
Dear referees, 

Thank you for your comments concerning our manuscript entitled “Characterization of liquid cloud 

profiles using global collocated active radar and passive polarimetric cloud measurements” (ID: 

egusphere-2025-2471). Those comments are all valuable and very helpful for revising and 

improving our paper, as well as the important guiding significance to our researches. We have 

studied comments carefully and have made correction which we hope meet with approval. Revised 

portions are marked in blue (referee #1) /orange (referee #2) in our response document. The 

relevant references are at the end of our reply letter. The main corrections in the paper and the 

responses to the referees' comments are as following: 

 

Response to Referee #1’s Comments 

General Summary 

This paper presents an innovative methodology for characterizing vertical profiles of stratiform 

liquid clouds. The authors identify dominant morphological patterns of cloud effective radius 

profiles using CloudSat radar data, and then develop a way to retrieve profile information from  

passive polarimetric (POLDER) satellite observations. The paper is technically strong and well 

written. However, after reading the paper I was left with a few key questions that should be 

addressed before publication 

 

Major Comment 1: The authors state that cloud-base height is retrieved “based on POLDER data” 

(line 116). How, exactly, is this retrieval performed? I was not aware that cloud base height could 

be retrieved from POLDER. Does the multivariate regression model mentioned in line 367 also use 

cloud base height from POLDER?  

 

Response: Thank you for your question. Obtaining cloud bottom heights based on POLDER 

data is another work in progress by the authors associated with this paper, which has been 

completed but not formally published, and is currently being submitted to relevant academic 

journals for review, so we do not describe this work in detail in this manuscript, and the 

multivariate linear regression model mentioned in line 367 in this study also uses the cloud 

bottom heights inverted by this method as input. We describe here the implementation of the 

method to obtain cloud bottom heights based on POLDER data to answer the questions raised 

by the referee: 

 

We developed a machine learning-based approach to estimate cloud base height (CBH) from 

POLDER/Parasol observations by leveraging collocated CloudSat radar measurements. The 

dataset was constructed by matching Parasol Level 1 (L1) data—including oxygen absorption 

(OA) channels (763 nm and 765 nm), OA ratios across 14 viewing angles, longitude, latitude, 

and elevation—with CloudSat Level 2 (L2) CBH products for March, June, September, and 

December 2007. Spatial collocation accuracy was constrained to within 0.01°, while temporal 

discrepancies were negligible due to the near-simultaneous observations from A-Train 

satellites. To ensure high-quality training data, only cases where Parasol confidently detected 

cloudy scenes and CloudSat identified single-layer clouds were retained. The dataset was split 

into training and validation subsets, with 7 days per month reserved for independent evaluation. 

The machine learning model used geographic coordinates (longitude, latitude, elevation) and 



Parasol’ s multi-angle OA information as inputs to predict CBH, with CloudSat-derived heights 

serving as ground truth. After optimization and validation, the finalized model enabled global 

CBH retrieval using Parasol L1 data alone, providing a novel solution for passive sensor-based 

cloud vertical structure characterization. This method addresses the inherent limitations of 

passive remote sensing in directly probing cloud boundaries while capitalizing on POLDER’s 

unique multi-angle OA capabilities. After several machine learning algorithms are compared, 

the deep neural network (DNN) model with the best accuracy is selected as the retrieval model. 

The method of CBH reversal based on multiangle OA remote sensing and the DNN has a mean 

absolute error (MAE) of 0.78 km, a bias of 0.22 km, and a correlation coefficient (R) of 0.82. 

By integrating machine learning with the multiangle OA, this method offers a novel approach 

for CBH retrieval. Fig. R1 shows the specific process of our CBH retrieval algorithm. 

 

Figure R1. Flowchart of the machine learning-based algorithm for retrieving CBHs using the OA 

(Ji et al. 2025. Manuscript submitted for publication) 

 

Detailed modifications are as follows: We have added the explanation to Line 118-119: “The 

retrieval algorithm for cloud base height will be thoroughly described in a forthcoming article 

and is therefore not discussed here.” 

 

 

Major Comment 2: The spatial resolution of CWC-RO (less than 2km) in vastly different from the 

spatial resolution of POLDER (~50km). I’d like to see more details about how the observations were 

matched up in creating Figure 9, and more discussion about whether relationships between variables 

derived at CloudSat resolution should be expected to hold at POLDER resolution, when there will 

be a lot of sub-pixel heterogeneity. 

 



Response: Thank you very much for your suggestions. The issues you raised are crucial and 

will be essential for us to enhance the completeness of the paper and demonstrate the robustness 

of the estimated method for cloud-top profile structural characteristics. 

 

(1) First, addressing your initial question: The purpose of the experiment in Fig. 9 is to estimate 

the profile turning point CER (TP_CER) and normalized optical thickness (TP_NCOT) using 

passive data, and to compare these results with active data. This aims to explore the feasibility 

of the aforementioned method for estimating profile characteristics in passive data. The 

matching process is as follows: We began by identifying matching pairs of POLDER3 and 

CloudSat data from March 2007, focusing on orbits that contained both datasets and included 

a high number of stratiform cloud profiles with a triangular shape. From these, we selected the 

POLDER3 data recorded between 06:41:09 and 07:24:06 on March 2, 2007, along with the 

corresponding CloudSat data, to estimate and validate the profile TP parameters. 

 

We primarily used POLDER Level 2 data (RB2) for matching with CloudSat. The spatial 

resolution of POLDER RB2 product is approximately 16 km, which differs from CloudSat’s 

spatial resolution (less than 2 km). Therefore, during the matching process, we calculated the 

Euclidean distance between each POLDER_RB2 pixel and the corresponding CloudSat data 

point. Due to the coarser resolution of POLDER_RB2 data compared to CloudSat, multiple 

CloudSat data points may correspond to the same POLDER_RB2 pixel. We retained only the 

CloudSat data point closest to the center of the POLDER_RB2 pixel. Ultimately, eight cases 

were randomly selected (Fig. 9) for validating the estimated characteristics of the profile 

structures. 

 

Through matching, we extracted COT, latitude, longitude and other related data from the 

POLDER_RB2 product. Using these coordinates, we further extracted CBH, CTH, and 

CT_CER data retrieved by our algorithm. CBH and CTH were retrieved from POLDER3 Level 

1 products with a resolution of 6 km, matching the L1 product resolution. CT_CER was also 

retrieved from POLDER L1 product with a 50 km resolution. POLDER lacks near-infrared 

bands, so it can only retrieve cloud-top CER using multi-angle polarization signals. This 

method has a drawback: it must compensate for insufficient angular sampling by including 

more pixels—resulting in lower resolution for the retrieved CER. Our current algorithm (Shang 

et al., 2019) can achieve CER retrieval at a range of 40–60 km. This paper utilizes the 

retrieved 50 km resolution CER product. However, we do not consider this an insurmountable 

permanent flaw. Internationally, there are currently polarimetric multi-angle payloads with 

higher spatial resolution and greater observation angles that have been launched or are planned 

for launch. For instance, China's DPC/GF-5 achieves a spatial resolution of nadir 3.3 km; the 

3MI/Metop-SG developed by the European Space Agency offers a spatial resolution of nadir 

4 km, supports up to 21 observation angles, and incorporates near-infrared bands. These 

capabilities collectively enable higher-resolution CER retrieval. 

 

(2) We understand your concerns regarding sub-pixel heterogeneity due to the coarse resolution 

of POLDER data, as well as the challenges in applying relationships derived from CloudSat to 

POLDER data because of differing spatial resolutions. Our primary response is as follows: (a) 



Our primary research subject is single-layer stratiform liquid clouds (stratocumulus and stratus). 

Relevant literature indicates (Jr., 2014) that within stratiform cloud regions, both updrafts and 

downdrafts are relatively weak. They are relatively uniform horizontally compared to other 

cloud types, and their cloud microphysical properties exhibit slow horizontal variations—that 

is, they are less spatially heterogeneous. This is why we selected single-layer stratiform liquid 

clouds—a structurally simpler cloud type—as our primary research subject. (b) Shang et al. 

(2015) specifically investigated the impact of liquid cloud spatial heterogeneity on CER 

retrieved from POLDER. The Table 2(Fig. R2) presented in their paper shows that under sub-

grid scale heterogeneity, the relative deviation between the retrieved CER and the sub-grid 

scale CER mean ranges from 0.86% to 8.33% (Table R1), with none exceeding 10%. This 

indicates that for liquid clouds, the impact of sub-grid scale heterogeneity on the retrieval of a 

representative CER value is manageable and typically within an acceptable range (under 10%) 

for bulk microphysical properties.  

 

 

Figure R2. Table 2 from Shang et al. (2015), AMT. 

 

Table R1. Relative deviation between inverted CER and subpixel CER mean values. 

 
Mean 

CER(µm) 
Retrieval 
CER(µm) 

Relative 
deviation 

1 13.46 13 -3.41% 

2 18.00 16.5 -8.33% 

3 18.20 17.5 -3.85% 

4 12.70 12.0 -5.51% 

5 17.35 17.5 +0.86% 

6 17.07 16.0 -6.27% 

   



 

Figure R3. Comparison of the average CER profile (averaged by height) within the same POLDER 

pixel versus the CER profile closest to the center of the POLDER pixel. 

 

(c) To further investigate whether the relationship derived from CloudSat could be applied to 

POLDER data, we statistically analyzed the CloudSat CER profiles corresponding to these 8 

POLDER pixels. For each POLDER pixel, we averaged the CloudSat CER profiles and 

compared them with the CloudSat profile closest to the center of the POLDER pixel. The 

results are shown in Fig. R3. We conclude that, except for a slightly higher deviation in Case 

2, the deviations in other cases are relative small. That is, the profiles at the coarse resolution 

of the POLDER level (pixel_average) show little difference from the CloudSat profiles at 

normal resolution that we selected (center_nearest), demonstrating a high degree of similarity.  

 

In summary, we believe that although single-layer stratiform liquid clouds exhibit spatial 

heterogeneity, this heterogeneity is relatively weak. This allows the relationships derived at 

CloudSat resolution to be applied to coarser-resolution POLDER data. However, we 

acknowledge that this spatial averaging inherent to coarse resolution data is the primary 

challenge when inferring detailed vertical profile features, as discussed in our response to the 

other referee's similar concern. In the future, as the observational capabilities of passive multi-

angle polarization payloads improve, the association between active and passive observation 

data will become even stronger.  

 

Detailed modifications are as follows: We have added the description of match-up process in 

Section 3.4. “To validate the profile structural characteristics retrieved by passive satellite 

observations, a match-up process between POLDER and CloudSat observations is conducted. 

We focus on March 2007 and identified coincident orbits that contained a high number of 

stratiform cloud profiles exhibiting a triangle-shaped vertical structure in CloudSat data. A 

specific dataset from March 2, 2007 (POLDER observation time between 06:41:09 and 

07:24:06 UTC) is selected for detailed analysis in Section 4.4. The POLDER-3 Level 2 (RB2) 

product served as the primary dataset for matching with CloudSat observations. With a spatial 

resolution of approximately 16 km, this product is notably coarser than CloudSat's resolution 



of less than 2 km. To establish correspondence between the datasets, the Euclidean distance 

between each POLDER-3 RB2 pixel center and all CloudSat data points within the POLDER-

3 RB2 pixel is computed. Owing to the resolution discrepancy, a single POLDER-3 RB2 pixel 

often contains multiple CloudSat data points. In such cases, only the CloudSat data point 

closest to the center of the POLDER_RB2 pixel is retained.  

 

Through the matching process, cloud optical thickness (COT), latitude, longitude, and other 

relevant data are extracted from the POLDER-3 RB2 product. These coordinates are then used 

to extract cloud base height (CBH), cloud top height (CTH), and cloud-top effective radius 

(CT_CER) obtained through the retrieval algorithm. CBH and CTH are retrieved from the 

POLDER-3 L1 product, which has a native resolution of 6 km, matching the resolution of the 

source data. CT_CER is retrieved from the POLDER L1 product at a 50 km resolution.”  

 

Meanwhile, we have added a discussion regarding the uncertainties arising from the coarse 

resolution of POLDER in Section 5. “The coarse resolution of POLDER products restricts the 

ability to capture sub-pixel cloud heterogeneity; however, by concentrating on relatively 

uniform single-layer stratiform liquid clouds, this study partially mitigates the resulting 

retrieval uncertainties. It should be noted that sub-pixel heterogeneity can inevitably introduce 

certain errors, particularly at cloud boundaries. Nevertheless, Shang et al. (2015) pointed out 

that the error caused by sub-pixel heterogeneity in cloud effective radius (CER) retrieval does 

not exceed 10%, which remains within an acceptable range.” 

 

 

Minor Comment 1: Line 136: Why 2013, 2019, and the first eight months of 2020? This seems 

like a very arbitrary group of years to use. 

 

Response: The choice of data from 2013, 2019, and the first eight months of 2020 for this 

study was carefully considered. Our aim was to explore cloud profile structures by combining 

CloudSat observations with polarized multi-angle payload data. In our preliminary work, we 

gathered available polarized multi-angle measurements from sources such as the French 

POLDER-3/PARASOL instrument, as well as China's DPC/GF-5 and DPC/GF-5(02) sensors. 

Based on our initial assessments, CloudSat's key CWC_RO product provides reliable data 

between 2006 and August 2020, while POLDER-3's useful dataset covers 2005 to 2013. 

Additionally, we had access to China's DPC/GF-5 and DPC/GF-5(02) data, though it should 

be noted that these datasets are not publicly available. However, the DPC data at our disposal 

is limited to 2019 and 2020. To ensure our analysis remains as up-to-date as possible while still 

allowing for joint active-passive sensor studies, we ultimately selected CloudSat data from 

2013, 2019, and the first eight months of 2020 for this investigation. 

 

 

Minor Comment 2: Line 204: As far as I am aware, there is no “Colorado State University regional 

climate model.” Do you mean the CSU Regional Atmospheric Modeling System (RAMS)? 

 

Response: Thank you for your reminding, we feel sorry for our carelessness. ln our 



resubmitted manuscript, we have corrected the “Colorado State University regional climate 

model” to “the Colorado State University Regional Atmospheric Modeling System (RAMS)”.  

 

 

Minor Comment 3: It should be noted that the CloudSat CWC-RO product misses many (perhaps 

the majority of) single-layer liquid clouds, either because the clouds are masked by surface clutter 

or because they are below the radar’s noise threshold (e.g., Lamar et al., 2020; Schulte et al., 2023). 

So the true nonprecipitating-to-precipitating ratio is likely much higher.  

 

Response: We agree with this valuable comment. we have read the relevant papers carefully, 

CloudSat's data may indeed have this problem, so we try to expand the data scope to increase 

the amount of research data (single-layer liquid cloud). The ratio of non-precipitating clouds 

to precipitating clouds here is just a statistic of the data situation of our existing study, as you 

said, it may be different from the real ratio of non-precipitating clouds to precipitating clouds, 

the real ratio of non-precipitating clouds to precipitating clouds may be much higher, and we 

added this point to the article, as well as the possible uncertainty of CloudSat in the detection 

of single-layer liquid clouds. 

 

 

Minor Comment 4: Line 240: I believe you mean Table A4 here, but even so, I do not understand 

what the table is intended to show. 

 

Response: Yes, this refers to Table A4, which exists in order to explain the complex situation 

“Other” such profiles, there is also a part of the profile that is highly similar to the two main 

shapes derived from this study, and exists in order to make the shape analysis of the profiles 

more complete. It should be recognized that our interpretation of Table A4 is not complete, and 

we have added explanations in the note of Table A4: situation1 refers to a situation where only 

one segment of the profile does not correspond to the increasing and then decreasing shape 

profile of shape1, and situation2 refers to a situation where only one segment of the profile 

does not correspond to the monotonically decreasing shape profile of shape2. There is an 

intersection of situation1 and situation2, i.e., a profile that matches both situation1 and 

situation2 (Intersection of 1+2), which needs to be subtracted out when calculating the sum of 

the two in order to avoid double counting. 

 

 

Minor Comment 5: Line 327: Any idea whether these two density centers have physical meaning? 

 

Response: Thank you for raising this insightful question. From the Fig. 6(m), (n), and (p) of 

the original manuscript, i.e., the following Fig. R4(a1), (b1), and (c1), it can be observed that 

the scatter density distribution of the turning point CER(TP_CER) and the turning point LWC 

(TP_LWC) exhibits two density centers. This indicates that the relationship between TP_LWC 

and TP_CER is not a simple linear correlation. We conducted further analysis on the density 

centers, taking Fig. R4(a1) (sea non-precipitation clouds) as an example: the TP_CER shows 

a unimodal distribution clustered around 11–13μm, while TP_LWC exhibits a bimodal 



distribution within the same TP_CER range of 11–13μm. In other words, at the same TP_CER, 

some profiles have relatively higher TP_LWC, while others have relatively lower TP_LWC. 

 

  

Figure R4. Scatter density plots exhibiting dual density centers and their corresponding 

probability density distribution of TP_LWC within a specific TP_CER range. 

 

We propose that the two density centers reflect two dominant mechanisms governing cloud 

microphysical processes. One mechanism is primarily dominated by condensational growth, 

characterized by higher liquid water content for a given cloud droplet size. This typically 

occurs under conditions of low cloud condensation nucleus (CCN) concentration and a stable 

environment, where cloud droplets grow slowly through vapor condensation and accumulate 

liquid water. The other mechanism is dominated by collision-coalescence growth, exhibiting 

lower liquid water content for the same cloud droplet size. This often happens in environments 

with high CCN concentrations and dynamic activity, where cloud droplets grow rapidly 

through collision and coalescence, leading to the redistribution of liquid water into a fewer 

number of larger droplets. This conclusion is strongly supported by the observed land-sea 



contrast: for sea-based clouds, the density center with higher liquid water content (as seen in 

Figures R4(b1) and (c1)) shows a higher concentration of data points, while for continental 

clouds, the density center with lower liquid water content (Figure R4(a1)) is more densely 

populated. Over the sea, the condensation-dominated mechanism—characterized by high 

liquid water content — is more prevalent, consistent with the typically low aerosol 

concentrations, abundant moisture supply, and stable thermodynamic conditions in marine 

environments. In contrast, over land, the collision-coalescence-dominated mechanism—

associated with lower liquid water content — prevails, aligning with the high aerosol 

concentrations, strong convective activity, and dynamically active nature of continental 

settings. This systematic geographical pattern strongly affirms the physical reality of the dual 

density centers, demonstrating that they represent distinct cloud microphysical states driven by 

environmental factors such as aerosol concentration and thermodynamic conditions. 

 

Detailed modifications are as follows: We have briefly expanded on the potential physical 

implications of the dual density centers in the original manuscript. “The two density centers 

observed in the relationship between the TP_CER and TP_LWC reflect two distinct cloud 

microphysical regimes. One is primarily driven by condensational growth, which tends to 

occur under low aerosol and stable conditions, resulting in higher LWC for a given droplet size. 

The other is dominated by collision-coalescence, typical in relative high aerosol and 

dynamically active environments, leading to lower LWC for the same droplet size.” 
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