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Abstract: Tropical cyclones (TCs) have a significant impact on ozone (O3) in coastal regions by affecting
atmospheric circulation and meteorological conditions. This paper investigates the impact and its future
changing trends in the Yangtze River Delta (YRD) region. It was found that regional O3 pollution usually
occurred before TCs made landfall and after they dissipated in 2018--2022. We classified the weather

patterns (SWPs) from June to September during 2018-2022 into four main categories. As pollution levels

increase within the TCs weather pattern, regional temperatures rise, relative humidity decreases, and

wind speeds weaken, creating a favorable environment for O; formation and accumulation. The annual

O3 concentration series is reconstructed based on changes in SWP frequency and intensity, quantifying

the impact of various SWPs on future Os variations. The analysis focuses on the number of days with the

TCs weather pattern and their contribution to Os variation. Under the SSP2-4.5 and SSP5-8.5 scenarios

future YRD O; concentrations from June to September will increase to varying degrees relative to

historical average O3 concentrations, with average increases of approximately 1.88 ug/m? and 6.86 pg/m>,

respectively. Under all future scenarios, the number of days with TC weather pattern increases to varying

degrees, and the frequency of TCs increases significantly. The contribution of TCs weather pattern to O3

contribute-the-most-to-the-estimated-O3-1-2060-(20-66%)-This shows that the intensification of climate
change will intensify the impact of TCs on O3 in the YRD, and monitoring and early warning need to be

strengthened.
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1 Introduction

In recent years, the concentration of ground-level O3 in many cities in China has significantly exceeded
standards and has intensified. O3 has replaced Particulate Matter (PM) as the primary pollutant in many
regions (Wang et al., 2023b; Yang et al., 2025; Zhao et al., 2020). Ground-level O3 is mainly generated
by photochemical reactions of volatile organic compounds (VOCs) and nitrogen oxides (NOy) under
sunlight (Lu et al., 2019; Zhang et al., 2024). High concentrations of O3 can damage the human
respiratory system, destroy the human immune system, and even increase the risk of death (Gong et al.,
2024; Wang et al., 2025). It can also damage the ecosystem, causing plant leaf necrosis and crop yield
reduction (Li et al., 2024). In recent years in the YRDIn-the past-rears-of ¥YRD, high emissions of motor

vehicle and industrial waste gases, coupled with complex terrain and meteorological conditions due to

urbanization, have led to complex air pollution characterized by high concentrations of O3 and PM
conecentrations-(Zhan et al., 2024). According to the 2020 China Ecological Environment Bulletin, in the

YRD, the number of days with air quality exceeding the standard with O3 as the primary pollutant
accounted for over 50% of the total number of days exceeding the standard. Aeeordingto-the 2020-China

O3 concentration is regulated by precursor emissions and meteorological conditions during its

generation process (Gong et al., 2022; Xie et al., 2016; Xu et al., 2023b). Meteorological factors such as
temperature, humidity, precipitation, atmospheric stability, and mixing layer height play important roles
in the emission, transportation, and dispersion, chemical reaction, and dry and wet deposition of air
pollutants (Chen et al., 2020; Li et al., 2020). Regional O3 pollution events are often triggered by
meteorological conditions such as strong radiation, high temperature, low relative humidity, and low
wind speed (Wang et al., 2024b; Zhan and Xie, 2022). Changes in meteorological conditions are affected
by weather systems, and the role of weather systems in O3 concentrations changes has also received
widespread attention.

Tropical cyclone (TC) activities have a profound impact on the ecological environment of China’s

coastal areas. In the summer and autumn seasons when O3 pollution is frequent, TCs are one of the key
weather systems that induce O3 pollution in the YRD (Qi et al., 2024; Shu et al., 2016; Zhan and Xie,
2022). Although the strong winds and precipitation brought by landfalling TCs have a strong scavenging
effect on pollutants, the peripheral circulation of TCs away from lands will significantly change the
temperature field, wind field, and boundary layer structure, thereby affecting the chemical and physical
processes related to O3 generation, transport, dispersion and deposition, which may in turn aggravate O3
pollution (Chow et al., 2018; Jiang et al., 2015; Lam et al., 2005; Xu et al., 2023a; Yang et al., 2012).
Deng et al. (2019) found that under the influence of the peripheral circulation of TCs, the Pearl River
Delta (PRD) is prone to high temperature, low humidity, low wind speed, and strong radiation, which
leads to the occurrence of high O3 and PM concentrations. Hu et al. (2023) focused on analyzing the
atmospheric processes that are conducive to the increase in Oz concentration and the continuous
exceedance of O3 during TC activities, and found that the prevailing downdraft over the PRD brought
meteorological conditions of clear sky, low wind speed, high boundary layer, and low relative humidity,
which led to the continuous excess of O3 concentration. Wang et al. (2024a) found that the continuous
northward TCs produced and maintained meteorological conditions conducive to the generation of Os,

promoted the local accumulation and cross-regional transmission of O3, and jointly led to a 30 % increase
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in O3 concentration in eastern China and a prolonged O3 pollution period. Xu et al. (2023a) further
revealed that when a typhoon landed in the YRD, the contribution of BVOC to Oj in the Beijing-Tianjin-
Hebei region reached 10 ppb; when the TCs moved to Beijing-Tianjin-Hebei region, the cross-transport
between the northern China air mass and the YRD contributed half of the O3 related to biological
emissions. The peripheral winds and downdrafts of TCs lead to high temperatures and stable weather,
which affect O; concentrations by affecting regional transport and biological emissions.

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) has

established that the rise in the average surface temperature of the earth, caused by human activities, has

become a scientific consensus.

hﬁm&n—aeH%s—duﬂﬂg—LlQ-l-Q—'}O-IQCOmpared with the average surface temperature before

industrialization (1850—1900), the global average surface temperature increased by about 0.8—1.3 °C due

to human activities during 2010—2019 (Adak et al., 2023). In the context of global climate change, with

the increases in greenhouse gas emissions, global warming, and interannual climate changes, the state of

the atmosphere and ocean has changed, and sea-level rise and extreme climate events have occurred
frequently, which have a low-frequency modulating effect on TCs (Chu et al., 2020; Moon et al., 2023;

Moon et al.. 2025; Wang et al., 2023a).Jn-the-context-of global-elimatechange~with-the-inereases—in

haxl%a—}e&wffequem—y—med&}aﬂﬂg—effeet—eﬂ—?@& The activity characteristics of TCs have changed
significantly, and rare high-intensity TCs have frequently made landfall in China (Wu, 2023). The

southeastern coastal area, as one of the most economically developed and densely populated regions in

China, is the region most seriously affected by TCs. The-southeastern-coastal-area—as-one-of the-most

nChina—Most TCs that affect China originate in the northwest Pacific Ocean, and their movement paths
are influenced by the WPSH.MestFCs-that-atfeet China-aregenerated-in-the-northwest Pacifie Ocean;
and-their-movement-paths—are-affected-by—the - WPSH- Before TCs make landfall from the northwest

Pacific Ocean, China’s coastal urban agglomerations often experience regional multi-day severe O3

pollution (Wang et al., 2022b). Although—thefrequeney—of TCs—in—thenorthwestPaeifiec Oceanhas

—Although the
frequency of TCs in the northwest Pacific Ocean has decreased in recent years, their average intensity

has shown an upward trend (Balaguru et al., 2024; Bhatia et al., 2022; Chand et al., 2022; Jung, 2025;
Wang et al., 2022a), and their duration has also become longer (Kossin, 2018; Zhang et al., 2020).

Yamaguchi and Maeda (2020) showed that although climate warming has accelerated the overall

movement speed of TCs, their speed will slow down when they move toward the temperate zone during
the poleward migration process, and the time they stay in a specific area will be extended. Affected by

the surrounding atmospheric circulation, the slower the TCs move, the longer their impact duration and

the greater their effects, which influence Os transport, extend the duration of Os pollution, exacerbate O3

concentration, and expand the spatial extent of pollution. Global climate models (GCMSs) are able to

directly simulate surface O3 concentrations under both historical and future scenarios (Turnock et al.,

2020). These simulations provide an important reference for understanding the long-term evolution of

Page 3 of 37



129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
| 144
145
146
147
| 148
149
150
151
152

153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

manuscript submitted to Journal of Atmospheric Chemistry and Physics

surface Oz driven by changes in emissions and climate. Affeeted—bythe surroundingatmeospherie

a he a o mao ho 1 = ) d o o o N ed h
dtiott; oW OVEs O pd S—aHa dl pd c Y

Os-peHution—and-expand-the seope—ofpolution—In the context of global warming in the future, the
increase in unfavorable meteorological conditions will make the O3 pollution problem more serious (Fu
and Tai, 2015; Keeble et al., 2017; Arnold et al., 2018; Akritidis et al., 2019; Saunier et al., 2020).
Therefore, studying the trend of O3 changes under future climate change scenarios is particularly
important for formulating countermeasures against O3 pollution.

The YRD is located in a key position in the eastern coastal economic zone of China. It is also a typical
area frequently affected by TCs in the warm seasons (Wu et al., 2025; Qi et al., 2024). In addition, it has
a high degree of urban agglomeration, dense population, and high energy consumption, making it a key

area for air pollution prevention and controlmakingitakeyprevention-and-control-areaforairpolution
(Zhan et al., 2024; Bao et al., 2025). This study focuses on the regulatory mechanism of TCs on regional

O3 pollution and its impact on future pollution trends. First, based on the weather classification over the
years, the characteristics of atmospheric circulation changes that cause O3 changes are revealed, and the
mechanism of the TC weather pattern in the YRD affecting O3 pollution is clarified. Secondly, based on
the data reconstruction method, the O3 annual variation series is reconstructed according to the frequency
and intensity of SWPs. Finally, based on future scenario data, the evolution characteristics of atmospheric
circulation and the trend in O3 concentrations under different future scenarios are estimated, and the
number of days when TC weather pattern appears and their contribution to O3 variation are quantified.
The research results help to fully and systematically understand the influence mechanism of weather
conditions on O3 pollution, provide a reference for the YRD to carry out targeted O3 pollution control
strategies, and have dual significance in improving regional air quality and advancing low-carbon

development.
2 Materials and methods
2.1 O3 observation data

The hourly pollutant monitoring data of 26 cities in the YRD used are derived from the National
Environmental Monitoring Center of China. The platform provides pollutant concentration data updated
every hour. To better describe the level of O3 pollution at the urban scale, the arithmetic mean of the
pollutant concentrations at each monitoring station was used as the pollutant concentration for-of the city.
0,8 he dailv-g] % o data whic! I el el
| ‘onal-Os poll Theref: he Osd i Lusis of this article.all
wse-the-Ox-Sh-value—and-the-dai age-concentration-(unit: pg/m’)istakenas-the

datly-Os-coneentration—_O3-8h represents the daily maximum 8-hour average O3 concentration, which

g >
m -2 h
& H—av

can more accurately characterize the long-term exposure to regional O3 pollution. The daily maximum

8-hour average Os concentration is calculated as the highest average O3 mixing ratio over any consecutive

8-hour period within a calendar day (00:00-23:59 local time). Specifically, 8-hour moving averages are
computed for all possible consecutive 8-hour windows (e.g., 00:00-07:59, 01:00-08:59, ..., 16:00-23:59),

and the maximum value among them is recorded as the daily O3 concentration. Therefore, the O; data

used in the analysis of'this article are all based on the Os-8h value, and the daily maximum 8-hour average

concentration (unit: ug/m?) is taken as the daily O3 concentration.
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2.2 Classification of synoptic weather patterns

Common objective weather classification methods mainly include principal component analysis,
clustering algorithms, variance method based on correlation coefficients and neural network algorithms.
We use orthogonal rotation principal component analysis in T mode (PTT) to classify SWPs in the YRD
from 2018 to 2022. The PTT classification method has been integrated into the “cost733class” software.
This method is an objective circulation classification method based on principal component analysis. By
rotating the loadings of the T-mode principal components, its classification results are more physically
interpretable (Philipp et al., 2016). It can accurately reflect the characteristics of the initial circulation

field, does not change significantly due—teacross different classification objects, and the obtained

circulation spatio-temporal field is more stable (Huth et al., 2016). It has been widely used in research
fields such as atmospheric circulation and air pollution (Hou et al., 2019; Gao et al., 2021).

The meteorological data are derived from the reanalysis data provided by the National Center for
Environmental Prediction (NCEP). The dataset has a horizontal resolution of 2.5°x2.5°, with 144x73
grid points in the latitude-longitude domain and 17 vertical layers ranging from 1000 hPa to 10 hPa.
Meteorological variables considered in this study include the 500 hPa geopotential height field, sea level
pressure, 500 hPa wind field, 850 hPa wind field, 1000 hPa wind field, and vertical wind velocity.

Considering that the geopotential height field at 850 hPa effectively minimizes the influence of surface
conditions on atmospheric motion while capturing the variations of shallow meteorological systems (Shu

etal., 2017). In this study, we used the geopotential height field at 850hPa from June to September during

2018-2022 to classify SWPs and analyze the three-dimensional structure of circulation fields associated
with different SWPs.

2.3 Reconstruction of annual variation series of O3 concentration

The change in SWPs includes the changes in SWP frequency and intensity. The change in SWP
frequency refers to the number of occurrences of a certain type of SWP in different years, while the
change in SWP intensity refers to the change in the average intensity of the weather system associated
with a certain type of SWP across different years. To quantify the contribution of the change in SWP
frequency and intensity to the annual change of Os, Yarnal (1993) proposed a method to assess the

influence of changes in SWP frequency on the annual change of Os. The specific equation is as follows:

6
Osm(fre) = ) Oy Fom M
k=1

where ﬁ(fre) represents the reconstructed mean O3z concentration influenced by the frequency
variation in SWPs for year m; Oy, represents the average O3 concentration of a certain SWP in all years,
and F, represents the frequency of occurrence of SWP for year m.

Later, Hegarty et al. (2007) proposed that the impact of SWP changes on the annual variation of O
should take into account changes in both frequency and intensity. Therefore, Eq. (1) was modified as

follows:
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6
Tom(fre +int) = " O + AOsin)Fi @
k=1

where ﬁ(f re + int) represents the reconstructed mean O3 concentration influenced by the frequency
and intensity changes of SWPs for year m; AOsi, represents the modified anomaly concentration value
obtained by fitting the SWP £ intensity factor in the year m with the O3 concentration anomaly value
(AO3) for that year, which represents the oscillation of the O3 concentration value caused by the change
in the intensity of the SWP k in year m. Hegarty et al. (2007) used the average sea level pressure value
in the classification area to represent the SWP intensity change factor. Liu et al. (2019) used the same
method to construct the annual O3 variation series in North China, but used the lowest pressure value in
the classification area as the SWP intensity factor.

Since the characteristic changes of each SWP that lead to the increase in O3 concentration are different,
when defining the SWP intensity factor, it is necessary to consider the unique change characteristics that
lead to the increase in O3 concentration for each SWP. To better describe the changes in SWP intensity.

we selected the average, maximum, and minimum geopotential heights of different regions based on
meteorological characteristics and the location of weather systems. The region with the largest correlation

coefficient with the annual O3 variation series was defined as the SWP intensity factor under that pattern.

This part is explained in detail in Section 3.4.1. We select the SWP intensity factor in SWP1 as the

maximum geopotential height in zone 7 (110°=130°E, 20°=35°N); SWP2 as the maximum geopotential

height in zone 2 (90°—140°E, 20°-50°N); SWP3 as the minimum geopotential height in zone 9

(110°=130°E, 20°~40°N); and SWP4 as the minimum geopotential height in zone 4 (110°=130°E,
25° 407N). We-dehne-the-SWPntensibv—thaetorm-SW R as-the-maxdamum-geopotential-heightin—rone

2.4 CMIP6 future climate scenario data

Based on 18 models of the Sixth International Coupled Model Intercomparison Project (CMIP6) and
the ERAS dataset, a bias-corrected global dataset was constructed (Xu et al., 2021). The dataset covers
the historical period from 1979 to 2014 and the future climate scenarios from 2015 to 2100, with a
horizontal grid spacing of 1.25°x1.25° and a time interval of 6 hours. Considering that O3 pollution often
occurs under extreme weather conditions, the more extreme SSP5-8.5 scenario was selected for this study.
This scenario is a high-forcing scenario, and the radiative forcing stabilizes at 8.5 W/m? by 2100. In
addition, as China implements more and more energy-saving and emission reduction measures,
especially with the establishment of carbon peak and carbon neutrality goals, future greenhouse gas
emissions are expected to be effectively controlled. Therefore, the relatively mild SSP2-4.5 scenario was
selected for comparison. This scenario is a moderate forcing scenario, and the radiative forcing stabilizes
at 4.5 W/m? by 2100. We use the geopotential height field at 850 hPa from June to September during
2018 to 2022 (historical period), 2030 (carbon peak), 2035 (beautiful China), 2060 (carbon neutrality),

and 2100 as the input for the PTT to classify weather patterns.We-use-the-850-hPaaverage potential
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3 Results and discussions

3.1 Characteristics of O3 pollution in the YRD

Figure 1 shows the monthly variation trend of ground-level O; concentrations and meteorological

conditions (solar radiation, temperature, precipitation, and relative humidity) in the YRD from 2018 to

2022. It can be seen that the inter-month variations of O3 concentrations present an M-shaped pattern.
inter-month-variations-of Os-coneentrationspresent-aM-shaped-pattera—From January to June, as the

temperature rises and solar radiation increases, the O3 concentration rises significantly and reaches the

first peak (133.36 pg/m?). However, the increased precipitation and higher humidity in July exert a
notable wet scavenging effect on O3 precursors. O3 concentration increases again and reaches the second
peak (126.38 pg/m®) in September. From October to December, as the temperature gradually decreases
and solar radiation weakens, the O3 concentration shows a continuous downward trend, and reaches the
lowest value of 54.17 ug/m? of the year in December. The O3 concentration shows obvious seasonal
changes throughout the year. In summer, higher temperatures, stronger solar radiation, and longer
sunshine duration jointly enhance atmospheric photochemical reactions, thereby significantly increasing
the O3 concentration. In winter, lower temperatures, weaker solar radiation, and shorter sunshine duration
lead to a significant weakening of photochemical reactions, which is not conducive to the generation of
0;. From the kernel density curve, it can be seen that the distribution in summer months is wider,
indicating that the O3 concentration fluctuates greatly, while the distribution in winter months is narrower,
indicating that the O3 concentration changes are relatively stable in winter. This periodic variation reflects
the high sensitivity of O3 concentration in the YRD to meteorological conditions (temperature, solar
radiation, humidity, wind speed, etc.), which affect the rate of photochemical reactions and thus affect

the generation of Os.
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270 Figure 1. Inter-monthly variations in mean O3 concentrations and associated meteorological conditions in the YRD
271 from 2018 to 2022. (a) The monthly variation of O3 concentrations is shown, with the red trend line representing the
272 monthly mean values and the individual monthly concentrations labeled. (b-¢) The variation trends of solar radiation,
273 temperature, precipitation and relative humidity during the same period. (The shaded area in the violin plot represents

274 the kernel density curve, with the three black lines indicating the 25th percentile, the mean, and the 75th percentile

275 respectively.) Inter-monthlyvariations—of-mean—Os-concentrations—in-the YRD from 2018102022 (Theregion

276 deptetedin-the-viohnploteo ponds—to-the rehdensty—etrve—wth-theth b g epre g
277 : 5 g
278 Os pollution in the YRD is concentrated in warm months of the year. We analyzed the temporal

279 distribution of O3 concentrations in representative cities in the YRD (Shanghai, Nanjing, Hangzhou, and
280 Hefei) from April to September during 2018-2022 (Fig. 2). Since TCs mainly occur after June, O3

281 pollution is often associated with TC activity. During the same TC period, the Os concentrations in

282 Shanghai, Nanjing, Hangzhou, and Hefei were different, but the temporal trends were similar. TCs have

283 a certain impact on the changes in Os; concentrations in the YRD. According to the evolution and

284 trajectory of TC weather, TCs affecting China are primarily from the northwest Pacific Ocean (Zhan et

285 al., 2020; Wang et al., 2024a). As they develop and move, these TCs will have a significant impact on O3
286 concentrations in China (Xi et al., 2025). At this time, the YRD is located on the periphery of the TCs.

287 Under the control of the periphery of the TCs, the strong downward airflow will make the YRD in

288 stagnant weather conditions and inhibit the diffusion of pollutants (Shu et al., 2016), accompanied by

289 high temperature, clear and dry weather conditions, which are the main weather conditions causing O3

290 pollution. With the evolution of TC weather system, when the TCs center gradually approaches the YRD

291 until it is within a certain range, the YRD is no longer under the influence of the periphery of the TCs

292 and comes under the control of the TC wind and rain belt. Strong winds and precipitation can significantly

293 cleanse air pollutants, and thereby reduce Os concentrations. After TCs dissipate, O3 pollution levels may

294 rise again due to restored meteorological conditions conducive to O formation (Zhan et al., 2020). These

295 results suggest that TCs can significantly affect O3 pollution in the YRD, highlighting the importance of
296 implementing O3 control measures prior to TC landfall.Os-peHution-in-the YRD-is-concentrated-in-warm
297 b of W, lzed o | distributi o . .

298 . . . . . .

299
300
301
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321 Figure 2. Changes in O3 concentration in Shanghai, Nanjing, Hangzhou, and Hefei from April to September in 2018
322 to 2022. The gray shadows mark the time of impact of the TCs weather that landed, and the red dots are Os-polluted
323 days.
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3.2 Main synoptic weather patterns in the YRD

Based on the analysis of O3 variation characteristics in the YRD, Oz concentrations were generally

high from June to September, coinciding with the peak season of TC activity. We selected June to

September during 2018—2022 as the research period and used the PTT weather classification method to

classify the weather situation. SWPs in the YRD during this period were primarily divided into four

categories. As shown in Table 1, SWP1 is the main SWP, occurring on 383 days and accounting for
62.79 % of the period. SWP2 and SWP4 followed, occurring on 81 and 80 days, respectively, with
frequencies 0f 13.28 % and 13.11 %. SWP3 was less frequent, occurring on 10.82 % of days. Specifically,

SWP1 was mainly influenced by the southwesterly flow introduced by the WPSH and the northeast China

low, SWP2 by northwesterly flow introduced by a continental high and the northeast China low, SWP3
by southeasterly flow introduced by the WPSH, and SWP4 by northeasterly flow introduced by the
WPSH and TCs.

Statistics of average O3 concentrations and meteorological factors under each SWP indicate that SWP4
had the lowest average O3 concentration (115.07 pg/m?), whereas SWP2 had the highest value (132.36
ug/m?). O; concentrations during SWP1 and SWP3 were similar, at 123.81 pg/m? and 123.28 pg/m’,

respectively. However, significant differences in O3 concentrations were observed among SWPs during

the same period, highlighting the strong influence of circulation patterns on O3 pollution levels. SWP1
exhibited higher temperatures (27.12 °C), favoring increased O3 concentrations. SWP2 was influenced

by dry northwesterly airflow, exhibiting lower humidity (76.74 %) and slower wind speed (2.03 m/s),

which hindered air pollutant dispersion and resulted in higher O; concentrations. SWP3 was

characterized by lower humidity (78.53 %) and slower wind speed (2.11 m/s), which were key factors

contributing to increased Os concentration. Under SWP4, though TCs far from the coastline could lead

to regional O3 pollution (in section 3.3.2), the landfalling TCs could bring strong winds and rainstorms,

increasing humidity (80.03 %) and wind speed (2.64 m/s), which resulted in lower average O3

concentrations.
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Table 1. The occurrence days and frequencies of various SWPs in the YRD from 2018 to 2022, thefregqueney-of
oceurrence—of-each-SWP-across—thefour-seasens;—average Os_concentrations and meteorological factorsand-the

meteorological-factors associated with each SWP.

Relative
Number of days O3 concentration Temperature Wind speed

Type humidity

(frequency) (pg/m®) (&) » m/s

0

SWP1 383(62.79%) 123.81 27.12 80.80 2.19
SWP2 81(13.28%) 132.36 25.00 76.74 2.03
SWP3 66(10.82%) 123.28 25.68 78.53 2.11
SWP4 80(13.11%) 115.07 26.61 80.03 2.64

3 illustrates the three-dimensional atmospheric circulation structures of SWP1, SWP2, and SWP3. For
SWP1, at 850 hPa, the YRD was located northwest of the WPSH and south of the northeast China low.
This influence was controlled by southwesterly flow, which was jointly guided by the WPSH and the

northeast China low (Fig. 3a). Warmer southerly winds promoted temperature increases in the YRD, and

elevated temperatures enhanced photochemical reactions producing Os. At sea level, the WPSH shifted

northeastward, influencing the YRD through southerly flow (Fig. 3d). These southerly winds transported

pollutants from the PRD to the YRD. The combined effects of enhanced photochemical reactions and

interregional advection contributed to elevated O3 concentrations in the YRD under SWP1. At 500 hPa,

the YRD was dominated by straight westerly flows (Fig. 3g), indicating intensified subsidence.
For SWP2, the YRD was located east of the continental high and southwest of the northeast China low.

This influence was driven by northwesterly flow, which was jointly guided by the continental high and

the northeast China low (at 850 hPa, Fig. 3b). These dry northwesterly winds significantly reduced

relative humidity in the region. At sea level, the YRD was primarily controlled by the continental high
(Fig. 3e). At 500 hPa, downward airflow strengthened over the northern YRD behind the trough (Fig.

3h). The significantly lower relative humidity and slower wind speeds favored the formation and

accumulation of O3, ultimately leading to increased O3 concentrations under this pattern.
For SWP3, at 850 hPa, the YRD was located southwest of the WPSH and was controlled by

southeasterly flow at its southern edge (Fig. 3c¢). This southeasterly airflow from the ocean increased

regional humidity and lowered temperatures. At sea level, the WPSH shifted northward, and the YRD

was affected by easterly winds controlled by a tropical depression (Fig. 3f). At 500 hPa, the YRD was
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located near the edge of the WPSH or close to a low-pressure trough (Fig. 31). As the WPSH weakened

and retreated eastward, its intensity and position suppressed convective activity, leading to a dominant

downdraft. This downdraft, combined with lower horizontal wind speeds, hindered the diffusion of

pollutants, resulting in increased Os; concentrations.
" 1 - o A D A N
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hPa geopotential height field superimposed on wind field (g-i). In (a)-(i), shading represents geopotential height and
color vectors represent wind with temperature. The black frame in (a)-(i) includes the YRD.Fhe-average-weather

onditionsin-SWP AP VP2 and-SWP4includinean-850hPaseonoten ialheicht field superimposed-on

3.3 The important role of TCs on regional O3 pollution

3.3.1 The impact of TC weather pattern (SWR5SWP4) on O3 pollution in the YRD

Figure 4 illustrates the three-dimensional atmospheric circulation structure under the TC weather

pattern (SWP4). For the TC weather pattern, similar circulation conditions were observed at 850 hPa
(Fig. 4a) and at sea level (Fig. 4b). The YRD was located northwest of the TCs and was controlled by

northeasterly flow guided by the TCs. The direction and intensity of the northeast wind had a significant
impact on meteorological conditions and pollutant transport in the YRD. At 500 hPa, the region was

dominated by westerly or northwesterly flow (Fig. 4c). Meanwhile, the peripheral downward airflow

associated with lower-level TCs (Fig. 4d) led to a more stagnant atmosphere over the YRD. As the TC

approaches the YRD, strong northeasterly flow increased clean sea airflow transportation to the region,

lowered temperatures and increased humidity, creating unfavorable meteorological conditions for

photochemical reactions. Furthermore, higher wind speeds facilitated air pollutant elimination, leading
to a decrease in O3 concentrations in the region (Table 1). Fisure4-shows—the—three-dimensional
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superimposed on wind field (a), sea level pressure field superimposed on 1000 hPa wind field (b), a 500 hPa

geopotential height field superimposed on wind field (¢), height-latitude cross-sections of vertical velocity (unit: 10

2 Pa's!) between 25°N and 40°N (d). In (a)-(c), shading represents geopotential height and color vectors represent

wind with temperature.shadingrep - The black frame in

(a)-(c) and the vertical line area in (d) includes the YRD.

3.3.2 Changes of atmospheric circulation field with different O3 pollution levels under TC weather

pattern

To better explore the relationship between Oz pollution and the TC weather pattern (SWP4), O3

pollution was further classified into clean type (C), local pollution type (LP), and regional pollution type
(RP) based on pollution characteristics. RP was defined as all days when more than 20 % (> 5) of the 26

cities in the YRD recorded a maximum daily O; concentration exceeding 160 pug/m?, LP was defined as
all days when fewer than 20 % (< 5) of the 26 cities in the YRD recorded a maximum daily O3
concentration exceeding 160 ug/m?, and C included the remaining days not classified as LP or RP. Table
2 presents the number of days and frequencies of C, LP, and RP under SWP4. The frequencies of
SWP4 C,SWP4 LP, and SWP4 RP were 56.25 %, 18.75 %, and 25.00 %, respectively. The average O3
concentrations under these three types were 93.46 ng/m?, 126.97 ug/m?, and 161.19 ug/m?. The clean

type occurred more than half the time, contributing to the lower average Os concentration (115.07ug/m?®)

under SWP4 (Table 1). Under the TC weather pattern, meteorological factors corresponding to different

O3 pollution characteristics varied significantly (Table 2). As pollution levels increased, regional air

temperatures gradually rose, relative humidity decreased, and surface wind speeds decreased

significantly. These high temperatures, low humidity, and low wind speeds created favorable conditions

for O3 formation and accumulation. Higher temperatures accelerated photochemical reactions, thereby

promoting O3 production. Low humidity reduced the inhibitory effect of water vapor on photochemical

reaction chains, favoring further O3 accumulation. Reduced wind speeds led to poor atmospheric

diffusion, hindering the dilution and transport of precursors and Os. Overall, as pollution levels increased,

meteorological conditions under the TC weather pattern gradually became more favorable for O;

3

formation and accumulation.

e e O e e

Table 2. The number of days and frequency of occurrence of clean type (C), local pollution typeltishtly-pethated-type
(LP), and regional pollution typeheavily—poHutedtype (HPRP) under each SWP, average O3 _concentrations and

meteorological factors associated with each type.the-frequencies-of theirocetrrence-infour-seasons:
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Relative
T Number of days O3 concentration =~ Temperature humidi Wind speed

ype umidity

(frequency) (ug/m?) (&) y m/s
0

SWP4 C 45(56.25%) 93.46 25.57 82.06 2.98
SWP4  SWP4 LP 15(18.75%) 126.97 27.14 79.28 2.65
SWP4 RP  20(25.00%) 161.19 28.54 76.03 1.87

Figure 5 illustrates the structural characteristics of the three-dimensional atmospheric circulation fields

corresponding to different O; pollution levels (SWP4 C, SWP4 LP, and SWP4 RP) under SWP4. For
SWP4 C, at 850 hPa, the YRD was controlled by the TCs (Fig. 5a). The TCs brought strong winds and

rainstorms to the YRD, which were not conducive to the accumulation of air pollutants or to O3 formation

via photochemical reactions. Simultaneously, high wind speeds and rainfall facilitated pollutant removal.

When the TCs made landfall in the YRD (Fig. 5d), significant updrafts occurred in the lower atmosphere,

favoring pollutant dispersion. Consequently, clean days were observed in the YRD under the influence
of TCs. For the local and regional pollution patterns (SWP4 LP and SWP4 RP), TCs were generally
500—1000 km from the YRD coastline (Fig. 5e and f). Previous studies have shown that downdrafts

caused by the outer airflow of TCs before landfall led to more stable atmospheric conditions (Zhan et al.,
2020; Zhan and Xie, 2022). Under SWP4 LP and SWP4 RP, the YRD experienced higher temperatures

and lower humidity (Table 2). These meteorological conditions favored Os formation, leading to the

occurrence of Os pollution events.

For SWP4 LP, the warm high pressure over North China weakened. and the TC shifted westward,

closer to the coastline (Fig. Se). At 850 hPa, pollutant air masses from the PRD were transported to the
YRD, but were diluted by clean air from the ocean (Fig. 5b). Compared to SWP4 RP, SWP4 LP had
stronger winds and higher relative humidity (Table 2). Consequently, O3 pollution in the YRD was
slightly lower under SWP4_LP than under SWP4_RP. For SWP4 RP, the warm high pressure over North
China weakened further, and the TC shifted eastward compared to SWP4 LP (Fig. 5c¢). The YRD was
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dominated by strong downdrafts induced by the peripheral flows of the TC (Fig. 5f). This downdraft
reinforced stagnant weather, suppressed convective activity, and hindered pollutant dispersion (Shu et
al.. 2016; Xi et al., 2025). Combined with meteorological analysis in Table 2, the temperature in the YRD
under SWP4_RP was higher (28.54 °C), the relative humidity was lower (76.03 %), and the wind speed

was slower (1.87 m/s), all of which favored photochemical reactions and limited pollutant dispersion.

Furthermore, downdrafts induced by the peripheral flows of the TC promoted pollutant accumulation,

significantly increasing the frequency of Os pollution. In summary, when the TC was located at
130°=135°E and 20°-30°N, the YRD was influenced by its sinking airflow, facilitating the formation of

O3 pollution.

SWP4_RP
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Figure 5. The average weather conditions in SWP4 C (left), SWP4 LP (middle), and SWP4 RP (right), including

an 850 hPa geopotential height field superimposed on wind field (a-c¢), sea level pressure field superimposed on

1000 hPa wind field (d-f), a 500 hPa geopotential height field superimposed on wind field (g-i). The shading

represents geopotential height, black vectors represent wind and the black frame includes the YRD, and the red

asterisk in (d-f) indicates the location where the TCs made landfall.

3.4 To what extent TCs impact regional O3 pollution in the YRD

3.4.1 The role of changes in the intensity and frequency of SWPs in the reconstruction of the annual

variation series of O3

Different dominant SWPs produced varying near-surface meteorological conditions, which in turn

affected atmospheric processes such as O3 photochemical production, transport, diffusion, and wet and
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dry deposition. Changes in the frequency and intensity of SWPs were two key factors influencing O3

concentration variations. We reconstructed the annual time series of Oz concentrations from June to

September between 2018 and 2022 by considering only changes in SWP frequency (fre) and changes in

both SWP intensity and frequency (fre+int). In our study, we first removed the influence of emission

sources on Os concentrations based on the results of Yan et al. (2024). Subsequent analyses were

conducted using O3 concentration series that were free from emission source influences. Using the O3

trend reconstruction method, we quantified the contribution of SWPs to annual variations in O3

concentrations from June to September.

Figure 6 illustrates the annual variations of reconstruction O3 concentrations from June to September

during 2018 to 2022. When only changes in SWP frequency were considered, the reconstructed time

series was relatively flat and did not adequately capture the variation trend of Os concentrations.

Therefore, changes in SWP frequency had minimal impact on the annual variation of O3. When changes
in SWP intensity were considered, the reconstructed series more closely resembled the original annual

variation series. Therefore, compared to changes in SWP frequency, changes in SWP intensity
contributed more to variations in O3 concentration. To accurately assess the impact of both SWP

frequency and intensity on annual O3 variation, we quantitatively calculated their contributions. The

contribution index was defined as the ratio of the interannual variation amplitude of the reconstructed

series to that of the original series, i.e., (O3max Of the reconstructed series — Ozmin_0f the reconstructed
series) / (Osmax of the original series — O3smin 0f the original series). When only changes in SWP frequency
were considered, their contribution to the interannual variation was 10.05%. When changes in SWP

intensity were additionally included, the contribution increased to 69.66%. This indicates that, compared

with changes in SWP frequency, changes in SWP intensity played a more important role in driving
. . X .

interannual variations in Os concentrations.

Page 19 of 37



manuscript submitted to Journal of Atmospheric Chemistry and Physics

90E 100E  110E  120E 130 140E 90E 100E  110E  120E 130 140E
| cem— | e— Com—
1350 1380 1410 1440 1470 1500 1530 1350 1380 1410 1440 1470 1500 1530

90E 100E 110E 1208 1308 140E 90E 100E 1108 1208 130E 140E 90E 100E 1108 1208 130E 140t

o —
1000 1003 1006 1009 1012 1015 1018
|

 cm— | — | eem— L —
1006 1008 1012 1015 1018 1000 1003 1006 1009 1012 1015 1018

50N 50N

40N 40N |

30N 30N

20N |

10N . 10N -
(CONTOUR P 560 7O 5880V CONTOUR FROM 5880 T0 5680 6Y 0

190 TOTGE 90E  100E  110E 2oL gve OTHGE E  100E  110E  120r U Igue e TORGEY

90E 1006 110E
Ces—— OSSS— reE— S— e—— SSS—
5600 5630 5660 5690 5720 5750 5780 5810 5840 5870 5900 5600 5630 5660 5690 5720 5750 5780 5810 5840 5870 5900 5600 5630 5660 5690 5720 5750 5780 5810 5840 5870 5900

e Oy (fre)

130 b — Os(fre+int)

- -
- -~
-
-
Lo =

0] (ng/m’)

fteseanct

115 |

110 1 1 1
2018 2019 2020 2021 2022

Year

613

Page 20 of 37



614

615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

manuscript submitted to Journal of Atmospheric Chemistry and Physics

—_ 0,
==== O;(fre)
=  O;(fre+int)

130

O; (ng/m?)

120

110 1 1 1
2018 2019 2020 2021

Year

2022

Figure 6. The trend of the interannual O3 concentration time series from June to September during 2018 to 2022 in
the YRD. The blue line represents the original interannual O3 time series, whereas the green and red lines represent
the trends of reconstructed O3 concentrations according to the frequency-only and both frequency and intensity of

SWP changes. respectively. The-interannual-Os-concentrationtrends—tor-observed-andreconstructed-Os-based-on

cariationsin-SWPs in the YRD_The blye lines represent the observed-interannual O3 .
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In reconstructing the time series of annual O3 concentrations, we found that the definition of the SWP

intensity factor played a crucial role in the reconstruction. Previous studies reconstructed the annual O3

concentration series by defining the SWP intensity factor as either the regional mean sea level pressure

or the regional minimum pressure (Hegarty et al., 2007; Liu et al., 2019). However, this definition showed

poor correlation between the SWP intensity factor and the annual O3 concentration series for certain

SWPs. Therefore, we defined the SWP intensity factor for each SWP based on its specific meteorological

characteristics, selecting the maximum, minimum, and mean geopotential heights across nine zones, and

evaluated its validity by calculating the correlation coefficient with the annual Os variation series (Table

3). For SWP1 and SWP2, the maximum geopotential heights in zone 7 and zone 2 were highly correlated

with the annual Os variation series. For SWP3 and SWP4, the minimum geopotential heights in zone 9

and zone 4 were highly correlated with the annual Os variation series. The maximum geopotential height

reflects regional wind speeds, which determine the amount of water vapor transported into the region.

Compared with SWP1, SWP2 has a larger weather system scale, so the maximum geopotential height in

zone 2 shows a stronger correlation with the O3 series than that in zone 7. For SWP4, the YRD was

affected by TCs, and O3 concentrations were closely related to TC intensity. The minimum geopotential

height in zone 4 reflects the TC intensity. When the SWP intensity factor was defined based on the unique

meteorological characteristics of each SWP, the reconstructed series more accurately reflected the impact

of changes in SWP intensity on O3 concentrations.
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Table 3. Correlation coefficients between the O3 concentration time series and different SWP intensity factors under

cach SWP.

Zone 1 Zone2 Zone 3
Type (115°~135°E, 20°~40°N) (90°~140°E. 20°~50°N) (110°~130°E. 10°~40°N)
Mean Max Min Mean Max Min Mean Max Min
SWPI  -0.62  -072  -0.41 069 026 0.45 059 076 017
SWP2  -0.65  -087  -0.45 047  -0.88  -0.09 060  -0.84  -0.53
SWP3  -041  -0.67 0.72 010  -0.17 043 011  -060 075
Swp4  0.15 -0.32 0.36 0.26 0.01 0.32 0.33 -0.38 0.49
Zoned Zone 5 Zone 6
Type  (110°~130°E, 25°~40°N) (100°~120°E. 15°~35°N) (110°~120°E, 15°~35°N)
Mean Max Min Mean Max Min Mean Max Min
SWPI  -067  -0.80  -0.02 033 037 0.05 060 -082 010
SWP2  -047  -0.73  -044 036 -059  -0.19 048  -0.65  -0.29
SWP3  -0.19  -0.60 046 0.34 031 0.67 029 =029 085
Zone 7 Zone 8 Zone 9
Type  (110°~130°E, 20°~35°N) (115°~135°E. 30°~50°N) (110°~130°E, 20°~40°N)
Mean Max Min Mean Max Min Mean Max Min
SWPI  -053  -0.83 0.06 040  -073 042 061  -076  0.09
SWP2  -054  -0.79  -0.25 031 072 003 056 =077 -0.50
SWP3  0.02 -0.69 0.86 -0.25 -0.64 0.33 -0.08 -0.60 0.87
SWP4 050  -021 049 0.19  -003  -0.15 039 030 048

3.4.2 Changes in TCs and the effects on O3 concentration over the YRD in the future

After clarifying the relationship between SWPs and O3 pollution, future trends of O3 concentrations
under different scenarios were estimated based on projected changes in SWPs.the—trend—of- O3

ehanges: Due to its unique geographical location, the YRD was subject to relatively complex weather

systems. The PTT method was used to classify the weather conditions in the YRD from June to

September under the SSP2-4.5 and SSP5-8.5 scenarios into four main categories. SWP1 was mainly
controlled by southwesterly flow associated with the WPSH and the northeast China low, SWP2 by

northwesterly flow associated with a continental high and the northeast China low, SWP3 by

southeasterly flow associated with the WPSH, and SWP4 by northeasterly flow associated with the
WPSH and TCs. Figure 7 illustrates the distribution of days for each SWP from June to September in the
YRD during the historical period and under the SSP2-4.5 and SSP5-8.5 future scenarios. According to
the average O3 concentration of each SWP during the historical period (Table 1), SWP1 and SWP2 with

higher O3 concentrations are classified as high-average Os patterns. The average annual number of days

during the historical period was 92.8. The high-average O; pattern occurred most frequently in 2022,

with 98 days and higher O3 concentrations. This confirms that changes in SWP frequency, which

characterize specific Os concentration patterns, could influence Os concentration trends to a certain
extent (Hegarty et al., 2007).
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660 Under the SSP2-4.5 scenario, the frequencies of SWP1 to SWP4 were 57.79%. 19.67%., 6.76%, and
661 15.78%, respectively (Fig. 10). High-average O3 pattern occurred on 93. 99. 96. and 90 days in 2030,
662 2035, 2060, and 2100, respectively, showing a general increasing trend, with the peak occurring in 2035.

663 These results suggest that, considering only changes in SWP frequency, O3 concentrations would reach
664 a maximum in 2035 under the SSP2-4.5 scenario. Under the SSP5-8.5 scenario, the frequencies of SWP1
665 to SWP4 were 50.82%, 23.98%, 7.17%., and 18.03%. respectively (Fig. 10). High-average O3 pattern
666 will occur on 99, 90, 82, and 94 days in 2030, 2035, 2060, and 2100, respectively, under the SSP5-8.5

667 scenario, with the number of days increasing in 2030 and 2100. This also suggests that, considering only

668 changes in SWP frequency, O3 _concentrations would increase in 2030 and 2100 under the SSP5-8.5
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670
671
672
673 : 5
674  historical period. SWPL SWP2. and SWP3 with higher Os . assified as hiel

675 ays

676
677
678
679
680
681
682
683

684  osesnasiesecsiin 000

100% - — H
90% - = H || | . . ]
_ 80% - | ] C
(]
£ 70% -
= B SsWPI
g 60% -
pu—
S 0% - [ swp2
=
—E A% —E=-sWP—
g 30% [ swp4
)
20% A [ swPs
10% -
0%
2018 2019 2020 2021 2022 2030 2035 2060 2100 [ 2030 2035 2060 2100
Historical SSP2-4.5 SSP5-8.5

685

Page 23 of 37



686
687
688
689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

manuscript submitted to Journal of Atmospheric Chemistry and Physics

120 A

100 -

2. 80 -
S
= = swr1
_e_‘; 60 1 swe2
E [ swp3
Z 40
=1 swpr4
20 1
0 -
2018 2019 2020 2021 2022 | 2030 2035 2060 2100 [ 2030 2035 2060 2100
Historical SSP2-4.5 SSP5.8.5
Figure 7. Freq

in-the-warmseasens-overthe YRD Distribution of the number of days of occurrence of each SWP in the YRD from
June to September under the historical period (2018-2022), SSP2-4.5, and SSP5-8.5 future scenarios.

Due to the frequent occurrence of TCs in the YRD from June to September, they not only brought

extreme weather events but also had a significant impact on regional O; pollution. We further examined

changes in the number of days under the TC weather pattern (SWP4). During the historical period
(2018—2022), the annual average number of days with TC weather pattern in the YRD was 16 (Fig. 8).
Under the SSP2-4.5 future scenario, this number increased to 19, 17, 21, and 20 days in 2030, 2035
2060, and 2100, respectively. This indicates that the number of days with TC weather pattern increased

to varying degrees, with the lowest number of days in 2035. Under the SSP5-8.5 future scenario, this
number increased to 18, 19, 30, and 24 days in 2030, 2035, 2060, and 2100, respectively. Similarly, under
the SSP 5-8.5 future scenario, the number of days with the TC weather pattern in the YRD increased to

varying degrees. Overall, the frequency of TCs affecting Os; concentrations in the YRD increased

der both future scenarios.Due-to-the-frequent-occurrence-of TCs-during the-warm-seasons

significantly un
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Figure 8. Occurrence days of TCs SWP under the historical period, SSP2-4.5 and SSP5-8.5 future scenarios in the
YRD from June to Septemberin-the-warm-seasons-overthe YRD.

3.4.3 Reconstruction of annual O3 variability-during—-warm-seasens—_in the YRD under future

scenarios

Based on the SWP classification results and the reconstructed empirical relationships, statistical

projections of the annual O3 concentration series from June to September were made for the SSP2-4.5

and SSP5-8.5 scenarios. Figure 9 compares the reconstructed annual O; concentration series from June

to September with the historical period. When considering only changes in SWP frequency, the

reconstructed Oj series under the SSP2-4.5 scenario peaked in 2035. The reconstructed Os series under

the SSP5-8.5 scenario increased in 2030 and 2100, consistent with the conclusions drawn in Section

3.4.2. However, overall, the reconstructed series from 2018 to 2022 indicated that changes in SWP

frequency had little impact on the annual Os variation, and the reconstruction could not accurately capture
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the actual trend. After incorporating changes in the SWP intensity factor, the reconstructed annual O3

series more closely reflected the actual trend.

The average O3 concentration in the YRD from June to September during 2018 to 2022 was 123.89

ug/m?. Under the SSP2-4.5 scenario, O; concentrations in the YRD are projected to increase relative to

the historical period (Fig. 9a), with an average increase of approximately 1.88 pg/m?>. Based on the

reconstructed contribution of SWP changes, future O3 concentrations in the YRD are estimated to be 2.70

ug/m? higher than in the historical period. Under the SSP5-8.5 scenario, O3 concentrations are projected

to_increase relative to the historical period (Fig. 9b). reaching 133.80 pg/m’ in 2100, an increase of

approximately 6.86 pg/m’. Based on the reconstructed contribution of SWP changes, future Os

concentrations in the YRD are estimated to be 9.85 pg/m?> higher than in the historical period. In summary,
under both the SSP2-4.5 and SSP5-8.5 future climate scenarios, O3 concentrations in the YRD are

projected to increase from June to September, with more severe O3 pollution under the SSP5-8.5 scenario.

Previous studies based on CMIP6 multi-model simulations have shown that surface Os concentrations

are projected to decrease in response to reductions in anthropogenic emissions, although the magnitude
and spatial distribution of changes vary among scenarios (Turnock et al., 2020; Li et al., 2023). The

trends revealed in this study are generally consistent with those of previous studies, lending confidence

to the robustness of our findings.Aeecerdingto-the-weatherelassificationresults—and-the reconstrueted

cenpitenleslatiens o e Do spntion e s b oes L sespeien oD D0 LD anel DS s
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760 Figure 9. Estimation-ofOs : : 4 and-SSP5-8.5 future scenarios-based-on-intensity
761 and—frequeney—of - SWPs—compared—with-the historical - mean—Os—concentration-The trend of the interannual O
762 concentration time series under SSP2-4.5 (a) and SSP5-8.5 (b) future scenarios in the YRD. The blue line represents
763 the original interannual Os_time series, whereas the green and red lines represent the trends of reconstructed O3
764 concentrations according to the frequency-only and both frequency and intensity of SWP changes, respectively.
765 Figure 10a shows the contribution of each SWP to the reconstructed series of future O3 concentrations
766 in the YRD from June to September under the SSP2-4.5 and SSP5-8.5 scenarios. We focus on the
767 contribution of the TC weather pattern (SWP4) to the reconstructed Os concentration series under
768 different scenarios (Fig. 10b). During the historical period (2018—2022), the TC weather pattern
769 contributed an average of 13.11% to O3 concentrations in the YRD. Under the SSP2-4.5 scenario, the
770 contributions of the TC weather pattern in 2030, 2035, 2060, and 2100 were 15.57%. 13.93%, 17.21%,
771 and 16.39%. respectively. The frequency of the TC weather pattern in the YRD in 2035 was lower,
772 resulting in a lower contribution of the TC weather pattern to O3 concentrations in that year. Under the
773 SSP5-8.5 scenario, the TC weather pattern contributes 14.75%. 15.57%, 24.59%, and 19.67% to O3
774 changes in 2030, 2035, 2060, and 2100, respectively. Under both the SSP2-4.5 and SSP5-8.5 scenarios,
775 the contribution of the TC weather pattern to Os pollution increases to varying degrees compared with
776 the historical period. This suggests that under future climate change, the impact of TC weather pattern
777 on O3 pollution in the YRD may intensify. Further research is needed on the relationship between key
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SWPs, such as TC weather pattern, and Oz formation mechanisms to more accurately predict and mitigate

regional Os pollution under future climate conditions. We-foecus—on-the-contribution-of the TC-weather
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Figure 10. Contribution ratio-of diffcrent SWPsto-predicted Os-concentrations-under SSP2-4.5-and SSP3-8.5 future

seenartos-Contribution of SWP to the projected annual variation series of Oz concentration under the SSP2-4.5 and

SSP5-8.5 future scenarios. (a) Contribution of four SWPs, (b) Contribution of TC weather pattern (SWP4).
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4 Conclusions

This study investigates the impact of meteorological conditions on O3 pollution and future trends in
the YRD, with a partlcular focus on the influence and mechanisms of TCs on O3 pollution. Ln—fespe—ﬂs%te

Os-pelution- The spatial distribution and temporal variation of O3 pollution during TC events in the YRD

from 2018 to 2022 were analvzed %spa&al—dﬁmb&ﬂeﬂ—eh&meteﬂsﬁes—ef—gg—peﬂweﬁ—&ﬂd—the
d—The PTT

objective classification method was applied to identify the main SWPs in the YRD from June to

September 2018-2022 and assess their influence on varying levels of Os pollution. Finally, using the

reconstructed empirical relationship, the annual variation of O3 concentrations in the YRD from June to

September under future scenarios was statistically projected, and the contribution of TCs to future O3

changes was quantified. Fh

are summarized as follows.

Analysis of O3 pollution characteristics in the YRD from 2018 to 2022 indicates that inter-month

variations of O3 concentrations exhibit an M-shaped pattemAnah%ﬁ—efl@g—peH&ﬁeﬂ—ehafaeteﬂsﬂes—m

pfee@iﬂ%mﬂ—&ﬁe&meﬂ%h#&mﬂe%@#@g%&ﬁ&%&iﬁﬁ%ﬁ%ﬂ%&ﬂ%ﬁh&p@dﬁﬁ% Peaks generally

occur in June and September, with O; concentrations showing substantial fluctuations during

summernteale—seneeall o sooieine tn o anel Dasioambor sad Chosenecpieiions loeliale ceea L

summer: During TC activity from 2018 to 2022, O3 pollution in typical YRD cities exhibited similar
temporal trends, generally increasing initially and then decreasing, closely associated with the trajectory

and center position of the TCs.Os-peHutionintypicaleities-inthe YRD-during FCaetivity-between 2048

approaches the YRD, regional O3 concentrations decrease due to strong winds and rainfall, facilitating
atmospheric pollutant removal. When-the-TCs-center-is-close-to-the YRD-the-Os-conecentrationin-the

the-atmesphere- Conversely, when TCs are in their formation or dissipation stages. or their peripheral

airflows influence the YRD, high temperatures, clear skies, and dry conditions favor O3 formation and

accumulation.On-th

formation-and-accumulationof Oz —
Using the PTT objective classification method, four main SWPs were identified in the YRD from June

to September 2018—2022. SWP1 is mainly controlled by the southwesterly flow introduced by the WPSH
and the northeast China low, SWP2 by northwesterly flow introduced by a continental high and the

northeast China low, SWP3 by southeasterly flow introduced by the WPSH. and SWP4 by northeasterly

flow introduced by the WPSH and TCs. SWP1 is the dominant SWP, occurring 62.79 % of the time,
whereas the TC weather pattern (SWP4) occurs 13.11 % of the time. SWP2 is influenced by dry

northwesterly flow, exhibiting lower humidity (76.74 %) and slower wind speeds (2.03 m/s), which
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hinder pollutant dispersion and lead to higher O3 concentrations. Under SWP4, TCs bring strong winds

and rainstorms, increase humidity (80.03%). and enhance wind speeds (2.64 m/s), resulting in lower

average Os concentrations.Fh

To investigate the interaction mechanisms between TC weather patterns and O3 pollution, three

pollution levels, clean type (C), local pollution (LP), and regional pollution (RP), were defined based on

Og3 characteristics, and the corresponding atmospheric circulation features were analyzed in detail. For

SWP4 C, TCs make landfall in the YRD, bringing strong winds and rainstorms that inhibit O3
accumulation and maintain clean air conditions. In contrast, under the SWP4 LP and SWP4 RP,
downdrafts induced by the peripheral airflows of TCs that have not yet made landfall led to more stagnant

atmospheric conditions. Elevated temperatures and weak winds over the YRD create conditions highly
favorable for O; formation. The mean Os concentrations for these three categories were 93.46 pg/m?,

126.97 ug/m>. and 161.19 pg/m>. The clean type occurred more than half the time, contributing to the
lower mean Os concentration (115.07 ug/m?) under the SWP4. When the TC centers are located at 130°—
135°E and 20°-30°N, the YRD is influenced by downdrafts from the peripheral flows of the TCs,

facilitating the formation of high-concentration O3 pollution.

The SWP intensity and frequency contribute 10.05% and 69.66% to the annual Oj variation series,

respectively. Compared to frequency, intensity variations have a more significant impact on Os variation.
Classification of SWPs from June to September under the SSP2-4.5 and SSP5-8.5 future scenarios shows

that the number of days with TC weather pattern has increased to varying degrees, and the duration of

TCs impacts will increase in the future. SWP intensity factors are defined based on the meteorological

characteristics and location of each SWP, and a statistical estimate of the O3 concentration variation series

from June to September in the YRD under future scenarios is made using data reconstruction methods.

Under the SSP2-4.5 and SSP5-8.5 future scenarios, O3 concentrations increase by an average of 1.88

ug/m® and 6.86 pg/m® compared to the historical period. Based on their reduction contributions, the

increase is expected to be 2.70 ug/m® and 9.85 ug/mS. Under the two future scenarios, the contribution

of TC weather pattern to Os pollution has increased to varying degrees compared with the historical

period, indicating that the impact of TC weather pattern on O3 pollution in the YRD may be further

intensified in the future.
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In summary, O3 pollution in the YRD is on the rise, and summer O3 pollution is often related to TC

activities, and often occurs before and after TC activities. Through the research of this article, we have
deepened our understanding of the mechanism of TCs on regional Os pollution. In addition, under the
background of global warming, the intensity and duration of TC generation will increase, which will
have a serious impact on China’s coastal areas. Compared with the direct damage caused by landfalling
TCs, the secondary disasters caused by them, such as Oz pollution, should also be taken seriously. The
research results have important scientific significance and practical application value for the in-depth
understanding of the formation mechanism of Oz pollution in the YRD, formulating targeted pollution

prevention and control strategies, and improving regional air quality.
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Data availability. Chinese O3 monitoring data are available at http://www.cnemc.cn/en/. Meteorological

data are available at http://rda.ucar.edu/datasets/ds083.2/. The TCs trajectory dataset are available at

https://www.typhoon.org.cn/. CMIP6 future climate scenario data are available at
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