Fig. 8. Except for CTH, which can 

somewhat replace CGT for estimating TP_NCOT, other parameter combinations significantly reduce estimation accuracy.  

 395 
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Figure 8: Accuracy verification contour plots of the optimal TP_NCOT estimation method for four different types of clouds (sea 

nonprecipitating, sea precipitating, land nonprecipitating, and land precipitating). 

 

This study utilizes POLDER-3 Levels 1 and 2 (RB2) data, with observations commencing on March 2, 2007, at 06:41:09, in 400 

conjunction with CloudSat products, to perform active-passive satellite data matching. The primary objective is to 

investigate the applicability of the proposed profile structure characterization method for retrieving cloud vertical structures 

from passive satellite data. This study focuses on a typical stratocumulus cloud region over the Indian Ocean, located west of 

Oceania, within the geographical range of 40°S–65°S and 100°E–125°E, as shown in Fig. 9(a). The cloud-base CER is 

difficult to obtain directly through satellite observations. Here, we first analyzed the statistical distribution of CloudSat-405 

observed CB_CER and found its probability density function to be highly regular. Based on this observation, we developed a 

multivariate regression model using known parameters (CTH, the LWP, CT_CER, CBH) to estimate CB_CER. The method 

achieved excellent results, with the highest retrieval accuracy (for sea nonprecipitating clouds) and an RMSE of 1.13 μm. 

Based on the aforementioned estimation method, we estimated the key structural features of the cloud field profile in Fig. 
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9(a)—TP_CER and TP_NCOT—with the results shown in Fig. 9(f). Here, we estimate only the TP information for profiles 410 

classified as Inc_Dec. 

 

Figure 9: Comparative results of estimating the TP using passive data (Parasol) and active data (CloudSat). (a) True-color image 

drawn by Parasol observation on March 2, 2007; (b)–(e) and (g)–(j) represent the 8 profile cases indicated in (a) and present a 

comparison between the TP estimated by Parasol data and those estimated by CloudSat data, as well as the profiles and TP 415 

observed by CloudSat; (f) shows the TP_CER and TP_NCOT results estimated by POLDER observation. The last row of panels in 

the figure represents the profiles reconstructed by CPRM; (k)–(m) and (n)–(p) correspond to cases 1 and 2, respectively. 

 

The estimation accuracy is validated by comparing the estimated TP parameters derived from the POLDER-3/Parasol and 

CloudSat input parameters against the actual CloudSat measurements, as illustrated in Fig. 9(b)-(e) and (g)-(j). Eight 420 

representative profiles with TPs are selected based on CloudSat data. The comparative analysis reveals that the estimation 

accuracy when CloudSat parameters are used slightly surpasses that when POLDER-3 data are used. In particular, cases 3, 4, 
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5, 6, and 8 demonstrate satisfactory estimation performance, whereas cases 1, 2, and 7 exhibit relatively lower accuracy. This 

discrepancy can be attributed to three primary factors: (1) The coarse resolution of POLDER products cannot capture 

inherent subpixel heterogeneity. This study utilizes the POLDER Level 2 RB2 product (16 km resolution) along with cloud 425 

top height (CTH), cloud base height (CBH) (both at 6 km), and cloud top effective radius (CER) data (50 km resolution), all 

of which are derived from POLDER Level 1 products. Compared to CloudSat data, the coarser resolution of POLDER may 

cause biases resulting from subpixel heterogeneity. We conduct a further analysis of the eight cases in Fig. A2 by averaging 

the CloudSat CER profiles within each corresponding POLDER pixel along the altitude dimension. This process effectively 

aggregates the high-resolution CloudSat profiles to the spatial scale of a POLDER pixel, simulating what POLDER would 430 

likely "see". The resulting averaged profiles are then compared against our validation data—the CloudSat profile closest to 

the center of the POLDER pixel. Although this study specifically targets horizontally relatively homogeneous single-layer 

stratiform water clouds, subpixel heterogeneity—resulting from POLDER's coarse resolution—remains one of the main 

sources of error in estimating the structural parameters of cloud profiles. (2) Inherent physical limitation: Vertically 

integrated signal. The retrieval of CER from POLDER observations differs from traditional dual-channel methods, relying 435 

instead on the directional characteristics of polarized reflectance within the cloud bow scattering angle range. It should be 

emphasized that all such passive retrieval techniques essentially provide a vertically integrated measurement—a weighted 

average signal sensitive to microphysical properties from the cloud top downward through a depth determined by cloud 

optical thickness. This fundamental characteristic inherently increases the uncertainty in retrieving vertical structural features. 

(3) Propagation of input uncertainties. Errors in the upstream inputs (COT, CT_CER from POLDER, and CTH/CBH from 440 

the combination of POLDER and ancillary data) inevitably propagate into the LWP and CB_CER. This accumulated 

uncertainty then propagates into errors in the final estimated profile parameters, including the TP_CER and its location. 

Cases with higher sub-pixel heterogeneity or where the cloud-top CER is less representative of the layer-average are 

particularly susceptible to this propagation effect.  

5 Discussion and conclusion 445 

The primary goal of this study was to analyze the structural features and shapes of single-layer stratiform liquid cloud CER 

profiles using global CloudSat data, with a focus on understanding how these profiles represent different stages of the cloud 

life cycle. We also aimed to retrieve key profile characteristics from multiangle passive imager observations and reconstruct 

complete cloud profiles using physical parameterization models. 

 450 

Profile analysis of global single-layer stratiform liquid clouds reveals two dominant profile shapes: Inc_Dec (triangular 

shape, 39.7%) and the Mono_Dec (48.8%), which represent nearly 90% of cases. These shapes occur in both precipitating 

and nonprecipitating clouds, reflecting different lifecycle stages. For Inc_Dec profiles, the turning-point (TP) CER (TP_CER) 

and its position are structurally significant, showing strong correlations with cloud-base CER (CB_CER), the liquid water 



21 

 

path (LWP), cloud geometric thickness (CGT), and liquid water content at the TP (TP_LWC). In contrast, the normalized 455 

optical thickness at the TP (TP_NCOT) depends primarily on its normalized height (TP_NH) and weakly on other 

parameters. 

 

Multilinear regression is applied using POLDER-3 data to estimate TP_CER. For maritime clouds, combining CB_CER and 

the LWP achieves high accuracy (RMSE: 1.19–1.30μm), whereas continental clouds require only CB_CER (RMSE: 1.75–460 

1.96μm). For TP_NCOT, random forest outperforms linear regression, with optimal results (RMSE≈0.1) using CB_CER, 

cloud-top CER (CT_CER), CGT, and the LWP. Cloud-top height (CTH) could partially substitute for CGT. 

 

The primary challenges in retrieving profile structural features originate from the following aspects: (1) The coarse 

resolution of POLDER products restricts the ability to capture sub-pixel cloud heterogeneity; however, by concentrating on 465 

relatively uniform single-layer stratiform liquid clouds, this study partially mitigates the resulting retrieval uncertainties. It 

should be noted that sub-pixel heterogeneity can inevitably introduce certain errors, particularly at cloud boundaries. 

Nevertheless, Shang et al. (2015) pointed out that the error caused by sub-pixel heterogeneity in cloud effective radius (CER) 

retrieval does not exceed 10%, which remains within an acceptable range. (2) The estimation of CB_CER remains subject to 

certain uncertainties due to the inherent challenges in retrieving cloud base microphysical properties from passive 470 

observations; (3) The 240-m vertical resolution of CloudSat is insufficient to resolve ultra-thin cloud layers or capture fine-

scale in-cloud structures, such as sharp inversion layers or thin drizzling layers near cloud base. 

 

To address the issues mentioned above, the improvement strategies below can be implemented: (1) Internationally, there are 

currently polarimetric multi-angle payloads with higher spatial resolution and greater observation angles that have been 475 

launched or are planned for launch. For instance, China's DPC/GF-5 achieves a spatial resolution of nadir 3.3 km; the 

3MI/Metop-SG developed by the European Space Agency offers a spatial resolution of nadir 4 km, supports up to 21 

observation angles, and incorporates near-infrared bands. These capabilities collectively enable higher-resolution CER 

retrieval. (2) In terms of estimating the CB_CER: a) Introduce meteorological factors—such as ERA5 reanalysis data (e.g., 

wind speed, temperature, humidity, pressure, vertical velocity)—to assist in estimating the CB_CER, thereby enhancing the 480 

physical characterization of the cloud-base environment; b) Optimize existing methods for directly retrieving cloud-bottom 

particle size using passive observations (Level 1 or Level 2 products), improve the robustness of the retrieval model, and 

clarify the applicable boundaries of the method—specifically, determining the optical thickness threshold beyond which 

passive observations can no longer capture cloud-bottom information; c) Incorporate an uncertainty weighting framework to 

dynamically adjust the contribution weights of different input parameters based on their reliability, thereby refining the 485 

retrieval accuracy of CB_CER and reducing dependence on CloudSat-derived empirical relationships. (3) For the issue that 

CloudSat is insufficient to distinguish thin clouds or fine cloud structures smaller than 240m, in the future, the 

EarthCARE/CPR observation data with higher vertical resolution can be adopted to alleviate this problem. EarthCARE/CPR 
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demonstrates notable advancements over CloudSat, most significantly through its finer vertical resolution of 100 m 

compared to CloudSat’s 240 m. Additional enhancements include higher detection sensitivity, Doppler-based vertical wind 490 

measurements, and synchronized multi-sensor observational capabilities. These improvements are expected to deliver 

enhanced observational capabilities for characterizing finer-scale cloud microphysical processes and their interactions with 

atmospheric dynamics. 

 

Meanwhile, the validation results indicate that the RMSE of stratiform cloud profile structural characteristics over land is 495 

significantly higher than that over sea. This discrepancy is considered to be mainly attributable to the following factors: a) 

Sub-pixel Surface Heterogeneity: Variations in surface reflectance among different land cover types (e.g., vegetation, bare 

soil, urban areas) lead to mixed-pixel effects, complicating the decoupling of cloud optical properties. b) Aerosol 

Interference: Higher and spatiotemporally variable aerosol loadings over land can perturb cloud signals either indirectly by 

altering cloud microphysics (e.g., through cloud condensation nuclei effects) or directly via scattering. c) Surface Heating 500 

Effects: The lower thermal inertia of land surfaces results in more complex boundary-layer dynamics, increasing 

spatiotemporal variability in cloud base height and cloud layer thickness, which in turn elevates retrieval uncertainty. d) 

Interference from complex terrain and high-albedo surfaces: Complex terrain (e.g., mountains) and high-albedo surfaces (e.g., 

snow cover) are prone to causing false positives in cloud detection or overestimation of optical thickness. It is suggested that 

the following strategies could be adopted in the future to improve the estimation accuracy of stratiform cloud profile 505 

structural characteristics over land：a) Integration of land cover classification data (e.g., MODIS Land Cover product); b) 

Integration of aerosol ancillary data: Multi-source aerosol observations (e.g., MERRA-2 reanalysis data, AERONET ground-

based measurements) could be incorporated to better constrain retrieval parameters in regions affected by aerosol-cloud 

interactions; c) Development of advanced retrieval algorithms: More sophisticated methods, such as machine learning or 

deep learning approaches, could be employed to better represent the complex relationships between land surface, atmosphere, 510 

and clouds. 

 

Future work should focus on higher-resolution observations and improved retrieval methods to refine cloud structural 

analysis. In summary, this study advances methods for estimating TP characteristics in liquid clouds but underscores the 

need for enhanced observational capabilities and hybrid active-passive approaches to fully resolve profile uncertainties. 515 

Additionally, our work on the parameterization and retrieval of liquid cloud profiles through multiangle passive imagers 

provides valuable insights that can further improve the understanding and modeling of cloud processes in weather and 

climate systems. 
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Appendix A 520 

Table A1. Table of acronyms. 

Abbreviation Full term 

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

CB_CER Effective Radius of Cloud Base 

CBH Cloud Base Height 

CER Cloud Effective Radius 

CGT Cloud Geometric Thickness 

CNES Centre National d'Études Spatiales 

CPM Cloud Profile Model 

CPR Cloud Profile Radar 

CPRM Cloud Profile Reconstruction Model 

CSU The Colorado State University 

CT_CER Effective Radius of Cloud Top 

CTH Cloud Top Height 

Dec_Inc Decreasing then increasing 

ECMWF European Centre for Medium-Range Weather Forecasts 

GCM General Circulation Model 

Inc_Dec Increasing then Decreasing 

LWP Liquid Water Path 

MLR Multiple Linear Regression 

Mono_Dec Monotonically Decreasing 

Mono_Inc Monotonically Increasing 

POLDER Polarization and Directionality of Earth’s Reflectance 

RAMS Regional Atmospheric Modeling System 

RB2 Level 2 products of POLDER-3 

RF Random Forest 

RMSE Root Mean Square Error 

TP Turning Point 

TP_CER Cloud Effective Radius at the Turning Point 

TP_LWC Liquid Water Content at the Turning Point 

TP_NCOT Normalized Cloud Optical Thickness at the Turning Point 

TP_NH Normalized Height at the Turning Point 
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Table A2. Empirical coefficient and predictive performance of estimating TP_CER via the multiple linear regression 

method. 525 

Cloud profile type 
Empirical coefficient Predictive performance 

𝛽0 𝛽1(CB_CER) 𝛽2(LWP) 𝑅2 R RMSE 

Sea Nonprecip 2.2656 0.8342 0.0052 0.77 0.90 1.19 

Sea Precip 3.6904 0.7920 0.0022 0.87 0.94 1.30 

Land Nonprecip 0.5844 1.1234 — 0.54 0.83 1.76 

Land Precip 3.7843 0.8985 — 0.63 0.86 1.96 

 

 

Table A3. Statistics on the number of stratiform clouds categorized by land and sea, precipitating and nonprecipitating. 

 Sc St Sc+ St 

Land Nonprecip 1034462 15823 1050285 

Sea Nonprecip 4016879 135926 4152805 

Land Precip 853197 28468 881665 

Sea Precip 6188612 199916 6388528 

Sum 12093150 380133 12473283 

 

 530 

Table A4. Further statistics on CER profiles of complex shapes (“Other”: category V in profile shape). 

 
Sc+St Sc+St 

Land Nonprecip Sea Nonprecip Land Precip Sea Precip 

Sum total 137699 308344 84026 608258 

Percentage of situation 1a 33.57% 33.57% 47.88% 49.68% 

Percentage of situation 2b 31.41% 36.72% 19.07% 18.93% 

Intersection of 1 and 2c 8.40% 11.72% 6.31% 6.21% 

Percentage of situation 1+2 56.58% 58.57% 60.63% 62.40% 

a situation1 refers to a situation where only one segment of the profile does not correspond to the increasing and then decreasing shape profile of shape1; b 

situation2 refers to a situation where only one segment of the profile does not correspond to the monotonically decreasing shape profile of shape2. c There is 

an intersection of situation1 and situation2, i.e., a profile that matches both situation1 and situation2 (Intersection of 1+2), which needs to be subtracted out 

when calculating the sum of the two in order to avoid double counting. 535 
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Table A5. Validation accuracy of TP_CER linear regression when different parameters are used. 

Independent 

variables 

Dependent 

variables 
R2 R RMSE 

Regression 

data 

volume 

Validation 

data 

Volume 

TP_CER 

(Sea Nonprecip) 

CB_CER; 

LWP 
0.77 0.90 1.19 

1400000 1389529 
CB_CER 0.52 0.82 1.59 

LWP 0.61 0.85 1.47 

TP_CER 

(Sea Precip) 

CB_CER; 

LWP 
0.87 0.94 1.30 

700000 710750 
CB_CER 0.82 0.92 1.46 

LWP 0.35 0.78 2.37 

TP_CER 

(Land 

Nonprecip) 

CB_CER; 

LWP 
0.54 0.83 1.75 

250000 260999 
CB_CER 0.54 0.83 1.76 

LWP 0.28 0.76 2.43 

TP_CER 

(Land Precip) 

CB_CER; 

LWP 
0.63 0.86 1.96 120000 118706 
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Table A6. Validation accuracy of TP_NCOT predictions when different parameters and methods are used. 540 

Independent 

variables 
Dependent variables R RMSE rRMSE Method 

TP_NormCOT 

(Sea Nonprecip) 

CB_CER, CT_CER, CGT, LWP 0.59 0.10 0.23 

RF 
CB_CER, CT_CER, CTH, LWP 0.56 0.10 0.23 

CT_CER, CGT, LWP 0.39 0.12 0.27 

CB_CER, CT_CER, LWP 0.49 0.11 0.25 

CB_CER, CT_CER, CGT, LWP 0.51 0.11 0.24 MLR 

TP_NormCOT 

(Sea Precip) 

CB_CER, CT_CER, CGT, LWP 0.63 0.11 0.22 

RF CB_CER, CT_CER, CTH, LWP 0.64 0.11 0.21 

CT_CER, CTH, LWP 0.40 0.14 0.26 

CB_CER, CT_CER, CGT, LWP 0.52 0.12 0.24 MLR 

TP_NormCOT 

(Land 

Nonprecip) 

CB_CER, CT_CER, CGT, LWP 0.58 0.12 0.29 

RF CB_CER, CT_CER, CTH, LWP 0.53 0.13 0.30 

CT_CER, CTH, LWP 0.37 0.14 0.33 

CB_CER, CT_CER, CGT, LWP 0.54 0.12 0.29 MLR 

TP_NormCOT 

(Land Precip) 

CB_CER, CT_CER, CGT, LWP 0.66 0.12 0.27 

RF CB_CER, CT_CER, CTH, LWP 0.65 0.12 0.28 

CT_CER, CGT, LWP 0.33 0.16 0.35 

CB_CER, CT_CER, CGT, LWP 0.60 0.13 0.29 MLR 
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Figure A1. Complex CER profile shapes and their possible corresponding simplified shapes (examples). 

 545 

 

 

Figure A2. Comparison of the average CER profile (averaged by height) within the same POLDER pixel versus the CER 

profile closest to the center of the POLDER pixel. 
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