Dear Prof. Zhang,

We sincerely thank you and the two referees for the time and effort spent reviewing our
manuscript and providing constructive comments. Your feedback is invaluable for improving the
quality of our paper. We fully understand and agree with your emphasis on the need for
transparency, reproducibility, and uncertainty analysis regarding the cloud-base height (CBH)
retrieval method used in this study. We have carefully addressed each of the four points you raised
and made corresponding revisions to the manuscript, as detailed below.

Editor Commet 1: Add a Methods + Supplement section that documents the CBH algorithm in
sufficient detail for reproduction (data and matchups; predictors/features; model architecture and

hyperparameters; training/validation design and leakage controls; metrics by regime; and inference
steps).

Response: We have incorporated a description of the CBH algorithm into Section 3
(Methodology) of the manuscript, as suggested. In addition, a detailed documentation of the
algorithm has been provided in the Supplement in the form of a PDF file for reproduction. This
document includes: Data and Matchups; Predictors/Features; Model Architecture and
Hyperparameters; Training/Validation Design and Leakage Controls; Metrics by Regime; and
Inference steps.

Detailed modifications are as follows: In the revised Section 3 (Methodology), we have added
the following comprehensive description of the cloud base height (CBH) retrieval algorithm:
3.6 Cloud base height retrieval algorithm

The cloud base height (CBH) retrieval algorithm employed in this study is based on a deep
neural network trained on Parasol L1 measurements collocated active sensor observations. The
training dataset comprises Parasol L1 data—including intensity from 14 viewing angles in the
oxygen A-band (763 nm and 765 nm channels), longitude, latitude, elevation, and cloud
indicator—along with the corresponding CBH values and cloud detection information obtained
from the CloudSat-CALIPSO L2 product 2B-CLDCLASS-LIDAR. Data from March, June,
September, and December 2007 are primarily used, with the last seven days of each month
reserved for testing and the remaining data used for training. To ensure high-quality training
data, only cases where Parasol confidently detected cloudy scenes and CloudSat identified
single-layer clouds are retained. Spatial collocation accuracy is constrained to within 0.01°,
while temporal discrepancies are negligible due to the near-simultaneous observations from
the A-Train satellites. The model utilizes geographic coordinates (longitude, latitude, elevation)
and multi-angle oxygen A-band information from Parasol as inputs to predict CBH, with
CloudSat-derived heights serving as ground truth. This method enables the CBH retrieval using
only passive observations as input. The validation results indicate that the retrieval achieves a
mean absolute error (MAE) of 0.78 km, a bias of 0.22 km, and a correlation coefficient (R) of
0.82.

It is important to note that the development, comprehensive validation, and detailed
methodological discussion of this algorithm are beyond the scope of this study. A full

description of the algorithm has been submitted to a separate journal and is currently under



review. To ensure transparency and reproducibility, we provide a complete documentation of
the algorithm in the Supplementary Material of this article. Furthermore, the code and pre-
trained model have been made publicly available (see the Data and Code Availability section).

We have documented the CBH retrieval algorithm in detail in the Supplement, as follows:

Supplement

S1. Methodology Details for Cloud Base Height Retrieval

This method primarily retrieves cloud bottom height (CBH) by utilizing a deep neural network
(DNN) based on multi-angle passive satellite observations—POLDER/Parasol data in the
Oxygen A (O-A) band.

1. Data and Matchups

The data used in this study consist of four months (March, June, September, and December) of
Parasol L1 products from 2007 and the corresponding CloudSat-CALIPSO 2B-CLDCLASS-
LIDAR joint product. Spatial collocation between active and passive sensors maintains an
accuracy within 0.01°, and temporal differences are negligible owing to the near-simultaneous
measurements provided by the A-Train satellite constellation. During data preprocessing, only
pixels that are identified as cloudy in Parasol data and simultaneously classified as single-layer
clouds in the CloudSat-CALIPSO product are selected.

2. Predictors/Features
The training data used is shown in the table below.

Table S1. The training data and related parameters

Satellite Product Name Parameters Note
longitude
latitude
elevation
Parasol L1 o .
cloud indicator Cloud detection

I1763NP (14 view angles)  OA band
I765NP (14 view angles)  OA band

Longitude
CloudSat- Latitude
2B-CLDCLASS-LIDAR .
CALIPSO CloudLayerBase Cloud base height
Cloudlayer

3. Model Architecture and Hyperparameters
This method primarily employs deep neural networks to train the combined active and passive
data, with specific parameter settings detailed in the table below.

Table S2. Parameter settings for training the model

Parameter Category Parameter Name  Value / Setting
Randomness control random_state 42
dense units [1024, 512, 256, 64]

Network Architecture Parameters  dense_activations ['relu’, 'relu’, 'relu’, 'relu']
output activation 'relu’
Training Parameters batch_size 21000




/ Hyperparameters epochs 44

optimizer 'adam’
loss_function 'mae’
metrics ['mae']

4. Training/Validation Design and Leakage Controls
For each month, the last seven days of data serve as the test set, while the remaining days form
the training set.

5. Metrics by Regime
The validation results of the model for predicting CBH across different cloud phases and
various cloud types are as follows.

Table S3. The validation results for different cloud phases.

Cloud phase Error metric ~ Value
N 188282
MAE 0.3831
Water cloud Bias -0.0532
RMSE 0.9361
R 0.6295
N 76507
MAE 0.6403
Ice cloud Bias -0.1291
RMSE 1.1839
R 0.6877
N 87373
MAE 1.7632
Mixed cloud Bias 1.1279
RMSE 3.1291
R 0.7329

Table S4. The validation results for different cloud types.

Cloud type Error metric  Value Cloud type Error metric  Value
N 36577 N 37464
MAE 2.6885 MAE 1.4915
Cirrus Bias 2.1800 Stratus Bias 0.5277
RMSE 4.4079 RMSE 2.0529
R 0.1909 R 0.6539
N 27637 N 9850
MAE 1.1790 MAE 0.1520
Altostratus Bias 0.2194 Stratoculumus Bias 0.0006
RMSE 1.7428 RMSE 0.2630
R 0.6458 R 0.8246
N 153395 N 47891
Altoculumus  MAE 0.2653 Culumus MAE 0.5238

Bias 0.0051 Bias -0.3217




RMSE 0.4765 RMSE 1.4175
R 0.7447 R 0.2962

6. Inference Steps

The detailed steps for performing cloud base height prediction using the proposed method are
as follows:

Step 1. Read Parasol L1 data.

Step 2. Apply quality control flags to filter cloudy pixels.

Step 3. Extract all predictor variables specified in the "feature list" from the data.

Step 4. Preprocess the extracted features exactly as done during the training stage.

Step 5. Feed the preprocessed feature matrix into the loaded pre-trained DNN model.

Step 6. Perform inference to obtain the estimated CBH for each pixel.

Editor Commet 2: Publicly archive the CBH materials (e.g., a preprint or methods note) and

provide a stable citation. This is for transparency; the current paper must still be self-contained.

Response: The paper detailing the CBH retrieval algorithm has been submitted to Remote
Sensing of Environment (Manuscript ID: RSE-D-25-02483) and is currently under review.
Following your suggestion, we have made a preprint version of the manuscript available on
Elsevier’s Preprints (SSRN) platform to ensure a stable and citable reference. The full citation
which has been added to reference of our manuscript is as follows:

Ji, T., Shang, H., Wei, L., Bao, F., Liu, Z., Wang, Y., Bao, S., Yin, S., Shi, C., Wang, H., Liu,
7., and Letu, H.: Retrieval of the base heights and cloud geometric thicknesses of clouds based
on the PARASOL measurement, SSRN, https:/ssrn.com/abstract=5515438 or
http://dx.doi.org/10.2139/ssr.5515438, 2025.

Editor Commet 3: Release code/model artifacts and a minimal dataset slice under a permanent
DOI, and include a clear Data & Code Availability statement.

Response: We have archived the relevant code, pre-trained model, and a minimal input data
slice for the CBH retrieval algorithm in a repository on Zenodo, which has been assigned a
permanent DOI (10.5281/zenodo.17082185). A direct link to this repository has been added to
the "Data and Code Availability" section of the manuscript to ensure full access for readers.
Additionally, to protect the intellectual property associated with both this study and the CBH
study prior to formal publication, the associated code and model resources are currently under
restricted access (the right to view but no download) on Zenodo. The repository will be
transitioned to fully public access immediately upon the formal acceptance of both manuscripts.

Detailed modifications are as follows: The modified "Data and Code Availability" section is
as follows:
Data and Code Availability

All datasets used in this work are open-source. The CloudSat datasets are available from the



CloudSat Data Processing Center of the Cooperative Institute for Research in the Atmosphere
(http://www.cloudsat.cira.colostate.edu/). The Parasol products are available from ICARE
Data and Services Center (https://www.icare.univ-lille.fr/). The code and pre-trained model for
the cloud base height retrieval algorithm, along with a minimal dataset required to reproduce
the key results, have been deposited on Zenodo under a permanent DOI:
[10.5281/zenodo.17082185].

Editor Commet 4: Provide an ablation/uncertainty analysis quantifying how CBH errors propagate
into TP_CER/TP_NCOT and the reconstructed profiles (include a “perfect CBH” benchmark for
context).

Response: Thank you very much for your valuable comment. The issue you raised regarding
quantifying how CBH uncertainties propagate into the retrieval results is indeed crucial and
represents a core aspect of our study. We fully agree with this point and have conducted a
detailed ablation/uncertainty analysis accordingly. Below is an overview of our uncertainty
analysis method and key findings:

This study quantifies how CBH errors propagate into TP_CER/TP_NCOT and the
reconstructed profiles. We use a representative single-layer liquid stratiform cloud profile scene
(from the track on March 2, 2007, corresponding to the profile data in Fig.9 of the original
manuscript) as the test case. The CloudSat-measured CBH serves as the “perfect CBH”
benchmark. We add Gaussian errors with standard deviations of 0.1 km and 0.5 km, along with
systematic errors of 0.1 km and 0.5 km, to generate four perturbation experimental groups.
These perturbed CBH values then serve as inputs for estimating TP CER and TP NCOT. The
TP_CER estimation results with added Gaussian errors and systematic errors are shown in
Figures R1 and R2, respectively. Similarly, the TP NCOT estimation results with added
Gaussian errors and systematic errors are presented in Figures R3 and R4, respectively. For
clarity, we summarize all error evaluation metrics in Table R1.

For TP_CER: As shown in Table 1 and Figures R1-R2, the addition of Gaussian errors of 0.1
km and 0.5 km to CBH increases the RMSE from 1.04 to 1.05 and 1.08, respectively, while R
remains unchanged. When a systematic error of 0.1 km is added to CBH, the RMSE shows no
change and remains at 1.04. With a systematic error of 0.5 km, the RMSE increases from 1.04
to 1.07. Throughout the addition of systematic errors, R continues to show no change. These
results demonstrate that CBH errors within 0.5 km have negligible impact on TP_CER

estimation.

For TP_NCOT: As shown in Table 1 and Figures R3-R4, the addition of a 0.5 km Gaussian
error to CBH increases the RMSE from 0.08 to 0.09. In contrast, the addition of 0.1 km
Gaussian error, 0.1 km systematic error, or 0.5 km systematic error produces no measurable
change in RMSE. Furthermore, all variations in R remain within 0.01. We therefore conclude
that CBH errors within 0.5 km have negligible impact on TP_ NCOT estimation.



In conclusion, these results demonstrate that CBH errors within 0.5 km have negligible
impact on the estimation of both TP_CER and TP_NCOT. Consequently, the profile
reconstruction is virtually unaffected by these errors. Based on the negligible impact observed

in our sensitivity experiments, further analysis of CBH uncertainty effects on profile

reconstruction is deemed unnecessary.

Table R1. The assessment results of the influence of cloud base height uncertainty on TP_CER and

TP_NCOT
Group Specific operation RMSE R Bias MAE
Control No error added to CBH 1.04 094 0.05 0.84
group
CBH with gaussian error 1.05 094 0.05 0.84
Gaussian (std=0.1km)
error group CBH with gaussian error 1.08 094 0.03 0.87
TP_CER
- (std=0.1km)
CBH with systematic error 1.04 0.94 -0.00 0.84
Systematic (+0.1km)
error group CBH with systematic error 1.07 094 -022 0.85
(+0.5km)
Control No error added to CBH 0.08 0.73  -0.00 0.06
group
CBH with gaussian error 0.08 0.75 0.00 0.05
Gaussian (std=0.1km)
error group CBH with gaussian error 0.09 0.64 -0.01 0.06
TP_NCOT
- (std=0.5km)
CBH with systematic error 0.08 0.76  0.01  0.05
Systematic (+0.1km)
error group CBH with systematic error 0.08 0.75 0.01 0.05

(+0.5km)
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Figure R1. Comparison of TP_CER results between no error added to CBH and Gaussian error
added to CBH. (al) and (bl): no error added to CBH — “prefect” CBH; (a2) and (b2) CBH with
gaussian error (std = 0.1km); (a3) and (b3) CBH with gaussian error (std = 0.5km).
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Figure R2. Comparison of TP_CER results between no error added to CBH and system error added
to CBH. (al) and (bl): no error added to CBH — “prefect” CBH; (a2) and (b2) CBH with system
error (+0.1km); (a3) and (b3) CBH with system error (+0.5km).
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Figure R3. Comparison of TP_NCOT results between no error added to CBH and Gaussian error
added to CBH. (al) and (bl): no error added to CBH — “prefect” CBH; (a2) and (b2) CBH with
gaussian error (std = 0.1km); (a3) and (b3) CBH with gaussian error (std = 0.5km).
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Figure R4. Comparison of TP NCOT results between no error added to CBH and system error
added to CBH. (al) and (bl): no error added to CBH — “prefect” CBH; (a2) and (b2) CBH with
system error (+0.1km); (a3) and (b3) CBH with system error (+0.5km).



