
Dear Prof. Zhang, 

We sincerely thank you and the two referees for the time and effort spent reviewing our 

manuscript and providing constructive comments. Your feedback is invaluable for improving the 

quality of our paper. We fully understand and agree with your emphasis on the need for 

transparency, reproducibility, and uncertainty analysis regarding the cloud-base height (CBH) 

retrieval method used in this study. We have carefully addressed each of the four points you raised 

and made corresponding revisions to the manuscript, as detailed below. 

 

Editor Commet 1: Add a Methods + Supplement section that documents the CBH algorithm in 

sufficient detail for reproduction (data and matchups; predictors/features; model architecture and 

hyperparameters; training/validation design and leakage controls; metrics by regime; and inference 

steps). 

 

Response: We have incorporated a description of the CBH algorithm into Section 3 

(Methodology) of the manuscript, as suggested. In addition, a detailed documentation of the 

algorithm has been provided in the Supplement in the form of a PDF file for reproduction. This 

document includes: Data and Matchups; Predictors/Features; Model Architecture and 

Hyperparameters; Training/Validation Design and Leakage Controls; Metrics by Regime; and 

Inference steps. 

 

Detailed modifications are as follows: In the revised Section 3 (Methodology), we have added 

the following comprehensive description of the cloud base height (CBH) retrieval algorithm: 

3.6 Cloud base height retrieval algorithm 

The cloud base height (CBH) retrieval algorithm employed in this study is based on a deep 

neural network trained on Parasol L1 measurements collocated active sensor observations. The 

training dataset comprises Parasol L1 data—including intensity from 14 viewing angles in the 

oxygen A-band (763 nm and 765 nm channels), longitude, latitude, elevation, and cloud 

indicator—along with the corresponding CBH values and cloud detection information obtained 

from the CloudSat-CALIPSO L2 product 2B-CLDCLASS-LIDAR. Data from March, June, 

September, and December 2007 are primarily used, with the last seven days of each month 

reserved for testing and the remaining data used for training. To ensure high-quality training 

data, only cases where Parasol confidently detected cloudy scenes and CloudSat identified 

single-layer clouds are retained. Spatial collocation accuracy is constrained to within 0.01°, 

while temporal discrepancies are negligible due to the near-simultaneous observations from 

the A-Train satellites. The model utilizes geographic coordinates (longitude, latitude, elevation) 

and multi-angle oxygen A-band information from Parasol as inputs to predict CBH, with 

CloudSat-derived heights serving as ground truth. This method enables the CBH retrieval using 

only passive observations as input. The validation results indicate that the retrieval achieves a 

mean absolute error (MAE) of 0.78 km, a bias of 0.22 km, and a correlation coefficient (R) of 

0.82. 

 

It is important to note that the development, comprehensive validation, and detailed 

methodological discussion of this algorithm are beyond the scope of this study. A full 

description of the algorithm has been submitted to a separate journal and is currently under 



review. To ensure transparency and reproducibility, we provide a complete documentation of 

the algorithm in the Supplementary Material of this article. Furthermore, the code and pre-

trained model have been made publicly available (see the Data and Code Availability section). 

We have documented the CBH retrieval algorithm in detail in the Supplement, as follows: 

 

Supplement 

S1. Methodology Details for Cloud Base Height Retrieval 

This method primarily retrieves cloud bottom height (CBH) by utilizing a deep neural network 

(DNN) based on multi-angle passive satellite observations—POLDER/Parasol data in the 

Oxygen A (O-A) band. 

 1. Data and Matchups 

The data used in this study consist of four months (March, June, September, and December) of 

Parasol L1 products from 2007 and the corresponding CloudSat-CALIPSO 2B-CLDCLASS-

LIDAR joint product. Spatial collocation between active and passive sensors maintains an 

accuracy within 0.01°, and temporal differences are negligible owing to the near-simultaneous 

measurements provided by the A-Train satellite constellation. During data preprocessing, only 

pixels that are identified as cloudy in Parasol data and simultaneously classified as single-layer 

clouds in the CloudSat-CALIPSO product are selected. 

 2. Predictors/Features 

 The training data used is shown in the table below. 

Table S1. The training data and related parameters 

Satellite Product Name Parameters Note 

Parasol L1 

longitude   

latitude  

elevation  

cloud indicator Cloud detection 

I763NP (14 view angles) OA band 

I765NP (14 view angles) OA band 

CloudSat-

CALIPSO 
2B-CLDCLASS-LIDAR 

Longitude  

Latitude  

CloudLayerBase Cloud base height 

Cloudlayer  

 3. Model Architecture and Hyperparameters 

This method primarily employs deep neural networks to train the combined active and passive 

data, with specific parameter settings detailed in the table below. 

Table S2. Parameter settings for training the model 

Parameter Category Parameter Name Value / Setting 

Randomness control random_state 42 

Network Architecture Parameters 

dense_units [1024, 512, 256, 64] 

dense_activations ['relu', 'relu', 'relu', 'relu'] 

output_activation 'relu' 

Training Parameters batch_size 21000 



/ Hyperparameters epochs 44 

optimizer 'adam' 

loss_function 'mae' 

metrics ['mae'] 

4. Training/Validation Design and Leakage Controls 

For each month, the last seven days of data serve as the test set, while the remaining days form 

the training set. 

 5. Metrics by Regime 

The validation results of the model for predicting CBH across different cloud phases and 

various cloud types are as follows. 

Table S3. The validation results for different cloud phases. 

Cloud phase Error metric Value 

Water cloud 

N 188282 

MAE 0.3831 

Bias -0.0532 

RMSE 0.9361 

R 0.6295 

Ice cloud 

N 76507 

MAE 0.6403 

Bias -0.1291 

RMSE 1.1839 

R 0.6877 

Mixed cloud  

N 87373 

MAE 1.7632 

Bias 1.1279 

RMSE 3.1291 

R 0.7329 

 Table S4. The validation results for different cloud types. 

Cloud type Error metric Value Cloud type Error metric Value 

Cirrus 

N 36577 

Stratus 

N 37464 

MAE 2.6885 MAE 1.4915 

Bias 2.1800 Bias 0.5277 

RMSE 4.4079 RMSE 2.0529 

R 0.1909 R 0.6539 

Altostratus 

N 27637 

Stratoculumus 

N 9850 

MAE 1.1790 MAE 0.1520 

Bias 0.2194 Bias 0.0006 

RMSE 1.7428 RMSE 0.2630 

R 0.6458 R 0.8246 

Altoculumus 

N 153395 

Culumus 

N 47891 

MAE 0.2653 MAE 0.5238 

Bias 0.0051 Bias -0.3217 



RMSE 0.4765 RMSE 1.4175 

R 0.7447 R 0.2962 

6. Inference Steps 

The detailed steps for performing cloud base height prediction using the proposed method are 

as follows: 

Step 1. Read Parasol L1 data. 

Step 2. Apply quality control flags to filter cloudy pixels. 

Step 3. Extract all predictor variables specified in the "feature list" from the data. 

Step 4. Preprocess the extracted features exactly as done during the training stage. 

Step 5. Feed the preprocessed feature matrix into the loaded pre-trained DNN model. 

Step 6. Perform inference to obtain the estimated CBH for each pixel. 

 

 

Editor Commet 2: Publicly archive the CBH materials (e.g., a preprint or methods note) and 

provide a stable citation. This is for transparency; the current paper must still be self-contained. 

 

Response: The paper detailing the CBH retrieval algorithm has been submitted to Remote 

Sensing of Environment (Manuscript ID: RSE-D-25-02483) and is currently under review. 

Following your suggestion, we have made a preprint version of the manuscript available on 

Elsevier’s Preprints (SSRN) platform to ensure a stable and citable reference. The full citation 

which has been added to reference of our manuscript is as follows:  

Ji, T., Shang, H., Wei, L., Bao, F., Liu, Z., Wang, Y., Bao, S., Yin, S., Shi, C., Wang, H., Liu, 

Z., and Letu, H.: Retrieval of the base heights and cloud geometric thicknesses of clouds based 

on the PARASOL measurement, SSRN, https://ssrn.com/abstract=5515438 or 

http://dx.doi.org/10.2139/ssrn.5515438, 2025. 

 

 

 

Editor Commet 3: Release code/model artifacts and a minimal dataset slice under a permanent 

DOI, and include a clear Data & Code Availability statement. 

  

Response: We have archived the relevant code, pre-trained model, and a minimal input data 

slice for the CBH retrieval algorithm in a repository on Zenodo, which has been assigned a 

permanent DOI (10.5281/zenodo.17082185). A direct link to this repository has been added to 

the "Data and Code Availability" section of the manuscript to ensure full access for readers. 

Additionally, to protect the intellectual property associated with both this study and the CBH 

study prior to formal publication, the associated code and model resources are currently under 

restricted access (the right to view but no download) on Zenodo. The repository will be 

transitioned to fully public access immediately upon the formal acceptance of both manuscripts. 

 

Detailed modifications are as follows: The modified "Data and Code Availability" section is 

as follows: 

Data and Code Availability 

All datasets used in this work are open-source. The CloudSat datasets are available from the 



CloudSat Data Processing Center of the Cooperative Institute for Research in the Atmosphere 

(http://www.cloudsat.cira.colostate.edu/). The Parasol products are available from ICARE 

Data and Services Center (https://www.icare.univ-lille.fr/). The code and pre-trained model for 

the cloud base height retrieval algorithm, along with a minimal dataset required to reproduce 

the key results, have been deposited on Zenodo under a permanent DOI: 

[10.5281/zenodo.17082185]. 

 

 

Editor Commet 4: Provide an ablation/uncertainty analysis quantifying how CBH errors propagate 

into TP_CER/TP_NCOT and the reconstructed profiles (include a “perfect CBH” benchmark for 

context). 

 

Response: Thank you very much for your valuable comment. The issue you raised regarding 

quantifying how CBH uncertainties propagate into the retrieval results is indeed crucial and 

represents a core aspect of our study. We fully agree with this point and have conducted a 

detailed ablation/uncertainty analysis accordingly. Below is an overview of our uncertainty 

analysis method and key findings: 

 

This study quantifies how CBH errors propagate into TP_CER/TP_NCOT and the 

reconstructed profiles. We use a representative single-layer liquid stratiform cloud profile scene 

(from the track on March 2, 2007, corresponding to the profile data in Fig.9 of the original 

manuscript) as the test case. The CloudSat-measured CBH serves as the “perfect CBH” 

benchmark. We add Gaussian errors with standard deviations of 0.1 km and 0.5 km, along with 

systematic errors of 0.1 km and 0.5 km, to generate four perturbation experimental groups. 

These perturbed CBH values then serve as inputs for estimating TP_CER and TP_NCOT. The 

TP_CER estimation results with added Gaussian errors and systematic errors are shown in 

Figures R1 and R2, respectively. Similarly, the TP_NCOT estimation results with added 

Gaussian errors and systematic errors are presented in Figures R3 and R4, respectively. For 

clarity, we summarize all error evaluation metrics in Table R1. 

  

For TP_CER: As shown in Table 1 and Figures R1-R2, the addition of Gaussian errors of 0.1 

km and 0.5 km to CBH increases the RMSE from 1.04 to 1.05 and 1.08, respectively, while R 

remains unchanged. When a systematic error of 0.1 km is added to CBH, the RMSE shows no 

change and remains at 1.04. With a systematic error of 0.5 km, the RMSE increases from 1.04 

to 1.07. Throughout the addition of systematic errors, R continues to show no change. These 

results demonstrate that CBH errors within 0.5 km have negligible impact on TP_CER 

estimation. 

 

For TP_NCOT: As shown in Table 1 and Figures R3-R4, the addition of a 0.5 km Gaussian 

error to CBH increases the RMSE from 0.08 to 0.09. In contrast, the addition of 0.1 km 

Gaussian error, 0.1 km systematic error, or 0.5 km systematic error produces no measurable 

change in RMSE. Furthermore, all variations in R remain within 0.01. We therefore conclude 

that CBH errors within 0.5 km have negligible impact on TP_NCOT estimation. 

 



In conclusion, these results demonstrate that CBH errors within 0.5 km have negligible 

impact on the estimation of both TP_CER and TP_NCOT. Consequently, the profile 

reconstruction is virtually unaffected by these errors. Based on the negligible impact observed 

in our sensitivity experiments, further analysis of CBH uncertainty effects on profile 

reconstruction is deemed unnecessary. 

 

Table R1. The assessment results of the influence of cloud base height uncertainty on TP_CER and 

TP_NCOT 

 Group Specific operation RMSE R Bias MAE 

TP_CER 

Control 

group 

No error added to CBH 1.04 0.94 0.05 0.84 

Gaussian 

error group 

CBH with gaussian error 

(std=0.1km) 

1.05 0.94 0.05 0.84 

CBH with gaussian error 

(std=0.1km) 

1.08 0.94 0.03 0.87 

Systematic 

error group 

CBH with systematic error 

(+0.1km) 

1.04 0.94 -0.00 0.84 

CBH with systematic error 

(+0.5km) 

1.07 0.94 -0.22 0.85 

TP_NCOT 

Control 

group 

No error added to CBH 0.08 0.73 -0.00 0.06 

Gaussian 

error group 

CBH with gaussian error 

(std=0.1km) 

0.08 0.75 0.00 0.05 

CBH with gaussian error 

(std=0.5km) 

0.09 0.64 -0.01 0.06 

Systematic 

error group 

CBH with systematic error 

(+0.1km) 

0.08 0.76 0.01 0.05 

CBH with systematic error 

(+0.5km) 

0.08 0.75 0.01 0.05 

 



 

Figure R1. Comparison of TP_CER results between no error added to CBH and Gaussian error 

added to CBH. (a1) and (b1): no error added to CBH – “prefect” CBH; (a2) and (b2) CBH with 

gaussian error (std = 0.1km); (a3) and (b3) CBH with gaussian error (std = 0.5km).  

 



 

Figure R2. Comparison of TP_CER results between no error added to CBH and system error added 

to CBH. (a1) and (b1): no error added to CBH – “prefect” CBH; (a2) and (b2) CBH with system 

error (+0.1km); (a3) and (b3) CBH with system error (+0.5km).  

 



 

Figure R3. Comparison of TP_NCOT results between no error added to CBH and Gaussian error 

added to CBH. (a1) and (b1): no error added to CBH – “prefect” CBH; (a2) and (b2) CBH with 

gaussian error (std = 0.1km); (a3) and (b3) CBH with gaussian error (std = 0.5km).  

 



 

Figure R4. Comparison of TP_NCOT results between no error added to CBH and system error 

added to CBH. (a1) and (b1): no error added to CBH – “prefect” CBH; (a2) and (b2) CBH with 

system error (+0.1km); (a3) and (b3) CBH with system error (+0.5km).  

 

 


