
Dear referees, 

Thank you for your comments concerning our manuscript entitled “Characterization of liquid cloud 

profiles using global collocated active radar and passive polarimetric cloud measurements” (ID: 

egusphere-2025-2471). Those comments are all valuable and very helpful for revising and 

improving our paper, as well as the important guiding significance to our researches. We have 

studied comments carefully and have made correction which we hope meet with approval. Revised 

portions are marked in blue (referee #1) /orange (referee #2) in our response document. The 

relevant references are at the end of our reply letter. The main corrections in the paper and the 

responses to the referees' comments are as following: 

 

Response to Referee #1’s Comments 

General Summary 

This paper presents an innovative methodology for characterizing vertical profiles of stratiform 

liquid clouds. The authors identify dominant morphological patterns of cloud effective radius 

profiles using CloudSat radar data, and then develop a way to retrieve profile information from  

passive polarimetric (POLDER) satellite observations. The paper is technically strong and well 

written. However, after reading the paper I was left with a few key questions that should be 

addressed before publication 

 

Major Comment 1: The authors state that cloud-base height is retrieved “based on POLDER data” 

(line 116). How, exactly, is this retrieval performed? I was not aware that cloud base height could 

be retrieved from POLDER. Does the multivariate regression model mentioned in line 367 also use 

cloud base height from POLDER?  

 

Response: Thank you for your question. Obtaining cloud bottom heights based on POLDER 

data is another work in progress by the authors associated with this paper, which has been 

completed but not formally published, and is currently being submitted to relevant academic 

journals for review, so we do not describe this work in detail in this manuscript, and the 

multivariate linear regression model mentioned in line 367 in this study also uses the cloud 

bottom heights inverted by this method as input. We describe here the implementation of the 

method to obtain cloud bottom heights based on POLDER data to answer the questions raised 

by the referee: 

 

We developed a machine learning-based approach to estimate cloud base height (CBH) from 

POLDER/Parasol observations by leveraging collocated CloudSat radar measurements. The 

dataset was constructed by matching Parasol Level 1 (L1) data—including oxygen absorption 

(OA) channels (763 nm and 765 nm), OA ratios across 14 viewing angles, longitude, latitude, 

and elevation—with CloudSat Level 2 (L2) CBH products for March, June, September, and 

December 2007. Spatial collocation accuracy was constrained to within 0.01°, while temporal 

discrepancies were negligible due to the near-simultaneous observations from A-Train 

satellites. To ensure high-quality training data, only cases where Parasol confidently detected 

cloudy scenes and CloudSat identified single-layer clouds were retained. The dataset was split 

into training and validation subsets, with 7 days per month reserved for independent evaluation. 

The machine learning model used geographic coordinates (longitude, latitude, elevation) and 



Parasol’ s multi-angle OA information as inputs to predict CBH, with CloudSat-derived heights 

serving as ground truth. After optimization and validation, the finalized model enabled global 

CBH retrieval using Parasol L1 data alone, providing a novel solution for passive sensor-based 

cloud vertical structure characterization. This method addresses the inherent limitations of 

passive remote sensing in directly probing cloud boundaries while capitalizing on POLDER’s 

unique multi-angle OA capabilities. After several machine learning algorithms are compared, 

the deep neural network (DNN) model with the best accuracy is selected as the retrieval model. 

The method of CBH reversal based on multiangle OA remote sensing and the DNN has a mean 

absolute error (MAE) of 0.78 km, a bias of 0.22 km, and a correlation coefficient (R) of 0.82. 

By integrating machine learning with the multiangle OA, this method offers a novel approach 

for CBH retrieval. Fig. R1 shows the specific process of our CBH retrieval algorithm. 

 

Figure R1. Flowchart of the machine learning-based algorithm for retrieving CBHs using the OA 

(Ji et al. 2025. Manuscript submitted for publication) 

 

Detailed modifications are as follows: We have added the explanation to Line 118-119: “The 

retrieval algorithm for cloud base height will be thoroughly described in a forthcoming article 

and is therefore not discussed here.” 

 

 

Major Comment 2: The spatial resolution of CWC-RO (less than 2km) in vastly different from the 

spatial resolution of POLDER (~50km). I’d like to see more details about how the observations were 

matched up in creating Figure 9, and more discussion about whether relationships between variables 

derived at CloudSat resolution should be expected to hold at POLDER resolution, when there will 

be a lot of sub-pixel heterogeneity. 

 



Response: Thank you very much for your suggestions. The issues you raised are crucial and 

will be essential for us to enhance the completeness of the paper and demonstrate the robustness 

of the estimated method for cloud-top profile structural characteristics. 

 

(1) First, addressing your initial question: The purpose of the experiment in Fig. 9 is to estimate 

the profile turning point CER (TP_CER) and normalized optical thickness (TP_NCOT) using 

passive data, and to compare these results with active data. This aims to explore the feasibility 

of the aforementioned method for estimating profile characteristics in passive data. The 

matching process is as follows: We began by identifying matching pairs of POLDER3 and 

CloudSat data from March 2007, focusing on orbits that contained both datasets and included 

a high number of stratiform cloud profiles with a triangular shape. From these, we selected the 

POLDER3 data recorded between 06:41:09 and 07:24:06 on March 2, 2007, along with the 

corresponding CloudSat data, to estimate and validate the profile TP parameters. 

 

We primarily used POLDER Level 2 data (RB2) for matching with CloudSat. The spatial 

resolution of POLDER RB2 product is approximately 16 km, which differs from CloudSat’s 

spatial resolution (less than 2 km). Therefore, during the matching process, we calculated the 

Euclidean distance between each POLDER_RB2 pixel and the corresponding CloudSat data 

point. Due to the coarser resolution of POLDER_RB2 data compared to CloudSat, multiple 

CloudSat data points may correspond to the same POLDER_RB2 pixel. We retained only the 

CloudSat data point closest to the center of the POLDER_RB2 pixel. Ultimately, eight cases 

were randomly selected (Fig. 9) for validating the estimated characteristics of the profile 

structures. 

 

Through matching, we extracted COT, latitude, longitude and other related data from the 

POLDER_RB2 product. Using these coordinates, we further extracted CBH, CTH, and 

CT_CER data retrieved by our algorithm. CBH and CTH were retrieved from POLDER3 Level 

1 products with a resolution of 6 km, matching the L1 product resolution. CT_CER was also 

retrieved from POLDER L1 product with a 50 km resolution. POLDER lacks near-infrared 

bands, so it can only retrieve cloud-top CER using multi-angle polarization signals. This 

method has a drawback: it must compensate for insufficient angular sampling by including 

more pixels—resulting in lower resolution for the retrieved CER. Our current algorithm (Shang 

et al., 2019) can achieve CER retrieval at a range of 40–60 km. This paper utilizes the 

retrieved 50 km resolution CER product. However, we do not consider this an insurmountable 

permanent flaw. Internationally, there are currently polarimetric multi-angle payloads with 

higher spatial resolution and greater observation angles that have been launched or are planned 

for launch. For instance, China's DPC/GF-5 achieves a spatial resolution of nadir 3.3 km; the 

3MI/Metop-SG developed by the European Space Agency offers a spatial resolution of nadir 

4 km, supports up to 21 observation angles, and incorporates near-infrared bands. These 

capabilities collectively enable higher-resolution CER retrieval. 

 

(2) We understand your concerns regarding sub-pixel heterogeneity due to the coarse resolution 

of POLDER data, as well as the challenges in applying relationships derived from CloudSat to 

POLDER data because of differing spatial resolutions. Our primary response is as follows: (a) 



Our primary research subject is single-layer stratiform liquid clouds (stratocumulus and stratus). 

Relevant literature indicates (Jr., 2014) that within stratiform cloud regions, both updrafts and 

downdrafts are relatively weak. They are relatively uniform horizontally compared to other 

cloud types, and their cloud microphysical properties exhibit slow horizontal variations—that 

is, they are less spatially heterogeneous. This is why we selected single-layer stratiform liquid 

clouds—a structurally simpler cloud type—as our primary research subject. (b) Shang et al. 

(2015) specifically investigated the impact of liquid cloud spatial heterogeneity on CER 

retrieved from POLDER. The Table 2(Fig. R2) presented in their paper shows that under sub-

grid scale heterogeneity, the relative deviation between the retrieved CER and the sub-grid 

scale CER mean ranges from 0.86% to 8.33% (Table R1), with none exceeding 10%. This 

indicates that for liquid clouds, the impact of sub-grid scale heterogeneity on the retrieval of a 

representative CER value is manageable and typically within an acceptable range (under 10%) 

for bulk microphysical properties.  

 

 

Figure R2. Table 2 from Shang et al. (2015), AMT. 

 

Table R1. Relative deviation between inverted CER and subpixel CER mean values. 

 
Mean 

CER(µm) 
Retrieval 
CER(µm) 

Relative 
deviation 

1 13.46 13 -3.41% 

2 18.00 16.5 -8.33% 

3 18.20 17.5 -3.85% 

4 12.70 12.0 -5.51% 

5 17.35 17.5 +0.86% 

6 17.07 16.0 -6.27% 

   



 

Figure R3. Comparison of the average CER profile (averaged by height) within the same POLDER 

pixel versus the CER profile closest to the center of the POLDER pixel. 

 

(c) To further investigate whether the relationship derived from CloudSat could be applied to 

POLDER data, we statistically analyzed the CloudSat CER profiles corresponding to these 8 

POLDER pixels. For each POLDER pixel, we averaged the CloudSat CER profiles and 

compared them with the CloudSat profile closest to the center of the POLDER pixel. The 

results are shown in Fig. R3. We conclude that, except for a slightly higher deviation in Case 

2, the deviations in other cases are relative small. That is, the profiles at the coarse resolution 

of the POLDER level (pixel_average) show little difference from the CloudSat profiles at 

normal resolution that we selected (center_nearest), demonstrating a high degree of similarity.  

 

In summary, we believe that although single-layer stratiform liquid clouds exhibit spatial 

heterogeneity, this heterogeneity is relatively weak. This allows the relationships derived at 

CloudSat resolution to be applied to coarser-resolution POLDER data. However, we 

acknowledge that this spatial averaging inherent to coarse resolution data is the primary 

challenge when inferring detailed vertical profile features, as discussed in our response to the 

other referee's similar concern. In the future, as the observational capabilities of passive multi-

angle polarization payloads improve, the association between active and passive observation 

data will become even stronger.  

 

Detailed modifications are as follows: We have added the description of match-up process in 

Section 3.4. “To validate the profile structural characteristics retrieved by passive satellite 

observations, a match-up process between POLDER and CloudSat observations is conducted. 

We focus on March 2007 and identified coincident orbits that contained a high number of 

stratiform cloud profiles exhibiting a triangle-shaped vertical structure in CloudSat data. A 

specific dataset from March 2, 2007 (POLDER observation time between 06:41:09 and 

07:24:06 UTC) is selected for detailed analysis in Section 4.4. The POLDER-3 Level 2 (RB2) 

product served as the primary dataset for matching with CloudSat observations. With a spatial 

resolution of approximately 16 km, this product is notably coarser than CloudSat's resolution 



of less than 2 km. To establish correspondence between the datasets, the Euclidean distance 

between each POLDER-3 RB2 pixel center and all CloudSat data points within the POLDER-

3 RB2 pixel is computed. Owing to the resolution discrepancy, a single POLDER-3 RB2 pixel 

often contains multiple CloudSat data points. In such cases, only the CloudSat data point 

closest to the center of the POLDER_RB2 pixel is retained.  

 

Through the matching process, cloud optical thickness (COT), latitude, longitude, and other 

relevant data are extracted from the POLDER-3 RB2 product. These coordinates are then used 

to extract cloud base height (CBH), cloud top height (CTH), and cloud-top effective radius 

(CT_CER) obtained through the retrieval algorithm. CBH and CTH are retrieved from the 

POLDER-3 L1 product, which has a native resolution of 6 km, matching the resolution of the 

source data. CT_CER is retrieved from the POLDER L1 product at a 50 km resolution.”  

 

Meanwhile, we have added a discussion regarding the uncertainties arising from the coarse 

resolution of POLDER in Section 5. “The coarse resolution of POLDER products restricts the 

ability to capture sub-pixel cloud heterogeneity; however, by concentrating on relatively 

uniform single-layer stratiform liquid clouds, this study partially mitigates the resulting 

retrieval uncertainties. It should be noted that sub-pixel heterogeneity can inevitably introduce 

certain errors, particularly at cloud boundaries. Nevertheless, Shang et al. (2015) pointed out 

that the error caused by sub-pixel heterogeneity in cloud effective radius (CER) retrieval does 

not exceed 10%, which remains within an acceptable range.” 

 

 

Minor Comment 1: Line 136: Why 2013, 2019, and the first eight months of 2020? This seems 

like a very arbitrary group of years to use. 

 

Response: The choice of data from 2013, 2019, and the first eight months of 2020 for this 

study was carefully considered. Our aim was to explore cloud profile structures by combining 

CloudSat observations with polarized multi-angle payload data. In our preliminary work, we 

gathered available polarized multi-angle measurements from sources such as the French 

POLDER-3/PARASOL instrument, as well as China's DPC/GF-5 and DPC/GF-5(02) sensors. 

Based on our initial assessments, CloudSat's key CWC_RO product provides reliable data 

between 2006 and August 2020, while POLDER-3's useful dataset covers 2005 to 2013. 

Additionally, we had access to China's DPC/GF-5 and DPC/GF-5(02) data, though it should 

be noted that these datasets are not publicly available. However, the DPC data at our disposal 

is limited to 2019 and 2020. To ensure our analysis remains as up-to-date as possible while still 

allowing for joint active-passive sensor studies, we ultimately selected CloudSat data from 

2013, 2019, and the first eight months of 2020 for this investigation. 

 

 

Minor Comment 2: Line 204: As far as I am aware, there is no “Colorado State University regional 

climate model.” Do you mean the CSU Regional Atmospheric Modeling System (RAMS)? 

 

Response: Thank you for your reminding, we feel sorry for our carelessness. ln our 



resubmitted manuscript, we have corrected the “Colorado State University regional climate 

model” to “the Colorado State University Regional Atmospheric Modeling System (RAMS)”.  

 

 

Minor Comment 3: It should be noted that the CloudSat CWC-RO product misses many (perhaps 

the majority of) single-layer liquid clouds, either because the clouds are masked by surface clutter 

or because they are below the radar’s noise threshold (e.g., Lamar et al., 2020; Schulte et al., 2023). 

So the true nonprecipitating-to-precipitating ratio is likely much higher.  

 

Response: We agree with this valuable comment. we have read the relevant papers carefully, 

CloudSat's data may indeed have this problem, so we try to expand the data scope to increase 

the amount of research data (single-layer liquid cloud). The ratio of non-precipitating clouds 

to precipitating clouds here is just a statistic of the data situation of our existing study, as you 

said, it may be different from the real ratio of non-precipitating clouds to precipitating clouds, 

the real ratio of non-precipitating clouds to precipitating clouds may be much higher, and we 

added this point to the article, as well as the possible uncertainty of CloudSat in the detection 

of single-layer liquid clouds. 

 

 

Minor Comment 4: Line 240: I believe you mean Table A4 here, but even so, I do not understand 

what the table is intended to show. 

 

Response: Yes, this refers to Table A4, which exists in order to explain the complex situation 

“Other” such profiles, there is also a part of the profile that is highly similar to the two main 

shapes derived from this study, and exists in order to make the shape analysis of the profiles 

more complete. It should be recognized that our interpretation of Table A4 is not complete, and 

we have added explanations in the note of Table A4: situation1 refers to a situation where only 

one segment of the profile does not correspond to the increasing and then decreasing shape 

profile of shape1, and situation2 refers to a situation where only one segment of the profile 

does not correspond to the monotonically decreasing shape profile of shape2. There is an 

intersection of situation1 and situation2, i.e., a profile that matches both situation1 and 

situation2 (Intersection of 1+2), which needs to be subtracted out when calculating the sum of 

the two in order to avoid double counting. 

 

 

Minor Comment 5: Line 327: Any idea whether these two density centers have physical meaning? 

 

Response: Thank you for raising this insightful question. From the Fig. 6(m), (n), and (p) of 

the original manuscript, i.e., the following Fig. R4(a1), (b1), and (c1), it can be observed that 

the scatter density distribution of the turning point CER(TP_CER) and the turning point LWC 

(TP_LWC) exhibits two density centers. This indicates that the relationship between TP_LWC 

and TP_CER is not a simple linear correlation. We conducted further analysis on the density 

centers, taking Fig. R4(a1) (sea non-precipitation clouds) as an example: the TP_CER shows 

a unimodal distribution clustered around 11–13μm, while TP_LWC exhibits a bimodal 



distribution within the same TP_CER range of 11–13μm. In other words, at the same TP_CER, 

some profiles have relatively higher TP_LWC, while others have relatively lower TP_LWC. 

 

We propose that the two density centers reflect two dominant mechanisms governing cloud 

microphysical processes. One mechanism is primarily dominated by condensational growth, 

characterized by higher liquid water content for a given cloud droplet size. This typically 

occurs under conditions of low cloud condensation nucleus (CCN) concentration and a stable 

environment, where cloud droplets grow slowly through vapor condensation and accumulate 

liquid water. The other mechanism is dominated by collision-coalescence growth, exhibiting 

lower liquid water content for the same cloud droplet size. This often happens in environments 

with high CCN concentrations and dynamic activity, where cloud droplets grow rapidly 

through collision and coalescence, leading to the redistribution of liquid water into a fewer 

number of larger droplets. This conclusion is strongly supported by the observed land-sea 

contrast: for sea-based clouds, the density center with higher liquid water content (as seen in 

Figures R4(b1) and (c1)) shows a higher concentration of data points, while for continental 

clouds, the density center with lower liquid water content (Figure R4(a1)) is more densely 

populated. Over the sea, the condensation-dominated mechanism—characterized by high 

liquid water content — is more prevalent, consistent with the typically low aerosol 

concentrations, abundant moisture supply, and stable thermodynamic conditions in marine 

environments. In contrast, over land, the collision-coalescence-dominated mechanism—

associated with lower liquid water content — prevails, aligning with the high aerosol 

concentrations, strong convective activity, and dynamically active nature of continental 

settings. This systematic geographical pattern strongly affirms the physical reality of the dual 

density centers, demonstrating that they represent distinct cloud microphysical states driven by 

environmental factors such as aerosol concentration and thermodynamic conditions. 

 



  

Figure R4. Scatter density plots exhibiting dual density centers and their corresponding 

probability density distribution of TP_LWC within a specific TP_CER range. 

 

Detailed modifications are as follows: We have briefly expanded on the potential physical 

implications of the dual density centers in the original manuscript. “The two density centers 

observed in the relationship between the TP_CER and TP_LWC reflect two distinct cloud 

microphysical regimes. One is primarily driven by condensational growth, which tends to 

occur under low aerosol and stable conditions, resulting in higher LWC for a given droplet size. 

The other is dominated by collision-coalescence, typical in relative high aerosol and 

dynamically active environments, leading to lower LWC for the same droplet size.” 

 

  



Response to Referee #2’s Comments 

Overall Comment: 

This study presents a significant methodological advancement in remote sensing of liquid cloud 

vertical profiles by integrating active (CloudSat radar) and passive (POLDER polarimetric imager) 

measurements . The work is rigorous and innovative, leveraging global-scale data (12.47M profiles) 

to classify cloud profile shapes, establish statistical correlations, and develop retrieval models. The 

paper does several things exceptionally well: 1. Global-scale profile classification is statistically 

robust, providing a comprehensive understanding of dominant cloud structures (triangle-shaped and 

monotonically decreasing profiles). 2. Shape simplification using the VM algorithm is clever, 

effectively reducing noise while preserving key structural features. 3. Correlation analyses (e.g., 

between TP_CER and CB_CER, LWP) provide valuable physical insights into cloud microphysics. 

4. The hybrid ML/physical modeling approach (CPRM reconstruction) is methodologically sound, 

combining the strengths of data-driven and physics-based methods. 

 

However, passive retrieval limitations and dependence on CloudSat for prior knowledge (especially 

CB_CER estimation) remain fundamental constraints. Current methods cannot fully resolve vertical 

uncertainties due to: 1. CloudSat’s 240-m vertical resolution , which restricts layer precision (>2.64 

km); 2. POLDER’s coarse spatial resolution (50 km for CER) , which may misrepresent fine-scale 

cloud variations. 

 

Despite these limitations, this work represents a significant step toward parameterizing cloud 

processes in climate models , particularly for stratiform/stratocumulus clouds. 

 

Major Comment 1: The study's heavy reliance on CloudSat-derived empirical relationships for 

estimating CB_CER represents a critical constraint that significantly impacts the broader 

applicability of the methodology. While the multivariate regression approach using CT_CER, LWP, 

and CTH demonstrates reasonable correlation (0.75-0.92), this dependence on active sensor data 

fundamentally undermines the potential for truly independent passive retrievals. The propagation of 

errors through this empirical relationship is particularly concerning, with RMSE values reaching up 

to 1.96 μm for land-based clouds. This limitation is especially problematic because CB_CER serves 

as a foundational parameter for estimating TP_CER, meaning any errors in the initial cloud-base 

estimation will cascade through the entire retrieval process. The authors should more thoroughly 

discuss potential mitigation strategies, such as incorporating ancillary data sources or developing 

physics-based approaches to reduce this critical dependency on CloudSat for prior knowledge.  

  

Response: We sincerely thank your thoughtful consideration of the empirical relationship 

derived from CloudSat data used to estimate CB_CER in this study. We fully acknowledge the 

limitations of this approach. Currently, directly retrieving the cloud-bottom effective particle 

radius using passive observational data involves significant uncertainty and is considerably 

challenging to achieve. Few studies have attempted to retrieve the cloud-bottom effective 

radius. In Platnick (2000), the relative contribution (vertical weighting) of different cloud 

layers to the overall retrieval was simulated using the adding-doubling method. The results 

indicated that the cloud base contributes the least to the total reflectance, with its contribution 

approaching zero for optically thick clouds. Additionally, Buggee and Pilewskie (2025) noted 



that constraining cloud-bottom droplet size is highly difficult, as the average penetration depth 

of visible and near-infrared reflectance is limited to the vicinity of the cloud top. It is 

challenging to retrieve the cloud-bottom effective particle radius using passive observational 

data based on classical physical retrieval methods (radiative transfer model simulations and 

look-up tables), due to the low sensitivity of visible and infrared bands currently used for cloud 

detection to cloud-bottom signals. 

 

However, if cloud microphysical profiles are to be obtained from passive satellite 

measurements, cloud-bottom droplet size remains an unavoidable yet challenging issue. This 

study presents a preliminary attempt to estimate the cloud-bottom effective radius for single-

layer stratiform liquid clouds using an empirical relationship derived from CloudSat data. All 

input variables are based solely on features obtainable from passive observations. The RMSE 

for the TP_CER retrieval of sea non-precipitation clouds, sea precipitation clouds, land non-

precipitation clouds, and land precipitation clouds reached 1.19, 1.30, 1.76, and 1.96μm, 

respectively. The retrieval accuracy of TP_CER for sea-based clouds is higher than that for 

land-based clouds, while the accuracy for non-precipitation clouds is superior to that for 

precipitation clouds. We consider the lowest accuracy in estimating the TP_CER for land 

precipitation clouds to be a reasonable result, attributable to the following factors: (1) The 

ocean surface exhibits simple, homogeneous, and highly uniform properties, whereas land 

surfaces are characterized by complex types, low heat capacity, pronounced diurnal and spatial 

variations in surface temperature, and higher aerosol concentrations that provide more 

abundant cloud condensation nuclei. (2) Non-precipitation clouds are relatively homogeneous, 

with thinner layers and limited vertical development, whereas precipitation clouds exhibit more 

intense microphysical processes. Current studies on CER retrieval methods generally report 

RMSE values ranging between 4–7μm (Ma and Husi, 2024; Du et al., 2024). This indicates 

that significant uncertainty remains in CER retrieval, and our TP_CER estimation scheme 

achieves relatively favorable accuracy in comparison. 

 

Certainly, we fully understand the referees' concerns regarding this estimation approach: (1) 

The empirical relationship is derived entirely from active sensor observations, specifically 

CloudSat CPR data; (2) The retrieval error in CB_CER, which serves as the initial parameter 

for estimating TP_CER, may lead to an accumulation of errors in the TP_CER estimation. We 

also have plans to further improve this preliminary approach in subsequent research. In 

response to the referee' feedback, we have added a discussion in the final chapter of the paper 

outlining potential strategies to mitigate these uncertainties: (1) Introduce meteorological 

factors—such as ERA5 reanalysis data (e.g., wind speed, temperature, humidity, pressure, 

vertical velocity)—to assist in estimating the cloud-bottom effective radius, thereby enhancing 

the physical characterization of the cloud-base environment; (2) Optimize existing methods for 

directly retrieving cloud-bottom particle size using passive observations (Level 1 or Level 2 

products), improve the robustness of the retrieval model, and clarify the applicable boundaries 

of the method—specifically, determining the optical thickness threshold beyond which passive 

observations can no longer capture cloud-bottom information; (3) Incorporate an uncertainty 

weighting framework to dynamically adjust the contribution weights of different input 

parameters based on their reliability, thereby refining the retrieval accuracy of CB_CER and 



reducing dependence on CloudSat-derived empirical relationships. 

 

Detailed modifications are as follows: In Section 5 of the manuscript, we clarified that the 

current uncertainties in cloud base CER retrieval remain a major source of error in the vertical 

structure retrieval of cloud profiles. Additionally, potential improvement strategies are 

discussed based on your suggestions. “In terms of estimating the CB_CER: (1) Introduce 

meteorological factors—such as ERA5 reanalysis data (e.g., wind speed, temperature, humidity, 

pressure, vertical velocity)— to assist in estimating the CB_CER, thereby enhancing the 

physical characterization of the cloud-base environment; (2) Optimize existing methods for 

directly retrieving cloud-bottom particle size using passive observations (Level 1 or Level 2 

products), improve the robustness of the retrieval model, and clarify the applicable boundaries 

of the method—specifically, determining the optical thickness threshold beyond which passive 

observations can no longer capture cloud-bottom information; (3) Incorporate an uncertainty 

weighting framework to dynamically adjust the contribution weights of different input 

parameters based on their reliability, thereby refining the retrieval accuracy of CB_CER and 

reducing dependence on CloudSat-derived empirical relationships.” 

 

 

Major Comment 2: The observed inconsistencies in POLDER-based TP_CER and TP_NCOT 

retrievals, particularly evident in Cases 1, 2, and 7 of Figure 9, reveal important limitations in current 

passive sensing capabilities. These discrepancies likely stem from multiple compounding factors 

that warrant deeper examination. First, POLDER's relatively coarse spatial resolution 

(approximately 50 km for CER retrievals) means it cannot resolve fine-scale heterogeneities in 

cloud microphysical properties that CloudSat can detect along its narrow swath. Second, the visible-

band measurements used by POLDER are primarily sensitive to cloudtop properties, making it 

inherently challenging to accurately characterize vertical microphysical gradients. The study would 

benefit from a more detailed error analysis quantifying how these sensor limitations translate to 

uncertainties in profile reconstruction, perhaps through sensitivity studies or comparison with 

higher-resolution datasets where available. 

 

Response: We sincerely thank the referee for this insightful observation and for highlighting 

this crucial aspect of our study. The retrieval of the TP_CER and its location in Cases 1, 2, and 

7 in Figure 9 exhibits slightly higher errors compared to other cases. We fully agree that a more 

detailed error analysis is crucial to thoroughly investigate the causes and better understand the 

limitations of passive sensor data in cloud profile retrieval. The main sources of uncertainty 

are considered to be the following: 

(1) The coarse resolution of POLDER products cannot capture inherent subpixel heterogeneity. 

This study utilized the POLDER Level 2 RB2 product (16 km resolution) along with cloud top 

height (CTH), cloud base height (CBH) (both at 6 km), and cloud top effective radius (CER) 

data (50 km resolution), all of which were derived from POLDER Level 1 products. Compared 

to CloudSat data, the coarser resolution of POLDER may cause biases resulting from subpixel 

heterogeneity. We conducted a further analysis of the eight cases in Fig. 9 by averaging the 

CloudSat CER profiles within each corresponding POLDER pixel along the altitude dimension. 

This process effectively aggregates the high-resolution CloudSat profiles to the spatial scale of 



a POLDER pixel, simulating what POLDER would likely "see". The resulting averaged 

profiles were then compared against our validation data—the CloudSat profile closest to the 

center of the POLDER pixel—as shown in the figure below. Although this study specifically 

targets horizontally relatively homogeneous single-layer stratiform water clouds, subpixel 

heterogeneity—resulting from POLDER's coarse resolution—remains one of the main sources 

of error in estimating the structural parameters of cloud profiles. 

 

Figure R3. (It appeared in the previous text, so it has been repeatedly numbered here.) Comparison 

of the average CER profile (averaged by height) within the same POLDER pixel versus the CER 

profile closest to the center of the POLDER pixel.  

 

(2) Inherent physical limitation: Vertically integrated signal. The retrieval of CER from 

POLDER observations differs from traditional dual-channel methods, relying instead on the 

directional characteristics of polarized reflectance within the cloud bow scattering angle range. 

It should be emphasized that all such passive retrieval techniques essentially provide a 

vertically integrated measurement—a weighted average signal sensitive to microphysical 

properties from the cloud top downward through a depth determined by cloud optical thickness. 

This fundamental characteristic inherently increases the uncertainty in retrieving vertical 

structural features. This limitation is inherent not only to POLDER but to all passive sensor 

payloads, which underscores the significance of our study's exploration of cloud profile 

retrieval using passive data. 

(3) Propagation of input uncertainties. Errors in the upstream inputs (COT, CT_CER from 

POLDER, and CTH/CBH from the combination of POLDER and ancillary data) inevitably 

propagate into the LWP and CB_CER. This accumulated uncertainty can then propagate into 

errors in the final estimated profile parameters, including the TP_CER and its location. Cases 

with higher sub-pixel heterogeneity or where the cloud-top CER is less representative of the 

layer-average are particularly susceptible to this propagation effect.  

 

Certainly, we believe these errors can be mitigated through the ongoing development of 

polarized multi-angle sensors. A number of spaceborne instruments with higher spatial 

resolution, additional observational channels, and expanded viewing angles have recently been 



launched or are planned for future missions. Examples include the already deployed DPC/GF-

5, which achieves a nadir resolution of 3.3 km, and the upcoming 3MI/Metop-SG sensor 

developed by the European Space Agency, which offers a nadir resolution of 4 km along with 

enhanced scalar and polarimetric observations in the near-infrared bands. These advances 

provide promising opportunities for improving the accuracy of cloud profile retrieval. 

  

Detailed modifications are as follows: We have revised and expanded the explanation 

regarding the causes of and error analysis for the relatively larger errors in Cases 1, 2, and 7 

compared to other cases in Section 4.3. “The coarse resolution of POLDER products cannot 

capture inherent subpixel heterogeneity. This study utilizes the POLDER Level 2 RB2 product 

(16 km resolution) along with cloud top height (CTH), cloud base height (CBH) (both at 6 km), 

and cloud top effective radius (CER) data (50 km resolution), all of which are derived from 

POLDER Level 1 products. Compared to CloudSat data, the coarser resolution of POLDER 

may cause biases resulting from subpixel heterogeneity. We conduct a further analysis of the 

eight cases in Fig.A2 by averaging the CloudSat CER profiles within each corresponding 

POLDER pixel along the altitude dimension. This process effectively aggregates the high-

resolution CloudSat profiles to the spatial scale of a POLDER pixel, simulating what POLDER 

would likely "see". The resulting averaged profiles are then compared against our validation 

data—the CloudSat profile closest to the center of the POLDER pixel. Although this study 

specifically targets horizontally relatively homogeneous single-layer stratiform water clouds, 

subpixel heterogeneity—resulting from POLDER's coarse resolution—remains one of the 

main sources of error in estimating the structural parameters of cloud profiles. (2) Inherent 

physical limitation: Vertically integrated signal. The retrieval of CER from POLDER 

observations differs from traditional dual-channel methods, relying instead on the directional 

characteristics of polarized reflectance within the cloud bow scattering angle range. It should 

be emphasized that all such passive retrieval techniques essentially provide a vertically 

integrated measurement—a weighted average signal sensitive to microphysical properties from 

the cloud top downward through a depth determined by cloud optical thickness. This 

fundamental characteristic inherently increases the uncertainty in retrieving vertical structural 

features. (3) Propagation of input uncertainties. Errors in the upstream inputs (COT, CT_CER 

from POLDER, and CTH/CBH from the combination of POLDER and ancillary data) 

inevitably propagate into the LWP and CB_CER. This accumulated uncertainty then 

propagates into errors in the final estimated profile parameters, including the TP_CER and its 

location. Cases with higher sub-pixel heterogeneity or where the cloud-top CER is less 

representative of the layer-average are particularly susceptible to this propagation effect.” 

Meanwhile, we have included Figure R3 in the appendix (Figure A2). 

 

 

Major Comment 3: CloudSat's 240-m vertical resolution, while impressive for spaceborne radar, 

imposes significant limitations on the study's ability to characterize thin or finely structured cloud 

layers. This resolution threshold means the CPRM reconstruction cannot resolve features smaller 

than about 2.64 km in vertical extent, potentially missing important microphysical transitions in 

shallow cloud systems. The impact is particularly relevant for stratocumulus clouds, which often 

exhibit thin but meteorologically important structures like sharp inversion layers or thin drizzling 



layers near cloud base. The authors should expand their discussion of how this resolution limitation 

affects the physical interpretation of their results, and perhaps suggest how future sensors with finer 

vertical resolution (like EarthCARE's radar) might overcome this constraint.  

 

Response: We fully agree with the referees’ perspective that the 240m vertical resolution of 

CloudSat is indeed insufficient to capture the fine structure of thin cloud layers. Here, “fine 

structure” may have two implications: 1) cloud layers with a thickness less than 240m; 2) cloud 

layers with a thickness greater than 240m, but with local fine structures within the cloud that 

are less than 240m, which the radar cannot detect, such as sharp inversion layers or thin 

drizzling layers near the cloud base. Therefore, in this study, we avoided selecting overly thin 

cloud layers when choosing profiles, using a minimum of three bins as a primary criterion for 

profile data screening. There are two main reasons for this: 1) overly thin cloud layers cannot 

be represented structurally by CloudSat, such as shape characteristics; 2) even if CloudSat can 

record overly thin cloud layers, it cannot capture some fine features at the cloud top or cloud 

base. We believe that the formation conditions for layered clouds are similar, so thicker layered 

clouds should have a structure similar to thin clouds and amplify local fine structures. 

Therefore, this study primarily focuses on profiles with a bin count of 3 or more, which may 

overlook some thin clouds but will not affect the overall statistical analysis results. Additionally, 

we would like to clarify that our unclear wording may have caused your misunderstanding. 

Line 266 mentions that the primary research object of this paper is CloudSat cloud profiles 

with vertical thicknesses less than 2.64 km. The intended meaning is that our statistical analysis 

found that the majority of single-layer stratiform liquid cloud profiles observed by CloudSat 

have bin counts less than 11 (each bin representing a range of 240 m). Therefore, the study 

focuses on profiles with vertical thicknesses of 2.64 km or less. All statistical analyses of 

profiles in this paper are based on data from profiles with vertical thicknesses of 2.64 km or 

less. This does not imply that CPRM cannot reconstruct profiles smaller than 2.64 km; in fact, 

CPRM can reconstruct profiles of arbitrary thickness, which primarily depends on the input 

data. (Shang et al., 2025). 

Meanwhile, based on your feedback, we conducted a survey of the instrument characteristics 

of EarthCARE CPR and compared them with those of CloudSat CPR (Table R2). EarthCARE 

CPR primarily offers the following technical advantages: 1) Higher vertical solution: 

EarthCARE/CPR has a vertical sampling resolution of 100m, representing a significant 

improvement over CloudSat CPR's 240m resolution; 2) Higher sensitivity: EarthCARE/CPR's 

sensitivity has been improved to approximately -35 dBZ, enabling more precise detection of 

cloud structure; 3) Doppler wind measurement capability: Compared to CloudSat, 

EarthCARE’s CPR has Doppler capability, enabling the first-ever measurement of vertical 

wind speeds within clouds by a satellite-borne radar (with an accuracy of 0.5m/s); 4) 

Synchronized observation capability: EarthCARE CPR can synchronize observations with 

instruments like ATLID, offering a significant advantage over the loose coordination between 

CloudSat and CALISPO. However, due to insufficient data accumulation for EarthCARE at 

present, CloudSat data still holds high research value. 

Table R2: Comparison of Instrument Characteristics of EarthCARE CPR and CloudSat CPR 

Instrument Characteristics CloudSat CPR EarthCARE CPR 



Mission duration 2006-2020 2024- 

Frequency 94.05 GHz 94.05 GHz 

Altitude 705 km 400 km 

Hor. res. at nadir 1.2 km 500 m 

Vert. resolution 500 m (240m sampling) 500 m (100m sampling) 

Doppler capability N/A Yes 

Sensitivity -28 dBZ -35 dBZ 

  

Detailed modifications are as follows:  

(1) We have added a discussion on the resolution limitations of CloudSat in the uncertainty 

analysis of Section 5. “The 240-m vertical resolution of CloudSat is indeed insufficient to 

resolve ultra-thin cloud layers or capture fine-scale intra-cloud structures, such as sharp 

inversion layers or thin drizzling layers near cloud base.” 

(2) The potentially misleading expression at the end of the first paragraph in Section 4.1 of the 

manuscript has been revised. “Based on the above analysis, given CloudSat's vertical resolution 

of 240 m per bin and the fact that approximately 99.5% of the profiles are concentrated within 

11 bins, this study focuses on single-layer stratiform liquid clouds with a geometric thickness 

of less than 2.64 km.” 

(3) Related suggestion has been added in Section 5 of the paper regarding how future sensors 

with finer vertical resolution (such as EarthCARE's radar) could potentially overcome this 

limitation. “For the issue that CloudSat is insufficient to distinguish thin clouds or fine cloud 

structures smaller than 240m, in the future, the EarthCARE/CPR observation data with higher 

vertical resolution can be adopted to alleviate this problem. EarthCARE/CPR demonstrates 

notable advancements over CloudSat, most significantly through its finer vertical resolution of 

100 m compared to CloudSat’s 240 m. Additional enhancements include higher detection 

sensitivity, Doppler-based vertical wind measurements, and synchronized multi-sensor 

observational capabilities. These improvements are expected to deliver enhanced observational 

capabilities for characterizing finer-scale cloud microphysical processes and their interactions 

with atmospheric dynamics.” 

 

 

Major Comment 4: The coarse resolution of POLDER observations presents multiple challenges 

that extend beyond the immediate retrieval accuracy issues. At 50 km resolution, individual 

POLDER pixels often or possiblely integrate across multiple cloud regimes, potentially blending 

fundamentally different cloud types and obscuring important spatial gradients. This becomes 

particularly problematic when trying to apply the methodology to broken cloud fields or cloud edges, 

where sub-pixel variability is high. While the current focus on stratiform clouds is understandable 

given their relative homogeneity, the paper would benefit from a more thorough discussion of how 

partial cloudiness and three-dimensional radiative effects might bias the retrievals. The authors 

might consider adding a sensitivity analysis or at least a more detailed qualitative discussion of these 

effects in the limitations section. 

 

Response: We sincerely thank the referee for raising this important issue regarding the impact 

of sub-pixel cloud heterogeneity on retrieval accuracy, which is indeed an important challenge 



associated with the coarse spatial resolution of POLDER observations. The concern that single 

pixels may integrate multiple cloud regimes—particularly in broken cloud fields or near cloud 

edges—is well taken, and we agree that such blending could obscure spatial gradients and 

introduce potential biases in the retrieved parameters. 

 

In response to this comment, we will expand the “Limitations” section (in Section 5) to include 

a more thorough discussion of how partial cloudiness and three-dimensional radiative effects 

may influence our results. Specifically, we will reference our previous quantitative analysis 

(Shang et al., 2015), which systematically evaluated the effects of sub-pixel cloud 

heterogeneity on POLDER cloud microphysical retrievals. That study provides concrete 

uncertainty estimates that help contextualize the potential biases in the current application. We 

will also clarify that, although this study focuses on relatively homogeneous stratiform clouds 

to minimize such effects and assess methodological feasibility, the presence of unresolved 

cloud variability near cloud edges remains an important source of uncertainty. 

 

Additionally, we will emphasize that future satellite missions with higher spatial resolution—

such as the Directional Polarimetric Camera (DPC) and the Multi-viewing Multi-channel 

Multi-polarization Imager (3MI)—will help alleviate these challenges by reducing sub-pixel 

variability. This expanded discussion will provide readers with a clearer understanding of the 

current limitations and pathways for future improvement. 

 

Thank you again for highlighting this critical aspect of our work. 

 

Detailed modifications are as follows: We have incorporated a related discussion in the 

limitations section (Section 5). “The primary challenges in retrieving profile structural features 

originate from the following aspects: (1) The coarse resolution of POLDER products restricts 

the ability to capture sub-pixel cloud heterogeneity; however, by concentrating on relatively 

uniform single-layer stratiform liquid clouds, this study partially mitigates the resulting 

retrieval uncertainties. It should be noted that sub-pixel heterogeneity can inevitably introduce 

certain errors, particularly at cloud boundaries. Nevertheless, Shang et al. (2015) pointed out 

that the error caused by sub-pixel heterogeneity in cloud effective radius (CER) retrieval does 

not exceed 10%, which remains within an acceptable range.” A feasible improvement plan for 

future work has also been proposed. “To address the issues mentioned above, the improvement 

strategies below can be implemented: (1) Internationally, there are currently polarimetric multi-

angle payloads with higher spatial resolution and greater observation angles that have been 

launched or are planned for launch. For instance, China's DPC/GF-5 achieves a spatial 

resolution of nadir 3.3 km; the 3MI/Metop-SG developed by the European Space Agency offers 

a spatial resolution of nadir 4 km, supports up to 21 observation angles, and incorporates near-

infrared bands. These capabilities collectively enable higher-resolution CER retrieval.” 

 

 

Major Comment 5: The exclusion of 9.1% of profiles classified as complex-shaped introduces a 

subtle but potentially important selection bias in the results. While this filtering improves the clarity 

of the statistical relationships, it risks creating an overly idealized representation of real-world cloud 



profiles. Many meteorologically significant situations - such as clouds undergoing strong 

entrainment, multilayered structures, or precipitating systems - may fall into this excluded category. 

The authors should more thoroughly justify their exclusion criteria and discuss how this might affect 

the generalizability of their findings. A sensitivity analysis showing how including some portion of 

these complex profiles affects the retrieval statistics would significantly strengthen the paper's 

conclusions.  

 

Response: We sincerely appreciate the referee's insightful comment regarding the potential 

selection bias introduced by excluding complex-shaped cloud profiles (9.1% of the dataset). 

We agree that this is an important consideration, and we have taken the following steps to 

address this concern in the revised manuscript: 

1) Justification of Exclusion Criteria 

We have supplemented the criteria for determining complex shape profiles, which are defined 

as profiles that do not belong to any of the following shapes: (1) triangle shaped (Inc_Dec), 

increasing then decreasing; (2) monotonically decreasing (Mono_Dec); (3) monotonically 

increasing (Mono_Inc); and (4) decreasing then increasing (Dec_Inc). These shapes depict the 

vertical variation in the CER from the cloud base to the top. The four shapes can be simply 

expressed by the following formulas: 

Inc_Dec: 𝐶𝐸𝑅1 < 𝐶𝐸𝑅2 < ⋯ < 𝐶𝐸𝑅𝑘 > 𝐶𝐸𝑅𝑘+1 > ⋯ > 𝐶𝐸𝑅𝑁, 1 < 𝑘 < 𝑁 

Mono_Dec: 𝐶𝐸𝑅1 > 𝐶𝐸𝑅2 > ⋯ > 𝐶𝐸𝑅𝑁 

Mono_Inc: 𝐶𝐸𝑅1 < 𝐶𝐸𝑅2 < ⋯ < 𝐶𝐸𝑅𝑁 

Dec_Inc: 𝐶𝐸𝑅1 > 𝐶𝐸𝑅2 > ⋯ > 𝐶𝐸𝑅𝑘 < 𝐶𝐸𝑅𝑘+1 < ⋯ < 𝐶𝐸𝑅𝑁, 1 < 𝑘 < 𝑁 

Where 𝐶𝐸𝑅𝑖 denote the CER at the i-th vertical level (bin), i=1 corresponds to the cloud base and 

i=N to the cloud top. 

2）Further analysis and discussion on the 9.1% complex-shaped profile 

This paper further analyzes the similarity between the 9.1% complex-shaped profile and the 

two main shapes extracted in this study (first increasing then decreasing, monotonically 

decreasing) in Table A4. The purpose of this table is to make the shape analysis more complete. 

In table A4, situation1 refers to a situation where only one segment of the profile does not 

correspond to the increasing and then decreasing shape profile of shape1, and situation2 refers 

to a situation where only one segment of the profile does not correspond to the monotonically 

decreasing shape profile of shape2. There is an intersection of situation1 and situation2, i.e., a 

profile that matches both situation1 and situation2 (Intersection of 1+2), which needs to be 

subtracted out when calculating the sum of the two in order to avoid double counting. Table 4 

shows that among the 9.1% of complex-shaped profiles, approximately 60% of the profiles 

differ from the main profile shape we extracted in only one segment, which also proves that 

the main profile shape we extracted is robust and universal. Although our profile simplification 

program can reduce complex shapes to simpler forms, there is controversy regarding the 

specific categories to which these shapes belong. Taking Figure R5 as an example, Complex 

Shape 1 and Complex Shape 2 can be simplified into different primary shapes. Therefore, we 

believe that these 9.1% of complex profile shapes can be further analyzed in subsequent studies, 

but it is unnecessary to include them in the follow-up retrieval research presented in this paper, 

as their inclusion would introduce unnecessary errors into our training process. 



 

Figure R5. Complex CER profile shapes and their possible corresponding simplified shapes 

(examples) 

 

Detailed modifications are as follows: Based on your suggestions, we have made the 

following modifications to the second paragraph of Section 4.1 (Typical shape and structural 

characteristic analysis of CER profiles) in the original manuscript. “Through an extensive 

literature review and visual analysis of CloudSat single-layer liquid cloud profiles, the vertical 

variation of cloud effective radius (CER) can be classified into four distinct shapes based on the 

monotonicity between adjacent layers: (1) triangle shaped (Inc_Dec), increasing then decreasing; 

(2) monotonically decreasing (Mono_Dec); (3) monotonically increasing (Mono_Inc); and (4) 

decreasing then increasing (Dec_Inc). These shapes depict the vertical variation in the CER from 

the cloud base to the top. The four shapes can be simply expressed by the following formulas: 

Inc_Dec: 𝐶𝐸𝑅1 < 𝐶𝐸𝑅2 < ⋯ < 𝐶𝐸𝑅𝑘 > 𝐶𝐸𝑅𝑘+1 > ⋯ > 𝐶𝐸𝑅𝑁, 1 < 𝑘 < 𝑁 (3) 

 Mono_Dec: 𝐶𝐸𝑅1 > 𝐶𝐸𝑅2 > ⋯ > 𝐶𝐸𝑅𝑁 (4) 

 Mono_Inc: 𝐶𝐸𝑅1 < 𝐶𝐸𝑅2 < ⋯ < 𝐶𝐸𝑅𝑁 (5) 

Dec_Inc: 𝐶𝐸𝑅1 > 𝐶𝐸𝑅2 > ⋯ > 𝐶𝐸𝑅𝑘 < 𝐶𝐸𝑅𝑘+1 < ⋯ < 𝐶𝐸𝑅𝑁, 1 < 𝑘 < 𝑁 (6) 

Where 𝐶𝐸𝑅𝑖 denote the CER at the i-th vertical level (bin), i=1 corresponds to the cloud base and 

i=N to the cloud top. Systematic classification and statistical analysis confirm these patterns (Fig. 

3(a)). Collectively, these four shapes account for 90.1% of the observed CER profiles, with Shapes 

2 (Mono_Dec: 48.8%) and 1 (Inc_Dec: 39.7%) being the most prevalent, highlighting their 

dominance in the liquid stratiform cloud life cycle. The remaining 9.1% represent complex-shaped 

profiles that do not conform to these four categories, with further analysis of these cases presented 

in the Appendix A (Table A4). Approximately 60% of these profiles contain only single segments 

inconsistent with Shapes 1 and 2. Although our profile simplification program can reduce complex 

shapes to simpler forms, there is controversy regarding the specific categories to which these shapes 

belong. Taking Fig. A1 as an example, Complex Shape 1 and Complex Shape 2 can be simplified 

into different primary shapes. Therefore, we believe that these 9.1% of complex profile shapes can 

be further analyzed in subsequent studies, but it is unnecessary to include them in the follow-up 



parts presented in this study, as their inclusion would introduce unnecessary errors into our retrieval 

prior knowledge.” Fig. A1 corresponds to Fig. R3 in this response. 

 

 

Major Comment 6: The minimal three-year overlap between CloudSat (2006-2020) and POLDER 

(2004-2013) operations raises important questions about the dataset's representativeness for global 

climatological studies. Cloud properties exhibit significant interannual variability influenced by 

large-scale modes like ENSO, and a three-year period may not adequately capture this natural 

variability. The authors should discuss whether their training dataset (2013, 2019, and part of 2020) 

is truly representative of global cloud conditions, and whether the limited temporal sampling might 

introduce biases in the derived statistical relationships. This is particularly relevant given that some 

of the training years (like 2019) were characterized by unusual atmospheric conditions in certain 

regions.  

 

Response: Thank you for your question. We understand your concerns regarding data 

representativeness. The primary focus of this study is on liquid stratiform clouds (stratus + 

stratocumulus) on a global scale, which has a relatively small vertical thickness and is 

commonly found in stable atmospheric conditions. It is unlikely to persist under extremely 

unstable meteorological conditions. For example, while El Niño may suppress the formation 

of stratiform clouds, it is unlikely to affect our statistical results. Therefore, we believe that the 

abnormal atmospheric conditions in certain regions in 2019 will not impact the overall liquid 

stratiform clouds profile dataset. Secondly, although the CloudSat profile data used in this 

paper spans only the nearly three years, the overall data volume is substantial (as shown in 

Table A3), reaching nearly 12.48 million entries, and it covers the entire globe spatially. The 

large data volume of this study is sufficient to ensure the robustness of the profile statistical 

results, and that abnormal atmospheric conditions in certain regions will not affect the overall 

statistical results. Since our main objective is to investigate the structural characteristics of the 

global stratiform liquid cloud profile rather than the interannual variability of global clouds, 

we consider the data from the nearly three years to be sufficiently comprehensive. Additionally, 

the time range of the research data selected in this paper (2013, 2019, and 2020) was not chosen 

arbitrarily. It was selected to match the time range of the polarized multi-angle satellite 

(POLDER-3/Parasol, DPC/GF-5, DPC/GF-5(02)) data. Although the overlap with the years 

observed by currently launched payloads and CloudSat is relatively short, there are ongoing 

international plans to launch W-band cloud radars (e.g., EarthCARE/CPR) and polarimetric 

multi-angle satellites (e.g., 3MI), making the selection of active radar and polarimetric multi-

angle payload data for joint cloud profile research still of significant long-term value.  

Detailed modifications are as follows: Based on your suggestion, we discussed and explained 

this issue in Section 3.1. “Furthermore, since our study focuses on relatively homogeneous and 

stable single-layer stratiform liquid clouds, localized atmospheric anomalies do not impact the 

statistical results presented herein.” 

 

 

Major Comment 7: The notably weak correlations for TP_NCOT (Figure 5b) reveal fundamental 

challenges in passively retrieving information about vertical structure inflection points. This poor 



correlation performance suggests that current passive observables may lack the necessary 

information content to reliably determine the normalized optical thickness at turning points. The 

authors should expand their discussion of potential physical reasons for this limitation, such as: The 

insensitivity of passive measurements to vertical redistribution of cloud water; The degeneracy 

between different vertical configurations that produce similar top-of-atmosphere signals; The 

potential for cloud inhomogeneity effects to obscure the true profile characteristics. A more 

thorough exploration of these physical limitations would help readers better understand the 

boundaries of what can realistically be achieved with passive profile retrievals. 

 

Response: Thank you very much for your insightful and constructive comments. You have 

accurately identified a critical and worthy issue in our research—the weak correlation between 

TP_NCOT and other cloud parameters, and the fundamental challenges it reveals in passively 

remote-sensing the vertical structure of clouds. First, it is important to clarify that both the 

TP_NCOT (i.e., the turning point location) and the related cloud parameters used in the 

correlation analysis in Fig. 5(b) are derived exclusively from active observations. Therefore, 

we believe that this weak correlation is fundamentally unrelated to the insufficient sensitivity 

of passive observations to vertical redistribution of cloud water or the similarity of atmospheric 

top signals across different vertical configurations. In other words, while these limitations do 

exist, they are not the cause of the phenomenon observed in Fig. 5(b). Additionally, the masking 

of true profile characteristics by cloud inhomogeneity effects does not occur in active data. 

This issue primarily stems from the limitations of passive observations, as current active data, 

despite some uncertainty, can more accurately reflect the true state of cloud profiles compared 

to passive observation data. 

 

The essence of this phenomenon may be that the turning point position is almost unaffected by 

droplet size, cloud water content, cloud thickness, and other factors, and the turning point 

position of the cloud effective radius profile is not fundamentally related to these parameters. 

According to the analysis in Section 4.1, the formation of cloud profile with a turning point 

(first increasing then decreasing in shape) is primarily attributed to two possible causes: 1) The 

entrainment of dry air at the cloud top enhances droplet evaporation, leading to a reduction in 

droplet size and the appearance of a turning point in the cloud profile; 2) When collision and 

coalescence at the cloud base cause droplet size to reach a critical value, drizzle or precipitation 

forms at the cloud base, and the falling drizzle or precipitation may cause a reduction in droplet 

size at the cloud base. 1) is the primary cause of the turning point in the non-precipitation 

profile, while 1) and 2) may jointly contribute to the appearance of the turning point in the 

precipitation profile. From the perspective of the causes of the turning point, the distribution 

of the normalized optical thickness at the turning point may be relatively random, potentially 

occurring at any position within the cloud. Fig. 3(b) also corroborates this point. Due to the 

vertical resolution limitations of active satellites, the turning point locations exhibit a multi-

peak distribution; otherwise, they might be distributed more dispersedly. This also indirectly 

reflects the difficulty of estimating the TP_NCOT using these parameters through relatively 

conventional methods, and the even greater difficulty of retrieving the profile TP_NCOT 

through “path-integrated” observations using passive satellites. We have added a discussion of 

the possible causes of this weak correlation in Section 4.2 of the article. Thank you once again 



for your valuable suggestions. 

  

Detailed modifications are as follows: We supplemented the relevant discussion in Section 

4.2. “The weak correlation for TP_NCOT stems from the fact that the TP position is largely 

independent of common cloud parameters such as droplet size, cloud water content, and cloud 

thickness. Instead, it is primarily influenced by microphysical processes like cloud-top 

entrainment and precipitation formation, leading to a relatively random distribution of 

TP_NCOT within the cloud layer. This inherent randomness makes it inherently difficult to 

estimate TP_NCOT using conventional correlation-based method.” 

 

 

Major Comment 8: The substantially higher errors over land (RMSE 1.96μm vs. ~1.3μm over 

ocean) point to important unresolved challenges in land cloud retrievals that deserve more detailed 

discussion. Several factors likely contribute to this performance gap: 

⚫ Greater sub-pixel heterogeneity over land due to surface variability 

⚫ Higher and more variable aerosol loading affecting the cloud microphysics 

⚫ Stronger surface heating effects on cloud boundary layer dynamics 

⚫ Potential artifacts from the underlying terrain elevation and albedo 

The paper would benefit from a dedicated discussion of these land-specific challenges and potential 

strategies to mitigate them, such as incorporating land surface type classifications or aerosol 

information into the retrieval framework. 

 

Response: Thank you for your valuable feedback on our manuscript. The issue you raised 

regarding the significantly higher retrieval errors for key structural features of cloud profiles 

over land compared to oceanic regions is indeed crucial. We fully agree that this discrepancy 

reflects the greater challenges inherent in cloud retrieval over land. Below is a point-by-point 

response and additional discussion addressing your suggestions: 

1. Analysis of Error Sources Over Land Regions 

a) Sub-pixel Surface Heterogeneity: Variations in surface reflectance among different land 

cover types (e.g., vegetation, bare soil, urban areas) lead to mixed-pixel effects, complicating 

the decoupling of cloud optical properties. 

b) Aerosol Interference: Higher and spatiotemporally variable aerosol loadings over land can 

perturb cloud signals either indirectly by altering cloud microphysics (e.g., through cloud 

condensation nuclei effects) or directly via scattering. 

c) Surface Heating Effects: The lower thermal inertia of land surfaces results in more complex 

boundary-layer dynamics, increasing spatiotemporal variability in cloud base height and cloud 

layer thickness, which in turn elevates retrieval uncertainty. 

d) Interference from complex terrain and high-albedo surfaces: Complex terrain (e.g., 

mountains) and high-albedo surfaces (e.g., snow cover) are prone to causing false positives in 

cloud detection or overestimation of optical thickness. 

 

2. Potential Improvement Strategies 

In response to your suggestions, we have supplemented our discussion with potential solutions 

to address the significant retrieval errors in key structural characteristics of cloud profiles over 



land regions, including: a) Integration of land cover classification data: Incorporating higher-

resolution land cover data (e.g., MODIS Land Cover products, Sentinel-2 10-meter resolution 

data) could help mitigate mixed-pixel effects. A zone-based retrieval strategy may be 

developed by establishing customized radiative transfer model parameters for distinct surface 

types (e.g., forest, cropland, urban areas). Seasonal variations in vegetation indices (e.g., NDVI) 

could also be employed to dynamically adjust surface albedo parameters. b) Integration of 

aerosol ancillary data: Multi-source aerosol observations (e.g., MERRA-2 reanalysis data, 

AERONET ground-based measurements) could be incorporated to better constrain retrieval 

parameters in regions affected by aerosol-cloud interactions; c) Development of advanced 

retrieval algorithms: More sophisticated methods, such as machine learning or deep learning 

approaches, could be employed to better represent the complex relationships between land 

surface, atmosphere, and clouds. 

 

Thank you once again for guiding the direction of our discussion, which has significantly 

enhanced the comprehensiveness of this study. 

 

Detailed modifications are as follows: Based on your suggestions, we have incorporated 

relevant discussions in Section 5 (Discussion and Conclusion) of the manuscript. “Meanwhile, 

the validation results indicate that the RMSE of stratiform cloud profile structural 

characteristics over land is significantly higher than that over sea. This discrepancy is 

considered to be mainly attributable to the following factors: a) Sub-pixel Surface 

Heterogeneity: Variations in surface reflectance among different land cover types (e.g., 

vegetation, bare soil, urban areas) lead to mixed-pixel effects, complicating the decoupling of 

cloud optical properties. b) Aerosol Interference: Higher and spatiotemporally variable aerosol 

loadings over land can perturb cloud signals either indirectly by altering cloud microphysics 

(e.g., through cloud condensation nuclei effects) or directly via scattering. c) Surface Heating 

Effects: The lower thermal inertia of land surfaces results in more complex boundary-layer 

dynamics, increasing spatiotemporal variability in cloud base height and cloud layer thickness, 

which in turn elevates retrieval uncertainty. d) Interference from complex terrain and high-

albedo surfaces: Complex terrain (e.g., mountains) and high-albedo surfaces (e.g., snow cover) 

are prone to causing false positives in cloud detection or overestimation of optical thickness. It 

is suggested that the following strategies could be adopted in the future to improve the 

estimation accuracy of stratiform cloud profile structural characteristics over land ： a) 

Integration of land cover classification data (e.g., MODIS Land Cover product); b) Integration 

of aerosol ancillary data: Multi-source aerosol observations (e.g., MERRA-2 reanalysis data, 

AERONET ground-based measurements) could be incorporated to better constrain retrieval 

parameters in regions affected by aerosol-cloud interactions; c) Development of advanced 

retrieval algorithms: More sophisticated methods, such as machine learning or deep learning 

approaches, could be employed to better represent the complex relationships between land 

surface, atmosphere, and clouds.” 

 

 

Minor Comment 1: Vertical resolution impact on thin layers: 

While CloudSat’s 240-m resolution is mentioned (Sec. 2.1), its inability to resolve sub-240 m layers 



(e.g., thin stratus) should be explicitly discussed. 

 

Response: Thank you for your suggestions, which have made the discussion on payload 

limitations more comprehensive. Following your advice, we have supplemented Section 2.1 

with a discussion about CloudSat’s Cloud Profile Radar being unable to resolve cloud layers 

thinner than 240 m (thin clouds) due to its inherent resolution constraints. The modifications 

have been made as indicated above. 

 

Detailed modifications are as follows: We supplemented and explained this limitation of 

CloudSat at the end of Section 2.1 (CloudSat data). “and (3) due to the limitations of 240-m 

resolution, it may not be possible to identify ultra-thin layer structures below 240m.” 

 

 

Minor Comment 2: Terminology consistency: 

Line 218: “Stratiform water cloud profiles” → “liquid cloud profiles” for consistency with the rest 

of the paper. 

 

Response: Thank you for your correction. We have revised the terminology on line 218 of the 

original text and conducted a full-text review to ensure terminological consistency throughout 

the manuscript. 
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