Dear referees,

Thank you for your comments concerning our manuscript entitled “Characterization of liquid cloud
profiles using global collocated active radar and passive polarimetric cloud measurements” (ID:
egusphere-2025-2471). Those comments are all valuable and very helpful for revising and
improving our paper, as well as the important guiding significance to our researches. We have
studied comments carefully and have made correction which we hope meet with approval. Revised
portions are marked in blue (referee #1) /orange (referee #2) in our response document. The
relevant references are at the end of our reply letter. The main corrections in the paper and the
responses to the referees' comments are as following:

Response to Referee #1°s Comments

General Summary

This paper presents an innovative methodology for characterizing vertical profiles of stratiform
liquid clouds. The authors identify dominant morphological patterns of cloud effective radius
profiles using CloudSat radar data, and then develop a way to retrieve profile information from
passive polarimetric (POLDER) satellite observations. The paper is technically strong and well
written. However, after reading the paper I was left with a few key questions that should be
addressed before publication

Major Comment 1: The authors state that cloud-base height is retrieved “based on POLDER data”

(line 116). How, exactly, is this retrieval performed? I was not aware that cloud base height could
be retrieved from POLDER. Does the multivariate regression model mentioned in line 367 also use
cloud base height from POLDER?

Response: Thank you for your question. Obtaining cloud bottom heights based on POLDER
data is another work in progress by the authors associated with this paper, which has been
completed but not formally published, and is currently being submitted to relevant academic
journals for review, so we do not describe this work in detail in this manuscript, and the
multivariate linear regression model mentioned in line 367 in this study also uses the cloud
bottom heights inverted by this method as input. We describe here the implementation of the
method to obtain cloud bottom heights based on POLDER data to answer the questions raised
by the referee:

We developed a machine learning-based approach to estimate cloud base height (CBH) from
POLDER/Parasol observations by leveraging collocated CloudSat radar measurements. The
dataset was constructed by matching Parasol Level 1 (L1) data—including oxygen absorption
(OA) channels (763 nm and 765 nm), OA ratios across 14 viewing angles, longitude, latitude,
and elevation—with CloudSat Level 2 (L2) CBH products for March, June, September, and
December 2007. Spatial collocation accuracy was constrained to within 0.01°, while temporal
discrepancies were negligible due to the near-simultaneous observations from A-Train
satellites. To ensure high-quality training data, only cases where Parasol confidently detected
cloudy scenes and CloudSat identified single-layer clouds were retained. The dataset was split
into training and validation subsets, with 7 days per month reserved for independent evaluation.
The machine learning model used geographic coordinates (longitude, latitude, elevation) and



Parasol’ s multi-angle OA information as inputs to predict CBH, with CloudSat-derived heights
serving as ground truth. After optimization and validation, the finalized model enabled global
CBH retrieval using Parasol L1 data alone, providing a novel solution for passive sensor-based
cloud vertical structure characterization. This method addresses the inherent limitations of
passive remote sensing in directly probing cloud boundaries while capitalizing on POLDER’s
unique multi-angle OA capabilities. After several machine learning algorithms are compared,
the deep neural network (DNN) model with the best accuracy is selected as the retrieval model.
The method of CBH reversal based on multiangle OA remote sensing and the DNN has a mean
absolute error (MAE) of 0.78 km, a bias of 0.22 km, and a correlation coefficient (R) of 0.82.
By integrating machine learning with the multiangle OA, this method offers a novel approach
for CBH retrieval. Fig. R1 shows the specific process of our CBH retrieval algorithm.
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Figure R1. Flowchart of the machine learning-based algorithm for retrieving CBHs using the OA
(Jiet al. 2025. Manuscript submitted for publication)

Detailed modifications are as follows: We have added the explanation to Line 118-119: “The
retrieval algorithm for cloud base height will be thoroughly described in a forthcoming article

and 1s therefore not discussed here.”

Major Comment 2: The spatial resolution of CWC-RO (less than 2km) in vastly different from the
spatial resolution of POLDER (~50km). I'd like to see more details about how the observations were

matched up in creating Figure 9, and more discussion about whether relationships between variables
derived at CloudSat resolution should be expected to hold at POLDER resolution, when there will
be a lot of sub-pixel heterogeneity.



Response: Thank you very much for your suggestions. The issues you raised are crucial and
will be essential for us to enhance the completeness of the paper and demonstrate the robustness
of the estimated method for cloud-top profile structural characteristics.

(1) First, addressing your initial question: The purpose of the experiment in Fig. 9 is to estimate
the profile turning point CER (TP_CER) and normalized optical thickness (TP_ NCOT) using
passive data, and to compare these results with active data. This aims to explore the feasibility
of the aforementioned method for estimating profile characteristics in passive data. The
matching process is as follows: We began by identifying matching pairs of POLDER3 and
CloudSat data from March 2007, focusing on orbits that contained both datasets and included
a high number of stratiform cloud profiles with a triangular shape. From these, we selected the
POLDER3 data recorded between 06:41:09 and 07:24:06 on March 2, 2007, along with the
corresponding CloudSat data, to estimate and validate the profile TP parameters.

We primarily used POLDER Level 2 data (RB2) for matching with CloudSat. The spatial
resolution of POLDER RB2 product is approximately 16 km, which differs from CloudSat’s
spatial resolution (less than 2 km). Therefore, during the matching process, we calculated the
Euclidean distance between each POLDER_RB?2 pixel and the corresponding CloudSat data
point. Due to the coarser resolution of POLDER RB2 data compared to CloudSat, multiple
CloudSat data points may correspond to the same POLDER RB2 pixel. We retained only the
CloudSat data point closest to the center of the POLDER RB2 pixel. Ultimately, eight cases
were randomly selected (Fig. 9) for validating the estimated characteristics of the profile
structures.

Through matching, we extracted COT, latitude, longitude and other related data from the
POLDER RB2 product. Using these coordinates, we further extracted CBH, CTH, and
CT_CER data retrieved by our algorithm. CBH and CTH were retrieved from POLDER3 Level
1 products with a resolution of 6 km, matching the L1 product resolution. CT_CER was also
retrieved from POLDER L1 product with a 50 km resolution. POLDER lacks near-infrared
bands, so it can only retrieve cloud-top CER using multi-angle polarization signals. This
method has a drawback: it must compensate for insufficient angular sampling by including
more pixels—resulting in lower resolution for the retrieved CER. Our current algorithm (Shang
et al.,, 2019) can achieve CER retrieval at a range of 40 - 60 km. This paper utilizes the
retrieved 50 km resolution CER product. However, we do not consider this an insurmountable
permanent flaw. Internationally, there are currently polarimetric multi-angle payloads with
higher spatial resolution and greater observation angles that have been launched or are planned
for launch. For instance, China's DPC/GF-5 achieves a spatial resolution of nadir 3.3 km; the
3MI/Metop-SG developed by the European Space Agency offers a spatial resolution of nadir
4 km, supports up to 21 observation angles, and incorporates near-infrared bands. These
capabilities collectively enable higher-resolution CER retrieval.

(2) We understand your concerns regarding sub-pixel heterogeneity due to the coarse resolution
of POLDER data, as well as the challenges in applying relationships derived from CloudSat to
POLDER data because of differing spatial resolutions. Our primary response is as follows: (a)



Our primary research subject is single-layer stratiform liquid clouds (stratocumulus and stratus).
Relevant literature indicates (Jr., 2014) that within stratiform cloud regions, both updrafts and
downdrafts are relatively weak. They are relatively uniform horizontally compared to other
cloud types, and their cloud microphysical properties exhibit slow horizontal variations—that
is, they are less spatially heterogeneous. This is why we selected single-layer stratiform liquid
clouds—a structurally simpler cloud type—as our primary research subject. (b) Shang et al.
(2015) specifically investigated the impact of liquid cloud spatial heterogeneity on CER
retrieved from POLDER. The Table 2(Fig. R2) presented in their paper shows that under sub-
grid scale heterogeneity, the relative deviation between the retrieved CER and the sub-grid
scale CER mean ranges from 0.86% to 8.33% (Table R1), with none exceeding 10%. This
indicates that for liquid clouds, the impact of sub-grid scale heterogeneity on the retrieval of a
representative CER value is manageable and typically within an acceptable range (under 10%)
for bulk microphysical properties.

Table 2. Retrievals from a heterogeneous cloud field with variable CDRs using POLDER-like polarized reflectances (865 nm) in 137-165°
and 145-165°ranges, respectively. In all cases, the EV in the sub-scale cloud and the COT were assumed to be 0.01 and 5, respectively.
The “+" indicates the equal share of the CDRs in the cloud fields. The mean CDR and EV indicate the effective radii and variances for the
combined droplet size distributions. The CDR and EV estimates are restricted with 7' >0.978 and 73 <0.01.

Combined CDRs (pm) ~ Sub-scale EV. Mean CDR (pm) Mean EV  Retrievals of 137-165°  Retrievals of 145-165°

CDR (qm) EV CDR (pm) EV
5410 0.01 9.00 0.06 - - - -
5+15 0.01 14.00 0.06 - - - -
5420 0.01 19.12 0.04 - - - -
10+15 0.01 13.46 0.04 13.0 0.1 - -
10420 0.01 18.00 0.06 16.5 0.1 - -
15+20 0.01 18.20 0.03 17.5 0.05 10.0 0.02
5410415 0.01 12.70 0.11 12.0 0.1 -
5410420 0.01 16.92 0.13 - - - -
5415420 0.01 17.35 0.08 17.5 0.05 - -
10+ 15+ 20 0.01 17.07 0.06 16.0 0.1 16.5 0.01

Figure R2. Table 2 from Shang et al. (2015), AMT.

Table R1. Relative deviation between inverted CER and subpixel CER mean values.

Mean Retrieval Relative

CER(um) CER(um) deviation

1 13.46 13 -3.41%
2 18.00 16.5 -8.33%
3 18.20 17.5 -3.85%
4 12.70 12.0 -5.51%
5 17.35 17.5 +0.86%
6 17.07 16.0 -6.27%
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Figure R3. Comparison of the average CER profile (averaged by height) within the same POLDER
pixel versus the CER profile closest to the center of the POLDER pixel.

(c) To further investigate whether the relationship derived from CloudSat could be applied to
POLDER data, we statistically analyzed the CloudSat CER profiles corresponding to these 8
POLDER pixels. For each POLDER pixel, we averaged the CloudSat CER profiles and
compared them with the CloudSat profile closest to the center of the POLDER pixel. The
results are shown in Fig. R3. We conclude that, except for a slightly higher deviation in Case
2, the deviations in other cases are relative small. That is, the profiles at the coarse resolution
of the POLDER level (pixel average) show little difference from the CloudSat profiles at
normal resolution that we selected (center nearest), demonstrating a high degree of similarity.

In summary, we believe that although single-layer stratiform liquid clouds exhibit spatial
heterogeneity, this heterogeneity is relatively weak. This allows the relationships derived at
CloudSat resolution to be applied to coarser-resolution POLDER data. However, we
acknowledge that this spatial averaging inherent to coarse resolution data is the primary
challenge when inferring detailed vertical profile features, as discussed in our response to the
other referee's similar concern. In the future, as the observational capabilities of passive multi-
angle polarization payloads improve, the association between active and passive observation

data will become even stronger.

Detailed modifications are as follows: We have added the description of match-up process in
Section 3.4. “To validate the profile structural characteristics retrieved by passive satellite
observations, a match-up process between POLDER and CloudSat observations is conducted.
We focus on March 2007 and identified coincident orbits that contained a high number of
stratiform cloud profiles exhibiting a triangle-shaped vertical structure in CloudSat data. A
specific dataset from March 2, 2007 (POLDER observation time between 06:41:09 and
07:24:06 UTC) is selected for detailed analysis in Section 4.4. The POLDER-3 Level 2 (RB2)
product served as the primary dataset for matching with CloudSat observations. With a spatial

resolution of approximately 16 km, this product is notably coarser than CloudSat's resolution



of less than 2 km. To establish correspondence between the datasets, the Euclidean distance
between each POLDER-3 RB2 pixel center and all CloudSat data points within the POLDER-
3 RB2 pixel is computed. Owing to the resolution discrepancy, a single POLDER-3 RB2 pixel
often contains multiple CloudSat data points. In such cases, only the CloudSat data point
closest to the center of the POLDER RB2 pixel is retained.

Through the matching process, cloud optical thickness (COT), latitude, longitude, and other
relevant data are extracted from the POLDER-3 RB2 product. These coordinates are then used
to extract cloud base height (CBH), cloud top height (CTH), and cloud-top effective radius
(CT_CER) obtained through the retrieval algorithm. CBH and CTH are retrieved from the
POLDER-3 L1 product, which has a native resolution of 6 km, matching the resolution of the
source data. CT_CER is retrieved from the POLDER L1 product at a 50 km resolution.”

Meanwhile, we have added a discussion regarding the uncertainties arising from the coarse
resolution of POLDER in Section 5. “The coarse resolution of POLDER products restricts the
ability to capture sub-pixel cloud heterogeneity; however, by concentrating on relatively
uniform single-layer stratiform liquid clouds, this study partially mitigates the resulting
retrieval uncertainties. It should be noted that sub-pixel heterogeneity can inevitably introduce
certain errors, particularly at cloud boundaries. Nevertheless, Shang et al. (2015) pointed out
that the error caused by sub-pixel heterogeneity in cloud effective radius (CER) retrieval does

not exceed 10%, which remains within an acceptable range.”

Minor Comment 1: Line 136: Why 2013, 2019, and the first eight months of 2020? This seems
like a very arbitrary group of years to use.

Response: The choice of data from 2013, 2019, and the first eight months of 2020 for this
study was carefully considered. Our aim was to explore cloud profile structures by combining
CloudSat observations with polarized multi-angle payload data. In our preliminary work, we
gathered available polarized multi-angle measurements from sources such as the French
POLDER-3/PARASOL instrument, as well as China's DPC/GF-5 and DPC/GF-5(02) sensors.
Based on our initial assessments, CloudSat's key CWC_RO product provides reliable data
between 2006 and August 2020, while POLDER-3's useful dataset covers 2005 to 2013.
Additionally, we had access to China's DPC/GF-5 and DPC/GF-5(02) data, though it should
be noted that these datasets are not publicly available. However, the DPC data at our disposal
is limited to 2019 and 2020. To ensure our analysis remains as up-to-date as possible while still
allowing for joint active-passive sensor studies, we ultimately selected CloudSat data from
2013, 2019, and the first eight months of 2020 for this investigation.

Minor Comment 2: Line 204: As far as | am aware, there is no “Colorado State University regional
climate model.” Do you mean the CSU Regional Atmospheric Modeling System (RAMS)?

Response: Thank you for your reminding, we feel sorry for our carelessness. In our



resubmitted manuscript, we have corrected the “Colorado State University regional climate
model” to “the Colorado State University Regional Atmospheric Modeling System (RAMS)”.

Minor Comment 3: It should be noted that the CloudSat CWC-RO product misses many (perhaps
the majority of) single-layer liquid clouds, either because the clouds are masked by surface clutter

or because they are below the radar’s noise threshold (e.g., Lamar et al., 2020; Schulte et al., 2023).

So the true nonprecipitating-to-precipitating ratio is likely much higher.

Response: We agree with this valuable comment. we have read the relevant papers carefully,
CloudSat's data may indeed have this problem, so we try to expand the data scope to increase
the amount of research data (single-layer liquid cloud). The ratio of non-precipitating clouds
to precipitating clouds here is just a statistic of the data situation of our existing study, as you
said, it may be different from the real ratio of non-precipitating clouds to precipitating clouds,
the real ratio of non-precipitating clouds to precipitating clouds may be much higher, and we
added this point to the article, as well as the possible uncertainty of CloudSat in the detection
of single-layer liquid clouds.

Minor Comment 4: Line 240: I believe you mean Table A4 here, but even so, I do not understand

what the table is intended to show.

Response: Yes, this refers to Table A4, which exists in order to explain the complex situation
“Other” such profiles, there is also a part of the profile that is highly similar to the two main
shapes derived from this study, and exists in order to make the shape analysis of the profiles
more complete. It should be recognized that our interpretation of Table A4 is not complete, and
we have added explanations in the note of Table A4: situation] refers to a situation where only
one segment of the profile does not correspond to the increasing and then decreasing shape
profile of shapel, and situation2 refers to a situation where only one segment of the profile
does not correspond to the monotonically decreasing shape profile of shape2. There is an
intersection of situationl and situation2, i.e., a profile that matches both situationl and
situation2 (Intersection of 1+2), which needs to be subtracted out when calculating the sum of

the two in order to avoid double counting.

Minor Comment 5: Line 327: Any idea whether these two density centers have physical meaning?

Response: Thank you for raising this insightful question. From the Fig. 6(m), (n), and (p) of
the original manuscript, i.e., the following Fig. R4(al), (b1), and (cl), it can be observed that
the scatter density distribution of the turning point CER(TP_CER) and the turning point LWC
(TP_LWC) exhibits two density centers. This indicates that the relationship between TP_LWC
and TP_CER is not a simple linear correlation. We conducted further analysis on the density
centers, taking Fig. R4(al) (sea non-precipitation clouds) as an example: the TP_CER shows
a unimodal distribution clustered around 11-13um, while TP LWC exhibits a bimodal



distribution within the same TP_CER range of 11-13um. In other words, at the same TP_CER,
some profiles have relatively higher TP_ LWC, while others have relatively lower TP_LWC.

We propose that the two density centers reflect two dominant mechanisms governing cloud
microphysical processes. One mechanism is primarily dominated by condensational growth,
characterized by higher liquid water content for a given cloud droplet size. This typically
occurs under conditions of low cloud condensation nucleus (CCN) concentration and a stable
environment, where cloud droplets grow slowly through vapor condensation and accumulate
liquid water. The other mechanism is dominated by collision-coalescence growth, exhibiting
lower liquid water content for the same cloud droplet size. This often happens in environments
with high CCN concentrations and dynamic activity, where cloud droplets grow rapidly
through collision and coalescence, leading to the redistribution of liquid water into a fewer
number of larger droplets. This conclusion is strongly supported by the observed land-sea
contrast: for sea-based clouds, the density center with higher liquid water content (as seen in
Figures R4(b1) and (c1)) shows a higher concentration of data points, while for continental
clouds, the density center with lower liquid water content (Figure R4(al)) is more densely
populated. Over the sea, the condensation-dominated mechanism— characterized by high
liquid water content — is more prevalent, consistent with the typically low aerosol
concentrations, abundant moisture supply, and stable thermodynamic conditions in marine
environments. In contrast, over land, the collision-coalescence-dominated mechanism —
associated with lower liquid water content — prevails, aligning with the high aerosol
concentrations, strong convective activity, and dynamically active nature of continental
settings. This systematic geographical pattern strongly affirms the physical reality of the dual
density centers, demonstrating that they represent distinct cloud microphysical states driven by
environmental factors such as aerosol concentration and thermodynamic conditions.
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Figure R4. Scatter density plots exhibiting dual density centers and their corresponding
probability density distribution of TP LWC within a specific TP_CER range.

Detailed modifications are as follows: We have briefly expanded on the potential physical
implications of the dual density centers in the original manuscript. “The two density centers
observed in the relationship between the TP CER and TP LWC reflect two distinct cloud
microphysical regimes. One is primarily driven by condensational growth, which tends to
occur under low aerosol and stable conditions, resulting in higher LWC for a given droplet size.
The other is dominated by collision-coalescence, typical in relative high aerosol and

dynamically active environments, leading to lower LWC for the same droplet size.”



Response to Referee #2’s Comments

Overall Comment:

This study presents a significant methodological advancement in remote sensing of liquid cloud
vertical profiles by integrating active (CloudSat radar) and passive (POLDER polarimetric imager)
measurements . The work is rigorous and innovative, leveraging global-scale data (12.47M profiles)
to classify cloud profile shapes, establish statistical correlations, and develop retrieval models. The
paper does several things exceptionally well: 1. Global-scale profile classification is statistically
robust, providing a comprehensive understanding of dominant cloud structures (triangle-shaped and
monotonically decreasing profiles). 2. Shape simplification using the VM algorithm is clever,
effectively reducing noise while preserving key structural features. 3. Correlation analyses (e.g.,
between TP_CER and CB_CER, LWP) provide valuable physical insights into cloud microphysics.
4. The hybrid ML/physical modeling approach (CPRM reconstruction) is methodologically sound,
combining the strengths of data-driven and physics-based methods.

However, passive retrieval limitations and dependence on CloudSat for prior knowledge (especially
CB_CER estimation) remain fundamental constraints. Current methods cannot fully resolve vertical
uncertainties due to: 1. CloudSat's 240-m vertical resolution , which restricts layer precision (>2.64
km); 2. POLDER'’s coarse spatial resolution (50 km for CER) , which may misrepresent fine-scale

cloud variations.

Despite these limitations, this work represents a significant step toward parameterizing cloud
processes in climate models , particularly for stratiform/stratocumulus clouds.

Major Comment 1: The study's heavy reliance on CloudSat-derived empirical relationships for

estimating CB_CER represents a critical constraint that significantly impacts the broader
applicability of the methodology. While the multivariate regression approach using CT _CER, LWP,
and CTH demonstrates reasonable correlation (0.75-0.92), this dependence on active sensor data
fundamentally undermines the potential for truly independent passive retrievals. The propagation of
errors through this empirical relationship is particularly concerning, with RMSE values reaching up
to 1.96 um for land-based clouds. This limitation is especially problematic because CB_CER serves
as a foundational parameter for estimating TP_CER, meaning any errors in the initial cloud-base
estimation will cascade through the entire retrieval process. The authors should more thoroughly
discuss potential mitigation strategies, such as incorporating ancillary data sources or developing
physics-based approaches to reduce this critical dependency on CloudSat for prior knowledge.

Response: We sincerely thank your thoughtful consideration of the empirical relationship
derived from CloudSat data used to estimate CB_CER in this study. We fully acknowledge the
limitations of this approach. Currently, directly retrieving the cloud-bottom effective particle
radius using passive observational data involves significant uncertainty and is considerably
challenging to achieve. Few studies have attempted to retrieve the cloud-bottom effective
radius. In Platnick (2000), the relative contribution (vertical weighting) of different cloud
layers to the overall retrieval was simulated using the adding-doubling method. The results
indicated that the cloud base contributes the least to the total reflectance, with its contribution
approaching zero for optically thick clouds. Additionally, Buggee and Pilewskie (2025) noted



that constraining cloud-bottom droplet size is highly difficult, as the average penetration depth
of visible and near-infrared reflectance is limited to the vicinity of the cloud top. It is
challenging to retrieve the cloud-bottom effective particle radius using passive observational
data based on classical physical retrieval methods (radiative transfer model simulations and
look-up tables), due to the low sensitivity of visible and infrared bands currently used for cloud

detection to cloud-bottom signals.

However, if cloud microphysical profiles are to be obtained from passive satellite
measurements, cloud-bottom droplet size remains an unavoidable yet challenging issue. This
study presents a preliminary attempt to estimate the cloud-bottom effective radius for single-
layer stratiform liquid clouds using an empirical relationship derived from CloudSat data. All
input variables are based solely on features obtainable from passive observations. The RMSE
for the TP_CER retrieval of sea non-precipitation clouds, sea precipitation clouds, land non-
precipitation clouds, and land precipitation clouds reached 1.19, 1.30, 1.76, and 1.96pum,
respectively. The retrieval accuracy of TP_CER for sea-based clouds is higher than that for
land-based clouds, while the accuracy for non-precipitation clouds is superior to that for
precipitation clouds. We consider the lowest accuracy in estimating the TP_CER for land
precipitation clouds to be a reasonable result, attributable to the following factors: (1) The
ocean surface exhibits simple, homogeneous, and highly uniform properties, whereas land
surfaces are characterized by complex types, low heat capacity, pronounced diurnal and spatial
variations in surface temperature, and higher aerosol concentrations that provide more
abundant cloud condensation nuclei. (2) Non-precipitation clouds are relatively homogeneous,
with thinner layers and limited vertical development, whereas precipitation clouds exhibit more
intense microphysical processes. Current studies on CER retrieval methods generally report
RMSE values ranging between 4—7um (Ma and Husi, 2024; Du et al., 2024). This indicates
that significant uncertainty remains in CER retrieval, and our TP_CER estimation scheme

achieves relatively favorable accuracy in comparison.

Certainly, we fully understand the referees' concerns regarding this estimation approach: (1)
The empirical relationship is derived entirely from active sensor observations, specifically
CloudSat CPR data; (2) The retrieval error in CB_CER, which serves as the initial parameter
for estimating TP_CER, may lead to an accumulation of errors in the TP_CER estimation. We
also have plans to further improve this preliminary approach in subsequent research. In
response to the referee' feedback, we have added a discussion in the final chapter of the paper
outlining potential strategies to mitigate these uncertainties: (1) Introduce meteorological
factors—such as ERAS5 reanalysis data (e.g., wind speed, temperature, humidity, pressure,
vertical velocity)—to assist in estimating the cloud-bottom effective radius, thereby enhancing
the physical characterization of the cloud-base environment; (2) Optimize existing methods for
directly retrieving cloud-bottom particle size using passive observations (Level 1 or Level 2
products), improve the robustness of the retrieval model, and clarify the applicable boundaries
of the method—specifically, determining the optical thickness threshold beyond which passive
observations can no longer capture cloud-bottom information; (3) Incorporate an uncertainty
weighting framework to dynamically adjust the contribution weights of different input
parameters based on their reliability, thereby refining the retrieval accuracy of CB_CER and



reducing dependence on CloudSat-derived empirical relationships.

Detailed modifications are as follows: In Section 5 of the manuscript, we clarified that the
current uncertainties in cloud base CER retrieval remain a major source of error in the vertical
structure retrieval of cloud profiles. Additionally, potential improvement strategies are
discussed based on your suggestions. “In terms of estimating the CB CER: (1) Introduce
meteorological factors—such as ERAS5 reanalysis data (e.g., wind speed, temperature, humidity,
pressure, vertical velocity)—to assist in estimating the CB_CER, thereby enhancing the
physical characterization of the cloud-base environment; (2) Optimize existing methods for
directly retrieving cloud-bottom particle size using passive observations (Level 1 or Level 2
products), improve the robustness of the retrieval model, and clarify the applicable boundaries
of the method—specifically, determining the optical thickness threshold beyond which passive
observations can no longer capture cloud-bottom information; (3) Incorporate an uncertainty
weighting framework to dynamically adjust the contribution weights of different input
parameters based on their reliability, thereby refining the retrieval accuracy of CB_CER and

reducing dependence on CloudSat-derived empirical relationships.”

Major Comment 2: The observed inconsistencies in POLDER-based TP_CER and TP_NCOT
retrievals, particularly evident in Cases 1, 2, and 7 of Figure 9, reveal important limitations in current
passive sensing capabilities. These discrepancies likely stem from multiple compounding factors
that warrant deeper examination. First, POLDER's relatively coarse spatial resolution
(approximately 50 km for CER retrievals) means it cannot resolve fine-scale heterogeneities in
cloud microphysical properties that CloudSat can detect along its narrow swath. Second, the visible-
band measurements used by POLDER are primarily sensitive to cloudtop properties, making it
inherently challenging to accurately characterize vertical microphysical gradients. The study would
benefit from a more detailed error analysis quantifying how these sensor limitations translate to
uncertainties in profile reconstruction, perhaps through sensitivity studies or comparison with
higher-resolution datasets where available.

Response: We sincerely thank the referee for this insightful observation and for highlighting
this crucial aspect of our study. The retrieval of the TP_CER and its location in Cases 1, 2, and
7 in Figure 9 exhibits slightly higher errors compared to other cases. We fully agree that a more
detailed error analysis is crucial to thoroughly investigate the causes and better understand the
limitations of passive sensor data in cloud profile retrieval. The main sources of uncertainty
are considered to be the following:

(1) The coarse resolution of POLDER products cannot capture inherent subpixel heterogeneity.
This study utilized the POLDER Level 2 RB2 product (16 km resolution) along with cloud top
height (CTH), cloud base height (CBH) (both at 6 km), and cloud top effective radius (CER)
data (50 km resolution), all of which were derived from POLDER Level 1 products. Compared
to CloudSat data, the coarser resolution of POLDER may cause biases resulting from subpixel
heterogeneity. We conducted a further analysis of the eight cases in Fig. 9 by averaging the
CloudSat CER profiles within each corresponding POLDER pixel along the altitude dimension.
This process effectively aggregates the high-resolution CloudSat profiles to the spatial scale of



a POLDER pixel, simulating what POLDER would likely "see". The resulting averaged
profiles were then compared against our validation data—the CloudSat profile closest to the
center of the POLDER pixel—as shown in the figure below. Although this study specifically
targets horizontally relatively homogeneous single-layer stratiform water clouds, subpixel
heterogeneity—resulting from POLDER's coarse resolution—remains one of the main sources

of error in estimating the structural parameters of cloud profiles.
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Figure R3. (It appeared in the previous text, so it has been repeatedly numbered here.) Comparison
of the average CER profile (averaged by height) within the same POLDER pixel versus the CER
profile closest to the center of the POLDER pixel.

(2) Inherent physical limitation: Vertically integrated signal. The retrieval of CER from
POLDER observations differs from traditional dual-channel methods, relying instead on the
directional characteristics of polarized reflectance within the cloud bow scattering angle range.
It should be emphasized that all such passive retrieval techniques essentially provide a
vertically integrated measurement—a weighted average signal sensitive to microphysical
properties from the cloud top downward through a depth determined by cloud optical thickness.
This fundamental characteristic inherently increases the uncertainty in retrieving vertical
structural features. This limitation is inherent not only to POLDER but to all passive sensor
payloads, which underscores the significance of our study's exploration of cloud profile
retrieval using passive data.

(3) Propagation of input uncertainties. Errors in the upstream inputs (COT, CT_CER from
POLDER, and CTH/CBH from the combination of POLDER and ancillary data) inevitably
propagate into the LWP and CB_CER. This accumulated uncertainty can then propagate into
errors in the final estimated profile parameters, including the TP_CER and its location. Cases
with higher sub-pixel heterogeneity or where the cloud-top CER is less representative of the

layer-average are particularly susceptible to this propagation effect.

Certainly, we believe these errors can be mitigated through the ongoing development of
polarized multi-angle sensors. A number of spaceborne instruments with higher spatial
resolution, additional observational channels, and expanded viewing angles have recently been



launched or are planned for future missions. Examples include the already deployed DPC/GF-
5, which achieves a nadir resolution of 3.3 km, and the upcoming 3MI/Metop-SG sensor
developed by the European Space Agency, which offers a nadir resolution of 4 km along with
enhanced scalar and polarimetric observations in the near-infrared bands. These advances
provide promising opportunities for improving the accuracy of cloud profile retrieval.

Detailed modifications are as follows: We have revised and expanded the explanation
regarding the causes of and error analysis for the relatively larger errors in Cases 1, 2, and 7
compared to other cases in Section 4.3. “The coarse resolution of POLDER products cannot
capture inherent subpixel heterogeneity. This study utilizes the POLDER Level 2 RB2 product
(16 km resolution) along with cloud top height (CTH), cloud base height (CBH) (both at 6 km),
and cloud top effective radius (CER) data (50 km resolution), all of which are derived from
POLDER Level 1 products. Compared to CloudSat data, the coarser resolution of POLDER
may cause biases resulting from subpixel heterogeneity. We conduct a further analysis of the
eight cases in Fig.A2 by averaging the CloudSat CER profiles within each corresponding
POLDER pixel along the altitude dimension. This process effectively aggregates the high-
resolution CloudSat profiles to the spatial scale of a POLDER pixel, simulating what POLDER
would likely "see". The resulting averaged profiles are then compared against our validation
data—the CloudSat profile closest to the center of the POLDER pixel. Although this study
specifically targets horizontally relatively homogeneous single-layer stratiform water clouds,
subpixel heterogeneity—resulting from POLDER's coarse resolution—remains one of the
main sources of error in estimating the structural parameters of cloud profiles. (2) Inherent
physical limitation: Vertically integrated signal. The retrieval of CER from POLDER
observations differs from traditional dual-channel methods, relying instead on the directional
characteristics of polarized reflectance within the cloud bow scattering angle range. It should
be emphasized that all such passive retrieval techniques essentially provide a vertically
integrated measurement—a weighted average signal sensitive to microphysical properties from
the cloud top downward through a depth determined by cloud optical thickness. This
fundamental characteristic inherently increases the uncertainty in retrieving vertical structural
features. (3) Propagation of input uncertainties. Errors in the upstream inputs (COT, CT_CER
from POLDER, and CTH/CBH from the combination of POLDER and ancillary data)
inevitably propagate into the LWP and CB_CER. This accumulated uncertainty then
propagates into errors in the final estimated profile parameters, including the TP_CER and its
location. Cases with higher sub-pixel heterogeneity or where the cloud-top CER is less
representative of the layer-average are particularly susceptible to this propagation effect.”

Meanwhile, we have included Figure R3 in the appendix (Figure A2).

Major Comment 3: CloudSat's 240-m vertical resolution, while impressive for spaceborne radar,

imposes significant limitations on the study's ability to characterize thin or finely structured cloud
layers. This resolution threshold means the CPRM reconstruction cannot resolve features smaller
than about 2.64 km in vertical extent, potentially missing important microphysical transitions in
shallow cloud systems. The impact is particularly relevant for stratocumulus clouds, which often
exhibit thin but meteorologically important structures like sharp inversion layers or thin drizzling



layers near cloud base. The authors should expand their discussion of how this resolution limitation
affects the physical interpretation of their results, and perhaps suggest how future sensors with finer
vertical resolution (like EarthCARE's radar) might overcome this constraint.

Response: We fully agree with the referees’ perspective that the 240m vertical resolution of
CloudSat is indeed insufficient to capture the fine structure of thin cloud layers. Here, “fine
structure” may have two implications: 1) cloud layers with a thickness less than 240m; 2) cloud
layers with a thickness greater than 240m, but with local fine structures within the cloud that
are less than 240m, which the radar cannot detect, such as sharp inversion layers or thin
drizzling layers near the cloud base. Therefore, in this study, we avoided selecting overly thin
cloud layers when choosing profiles, using a minimum of three bins as a primary criterion for
profile data screening. There are two main reasons for this: 1) overly thin cloud layers cannot
be represented structurally by CloudSat, such as shape characteristics; 2) even if CloudSat can
record overly thin cloud layers, it cannot capture some fine features at the cloud top or cloud
base. We believe that the formation conditions for layered clouds are similar, so thicker layered
clouds should have a structure similar to thin clouds and amplify local fine structures.
Therefore, this study primarily focuses on profiles with a bin count of 3 or more, which may
overlook some thin clouds but will not affect the overall statistical analysis results. Additionally,
we would like to clarify that our unclear wording may have caused your misunderstanding.
Line 266 mentions that the primary research object of this paper is CloudSat cloud profiles
with vertical thicknesses less than 2.64 km. The intended meaning is that our statistical analysis
found that the majority of single-layer stratiform liquid cloud profiles observed by CloudSat
have bin counts less than 11 (each bin representing a range of 240 m). Therefore, the study
focuses on profiles with vertical thicknesses of 2.64 km or less. All statistical analyses of
profiles in this paper are based on data from profiles with vertical thicknesses of 2.64 km or
less. This does not imply that CPRM cannot reconstruct profiles smaller than 2.64 km; in fact,
CPRM can reconstruct profiles of arbitrary thickness, which primarily depends on the input
data. (Shang et al., 2025).

Meanwhile, based on your feedback, we conducted a survey of the instrument characteristics
of EarthCARE CPR and compared them with those of CloudSat CPR (Table R2). EarthCARE
CPR primarily offers the following technical advantages: 1) Higher vertical solution:
EarthCARE/CPR has a vertical sampling resolution of 100m, representing a significant
improvement over CloudSat CPR's 240m resolution; 2) Higher sensitivity: EarthCARE/CPR's
sensitivity has been improved to approximately -35 dBZ, enabling more precise detection of
cloud structure; 3) Doppler wind measurement capability: Compared to CloudSat,
EarthCARE’s CPR has Doppler capability, enabling the first-ever measurement of vertical
wind speeds within clouds by a satellite-borne radar (with an accuracy of 0.5m/s); 4)
Synchronized observation capability: EarthCARE CPR can synchronize observations with
instruments like ATLID, offering a significant advantage over the loose coordination between
CloudSat and CALISPO. However, due to insufficient data accumulation for EarthCARE at
present, CloudSat data still holds high research value.

Table R2: Comparison of Instrument Characteristics of EarthCARE CPR and CloudSat CPR

Instrument Characteristics CloudSat CPR EarthCARE CPR




Mission duration 2006-2020 2024-

Frequency 94.05 GHz 94.05 GHz

Altitude 705 km 400 km

Hor. res. at nadir 1.2 km 500 m

Vert. resolution 500 m (240m sampling) 500 m (100m sampling)
Doppler capability N/A Yes

Sensitivity -28 dBZ -35dBZ

Detailed modifications are as follows:

(1) We have added a discussion on the resolution limitations of CloudSat in the uncertainty
analysis of Section 5. “The 240-m vertical resolution of CloudSat is indeed insufficient to
resolve ultra-thin cloud layers or capture fine-scale intra-cloud structures, such as sharp
inversion layers or thin drizzling layers near cloud base.”

(2) The potentially misleading expression at the end of the first paragraph in Section 4.1 of the
manuscript has been revised. “Based on the above analysis, given CloudSat's vertical resolution
of 240 m per bin and the fact that approximately 99.5% of the profiles are concentrated within
11 bins, this study focuses on single-layer stratiform liquid clouds with a geometric thickness
of less than 2.64 km.”

(3) Related suggestion has been added in Section 5 of the paper regarding how future sensors
with finer vertical resolution (such as EarthCARE's radar) could potentially overcome this
limitation. “For the issue that CloudSat is insufficient to distinguish thin clouds or fine cloud
structures smaller than 240m, in the future, the EarthCARE/CPR observation data with higher
vertical resolution can be adopted to alleviate this problem. EarthCARE/CPR demonstrates
notable advancements over CloudSat, most significantly through its finer vertical resolution of
100 m compared to CloudSat’s 240 m. Additional enhancements include higher detection
sensitivity, Doppler-based vertical wind measurements, and synchronized multi-sensor
observational capabilities. These improvements are expected to deliver enhanced observational
capabilities for characterizing finer-scale cloud microphysical processes and their interactions

with atmospheric dynamics.”

Major Comment 4: The coarse resolution of POLDER observations presents multiple challenges

that extend beyond the immediate retrieval accuracy issues. At 50 km resolution, individual

POLDER pixels often or possiblely integrate across multiple cloud regimes, potentially blending

fundamentally different cloud types and obscuring important spatial gradients. This becomes

particularly problematic when trying to apply the methodology to broken cloud fields or cloud edges,

where sub-pixel variability is high. While the current focus on stratiform clouds is understandable

given their relative homogeneity, the paper would benefit from a more thorough discussion of how

partial cloudiness and three-dimensional radiative effects might bias the retrievals. The authors

might consider adding a sensitivity analysis or at least a more detailed qualitative discussion of these

effects in the limitations section.

Response: We sincerely thank the referee for raising this important issue regarding the impact
of sub-pixel cloud heterogeneity on retrieval accuracy, which is indeed an important challenge



associated with the coarse spatial resolution of POLDER observations. The concern that single
pixels may integrate multiple cloud regimes—particularly in broken cloud fields or near cloud
edges—is well taken, and we agree that such blending could obscure spatial gradients and
introduce potential biases in the retrieved parameters.

In response to this comment, we will expand the “Limitations” section (in Section 5) to include
a more thorough discussion of how partial cloudiness and three-dimensional radiative effects
may influence our results. Specifically, we will reference our previous quantitative analysis
(Shang et al.,, 2015), which systematically evaluated the effects of sub-pixel cloud
heterogeneity on POLDER cloud microphysical retrievals. That study provides concrete
uncertainty estimates that help contextualize the potential biases in the current application. We
will also clarify that, although this study focuses on relatively homogeneous stratiform clouds
to minimize such effects and assess methodological feasibility, the presence of unresolved
cloud variability near cloud edges remains an important source of uncertainty.

Additionally, we will emphasize that future satellite missions with higher spatial resolution—
such as the Directional Polarimetric Camera (DPC) and the Multi-viewing Multi-channel
Multi-polarization Imager (3MI)—will help alleviate these challenges by reducing sub-pixel
variability. This expanded discussion will provide readers with a clearer understanding of the
current limitations and pathways for future improvement.

Thank you again for highlighting this critical aspect of our work.

Detailed modifications are as follows: We have incorporated a related discussion in the
limitations section (Section 5). “The primary challenges in retrieving profile structural features
originate from the following aspects: (1) The coarse resolution of POLDER products restricts
the ability to capture sub-pixel cloud heterogeneity; however, by concentrating on relatively
uniform single-layer stratiform liquid clouds, this study partially mitigates the resulting
retrieval uncertainties. It should be noted that sub-pixel heterogeneity can inevitably introduce
certain errors, particularly at cloud boundaries. Nevertheless, Shang et al. (2015) pointed out
that the error caused by sub-pixel heterogeneity in cloud effective radius (CER) retrieval does
not exceed 10%, which remains within an acceptable range.” A feasible improvement plan for
future work has also been proposed. “To address the issues mentioned above, the improvement
strategies below can be implemented: (1) Internationally, there are currently polarimetric multi-
angle payloads with higher spatial resolution and greater observation angles that have been
launched or are planned for launch. For instance, China's DPC/GF-5 achieves a spatial
resolution of nadir 3.3 km; the 3MI/Metop-SG developed by the European Space Agency offers
a spatial resolution of nadir 4 km, supports up to 21 observation angles, and incorporates near-

infrared bands. These capabilities collectively enable higher-resolution CER retrieval.”

Major Comment 5: The exclusion of 9.1% of profiles classified as complex-shaped introduces a

subtle but potentially important selection bias in the results. While this filtering improves the clarity
of the statistical relationships, it risks creating an overly idealized representation of real-world cloud



profiles. Many meteorologically significant situations - such as clouds undergoing strong
entrainment, multilayered structures, or precipitating systems - may fall into this excluded category.
The authors should more thoroughly justify their exclusion criteria and discuss how this might affect
the generalizability of their findings. A sensitivity analysis showing how including some portion of
these complex profiles affects the retrieval statistics would significantly strengthen the paper's

conclusions.

Response: We sincerely appreciate the referee's insightful comment regarding the potential
selection bias introduced by excluding complex-shaped cloud profiles (9.1% of the dataset).
We agree that this is an important consideration, and we have taken the following steps to
address this concern in the revised manuscript:
1) Justification of Exclusion Criteria
We have supplemented the criteria for determining complex shape profiles, which are defined
as profiles that do not belong to any of the following shapes: (1) triangle shaped (Inc_Dec),
increasing then decreasing; (2) monotonically decreasing (Mono Dec); (3) monotonically
increasing (Mono_Inc); and (4) decreasing then increasing (Dec_Inc). These shapes depict the
vertical variation in the CER from the cloud base to the top. The four shapes can be simply
expressed by the following formulas:

Inc Dec: CERy < CER, <+ < CERy > CERy 1 >+ > CERy,1 <k <N

Mono Dec: CER; > CER, > - > CERy

Mono_Inc: CER; < CER, < -+ < CERy

Dec Inc: CER, > CER, > -+ > CER,, < CERyy; < - < CERy, 1<k <N
Where CER; denote the CER at the i-th vertical level (bin), i=1 corresponds to the cloud base and
=N to the cloud top.
2) Further analysis and discussion on the 9.1% complex-shaped profile
This paper further analyzes the similarity between the 9.1% complex-shaped profile and the
two main shapes extracted in this study (first increasing then decreasing, monotonically
decreasing) in Table A4. The purpose of this table is to make the shape analysis more complete.
In table A4, situationl refers to a situation where only one segment of the profile does not
correspond to the increasing and then decreasing shape profile of shapel, and situation2 refers
to a situation where only one segment of the profile does not correspond to the monotonically
decreasing shape profile of shape2. There is an intersection of situation1 and situation2, i.e., a
profile that matches both situationl and situation2 (Intersection of 1+2), which needs to be
subtracted out when calculating the sum of the two in order to avoid double counting. Table 4
shows that among the 9.1% of complex-shaped profiles, approximately 60% of the profiles
differ from the main profile shape we extracted in only one segment, which also proves that
the main profile shape we extracted is robust and universal. Although our profile simplification
program can reduce complex shapes to simpler forms, there is controversy regarding the
specific categories to which these shapes belong. Taking Figure RS as an example, Complex
Shape 1 and Complex Shape 2 can be simplified into different primary shapes. Therefore, we
believe that these 9.1% of complex profile shapes can be further analyzed in subsequent studies,
but it is unnecessary to include them in the follow-up retrieval research presented in this paper,

as their inclusion would introduce unnecessary errors into our training process.
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Figure RS. Complex CER profile shapes and their possible corresponding simplified shapes

(examples)

Detailed modifications are as follows: Based on your suggestions, we have made the

following modifications to the second paragraph of Section 4.1 (Typical shape and structural

characteristic analysis of CER profiles) in the original manuscript. “Through an extensive

literature review and visual analysis of CloudSat single-layer liquid cloud profiles, the vertical

variation of cloud effective radius (CER) can be classified into four distinct shapes based on the

monotonicity between adjacent layers: (1) triangle shaped (Inc_Dec), increasing then decreasing;

(2) monotonically decreasing (Mono_Dec); (3) monotonically increasing (Mono Inc); and (4)

decreasing then increasing (Dec_Inc). These shapes depict the vertical variation in the CER from
the cloud base to the top. The four shapes can be simply expressed by the following formulas:

Inc Dec: CERy < CER, < -+ < CER; > CERyy1 >+ > CERy, 1<k <N (3)

Mono Dec: CER; > CER, > --- > CERy 4)

Mono_Inc: CER; < CER, < --- < CERy &)

Dec Inc: CER; > CER, > -+ > CER < CERy;1 < - < CERy, 1<k <N (6)

Where CER; denote the CER at the i-th vertical level (bin), i=1 corresponds to the cloud base and

—_~

i=N to the cloud top. Systematic classification and statistical analysis confirm these patterns (Fig.
3(a)). Collectively, these four shapes account for 90.1% of the observed CER profiles, with Shapes
2 (Mono Dec: 48.8%) and 1 (Inc Dec: 39.7%) being the most prevalent, highlighting their
dominance in the liquid stratiform cloud life cycle. The remaining 9.1% represent complex-shaped
profiles that do not conform to these four categories, with further analysis of these cases presented
in the Appendix A (Table A4). Approximately 60% of these profiles contain only single segments
inconsistent with Shapes 1 and 2. Although our profile simplification program can reduce complex
shapes to simpler forms, there is controversy regarding the specific categories to which these shapes
belong. Taking Fig. Al as an example, Complex Shape 1 and Complex Shape 2 can be simplified
into different primary shapes. Therefore, we believe that these 9.1% of complex profile shapes can

be further analyzed in subsequent studies, but it is unnecessary to include them in the follow-up



parts presented in this study, as their inclusion would introduce unnecessary errors into our retrieval

prior knowledge.” Fig. A1 corresponds to Fig. R3 in this response.

Major Comment 6: The minimal three-year overlap between CloudSat (2006-2020) and POLDER
(2004-2013) operations raises important questions about the dataset's representativeness for global

climatological studies. Cloud properties exhibit significant interannual variability influenced by
large-scale modes like ENSO, and a three-year period may not adequately capture this natural
variability. The authors should discuss whether their training dataset (2013, 2019, and part of 2020)
is truly representative of global cloud conditions, and whether the limited temporal sampling might
introduce biases in the derived statistical relationships. This is particularly relevant given that some
of the training years (like 2019) were characterized by unusual atmospheric conditions in certain

regions.

Response: Thank you for your question. We understand your concerns regarding data
representativeness. The primary focus of this study is on liquid stratiform clouds (stratus +
stratocumulus) on a global scale, which has a relatively small vertical thickness and is
commonly found in stable atmospheric conditions. It is unlikely to persist under extremely
unstable meteorological conditions. For example, while El Nifio may suppress the formation
of stratiform clouds, it is unlikely to affect our statistical results. Therefore, we believe that the
abnormal atmospheric conditions in certain regions in 2019 will not impact the overall liquid
stratiform clouds profile dataset. Secondly, although the CloudSat profile data used in this
paper spans only the nearly three years, the overall data volume is substantial (as shown in
Table A3), reaching nearly 12.48 million entries, and it covers the entire globe spatially. The
large data volume of this study is sufficient to ensure the robustness of the profile statistical
results, and that abnormal atmospheric conditions in certain regions will not affect the overall
statistical results. Since our main objective is to investigate the structural characteristics of the
global stratiform liquid cloud profile rather than the interannual variability of global clouds,
we consider the data from the nearly three years to be sufficiently comprehensive. Additionally,
the time range of the research data selected in this paper (2013, 2019, and 2020) was not chosen
arbitrarily. It was selected to match the time range of the polarized multi-angle satellite
(POLDER-3/Parasol, DPC/GF-5, DPC/GF-5(02)) data. Although the overlap with the years
observed by currently launched payloads and CloudSat is relatively short, there are ongoing
international plans to launch W-band cloud radars (e.g., EarthCARE/CPR) and polarimetric
multi-angle satellites (e.g., 3MI), making the selection of active radar and polarimetric multi-
angle payload data for joint cloud profile research still of significant long-term value.

Detailed modifications are as follows: Based on your suggestion, we discussed and explained
this issue in Section 3.1. “Furthermore, since our study focuses on relatively homogeneous and
stable single-layer stratiform liquid clouds, localized atmospheric anomalies do not impact the

statistical results presented herein.”

Major Comment 7: The notably weak correlations for TP NCOT (Figure 5b) reveal fundamental

challenges in passively retrieving information about vertical structure inflection points. This poor



correlation performance suggests that current passive observables may lack the necessary
information content to reliably determine the normalized optical thickness at turning points. The
authors should expand their discussion of potential physical reasons for this limitation, such as: The
insensitivity of passive measurements to vertical redistribution of cloud water; The degeneracy
between different vertical configurations that produce similar top-of-atmosphere signals; The
potential for cloud inhomogeneity effects to obscure the true profile characteristics. A more
thorough exploration of these physical limitations would help readers better understand the
boundaries of what can realistically be achieved with passive profile retrievals.

Response: Thank you very much for your insightful and constructive comments. You have
accurately identified a critical and worthy issue in our research—the weak correlation between
TP _NCOT and other cloud parameters, and the fundamental challenges it reveals in passively
remote-sensing the vertical structure of clouds. First, it is important to clarify that both the
TP _NCOT (i.e., the turning point location) and the related cloud parameters used in the
correlation analysis in Fig. 5(b) are derived exclusively from active observations. Therefore,
we believe that this weak correlation is fundamentally unrelated to the insufficient sensitivity
of passive observations to vertical redistribution of cloud water or the similarity of atmospheric
top signals across different vertical configurations. In other words, while these limitations do
exist, they are not the cause of the phenomenon observed in Fig. 5(b). Additionally, the masking
of true profile characteristics by cloud inhomogeneity effects does not occur in active data.
This issue primarily stems from the limitations of passive observations, as current active data,
despite some uncertainty, can more accurately reflect the true state of cloud profiles compared
to passive observation data.

The essence of this phenomenon may be that the turning point position is almost unaffected by
droplet size, cloud water content, cloud thickness, and other factors, and the turning point
position of the cloud effective radius profile is not fundamentally related to these parameters.
According to the analysis in Section 4.1, the formation of cloud profile with a turning point
(first increasing then decreasing in shape) is primarily attributed to two possible causes: 1) The
entrainment of dry air at the cloud top enhances droplet evaporation, leading to a reduction in
droplet size and the appearance of a turning point in the cloud profile; 2) When collision and
coalescence at the cloud base cause droplet size to reach a critical value, drizzle or precipitation
forms at the cloud base, and the falling drizzle or precipitation may cause a reduction in droplet
size at the cloud base. 1) is the primary cause of the turning point in the non-precipitation
profile, while 1) and 2) may jointly contribute to the appearance of the turning point in the
precipitation profile. From the perspective of the causes of the turning point, the distribution
of the normalized optical thickness at the turning point may be relatively random, potentially
occurring at any position within the cloud. Fig. 3(b) also corroborates this point. Due to the
vertical resolution limitations of active satellites, the turning point locations exhibit a multi-
peak distribution; otherwise, they might be distributed more dispersedly. This also indirectly
reflects the difficulty of estimating the TP NCOT using these parameters through relatively
conventional methods, and the even greater difficulty of retrieving the profile TP NCOT
through “path-integrated” observations using passive satellites. We have added a discussion of
the possible causes of this weak correlation in Section 4.2 of the article. Thank you once again



for your valuable suggestions.

Detailed modifications are as follows: We supplemented the relevant discussion in Section
4.2. “The weak correlation for TP NCOT stems from the fact that the TP position is largely
independent of common cloud parameters such as droplet size, cloud water content, and cloud
thickness. Instead, it is primarily influenced by microphysical processes like cloud-top
entrainment and precipitation formation, leading to a relatively random distribution of
TP_NCOT within the cloud layer. This inherent randomness makes it inherently difficult to

estimate TP_ NCOT using conventional correlation-based method.”

Major Comment 8: The substantially higher errors over land (RMSE 1.96um vs. ~1.3pum over

ocean) point to important unresolved challenges in land cloud retrievals that deserve more detailed

discussion. Several factors likely contribute to this performance gap:

® Greater sub-pixel heterogeneity over land due to surface variability

® Higher and more variable aerosol loading affecting the cloud microphysics

® Stronger surface heating effects on cloud boundary layer dynamics

® Potential artifacts from the underlying terrain elevation and albedo

The paper would benefit from a dedicated discussion of these land-specific challenges and potential

strategies to mitigate them, such as incorporating land surface type classifications or aerosol

information into the retrieval framework.

Response: Thank you for your valuable feedback on our manuscript. The issue you raised
regarding the significantly higher retrieval errors for key structural features of cloud profiles
over land compared to oceanic regions is indeed crucial. We fully agree that this discrepancy
reflects the greater challenges inherent in cloud retrieval over land. Below is a point-by-point
response and additional discussion addressing your suggestions:

1. Analysis of Error Sources Over Land Regions

a) Sub-pixel Surface Heterogeneity: Variations in surface reflectance among different land
cover types (e.g., vegetation, bare soil, urban areas) lead to mixed-pixel effects, complicating
the decoupling of cloud optical properties.

b) Aerosol Interference: Higher and spatiotemporally variable aerosol loadings over land can
perturb cloud signals either indirectly by altering cloud microphysics (e.g., through cloud
condensation nuclei effects) or directly via scattering.

¢) Surface Heating Effects: The lower thermal inertia of land surfaces results in more complex
boundary-layer dynamics, increasing spatiotemporal variability in cloud base height and cloud
layer thickness, which in turn elevates retrieval uncertainty.

d) Interference from complex terrain and high-albedo surfaces: Complex terrain (e.g.,
mountains) and high-albedo surfaces (e.g., snow cover) are prone to causing false positives in
cloud detection or overestimation of optical thickness.

2. Potential Improvement Strategies
In response to your suggestions, we have supplemented our discussion with potential solutions
to address the significant retrieval errors in key structural characteristics of cloud profiles over



land regions, including: a) Integration of land cover classification data: Incorporating higher-
resolution land cover data (e.g., MODIS Land Cover products, Sentinel-2 10-meter resolution
data) could help mitigate mixed-pixel effects. A zone-based retrieval strategy may be
developed by establishing customized radiative transfer model parameters for distinct surface
types (e.g., forest, cropland, urban areas). Seasonal variations in vegetation indices (e.g., NDVI)
could also be employed to dynamically adjust surface albedo parameters. b) Integration of
aerosol ancillary data: Multi-source aerosol observations (e.g., MERRA-2 reanalysis data,
AERONET ground-based measurements) could be incorporated to better constrain retrieval
parameters in regions affected by aerosol-cloud interactions; ¢) Development of advanced
retrieval algorithms: More sophisticated methods, such as machine learning or deep learning
approaches, could be employed to better represent the complex relationships between land
surface, atmosphere, and clouds.

Thank you once again for guiding the direction of our discussion, which has significantly
enhanced the comprehensiveness of this study.

Detailed modifications are as follows: Based on your suggestions, we have incorporated
relevant discussions in Section 5 (Discussion and Conclusion) of the manuscript. “Meanwhile,
the wvalidation results indicate that the RMSE of stratiform cloud profile structural
characteristics over land is significantly higher than that over sea. This discrepancy is
considered to be mainly attributable to the following factors: a) Sub-pixel Surface
Heterogeneity: Variations in surface reflectance among different land cover types (e.g.,
vegetation, bare soil, urban areas) lead to mixed-pixel effects, complicating the decoupling of
cloud optical properties. b) Aerosol Interference: Higher and spatiotemporally variable aerosol
loadings over land can perturb cloud signals either indirectly by altering cloud microphysics
(e.g., through cloud condensation nuclei effects) or directly via scattering. ¢) Surface Heating
Effects: The lower thermal inertia of land surfaces results in more complex boundary-layer
dynamics, increasing spatiotemporal variability in cloud base height and cloud layer thickness,
which in turn elevates retrieval uncertainty. d) Interference from complex terrain and high-
albedo surfaces: Complex terrain (e.g., mountains) and high-albedo surfaces (e.g., snow cover)
are prone to causing false positives in cloud detection or overestimation of optical thickness. It
is suggested that the following strategies could be adopted in the future to improve the
estimation accuracy of stratiform cloud profile structural characteristics over land . a)
Integration of land cover classification data (e.g., MODIS Land Cover product); b) Integration
of aerosol ancillary data: Multi-source aerosol observations (e.g., MERRA-2 reanalysis data,
AERONET ground-based measurements) could be incorporated to better constrain retrieval
parameters in regions affected by aerosol-cloud interactions; c¢) Development of advanced
retrieval algorithms: More sophisticated methods, such as machine learning or deep learning
approaches, could be employed to better represent the complex relationships between land

surface, atmosphere, and clouds.”

Minor Comment 1: Vertical resolution impact on thin layers:

While CloudSat’s 240-m resolution is mentioned (Sec. 2.1), its inability to resolve sub-240 m layers



(e.g., thin stratus) should be explicitly discussed.

Response: Thank you for your suggestions, which have made the discussion on payload
limitations more comprehensive. Following your advice, we have supplemented Section 2.1
with a discussion about CloudSat’s Cloud Profile Radar being unable to resolve cloud layers
thinner than 240 m (thin clouds) due to its inherent resolution constraints. The modifications

have been made as indicated above.
Detailed modifications are as follows: We supplemented and explained this limitation of

CloudSat at the end of Section 2.1 (CloudSat data). “and (3) due to the limitations of 240-m

resolution, it may not be possible to identify ultra-thin layer structures below 240m.”

Minor Comment 2: Terminology consistency:

Line 218: “Stratiform water cloud profiles” — “liquid cloud profiles” for consistency with the rest

of the paper.

Response: Thank you for your correction. We have revised the terminology on line 218 of the
original text and conducted a full-text review to ensure terminological consistency throughout

the manuscript.
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