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Abstract.

The Atlantic Meridional Overturning Circulation (AMOC) is a major climate element subject to possible ongoing loss of
stability. Recent studies have found evidence of a gradual weakening in circulation, including early warning signals (EWS),
such as increased fluctuations and correlation time of the system, which are both known to be indicators of a possible forth-
coming tipping point. To assess these changes in statistical behavior we propose a robust and general statistical model based
on a second-order autoregressive process with time-dependent parametersthat-allow—, This allows for the statistical changes
from increased external variability and destabilization to be accounted for separately. We estimate the time evolution of the
correlation parameters using a hierarchical Bayesian modeling framework which also yields uncertainty quantification through
the posterior distribution. To assess possible changes in AMOC stability we apply the model to an AMOC fingerprint proxy
based on the Sub-Polar Gyre and the global mean temperature anomaly. We find statistically significant EWS which suggests
that AMOC is indeed undergoing a loss of stability and is getting closer to a tipping point. The methodology developed in this

study is made publicly available as an extension of the R-package INLA . ews.

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is a key driver of Earth’s climate, responsible for the targe-seale
transport of heat and water-masses-salt across the Atlantic Ocean (Re st 5 : = e i
Rahmstorf, 1995). As part of the global thermohaline circulation, the AMOC plays a central role in maintaining the current
climate equilibrium, It is widely believed to-have-that the AMOC is a multi-stable states(StommelL 196+ Eentonetal;2008);
inehuding-system, capable of existing in multiple stable modes, most notably a strong mode, which is currently dominant, and a
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- This nonlinear behavior implies that the AMOC may undergo abrupt transitions between states when critical thresholds are
crossed. Paleoclimate evidence supports the idea that abrupt shifts in AMOC strength have contributed to major climate events
during the last glacial period, such as the Dansgaard-Oeschger events temperature-fluctuations-that-eecurred-during-glaetal
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subsystem that could undergo a critical transition if-freshwater-inputinto-the North-Atlantie reaches-a-eertain-threshold-due to
anthropogenic forcing (Lenton et al., 2008). Climate models suggest that continued greenhouse gas emissions and the resulting.
such a tipping point (Wood et al., 2019; Hawkins et al., 2011; Weijer et al., 2019) This behavior ‘kﬂewn—a%—hy%efeﬂﬁmphe%

eotlapse-this-eentury-is-very-unlikelyexhibits hysteresis, meaning that once a tipping threshold is passed, the AMOC may not
return to its original state even if the perturbation is reversed.

Recent observational and modeling studies have intensified concerns. Although early models suggested a low probability
of collapse within the 21st century (Masson-Delmotte et al,, 2021), more recent models—show-simulations reveal a wider
range of possible responsesto-global-warming-projections, raising concerns abeut-underestimated-risks—that risks might be

underestimated (Gong et al., 2022). This discrepancy is partly due to model biaseslike-underestimated-freshwaterinputMasson-Delmeotte-e

—A—weakening-or—eolapse—, notably in representing freshwater forcing and feedback (Liu et al., 2017). Evidence is also
emerging from real-world observations. Studies have documented a significant weakening trend in the AMOC over the 20th

century (Caesar et al., 2018) and recent statistical analyses have detected early warning signals of reduced stability (Boers, 2021; Ditlevsen

- These findings suggest that the AMOC may be approaching a critical threshold.
A weakening of the AMOC would have far-reaching-profound and potentially irreversible consequences, including disrupt-
ing weather patterns, altering precipitation systems, and potentially triggering cascading effects on other climate components

. In light of this, there is an urgent need to monitor the resilience of the system and improve our understanding of the processes
that drive its potential loss of stability. To anticipate such changes studies have focused on using critical slowing down theory,

stating that when a system is approaching a tipping point its recovery from small perturbations becomes progressively weaker.
This phenomenon, called early-warning signal (EW-SSEWS), can be characterized by an increased variance and autocorrelation
which can be used as statistical indicators of approaching critical transitions.

To detect these statistical changes, a common approach is to start from the linear approximation of a dynamical system with

white noise around some stable fixed point x,, giving
dz(t) = =Mz (t) — xs)dt + odB(t), (1)

where A=—+F"{#5))\ is the restoring rate and dB(t) is a white noise process. This Linearization is recognized as the Langevin

stochastic differential equation, which has the following solution

x(t) =z + / g(t —s)dB(s), 2

Vettoretti and Peltier, 2016; Boers et al., 20
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where g(t — s) is a Green’s function defined by

exp(—At), x>0

g(t) = : 3)
0, z <0

This form of () is also referred to as an Ornstein-Uhlenbeck (OU) process. When discretized, this process yields a first-order

autoregressive (AR) process.

1-¢2 ,
Ty = Prs 1 + &4, et ~N (0, o o ()

with variance Var(z;) = 02 /(2)) and lag-one autocorrelation parameter ¢ = exp(—AAt).

With this model, EWS are detected through an increase of the autocorrelation or variance. However, Boers (2021) showed
that these indicators can be biased if the system is driven by external noise that itself has increasing autocorrelation or variance,
leading to false positive alarms. To account for such bias, Boettner and Boers (2022), and Morr and Boers (2024) suggests
that the OU process of Eq. (2) should be driven by correlated noise rather than white noise. After discretization the resulting
process yields an AR(1) process that is driven by another AR(1) process. Hence the discretization is similar to Eq. (4), except

that the white noise process < is replaced by an AR(1) process

Vi1 = pog + 0o (5)

with p representing the correlation parameter of the noise, o, is a scaling parameter and
1— 2
b~ N (0, ¢ ) ©)

is a white noise process.

~This model encompasses the original AR(1) model in (4) when p = 0 and, as showcased in Boers (2021), it comprehends cases
in which external noise is also correlated, preventing bias in the estimation of the parameter ¢. Consequently, an increasing ¢
will act as a more reliable indicator for detecting EWS, since it will no longer be affected by rising external variation.

Climate systems that are prone to tipping, such as the AMOC, are often driven by some external forcing. For the AMOC,
the freshwater forcing from Greenland melts acts like a bifurcation parameter as freshwater inputs can disturb the salinity
and the temperature of the AMOC, potentially pushing the system closer to its tipping (Wood et al., 2019). To incorporate
forcing into our model, we use a similar approach as in Myrvell-Nilsen-et-al(2020,20624)-Myrvoll-Nilsen et al. (2024), and
Myrvoll-Nilsen et al. (2020), where the dynamical system is represented by

dx(t) = —z(t) + F(t)dt + U(t)dt, @)

where F'(t) represent the forcing and U (t), as before, represents an OU process. The solution of this equation can be expressed

as the sum of one forced component and one noise component

a(t) = v(t) +£(1). (®)
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Here, the noise component, £(t), is represented by an AR{2}-nested AR(1) process described previously and the forced com-
ponent, +{(Hv/(t), is expressed by

v(t) e ADE=8) g, )

t
1
-7
0
with x ¢ being a scaling parameter. This model allows EWS to be detected while accounting for the influence of external forcing
on the system’s dynamics.

Most studies detect EWS using sliding windows to obtain estimates of the variance and correlation for each window. This
approach requires selecting an appropriate window length, which introduces a fundamental compromise. A shorter window
provides a more accurate representation of the system’s momentary state, but the limited number of data points can reduce the
reliability of the statistical estimates. In contrast, a longer window improves the robustness of these estimates by incorporating
more data, but it does so at the cost of responsiveness, as it averages information over a broader time scale and may fail to
capture short-term fluctuations effectively. Determining the optimal window length is thus a critical but challenging task, as it
should ideally balance estimation accuracy with the ability to reflect rapid changes in the system’s evolution. Myrvoll-Nilsen
et al. (2024) propose an alternative model-based approach that eliminates the need for this choice. Instead of relying on a
fixed window length, the correlation parameter is assumed to evolve over time according to a predefined linear structure. This
assumption enables a hierarchical Bayesian model formulation, enabling the use of well-established computational techniques
to infer the parameters of the linear structure. Furthermore, Myrvoll-Nilsen et al. (2024) adopts a Bayesian framework which
offers the additional advantage of providing uncertainty quantification in the form of posterior distributions, making the analysis
more robust and interpretable.

In this paper we build upon the hierarchical Bayesian framework developed by Myrvoll-Nilsen et al. (2024) to integrate the
AR2nested AR(1) model proposed by Morr and Boers (2024) and Boettner and Boers (2022). This extension helps mitigate
false-alarms caused by correlated noise and eliminates the need for sliding time windows, while benefiting from the advantages
of a Bayesian modeling framework. This approach is then applied to an AMOC fingerprint in order to assess its potential loss
of stability.

The paper is organized as follows. Section 2 outlines our methodology for the Bayesian modeling framework, including

details on how inference can be obtained efficiently. In Section 3 we first-demonstrate-the-approach-evaluate our model’s

accuracy and reliability on simulated dataa
assess the robustness to false alarms under increasing external variability, and benchmark its performance on real data against

existing approaches. In Section 4, we use our Bayesian framework to identify EWS in an AMOC fingerprintdataset, using
different detrending strategies. Further discussion and conclusions are provided in Section 45.
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2 Bayesian modeling

We assume that the ebserved-AMOC-fingerprintobservations, y = (v1, .., yn) ', is expressed by

where the forcing response gt = (p1, ..., it,) | is given-expressed by

t

pe =0y (t) ZF(S)ef)‘(t)(tfsﬂm)ds (11)
s=0

and the correlated time-dependent noise, = (1, ...,2,,) ', is given by a nested AR(1) process

Tit1 = QTy + Vi1 (12)

Vi1 = pUt + 0p&s.

Whiehis-an-AR(2) process Boers (202 Merr-and Beers{2024)-To model the evolution of the autocorrelation parameters we

assume that they both change linearly in time, i.e.

() = ap +byt, 0 13
p(t) =a,+b,t, 0 .

These are expressed by unknown parameters ag,b4,a, and b,, which are estimated by fitting the model to observed AMOE
fingerprintdata. Early warning signals due to critical slowing down is characterized through the evolution of ¢(¢), while po-
tential changes in external variability is captured by the latent component v = (v1,...,v,) | . Separating these signals prevents
false alarms as discussed by Boers (2021).

To obtain robust uncertainty estimates we adopt a Bayesian framework for parameter estimation, similar to Myrvoll-Nilsen
et al. (2024). Given the hierarchical nature of the model, where y is modeled in terms of p and @, which are themselves
governed by hyperparameters 8 = (ay, by, a,,b,,0,,05), a latent Gaussian model formulation provides a natural and efficient
framework for Bayesian inference. Both components of the model, p and «, depend on the parameters a4 and by through
A(t) = —log ¢(t). This dependency introduces a challenge for obtaining reliable inference, as the parameters may be difficult
to estimate independently. We therefore choose to model the sum 17 = o+« as a single component. The latent Gaussian model

formulation is defined in three stages as follows.

1. The first stage defines the likelihood of the model, which is assumed to be conditionally independent given the latent
components 1 and . Since all-the variation of the AMOC-fingerprint-observations y is captured by the latent compo-
nent ) = (11,...,m,) |, we model y as a Gaussian distribution with mean 1 and negligible observation noise, o, ~ 0,

effectively setting y ~ n, i.e.

- ol (ye —mw)?
m(y|n,0)= || m(yx |, 0) = exp (—) (14)
11 7 o
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2. The second stage defines the prior distribution for the latent field 7, given parameters 6. This component is assigned
a multivariate Gaussian prior distribution with mean vector p and covariance matrix corresponding to the AR{2nested

AR(1) process above with time-dependent ¢(¢) and p(t),
m(n|0) =N (1, %). (15)

Since 77 follows a nested AR(1) process, which is equivalent to an AR(2) process (Morr and Boers, 2024), its preci-

sion matrix, Q = X!, is a sparse matrix of bandwidth 2. This property enables the use of computationally efficient

algorithms that substantially reduce the overall computational cost.

3. The final stage defines the prior distributions for the model parameters
m(0) = 7(bg)m(ag | bg)m(by)m(ay | bp)7(ow)7(0y)- (16)

We assign uniform prior distributions on by, (ags | bs),b, and (a, | b,), and gamma distributions on %, =1/02 and
#f =1/0%. Note that since we assume that both 0 < ¢(t) < 1 and 0 < p(t) < 1 then the parameter space of a,, and a,,

depend on the current state of by, and b,, respectively.

The joint posterior distribution for the parameters is given by

m(y | z,v,0)7(x,v | O)7(6)

» 17
) {an

(w00 |y) =

where 7(y) is the marginal likelihood, or evidence, of y. In particular, we are interested in the marginal posterior distribution

of by, which can be obtained by integrating out the other parameters, 6 _,,, and latent variables

(b |y) = /w(@,w,v | y)d6_,,dzdv. (18)

Since solving this integral analytically is often impossible to do in practice, the common approach is to instead approximate
it using sampling-based approaches like Markov chain Monte Carlo (MCMC) methods (Robert et al., 1999). However, since
the precision matrix of the latent Gaussian field is sparse, we can employ a number of computationally efficient algorithms
for fast Bayesian inference. Specifically, we evaluate all marginal posterior distributions using the framework of integrated
nested Laplace approximations (INLA) (Rue et al., 2009, 2017), which is particularly suited for these types of models. INLA
is available as an R package at www.r—inla.org and presents a computationally superior alternative to MCMC. Since
our model requires specific implementation using the custom modeling framework of R-INLA we have decided to make the

code available as a new feature in the user-friendly R-package INLA. ews, originally developed for the model described in

Myrvoll-Nilsen et al. (2024). The AR{2}nested time-dependent AR(1) model can be fitted by prompting:

results <- inla.ews (data=y, forcing=z, model = "ar2")

A more extensive demonstration of the package can be found in Myrvoll-Nilsen et al. (2024).
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3 ResultsAssessing model accuracy and robustness
3.1 Aeeuraey-androbustness-tests

To evaluate the accuracy and robustness of the proposed time-dependent nested AR (1) model, we perform twe-simulation-based
tests—Adbsimutation-three tests. Two tests use simulated data, one from the nested AR(1) model and one from stochastic

differential equations representing dynamical systems with and without loss of stability. These tests are both based on 500
independent simulated time series of length 150, matching the length of the AMOC fingerprint time series used in Section 4.

Finally, we fit our model to a real data example, the Dansgaard-Oeschger events in order to compare our model’s results with
existing methodologies. All tests are made using R-INLA with the prior distributions described in the previous section. Each

3.1 Model accuracy on simulated data

For the first test, we assess whether the model can recover known parameter values when fitted to simulated data generated

from the same W&W%WWMWAR(D )—We—use—ﬂﬂ&pfeeessfegeﬂefa{e—a%ﬂme

erprocess. For each simulation,

the slope parameters b, and b, are independently drawn from a uniform distribution ¢/(—0.9,0.9). Thereafter, the intercepts
ay and a, are drawn from uniform distributions with boundaries that depend on the simulated slope parameters, ensuring that

the resulting ¢(¢) and p(¢) remain within the interval (0, 1) for all time steps.

‘We compute the root mean square error (RMSE)
between the true slope values and their marginal posterior means, b, and l;p. The RMSE-s-We find the RMSE to be 0.145 for by
and 0.278 for b,. Second-we-We then assess whether the model reliably infers the sign of the slopes by comparing the marginal
posterior probabilities P(bgs > 0 | y) and P(b, > 0| y) to the true value of the slopes. We consider the slope for ¢(¢) and p(¢)
to be significantly positive if the posterior probabilities exceed 8-95the threshold 1 — o= 0.95, i.e. P(by > 0| y) > 0.95 and
P(b, >0 y) > 0.95, respectively. If an estimated Z)¢ is classified as positive, given the P (b, > 0| y) > 0.95 threshold, we
count it as a true positive if the true slope is also positive, i.e. by > 0. H;-hewever;6-<-6-On the other hand, if the true slope is
negative,we count the estimate as a false positive. Conversely, if P(by, > 0| y) < 0.95 we count it as a true negative if 5-<0
the true slope is also negative, and as a false negative if by > 0. We also count the classifications for-based on the estimated BPL
but these are of secondary interest. The sensitivity and specificity is computed as-folows;by

#True Positives #True Negatives

Sensitivity = Specificity = .
enstvity #True Positives + #False Negatives’ pecihictty #True Negatives + #False Positives

19)

For by, the model achieves a sensitivity of 87.7% and a specificity of 99.8%. For b,, the sensitivity is 72.2% and the specificity
99.4%. The results from this test are summarized in Table 1 and illustrated in Fig. 1. Repeating the test with different prior
distributions similar to Myrvoll-Nilsen et al. (2024) did not show significant changes, suggesting that the model is robust to the

choice of prior distributions.
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Figure 1. Results of the accuracy test for n,, = 500 simulated time series of length n = 150. Panels (a) and (b) show posterior marginal mean
estimated by INLA for ¢ and p, respectively. The blue line shows the true b used in the simulation. Panels (c) and (d) show the estimated
posterior probability of the slope being positive against true values of ¢ and p respectively. The horizontal red lines separates the true positive

and negative values while the horizontal one indicates the probability threshold 0.95 used here to determine statistical significance.

3.2 Robustness to false alarms under autocorrelated external variability

200 In the second test, we evaluate the ability of the model to reliably distinguish genuine early warning signals from changes
driven solely by correlated external variability. To do so, we simulate data from two stochastic differential equations. The first
ene-represents a system approaching a tipping point, and the second remains stable but is influenced by a time-dependent

autocorrelated noise. This setup follows the example in Boers (2021). The tipping process is expressed by

i(t) = —2® +x T +ot), (20
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where T increases linearly from —1 to 1, and v(¢) is a time-dependent AR(1) process with parameters drawn in the same way

as in the first test. The non-tipping process is generated by
&(t) = —bz + v(t), 2D

with the same structure for v(¢) as in Eq. (20). Each simulation is run until the tipping point is reached (for the tipping
system) or for 150 time units (for the non-tipping system), resulting in time series of approximately 150 points. The same
inference methodology and classification thresholds are used here, with the distinction that an early warning signal is said
to be detected when P(by > 0| y) > 0.95. For the tipping processes the model correctly detected an EWS signal in 471 out
of 500 simulations, corresponding to a sensitivity of 94.2%. For the non-tipping processes, 23 out of 500 simulations were
incorrectly classified as EWS, resulting in a specificity of 95.4%. These results, presented in Table 1 and Fig. 2, indicate that
the model effectively identifies true loss of stability while maintaining a low false positive ratio, even in the presence of strongly

autocorrelated noise.

(a) Non-tipping process : b, estimates vs true b, (b) Non-tipping process : b, estimates vs true b,
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Figure 2. Results of the robustness test for n,, = 500 simulated time series of length n ~ 150. Panels (a) and (b) show posterior marginal
mean estimated by INLA from the non-tipping simulations for b, and b, respectively plotted against the true value of b, from the correlated
noise. The blacktine-in-panetta)-and-blue line in (b) are-showing-shows the true b, used in the simulation. Panel (c) and (d) are similar plots
for the tipping simulations. In panels (a) and (c) blue dots are associated with a statistical significance for the EWS indicator b, to be positive

P(bg > 0]y) > 0.95 while red dots mean no statistical significance P(by > 0 | y) < 0.95.
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To illustrate the benefits of accounting for the bias introduced by correlated noise, we also test the time-dependent AR(1)
model proposed by Myrvoll-Nilsen et al. (2024), which does not separate external noise autocorrelation from loss of stability.
We apply this model to the same set of simulated non-tipping processes. As illustrated in Fig. 3, this model yields posterior
marginal mean estimates of by, that correlate with the values of b,, rather than remaining centered around zero as expected in
the absence of a true loss of stability. In contrast, our nested AR(1) model maintains stable estimates of by, across all values of

b, as shown in Fig. 2(a), demonstrating its robustness to external noise.

The simpler AR(1) model also exhibits a significantly higher rate of false positives, misclassifying 116 out of 500 simulations

as tipping events, an approximately 400% increase compared to the nested AR(1) model. Moreover, the false positive rate
increases systematically with higher values of b, further highlighting the susceptibility of this model to bias from autocorrelated
noise. In contrast, false detections in the nested AR(1) model are evenly distributed across all simulations. These results
emphasize the importance of explicitly modeling the correlated noise structure when assessing stability in time series data.

AR(1) model applied to Non-tipping processes
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Figure 3. Results of the robustness test from the Myrvoll-Nilsen et al. (2024) model applied on the same data as Fig. 3 (a). The posterior
drift of the estimates of by. Blue dots are associated with a statistical significance for the EWS indicator be to be positive while red dots

Overall, these two-tests demonstrate that the proposed methodology reliably recovers the evolution of autocorrelation pa-
rameters, performs well in detecting EWS and is robust to prior assumptions and to structured stochastic external variability

not linked to a-loss of stability.

10



Accuracy test

Estimates RMSE Sensitivity(%)  Specificity(%)

by 0.145 87.8 99.8

b, 0.278 72.2 99.4

Robustness test

Process bAp RMSE  Sensitivity(%)  Specificity(%) (b;)
Tipping 0.34 94.2 - 0.47
Non-tipping 0.26 - 95.4 0

Table 1. Summary statistics from Fig. 1 (top) and Fig. 2 (bottom). Results from Accuracy tests on simulated time-dependent nested AR(21)
processes showing Root Mean Square Error (RMSE) of the estimates of by, and b, given true values of simulations (blue lines in panels (a)-
(b) of Fig. 1). We also show the sensitivity and specificity expressed in percentages for both parameters (bottom). Results from Robustness
tests on simulated tipping and non-tipping processes. We show here the RMSE of the estimates of b, given true simulated values (blue lines

in panels (b) and (d)). Sensitivity and specificity are presented in percentages for each process.

o

60000 50000 40000 30000 20000 10000
yr b2k

Figure 4. The 17 most recent Dansgaard-Oeschger (DO) events (vertical black lines) in the NGRIP §'20 record plotted against the GICC035
chronology. Early warning signals are estimated by fitting the model to the Greenland stadial periods (black segments) of the data precedin

gach DO event.

230 3.3 Benchmarking on real data: Dansgaard-Oeschger events

Dansgaard—Oeschger events in NGRIP d180 record
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Finally, we evaluate the performance of our model by-applyingitto-known-on real-world eriti data associated

with well-studied critical transitions. By comparing results, we can assess how much our model agrees or disagrees with

existing approaches. Specifically, we will use our model to analyze abrupt Greenland warmings known as Dansgaard-Oeschger
(DO) events —These-events-are-known-to-be-abrapt-warmings-of the North-Atlantieregion(Dansgaard et al., 1993; Johnsen et al., 1992)

235 , which represent rapid climate fluctuations that occurred during the last glacial period—TFhe-presence-of EW-S-before-the-onset

11



of these-events-, where the temperature over Greenland and the North Atlantic region increased by up to 16.5°C within a few.
decades (Kindler et al., 2014). DO events are often considered the archetypal example of tipping point crossings in the climate.
As such, they present a natural benchmark for evaluating different EWS approaches.
For our analysis, we pair the °°0 proxy data from the Northern Greenland Ice Core Project (NGRIP) (North Greenland Ice Core Project.
240  with the corresponding age provided by the Greenland Ice Core Project 2005 (GICCOS) (Vinther et al.. 2006; Rasmussen et al., 2006; Ande
- The data is available at https://www.iceandclimate.nbi ku.dk/data (last accessed: August 5, 2025). The
model is fitted to segments preceding the 17 most recent DO event. The selected segments are highlighted in Fig. 4.
Whether or not DO events are induced solely by noise, or if they are indeed approaching a bifurcation point, is cur-
rently debated ;-however(Ditlevsen et al., 2007; Hummel et al., 2024). There is therefore no ground truth as to which, if any,
245 DO event should exhibit EWS. However, several studies report a detection of EWS before some of the first 17 DO events

ve—(Rypdal, 2016; Boers, 2018).

We compare the results of our model with these studies using a setup similar to Myrvoll-Nilsen et al. (2024) by using a second-

order polynomial detrending of the data and considering P (b, > 0] y) > 0.95 as a detection of EWS. This comparison is
illustrated in Table 2 and shows that our model suggests, similarly to Myrvoll-Nilsen et al. (2024), that some specific event
250 shows signs of critical slowing down in line with the results of Boers (2018) and Rypdal (2016). Specifically, Table 2 shows
that our results corroborate the 5-five EWS found by Myrvoll-Nilsen et al. (2024) while identifying one more EWS for the
event-13-—13th event. Moreover, these results corroborate the EWS found for the event-H-11th event by Boers (2018) and the
events-5;-9-5th and 9th events by Rypdal (2016), our results also show EWS for the 2nd and 13th events 2-and-13-similarly to

these two studies.
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Event | Nested AR(1) | Myrvoll-Nilsen Rypdal Boers

1 0.893 0.9146 p=0.02 —

2 0.992 0.9728 p=0.008 p<0.05
3 0.29 0.4893 — —

4 0.053 0.084 - p <0.05
5 0.99 0.9959 p=013 —

6 0.163 0.2123 - p <0.05
7 0.444 0.7132 - -

8 0.817 0.8878 - -

9 0.994 0.953 p=0.16 —

10 0.115 0.0732 — —

11 0.977 0.9643 - p < 0.05
12 0.056 0.1662 - -

13 0.978 0.8912 p=039 p<0.05
14 0.722 0.6629 - p<0.05
15 0.061 0.0637 - p <0.05
16 0.99 0.9935 - -

17 0.609 0.6043 - -

Table 2. Table comparing the posterior probability of positive slope P(by > 0| y) from fitting the nested AR(1) model to the different
Dansgaard—Oeschger events using a second-order polynomial detrending approach. These results are compared with the probability of

positive slope P(b > 0 | y) found by Myrvoll-Nilsen et al. (2024) and p-values obtained from Boers (2018) and Rypdal (2016).
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255 4 Detecting early warning signals in AMOC fingerprint
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Figure 5. AMOC fingerprint proxy from 1870 to 2020, similar as (Ditlevsen and Ditlevsen, 2023) using yearly averaged subpolar gyre sea-
surface temperature anomaly minus twice the global mean anomaly obtained from the Hadley Centre Sea Ice and Sea Surface Temperature

data set (HadISST) (Rayner et al., 2003)._

We now apply the time-dependent nested AR(1) model to an AMOC fingerprint similar to the one used by Ditlevsen and
Ditlevsen (2023) shown in Fig. 5. This fingerprint is constructed as the sea-surface temperature (SST) anomaly in the subpolar
gyre region, averaged annually, minus twice the global mean SST anomaly to compensate for the polar amplification efects
under global warming. Several studies have suggested that this proxy is a suitable indicator of AMOC strength (Caesar et al.,
2018; Jackson and Wood, 2020; Latif et al., 2019), especially since direct observations of-the-AMOECis-are only available from
2004 onward. The use of such a proxy is therefore necessary to examine longer-term trends and detect potential early warning
signals.

As the fingerprint exhibits significant drift, it must first be detrended to satisfy the zero-mean assumption of the model. In
principle, this trend could be extracted using knowledge of the system’s underlying physical processes, but such information
may be unavailable, incomplete or inaccurate. To address this, we consider two different detrending strategies. In the first, we
rely solely on statistical assumptions and remove the trend using either a linear or second-order polynomial fit. In the second
approach, we incorporate physical information by including an explanatory variable in the model, following the structure
described in Eq. (9). Specifically, we use integrated Central-West Greenland (iCWG) surface melt shown in Fig. 6 as a covariate.
The iCWG represents the cumulative surface melt across years, based on the CWG melt stack from Trusel et al. (2018), and is

used to capture the influence of freshwater forcing on AMOC stability.
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Figure 6. Cumulative Central West Greenland runoff from +974+-1871 to 2013.

For each model, we compare the posterior marginal mean estimate of the slope parameter by along with the posterior prob-
ability that the slope is positive. Model fit is assessed using marginal log-likelihood. The full set of results is presented in
Table 3. The fitted trends and time evolutions of ¢(t) for the linear and polynomial detrending approaches are shown in Fig. 7,
while the estimated response function to the iCWG forcing and associated ¢(t) evolution are shown in Fig. 8. Among the

275 different model configurations, the version incorporating iCWG forcing provides the best fit to the data as measured by model
likelihood. In all three detrending strategies, the model identifies statistically significant EWS. These results provide further evi-

dence for the presence of EWS for the AMOC, consistent with the findings of Boers (2021) and-Ditlevsen-and Ditlevsen{(2023)-

~who also found statistically significant EWS using a slightly different nested AR(1) process with a window-based estimation

methodology applied to a similar proxy for AMOC strength; The global mean temperature is only subtracted once in their
280  study. Our results also corroborate those found by Ditlevsen and Ditlevsen (2023) who reported similar signals using different

methods-and-data-configurationsEWS using the same proxy but applied an AR(1) model with a window-based approach.
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Figure 7. Panel (a) and (b) show AMOC fingerprint (black) with posterior marginal mean (blue) and 95% credible intervals (red) of the fitted

trends. Panel (c) and (d) show the evolution in time of the correlation parameter ¢(t) (blue) used as indicator of EWS and 95% credible

intervals (red) with an estimated probability of positive slope P(bs > 0 | y)
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(a) Estimated forcing response
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Figure 8. Panel (a) shows AMOC fingerprint (black) from 1870 to 2013 to match the time-span of the forcing data with posterior marginal
mean (blue) and 95% credible intervals (red) of the estimated system’s response function to forcing. Panel (b) is a plot of the evolution in
time of the correlation parameter ¢(t) (blue) and 95% credible intervals (red) with an estimated probability of positive slope P(bs > 0 | y)

~

Model by P(by>0) b, Marg. log-likelihood
AR{2)-Nested AR(1) Linear detrending | 0.2 0.98 —0.35 56.49
AR{2)Nested AR(1) Square detrending | 0.41 1 —0.33  54.72
AR{2)Nested AR(1) Forcing response | 0.34 1 -0.99 61.97
AR(1) Linear detrending 0.145 0.98 - 53.46
AR(1) Square detrending 0.278  0.99 - 51.68
AR(1) Forcing response 0.19 093 - 54.13

Table 3. Summary statistics from Fig. 7 and Fig. 8 showing posterior marginal means of l;¢, probability of 13¢ positive,posterior marginal
means of bAp and marginal log-likelihood for the three models used here. Results from the models introduced in Myrvoll-Nilsen et al. (2024)

are also shown for comparison purposes.
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5 Conclusions

This study investigates the stability of the Atlantic Meridional Overturning Circulation (AMOC) by proposing a time-dependent
extension of the nested autoregressive AR(21) model introduced by Morr and Boers (2024) and Boers (2021). The primary
objective of this model is to enhance the reliability of early warning signals (EWS) by minimizing false positives. This is
achieved through the decomposition of the observed signal into two distinct components: p(t), which captures time-dependent
external variability, and ¢(¢), which reflects changes in the internal dynamics associated with system stability. By isolating these
effects, the model aims to identify more accurately early signs of destabilization. Following the approach of Myrvoll-Nilsen
et al. (2024), we assume a linear temporal dependence for both p(t) and ¢(t), estimating their respective slope parameters
within a hierarchical Bayesian framework. This statistical approach allows us to incorporate prior information and quantify the
uncertainty of the EWS through the posterior distributions of the parameters. The performance of the model is first evaluated
using both simulated and real data, demonstrating both high estimation accuracy and robustness against false detections of
ongoing destabilization.

The methodology is applied to a proxy for the AMOC fingerprint. In order to meet stationarity assumptions, we consider
various detrending techniques, including linear and second-order polynomial detrending, as well as incorporating a forcing
component based on the integrated meltwater runoff from Central-West Greenland. Across all model configurations, we find
statistically significant early warning signals. This is consistent with prior findings in the literature and supports the hypothesis
of a possible ongoing destabilization of the AMOC.

While assuming a linear structure for ¢(¢) has proven effective for detecting EWS, we emphasize that the model proposed
here should not be interpreted as a comprehensive or mechanistic representation of the underlying physical processes governing
the AMOC. Despite its success in identifying early signs of destabilization, the model is limited in its ability to forecast the
future trajectory of the system or predict the timing of a potential tipping point. Addressing these limitations would require a
more flexible modeling approach, potentially involving a nonlinear or nonparametric structure for the correlation parameters,
which lies beyond the scope of the present work.

Although our analysis has focused on a specific proxy of the AMOC fingerprint, the proposed methodology is generalizable
and can be adapted to study the stability of other critical climate components, such as the Greenland Ice Sheet, Arctic sea ice,
or the Amazon rainforest. To facilitate wider use and reproducibility, we have extended the existing R package INLA.ews to
incorporate our methodological advancements. This software provides a user-friendly interface for implementing our approach,

leveraging the computational efficiency of the INLA framework for Bayesian inference.

Code and data availability. The code and data sets used for this paper is available through the R-package, INLA . ews, which can be down-

loaded from: github.com/eirikmn/INLA.ews (last access August 5, 2025).
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