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Abstract.

The Atlantic Meridional Overturning Circulation (AMOC) is a major climate element subject to possible ongoing loss of

stability. Recent studies have found evidence of a gradual weakening in circulation, including early warning signals (EWS),

such as increased fluctuations and correlation time of the system, which are both known to be indicators of a possible forth-

coming tipping point. To assess these changes in statistical behavior we propose a robust and general statistical model based5

on a second-order autoregressive process with time-dependent parametersthat allow .
:::::
This

:::::
allows

:
for the statistical changes

from increased external variability and destabilization to be accounted for separately. We estimate the time evolution of the

correlation parameters using a hierarchical Bayesian modeling framework which also yields uncertainty quantification through

the posterior distribution. To assess possible changes in AMOC stability we apply the model to an AMOC fingerprint proxy

based on the Sub-Polar Gyre and the global mean temperature anomaly. We find statistically significant EWS which suggests10

that AMOC is indeed undergoing a loss of stability and is getting closer to a tipping point. The methodology developed in this

study is made publicly available as an extension of the R-package INLA.ews.

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is a key driver of Earth’s climate, responsible for the large-scale

transport of heat and water masses
:::
salt

:
across the Atlantic Ocean (Rahmstorf, 1995; Boettner and Boers, 2022). This circulationsystem15

:::::::::::::::
(Rahmstorf, 1995).

:::
As

::::
part

::
of

:::
the

::::::
global

:::::::::::
thermohaline

:::::::::
circulation,

::::
the

::::::
AMOC

:::::
plays

:
a
::::::
central

::::
role

::
in

::::::::::
maintaining

:::
the

:::::::
current

::::::
climate

::::::::::
equilibrium.

::
It is widely believed to have

:::
that

::
the

:::::::
AMOC

::
is

:
a
:
multi-stable states (Stommel, 1961; Lenton et al., 2008),

including
::::::
system,

:::::::
capable

::
of

::::::
existing

::
in
::::::::
multiple

:::::
stable

::::::
modes,

::::
most

:::::::
notably a strong mode, which is currently dominant, and a

weak mode, which has been associated with past climate disruptions. Paleoclimate records suggest that AMOC’s abrupt shifts

may have played a major role in past climate variability, especially for
::
or

::::::::
collapsed

:::::
mode

::::::::::::::::::::::::::::::
(Stommel, 1961; Lenton et al., 2008)20

:
.
::::
This

::::::::
nonlinear

:::::::
behavior

:::::::
implies

:::
that

:::
the

:::::::
AMOC

::::
may

:::::::
undergo

::::::
abrupt

:::::::::
transitions

:::::::
between

:::::
states

:::::
when

::::::
critical

:::::::::
thresholds

:::
are

::::::
crossed.

:::::::::::
Paleoclimate

::::::::
evidence

:::::::
supports

:::
the

::::
idea

:::
that

::::::
abrupt

:::::
shifts

::
in

::::::
AMOC

:::::::
strength

::::
have

::::::::::
contributed

::
to

:::::
major

::::::
climate

::::::
events

:::::
during

:::
the

::::
last

::::::
glacial

::::::
period,

::::
such

::
as

:
the Dansgaard-Oeschger events ’ temperature fluctuations that occurred during glacial
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periods (Henry et al., 2016; Boers et al., 2018). Some climate models indicate that the AMOC
::::::::::::::::::::::::::::::::::::::
(Vettoretti and Peltier, 2016; Boers et al., 2018)

:
.25

:::::
These

::::::::
dynamics

:::::
have

:::
led

::
to

:::
the

:::::::::::
identification

:::
of

:::
the

:::::::
AMOC

::
as

::
a

:::::::
potential

:::::::
"tipping

::::::::
element"

:::
in

:::
the

:::::
Earth

::::::
system,

::::
i.e.,

::
a

::::::::
subsystem

::::
that could undergo a critical transition if freshwater input into the North Atlantic reaches a certain threshold

:::
due

::
to

:::::::::::
anthropogenic

:::::::
forcing

::::::::::::::::
(Lenton et al., 2008)

:
.
:::::::
Climate

::::::
models

::::::
suggest

::::
that

::::::::
continued

::::::::::
greenhouse

:::
gas

::::::::
emissions

:::
and

:::
the

::::::::
resulting

:::::::
increase

::
in

:::::::::
freshwater

::::
input

:::::
from

:::::::::
Greenland

:::
Ice

:::::
Sheet

::::
melt,

::::::::::::
precipitation,

:::
and

::::
river

:::::::::
discharge

:::::
could

::::
push

:::
the

:::::::
AMOC

::::::
toward

::::
such

:
a
::::::
tipping

:::::
point (Wood et al., 2019; Hawkins et al., 2011; Weijer et al., 2019). This behavior , known as hysteresis, implies30

that once the AMOC weakens beyond a tipping point, it may not recover even if initial conditions are restored. However,

the exact conditions required for such a transition remain uncertain. While earlier climate models suggested that an AMOC

collapse this century is very unlikely
::::::
exhibits

:::::::::
hysteresis,

:::::::
meaning

::::
that

::::
once

::
a

::::::
tipping

::::::::
threshold

::
is

::::::
passed,

:::
the

:::::::
AMOC

::::
may

:::
not

:::::
return

::
to

::
its

:::::::
original

::::
state

::::
even

::
if
:::
the

::::::::::
perturbation

::
is

::::::::
reversed.

::::::
Recent

:::::::::::
observational

:::
and

:::::::::
modeling

::::::
studies

::::
have

:::::::::
intensified

::::::::
concerns.

:::::::::
Although

::::
early

:::::::
models

::::::::
suggested

::
a
:::
low

::::::::::
probability35

::
of

:::::::
collapse

::::::
within

:::
the

::::
21st

:::::::
century

::::::::::::::::::::::::::
(Masson-Delmotte et al., 2021), more recent models show

:::::::::
simulations

::::::
reveal a wider

range of possible responsesto global warming projections, raising concerns about underestimated risks
:::
that

:::::
risks

:::::
might

:::
be

::::::::::::
underestimated

::::::::::::::::
(Gong et al., 2022).

::::
This

::::::::::
discrepancy

::
is

:::::
partly due to model biaseslike underestimated freshwater input(Masson-Delmotte et al., 2021; Gong et al., 2022; Liu et al., 2017)

. A weakening or collapse
:
,
::::::
notably

:::
in

:::::::::::
representing

:::::::::
freshwater

::::::
forcing

::::
and

::::::::
feedback

:::::::::::::::
(Liu et al., 2017).

::::::::
Evidence

:::
is

::::
also

::::::::
emerging

::::
from

:::::::::
real-world

:::::::::::
observations.

:::::::
Studies

::::
have

::::::::::
documented

::
a
:::::::::
significant

:::::::::
weakening

:::::
trend

::
in

:::
the

::::::
AMOC

:::::
over

:::
the

::::
20th40

::::::
century

:::::::::::::::::
(Caesar et al., 2018)

:::
and

:::::
recent

::::::::
statistical

:::::::
analyses

::::
have

:::::::
detected

:::::
early

:::::::
warning

::::::
signals

::
of

::::::
reduced

:::::::
stability

:::::::::::::::::::::::::::::::::::::
(Boers, 2021; Ditlevsen and Ditlevsen, 2023)

:
.
:::::
These

:::::::
findings

::::::
suggest

::::
that

:::
the

::::::
AMOC

::::
may

::
be

:::::::::::
approaching

:
a
::::::
critical

:::::::::
threshold.

:
A
::::::::::
weakening of the AMOC would have far-reaching

:::::::
profound

:::
and

:::::::::
potentially

::::::::::
irreversible consequences, including disrupt-

ing weather patterns, altering precipitation systems, and potentially triggering cascading effects on other climate components

(Jackson et al., 2016; Lenton et al., 2008; Stouffer et al., 2006).
::::::::::::::::::::::::::::::::::::::::::::::::::
(Stouffer et al., 2006; Jackson et al., 2015; Lenton et al., 2008)45

:
.
::
In

::::
light

::
of

::::
this,

::::
there

::
is

::
an

::::::
urgent

::::
need

::
to

:::::::
monitor

:::
the

::::::::
resilience

::
of

:::
the

::::::
system

::::
and

:::::::
improve

:::
our

::::::::::::
understanding

::
of

:::
the

::::::::
processes

:::
that

:::::
drive

::
its

:::::::
potential

::::
loss

::
of

::::::::
stability. To anticipate such changes studies have focused on using critical slowing down theory,

stating that when a system is approaching a tipping point its recovery from small perturbations becomes progressively weaker.

This phenomenon, called early-warning signal (EWSs
::::
EWS), can be characterized by an increased variance and autocorrelation

which can be used as statistical indicators of approaching critical transitions.50

To detect these statistical changes, a common approach is to start from the linear approximation of a dynamical system with

white noise around some stable fixed point xs, giving

dx(t) =−λ(x(t)−xs)dt+σdB(t), (1)

where λ=−F ′(xs) :
λ

::
is

::
the

::::::::
restoring

:::
rate

:
and dB(t) is a white noise process. This Linearization is recognized as the Langevin

stochastic differential equation, which has the following solution55

x(t) = x0 +

t∫
−∞

g(t− s)dB(s), (2)
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where g(t− s) is a Green’s function defined by

g(t) =

exp(−λt), x≥ 0

0, x < 0
. (3)

This form of x(t) is also referred to as an Ornstein-Uhlenbeck (OU) process. When discretized, this process yields a first-order

autoregressive (AR) process.60

xt = ϕxt−1 + εt, εt ∼N
(
0,

1−ϕ2

2λ
σ2

)
(4)

with variance Var(xt) = σ2/(2λ) and lag-one autocorrelation parameter ϕ= exp(−λ∆t).

With this model, EWS are detected through an increase of the autocorrelation or variance. However, Boers (2021) showed

that these indicators can be biased if the system is driven by external noise that itself has increasing autocorrelation or variance,

leading to false positive alarms. To account for such bias, Boettner and Boers (2022), and Morr and Boers (2024) suggests65

that the OU process of Eq. (2) should be driven by correlated noise rather than white noise. After discretization the resulting

process yields an AR(1) process that is driven by another AR(1) process. Hence the discretization is similar to Eq. (4), except

that the white noise process ϵt :
εt:is replaced by an AR(1) process

vt+1 = ρvt +σvξt (5)

with ρ representing the correlation parameter of the noise, σv is a scaling parameter and70

ξt ∼N
(
0,

1−ϕ2

2λ

)
(6)

is a white noise process. It can be shown that this model actually yields a second-order autoregressive (AR) process (Morr and Boers, 2024)

. This model encompasses the original AR(1) model in (4) when ρ= 0 and, as showcased in Boers (2021), it comprehends cases

in which external noise is also correlated, preventing bias in the estimation of the parameter ϕ. Consequently, an increasing ϕ

will act as a more reliable indicator for detecting EWS, since it will no longer be affected by rising external variation.75

Climate systems that are prone to tipping, such as the AMOC, are often driven by some external forcing. For the AMOC,

the freshwater forcing from Greenland melts acts like a bifurcation parameter as freshwater inputs can disturb the salinity

and the temperature of the AMOC, potentially pushing the system closer to its tipping (Wood et al., 2019). To incorporate

forcing into our model, we use a similar approach as in Myrvoll-Nilsen et al. (2020, 2024),
:::::::::::::::::::::::
Myrvoll-Nilsen et al. (2024),

::::
and

:::::::::::::::::::::::
Myrvoll-Nilsen et al. (2020),

:
where the dynamical system is represented by80

dx(t) =−λx(t)+F (t)dt+U(t)dt, (7)

where F (t) represent the forcing and U(t), as before, represents an OU process. The solution of this equation can be expressed

as the sum of one forced component and one noise component

x(t) = ν(t)+ ξ(t). (8)
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Here, the noise component, ξ(t), is represented by an AR(2)
:::::
nested

::::::
AR(1)

:
process described previously and the forced com-85

ponent, v(t)
:::
ν(t), is expressed by

ν(t) =
1√

2λ(t)κf

t∫
0

F (s)e−λ(t)(t−s)ds. (9)

::::
with

::
κf:::::

being
:
a
::::::
scaling

:::::::::
parameter.

:
This model allows EWS to be detected while accounting for the influence of external forcing

on the system’s dynamics.

Most studies detect EWS using sliding windows to obtain estimates of the variance and correlation for each window. This90

approach requires selecting an appropriate window length, which introduces a fundamental compromise. A shorter window

provides a more accurate representation of the system’s momentary state, but the limited number of data points can reduce the

reliability of the statistical estimates. In contrast, a longer window improves the robustness of these estimates by incorporating

more data, but it does so at the cost of responsiveness, as it averages information over a broader time scale and may fail to

capture short-term fluctuations effectively. Determining the optimal window length is thus a critical but challenging task, as it95

should ideally balance estimation accuracy with the ability to reflect rapid changes in the system’s evolution. Myrvoll-Nilsen

et al. (2024) propose an alternative model-based approach that eliminates the need for this choice. Instead of relying on a

fixed window length, the correlation parameter is assumed to evolve over time according to a predefined linear structure. This

assumption enables a hierarchical Bayesian model formulation, enabling the use of well-established computational techniques

to infer the parameters of the linear structure. Furthermore, Myrvoll-Nilsen et al. (2024) adopts a Bayesian framework which100

offers the additional advantage of providing uncertainty quantification in the form of posterior distributions, making the analysis

more robust and interpretable.

In this paper we build upon the hierarchical Bayesian framework developed by Myrvoll-Nilsen et al. (2024) to integrate the

AR(2
::::::
nested

:::::
AR(1) model proposed by Morr and Boers (2024) and Boettner and Boers (2022). This extension helps mitigate

false-alarms caused by correlated noise and eliminates the need for sliding time windows, while benefiting from the advantages105

of a Bayesian modeling framework. This approach is then applied to an AMOC fingerprint in order to assess its potential loss

of stability.

The paper is organized as follows. Section 2 outlines our methodology for the Bayesian modeling framework, including

details on how inference can be obtained efficiently. In Section 3 we first demonstrate the approach
::::::
evaluate

::::
our

:::::::
model’s

:::::::
accuracy

::::
and

::::::::
reliability

:
on simulated dataand evaluate the accuracy and robustness . Then we apply the methodology to

:
,110

:::::
assess

:::
the

:::::::::
robustness

::
to

::::
false

::::::
alarms

:::::
under

:::::::::
increasing

:::::::
external

:::::::::
variability,

:::
and

::::::::::
benchmark

::
its

:::::::::::
performance

::
on

::::
real

::::
data

::::::
against

::::::
existing

::::::::::
approaches.

:::
In

:::::::
Section

::
4,

:::
we

:::
use

:::
our

:::::::::
Bayesian

:::::::::
framework

::
to

:::::::
identify

:::::
EWS

::
in

:
an AMOC fingerprintdataset

:
,
:::::
using

:::::::
different

:::::::::
detrending

::::::::
strategies. Further discussion and conclusions are provided in Section 4

:
5.
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2 Bayesian modeling

We assume that the observed AMOC fingerprint
::::::::::
observations, y = (y1, ..,yn)

⊤, is expressed by115

y = µ+x (10)

where the forcing response µ= (µ1, ...,µn)
⊤ is given

::::::::
expressed by

µt = σf (t)

t∑
s=0

F (s)e−λ(t)(t−s+0.5)ds (11)

and the correlated time-dependent noise, x= (x1, ...,xn)
⊤, is given by

:
a
::::::
nested

::::::
AR(1)

::::::
process

:

xt+1 = ϕxt + vt+1

vt+1 = ρvt +σvξt.
(12)120

Which is an AR(2) process Boers (2021); Morr and Boers (2024). To model the evolution of the autocorrelation parameters we

assume that they both change linearly in time, i.e.

ϕ(t) = aϕ + bϕt, 0≤ t≤ 1,

ρ(t) = aρ + bρt, 0≤ t≤ 1.
(13)

:::::
These

:::
are expressed by unknown parameters aϕ, bϕ,aρ and bρ, which are estimated by fitting the model to observed AMOC

fingerprint
::::
data. Early warning signals due to critical slowing down is characterized through the evolution of ϕ(t), while po-125

tential changes in external variability is captured by
:::
the

:::::
latent

:::::::::
component v = (v1, ...,vn)

⊤. Separating these signals prevents

false alarms as discussed by Boers (2021).

To obtain robust uncertainty estimates we adopt a Bayesian framework for parameter estimation, similar to Myrvoll-Nilsen

et al. (2024). Given the hierarchical nature of the model, where y is modeled in terms of µ and x, which are themselves

governed by hyperparameters θ = (aϕ, bϕ,aρ, bρ,σv,σf ), a latent Gaussian model formulation provides a natural and efficient130

framework for Bayesian inference. Both components of the model, µ and x, depend on the parameters aϕ and bϕ through

λ(t) =− logϕ(t). This dependency introduces a challenge for obtaining reliable inference, as the parameters may be difficult

to estimate independently. We therefore choose to model the sum η = µ+x as a single component. The latent Gaussian model

formulation is defined in three stages as follows.

1. The first stage defines the likelihood of the model, which is assumed to be conditionally independent given the latent135

components µ and x. Since all
::
the

:
variation of the AMOC fingerprint observations y is captured by the latent compo-

nent η = (η1, ...,ηn)
⊤, we model y as a Gaussian

::::::::::
distribution with mean η and negligible observation noise, σy ≈ 0,

effectively setting y ≈ η, i.e.

π(y | η,θ) =
n∏

k=1

π(yk | ηk,θ) =
n∏

k=1

1√
2π

exp

(
− (yk − ηk)

2

2σ2
y

)
. (14)
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2. The second stage defines the prior distribution for the latent field η, given parameters θ. This component is assigned140

a multivariate Gaussian prior distribution with mean vector µ and covariance matrix corresponding to the AR(2
:::::
nested

::::
AR(1) process above with time-dependent ϕ(t) and ρ(t),

π(η | θ) =Nn (µ,Σ) . (15)

Since η follows
:
a
::::::
nested

:::::
AR(1)

::::::::
process,

:::::
which

::
is
:::::::::
equivalent

::
to
:

an AR(2) process
:::::::::::::::::::
(Morr and Boers, 2024), its preci-

sion matrix, Q=Σ−1, is a sparse matrix of bandwidth 2. This property enables the use of computationally efficient145

algorithms that substantially reduce the overall computational cost.

3. The final stage defines the prior distributions for the model parameters

π(θ) = π(bϕ)π(aϕ | bϕ)π(bρ)π(aρ | bρ)π(σv)π(σf ). (16)

We assign uniform prior distributions on bϕ,(aϕ | bϕ), bρ and (aρ | bρ), and gamma distributions on κv = 1/σ2
v and

κf = 1/σ2
f . Note that since we assume that both 0< ϕ(t)< 1 and 0< ρ(t)< 1 then the parameter space of aϕ and aρ150

depend on the current state of bϕ and bρ, respectively.

The joint posterior distribution for the parameters is given by

π(x,v,θ | y) = π(y | x,v,θ)π(x,v | θ)π(θ)
π(y)

, (17)

where π(y) is the marginal likelihood, or evidence, of y. In particular, we are interested in the marginal posterior distribution

of bϕ, which can be obtained by integrating out the other parameters, θ−bϕ , and latent variables155

π(bϕ | y) =
∫

π(θ,x,v | y)dθ−bϕdxdv. (18)

Since solving this integral analytically is often impossible to do in practice, the common approach is to instead approximate

it using sampling-based approaches like Markov chain Monte Carlo (MCMC) methods (Robert et al., 1999). However, since

the precision matrix of the latent Gaussian field is sparse, we can employ a number of computationally efficient algorithms

for fast Bayesian inference. Specifically, we evaluate all marginal posterior distributions using the framework of integrated160

nested Laplace approximations (INLA) (Rue et al., 2009, 2017), which is particularly suited for these types of models. INLA

is available as an R package at www.r-inla.org and presents a computationally superior alternative to MCMC. Since

our model requires specific implementation using the custom modeling framework of R-INLA we have decided to make the

code available as a new feature in the user-friendly R-package INLA.ews, originally developed for the model described in

Myrvoll-Nilsen et al. (2024). The AR(2)
:::::
nested

:::::::::::::
time-dependent

::::::
AR(1) model can be fitted by prompting:165

results <- inla.ews(data=y, forcing=z, model = "ar2")

A more extensive demonstration of the package can be found in Myrvoll-Nilsen et al. (2024).
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3 Results
::::::::
Assessing

::::::
model

::::::::
accuracy

::::
and

:::::::::
robustness

3.1 Accuracy and robustness tests

To evaluate the accuracy and robustness of the proposed time-dependent nested AR(1) model, we perform two simulation-based170

tests. All simulation
::::
three

:::::
tests.

::::
Two

:::::
tests

:::
use

:::::::::
simulated

::::
data,

::::
one

::::
from

::::
the

::::::
nested

:::::
AR(1)

::::::
model

::::
and

:::
one

:::::
from

:::::::::
stochastic

:::::::::
differential

::::::::
equations

:::::::::::
representing

:::::::::
dynamical

:::::::
systems

::::
with

::::
and

::::::
without

::::
loss

:::
of

:::::::
stability.

::::::
These

::::
tests

:::
are

::::
both

:::::
based

:::
on

::::
500

::::::::::
independent

::::::::
simulated

::::
time

:::::
series

:::
of

:::::
length

::::
150,

::::::::
matching

:::
the

::::::
length

::
of

:::
the

:::::::
AMOC

:::::::::
fingerprint

::::
time

:::::
series

::::
used

::
in

:::::::
Section

::
4.

::::::
Finally,

:::
we

::
fit

:::
our

::::::
model

::
to

:
a
::::
real

::::
data

::::::::
example,

:::
the

:::::::::::::::::
Dansgaard-Oeschger

:::::
events

:::
in

::::
order

::
to
::::::::
compare

:::
our

:::::::
model’s

::::::
results

::::
with

::::::
existing

:::::::::::::
methodologies.

:::
All

::::
tests

:
are made using R-INLA with the prior distributions described in the previous section. Each175

test is based on 500 independent simulated time series.

3.1
:::::

Model
::::::::
accuracy

:::
on

:::::::::
simulated

::::
data

For the first test, we assess whether the model can recover known parameter values when fitted to simulated data generated

from the same process (i.e time-dependent nested
:::::
nested

:::::::::::::
time-dependent

:
AR(1) ). We use this processto generate 500 time

series of length 150, matching the length of the AMOC fingerprint time series used in this paper
::::::
process. For each simulation,180

the slope parameters bϕ and bρ are independently drawn from a uniform distribution U(−0.9,0.9). Thereafter, the intercepts

aϕ and aρ are drawn from uniform distributions with boundaries that depend on the simulated slope parameters, ensuring that

the resulting ϕ(t) and ρ(t) remain within the interval (0,1) for all time steps.

We evaluate the estimation accuracy in two ways. First, we computed the
::
We

::::::::
compute

:::
the root mean square error (RMSE)

between the true slope values and their marginal posterior means, b̂ϕ and b̂ρ. The RMSE is
::
We

::::
find

:::
the

:::::
RMSE

::
to
:::
be 0.145 for bϕ185

and 0.278 for bρ. Second we
:::
We

::::
then assess whether the model reliably infers the sign of the slopes by comparing the marginal

posterior probabilities P (bϕ > 0 | y) and P (bρ > 0 | y) to the true value of the slopes. We consider the slope for ϕ(t) and ρ(t)

to be significantly positive if the posterior probabilities exceed 0.95
::
the

::::::::
threshold

:::::::::::
1−α= 0.95, i.e. P (bϕ > 0 | y)> 0.95 and

P (bρ > 0 | y)> 0.95, respectively. If an estimated b̂ϕ is classified as positive, given the P (bϕ > 0 | y)> 0.95 threshold, we

count it as a true positive if the true slope is
:::
also

:
positive, i.e. bϕ > 0. If, however,b≤ 0

::
On

:::
the

:::::
other

:::::
hand,

:
if
:::
the

::::
true

:::::
slope

::
is190

:::::::
negative,we count the estimate as a false positive. Conversely, if P (bϕ > 0 | y)≤ 0.95 we count it as a true negative if b≤ 0

::
the

::::
true

:::::
slope

::
is

:::
also

::::::::
negative, and as a false negative if bϕ > 0. We also count the classifications for

::::
based

:::
on the estimated b̂ρ:,

:::
but

::::
these

:::
are

::
of

:::::::::
secondary

::::::
interest. The sensitivity and specificity is computed as follows,

::
by

Sensitivity =
#True Positives

#True Positives+#False Negatives
, Specificity =

#True Negatives
#True Negatives+#False Positives

. (19)

For bϕ, the model achieves a sensitivity of 87.7% and a specificity of 99.8%. For bρ, the sensitivity is 72.2% and the specificity195

99.4%. The results from this test are summarized in Table 1 and illustrated in Fig. 1. Repeating the test with different prior

distributions similar to Myrvoll-Nilsen et al. (2024) did not show significant changes, suggesting that the model is robust to the

choice of prior distributions.
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Figure 1. Results of the accuracy test for nr = 500 simulated time series of length n= 150. Panels (a) and (b) show posterior marginal mean

estimated by INLA for ϕ and ρ, respectively. The blue line shows the true b used in the simulation. Panels (c) and (d) show the estimated

posterior probability of the slope being positive against true values of ϕ and ρ respectively. The horizontal red lines separates the true positive

and negative values while the horizontal one indicates the probability threshold 0.95 used here to determine statistical significance.

3.2
:::::::::
Robustness

::
to

:::::
false

::::::
alarms

::::::
under

:::::::::::::
autocorrelated

:::::::
external

::::::::::
variability

In the second test, we evaluate the ability of the model to reliably distinguish genuine early warning signals from changes200

driven solely by correlated external variability. To do so, we simulate data from two stochastic differential equations. The first

one represents a system approaching a tipping point, and the second remains stable but is influenced by a time-dependent

autocorrelated noise. This setup follows the example in Boers (2021). The tipping process is expressed by

ẋ(t) =−x3 +x−T + v(t), (20)
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where T increases linearly from −1 to 1, and v(t) is a time-dependent AR(1) process with parameters drawn in the same way205

as in the first test. The non-tipping process is generated by

ẋ(t) =−5x+ v(t), (21)

with the same structure for v(t) as in Eq. (20). Each simulation is run until the tipping point is reached (for the tipping

system) or for 150 time units (for the non-tipping system), resulting in time series of approximately 150 points. The same

inference methodology and classification thresholds are used here, with the distinction that an early warning signal is said210

to be detected when P (bϕ > 0 | y)> 0.95. For the tipping processes the model correctly detected an EWS signal in 471 out

of 500 simulations, corresponding to a sensitivity of 94.2%. For the non-tipping processes, 23 out of 500 simulations were

incorrectly classified as EWS, resulting in a specificity of 95.4%. These results, presented in Table 1 and Fig. 2, indicate that

the model effectively identifies true loss of stability while maintaining a low false positive ratio, even in the presence of strongly

autocorrelated noise.215
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Figure 2. Results of the robustness test for nr = 500 simulated time series of length n≈ 150. Panels (a) and (b) show posterior marginal

mean estimated by INLA from the non-tipping simulations for bϕ and bρ respectively plotted against the true value of bρ from the correlated

noise. The black line in panel (a) and blue line in (b) are showing
:::::
shows the true bρ used in the simulation. Panel (c) and (d) are similar plots

for the tipping simulations. In panels (a) and (c) blue dots are associated with a statistical significance for the EWS indicator bϕ to be positive

P (bϕ > 0 | y)> 0.95 while red dots mean no statistical significance P (bϕ > 0 | y)< 0.95.
:
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::
To

::::::::
illustrate

:::
the

:::::::
benefits

::
of

:::::::::
accounting

:::
for

:::
the

::::
bias

:::::::::
introduced

:::
by

::::::::
correlated

::::::
noise,

:::
we

::::
also

:::
test

:::
the

:::::::::::::
time-dependent

::::::
AR(1)

:::::
model

::::::::
proposed

::
by

::::::::::::::::::::::::
Myrvoll-Nilsen et al. (2024),

:::::
which

:::::
does

:::
not

:::::::
separate

:::::::
external

::::
noise

:::::::::::::
autocorrelation

:::::
from

:::
loss

::
of

::::::::
stability.

:::
We

:::::
apply

:::
this

::::::
model

::
to

:::
the

:::::
same

:::
set

::
of

::::::::
simulated

::::::::::
non-tipping

:::::::::
processes.

:::
As

::::::::
illustrated

:::
in

:::
Fig.

::
3,
::::

this
::::::
model

:::::
yields

::::::::
posterior

:::::::
marginal

:::::
mean

::::::::
estimates

::
of

:::
bϕ :::

that
::::::::
correlate

::::
with

:::
the

:::::
values

:::
of

::
bρ,

::::::
rather

::::
than

::::::::
remaining

::::::::
centered

::::::
around

::::
zero

::
as

::::::::
expected

::
in

::
the

:::::::
absence

::
of

::
a
:::
true

::::
loss

::
of

::::::::
stability.

::
In

:::::::
contrast,

:::
our

::::::
nested

:::::
AR(1)

::::::
model

::::::::
maintains

:::::
stable

::::::::
estimates

:::
of

::
bϕ:::::

across
:::
all

::::::
values

::
of220

::
bρ ::

as
::::::
shown

::
in

:::
Fig.

:::::
2(a),

::::::::::::
demonstrating

::
its

:::::::::
robustness

::
to

:::::::
external

:::::
noise.

:::
The

:::::::
simpler

:::::
AR(1)

:::::
model

::::
also

:::::::
exhibits

:
a
::::::::::
significantly

::::::
higher

:::
rate

::
of

::::
false

::::::::
positives,

::::::::::::
misclassifying

::::
116

:::
out

::
of

:::
500

::::::::::
simulations

::
as

::::::
tipping

::::::
events,

:::
an

::::::::::::
approximately

:::::
400%

::::::::
increase

::::::::
compared

:::
to

:::
the

::::::
nested

:::::
AR(1)

:::::::
model.

::::::::
Moreover,

::::
the

::::
false

:::::::
positive

::::
rate

:::::::
increases

::::::::::::
systematically

::::
with

::::::
higher

:::::
values

::
of

:::
bρ,

::::::
further

::::::::::
highlighting

:::
the

:::::::::::
susceptibility

::
of

:::
this

:::::
model

::
to

::::
bias

::::
from

::::::::::::
autocorrelated

:::::
noise.

::
In

::::::::
contrast,

::::
false

:::::::::
detections

:::
in

:::
the

::::::
nested

::::::
AR(1)

:::::
model

::::
are

::::::
evenly

:::::::::
distributed

::::::
across

:::
all

::::::::::
simulations.

::::::
These

::::::
results225

::::::::
emphasize

:::
the

::::::::::
importance

::
of

::::::::
explicitly

::::::::
modeling

:::
the

:::::::::
correlated

::::
noise

::::::::
structure

:::::
when

::::::::
assessing

:::::::
stability

::
in

::::
time

:::::
series

::::
data.

:
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Figure 3.
:::::
Results

::
of

:::
the

::::::::
robustness

:::
test

::::
from

:::
the

:::::::::::::::::::::
Myrvoll-Nilsen et al. (2024)

:::::
model

:::::
applied

:::
on

:::
the

::::
same

:::
data

::
as
::::

Fig.
:
3
:::

(a).
::::

The
:::::::
posterior

::::::
marginal

:::::
mean

:
is
::::::

plotted
::::::
against

::
the

:::
true

:::::
value

::
of

::
bρ::::

from
:::
the

:::::::
correlated

:::::
noise.

:::
The

::::
blue

:::
line

::
is

:
a
:::::
linear

::::::::
regression

::
on

:::
the

:::
data,

:::::::
showing

:::
the

:::
drift

::
of

:::
the

:::::::
estimates

::
of

:::
bϕ.

::::
Blue

::::
dots

::
are

::::::::
associated

::::
with

::
a

:::::::
statistical

:::::::::
significance

:::
for

:::
the

::::
EWS

:::::::
indicator

::
bϕ::

to
::
be

:::::::
positive

::::
while

:::
red

::::
dots

::::
mean

::
no

:::::::
statistical

::::::::::
significance.

Overall, these two tests demonstrate that the proposed methodology reliably recovers the evolution of autocorrelation pa-

rameters, performs well in detecting EWS and is robust to prior assumptions and to structured stochastic external variability

not linked to a loss of stability.
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Accuracy test

Estimates RMSE Sensitivity(%) Specificity(%)

b̂ϕ 0.145 87.8 99.8

b̂ρ 0.278 72.2 99.4

Robustness test

Process b̂ρ RMSE Sensitivity(%) Specificity(%) ⟨b̂ϕ⟩

Tipping 0.34 94.2 - 0.47

Non-tipping 0.26 - 95.4 0
Table 1. Summary statistics from Fig. 1 (top) and Fig. 2 (bottom). Results from Accuracy tests on simulated time-dependent

:::::
nested AR(2

:
1)

processes showing Root Mean Square Error (RMSE) of the estimates of bϕ and bρ given true values of simulations (blue lines in panels (a)-

(b) of Fig. 1). We also show the sensitivity and specificity expressed in percentages for both parameters (bottom). Results from Robustness

tests on simulated tipping and non-tipping processes. We show here the RMSE of the estimates of bρ given true simulated values (blue lines

in panels (b) and (d)). Sensitivity and specificity are presented in percentages for each process.

3.3
::::::::::::
Benchmarking

:::
on

::::
real

:::::
data:

::::::::::::::::::
Dansgaard-Oeschger

::::::
events230
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Figure 4.
:::
The

::
17

::::
most

:::::
recent

::::::::::::::::
Dansgaard-Oeschger

::::
(DO)

:::::
events

::::::
(vertical

:::::
black

::::
lines)

::
in

:::
the

:::::
NGRIP

:::::
δ18O

:::::
record

:::::
plotted

::::::
against

::
the

:::::::
GICC05

:::::::::
chronology.

::::
Early

::::::
warning

::::::
signals

::
are

::::::::
estimated

::
by

:::::
fitting

::
the

:::::
model

::
to

:::
the

::::::::
Greenland

:::::
stadial

::::::
periods

::::
(black

::::::::
segments)

::
of

:::
the

:::
data

::::::::
preceding

:::
each

:::
DO

:::::
event.

Finally, we evaluate the performance of our model by applying it to known
::
on real-world critical transitions such

:::
data

:::::::::
associated

::::
with

::::::::::
well-studied

:::::::
critical

:::::::::
transitions.

:::
By

::::::::::
comparing

::::::
results,

:::
we

::::
can

:::::
assess

::::
how

::::::
much

:::
our

::::::
model

::::::
agrees

::
or

::::::::
disagrees

:::::
with

::::::
existing

::::::::::
approaches.

::::::::::
Specifically,

:::
we

::::
will

:::
use

:::
our

:::::
model

::
to
:::::::
analyze

::::::
abrupt

::::::::
Greenland

:::::::::
warmings

:::::
known

:
as Dansgaard-Oeschger

(DO) events . These events are known to be abrupt warmings of the North Atlantic region
::::::::::::::::::::::::::::::::::::
(Dansgaard et al., 1993; Johnsen et al., 1992)

:
,
:::::
which

::::::::
represent

::::
rapid

:::::::
climate

::::::::::
fluctuations that occurred during the last glacial period. The presence of EWS before the onset235
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of these events
:
,
:::::
where

:::
the

::::::::::
temperature

::::
over

:::::::::
Greenland

::::
and

:::
the

:::::
North

:::::::
Atlantic

::::::
region

::::::::
increased

::
by

:::
up

::
to

::::::
16.5◦C

::::::
within

:
a
::::
few

::::::
decades

::::::::::::::::::
(Kindler et al., 2014).

:::
DO

::::::
events

:::
are

::::
often

:::::::::
considered

:::
the

:::::::::
archetypal

:::::::
example

::
of

:::::::
tipping

::::
point

::::::::
crossings

::
in

:::
the

:::::::
climate.

::
As

:::::
such,

::::
they

::::::
present

:
a
:::::::
natural

:::::::::
benchmark

:::
for

::::::::
evaluating

::::::::
different

:::::
EWS

::::::::::
approaches.

:::
For

:::
our

:::::::
analysis,

:::
we

:::
pair

:::
the

:::::
δ18O

:::::
proxy

:::
data

:::::
from

::
the

::::::::
Northern

:::::::::
Greenland

:::
Ice

::::
Core

::::::
Project

::::::::
(NGRIP)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(North Greenland Ice Core Project members, 2004; Gkinis et al., 2014; Ruth et al., 2003)

::::
with

::
the

::::::::::::
corresponding

:::
age

::::::::
provided

::
by

:::
the

:::::::::
Greenland

:::
Ice

::::
Core

::::::
Project

::::
2005

:::::::::
(GICC05)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al., 2006; Svensson et al., 2008)240

:
.
:::
The

::::
data

:::
is

::::::::
available

::
at

:::::::::::::::::::::::::::::::::::::::::::::::::
https://www.iceandclimate.nbi.ku.dk/data

::::
(last

::::::::
accessed:

:
August 5, 2025

:
).

::::
The

:::::
model

:::
is

::::
fitted

:::
to

:::::::
segments

:::::::::
preceding

:::
the

::
17

:::::
most

:::::
recent

:::
DO

::::::
event.

:::
The

:::::::
selected

::::::::
segments

:::
are

::::::::::
highlighted

::
in

:::
Fig.

::
4.
:

:::::::
Whether

::
or

::::
not

:::
DO

::::::
events

::::
are

:::::::
induced

:::::
solely

:::
by

::::::
noise,

::
or

::
if
:::::

they
:::
are

::::::
indeed

:::::::::::
approaching

:
a
::::::::::

bifurcation
::::::
point, is cur-

rently debated ; however,
::::::::::::::::::::::::::::::::::::
(Ditlevsen et al., 2007; Hummel et al., 2024).

:::::
There

::
is
::::::::
therefore

::
no

:::::::
ground

::::
truth

::
as

::
to

::::::
which,

::
if

::::
any,

:::
DO

:::::
event

::::::
should

::::::
exhibit

:::::
EWS.

:::::::::
However,

:
several studies report a detection of EWS before some of the first 17 DO events245

(Myrvoll-Nilsen et al., 2024)(Rypdal, 2016)(Boers, 2018)(Hummel et al., 2024). Therefore, we
:::::::::::::::::::::::
(Rypdal, 2016; Boers, 2018)

:
.

:::
We compare the results of our model with these studies using a setup similar to Myrvoll-Nilsen et al. (2024) by using a second-

order polynomial detrending of the data and considering P (bϕ > 0 | y)> 0.95 as a detection of EWS. This comparison is

illustrated in Table 2 and shows that our model suggests, similarly to Myrvoll-Nilsen et al. (2024), that some specific event

shows signs of critical slowing down in line with the results of Boers (2018) and Rypdal (2016). Specifically,
:::::
Table 2 shows250

that our results corroborate the 5
:::
five

:
EWS found by Myrvoll-Nilsen et al. (2024) while identifying one more EWS for the

event 13.
:::
13th

::::::
event. Moreover, these results corroborate the EWS found for the event 11

::::
11th

:::::
event by Boers (2018) and the

events 5, 9
:::
5th

:::
and

:::
9th

::::::
events by Rypdal (2016), our results also show EWS for the

:::
2nd

::::
and

::::
13th events 2 and 13 similarly to

these two studies.
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Event Nested AR(1) Myrvoll-Nilsen Rypdal Boers

1 0.893 0.9146 p= 0.02 −
2 0.992 0.9728 p= 0.008 p < 0.05

3 0.29 0.4893 − −
4 0.053 0.084 − p < 0.05

5 0.99 0.9959 p= 0.13 −
6 0.163 0.2123 − p < 0.05

7 0.444 0.7132 − −
8 0.817 0.8878 − −
9 0.994 0.953 p= 0.16 −
10 0.115 0.0732 − −
11 0.977 0.9643 − p < 0.05

12 0.056 0.1662 − −
13 0.978 0.8912 p= 0.39 p < 0.05

14 0.722 0.6629 − p < 0.05

15 0.061 0.0637 − p < 0.05

16 0.99 0.9935 − −
17 0.609 0.6043 − −

Table 2. Table comparing the posterior probability of positive slope P (bϕ > 0 | y) from fitting the nested AR(1) model to the different

Dansgaard–Oeschger events using a second-order polynomial detrending approach. These results are compared with the probability of

positive slope P (b > 0 | y) found by Myrvoll-Nilsen et al. (2024) and p-values obtained from Boers (2018) and Rypdal (2016).
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4 Detecting early warning signals in AMOC fingerprint255
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Figure 5. AMOC fingerprint proxy from 1870 to 2020, similar as (Ditlevsen and Ditlevsen, 2023) using yearly averaged subpolar gyre sea-

surface temperature anomaly minus twice the global mean anomaly obtained from the Hadley Centre Sea Ice and Sea Surface Temperature

data set (HadISST) (Rayner et al., 2003)
:
.

We now apply the time-dependent nested AR(1) model to an AMOC fingerprint similar to the one used by Ditlevsen and

Ditlevsen (2023) shown in Fig. 5. This fingerprint is constructed as the sea-surface temperature (SST) anomaly in the subpolar

gyre region, averaged annually, minus twice the global mean SST anomaly to compensate for the polar amplification efects

under global warming. Several studies have suggested that this proxy is a suitable indicator of AMOC strength (Caesar et al.,

2018; Jackson and Wood, 2020; Latif et al., 2019), especially since direct observations of the AMOC is
:::
are only available from260

2004 onward. The use of such a proxy is therefore necessary to examine longer-term trends and detect potential early warning

signals.

As the fingerprint exhibits significant drift, it must first be detrended to satisfy the zero-mean assumption of the model. In

principle, this trend could be extracted using knowledge of the system’s underlying physical processes, but such information

may be unavailable, incomplete or inaccurate. To address this, we consider two different detrending strategies. In the first, we265

rely solely on statistical assumptions and remove the trend using either a linear or second-order polynomial fit. In the second

approach, we incorporate physical information by including an explanatory variable in the model, following the structure

described in Eq. (9). Specifically, we use integrated Central-West Greenland (iCWG) surface melt shown in Fig. 6 as a covariate.

The iCWG represents the cumulative surface melt across years, based on the CWG melt stack from Trusel et al. (2018), and is

used to capture the influence of freshwater forcing on AMOC stability.270
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Figure 6. Cumulative Central West Greenland runoff from 1971
:::
1871

:
to 2013.

For each model, we compare the posterior marginal mean estimate of the slope parameter bϕ along with the posterior prob-

ability that the slope is positive. Model fit is assessed using marginal log-likelihood. The full set of results is presented in

Table 3. The fitted trends and time evolutions of ϕ(t) for the linear and polynomial detrending approaches are shown in Fig. 7,

while the estimated response function to the iCWG forcing and associated ϕ(t) evolution are shown in Fig. 8. Among the

different model configurations, the version incorporating iCWG forcing provides the best fit to the data as measured by model275

likelihood. In all three detrending strategies, the model identifies statistically significant EWS. These results provide further evi-

dence for the presence of EWS for the AMOC, consistent with the findings of Boers (2021) and Ditlevsen and Ditlevsen (2023)

,
:::
who

::::
also

:::::
found

::::::::::
statistically

:::::::::
significant

:::::
EWS

::::
using

::
a
::::::
slightly

::::::::
different

:::::
nested

::::::
AR(1)

::::::
process

::::
with

::
a
::::::::::::
window-based

:::::::::
estimation

:::::::::::
methodology

::::::
applied

::
to

::
a
::::::
similar

:::::
proxy

::::
for

::::::
AMOC

::::::::
strength;

::::
The

:::::
global

:::::
mean

:::::::::::
temperature

::
is

::::
only

:::::::::
subtracted

::::
once

::
in
:::::

their

:::::
study.

:::
Our

::::::
results

::::
also

:::::::::
corroborate

:::::
those

:::::
found

:::
by

::::::::::::::::::::::::::
Ditlevsen and Ditlevsen (2023) who reported similar signals using different280

methods and data configurations
::::
EWS

:::::
using

:::
the

:::::
same

:::::
proxy

:::
but

::::::
applied

:::
an

:::::
AR(1)

::::::
model

::::
with

:
a
::::::::::::
window-based

::::::::
approach.
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Figure 7. Panel (a) and (b) show AMOC fingerprint (black) with posterior marginal mean (blue) and 95% credible intervals (red) of the fitted

trends. Panel (c) and (d) show the evolution in time of the correlation parameter ϕ(t) (blue) used as indicator of EWS and 95% credible

intervals (red) with an estimated probability of positive slope P (bϕ > 0 | y).
:
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Figure 8. Panel (a) shows AMOC fingerprint (black) from 1870 to 2013 to match the time-span of the forcing data with posterior marginal

mean (blue) and 95% credible intervals (red) of the estimated system’s response function to forcing. Panel (b) is a plot of the evolution in

time of the correlation parameter ϕ(t) (blue) and 95% credible intervals (red) with an estimated probability of positive slope P (bϕ > 0 | y).
:

Model b̂ϕ P (b̂ϕ > 0) b̂ρ Marg. log-likelihood

AR(2)
::::::
Nested

:::::
AR(1)

:
Linear detrending 0.2 0.98 −0.35 56.49

AR(2)
::::::
Nested

:::::
AR(1)

:
Square detrending 0.41 1 −0.33 54.72

AR(2)
::::::
Nested

:::::
AR(1)

:
Forcing response 0.34 1 −0.99 61.97

AR(1) Linear detrending 0.145 0.98 - 53.46

AR(1) Square detrending 0.278 0.99 - 51.68

AR(1) Forcing response 0.19 0.93 - 54.13

Table 3. Summary statistics from Fig. 7 and Fig. 8 showing posterior marginal means of b̂ϕ, probability of b̂ϕ positive,posterior marginal

means of b̂ρ and marginal log-likelihood for the three models used here. Results from the models introduced in Myrvoll-Nilsen et al. (2024)

are also shown for comparison purposes.
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5 Conclusions

This study investigates the stability of the Atlantic Meridional Overturning Circulation (AMOC) by proposing a time-dependent

extension of the
:::::
nested autoregressive AR(2

:
1) model introduced by Morr and Boers (2024) and Boers (2021). The primary

objective of this model is to enhance the reliability of early warning signals (EWS) by minimizing false positives. This is285

achieved through the decomposition of the observed signal into two distinct components: ρ(t), which captures time-dependent

external variability, and ϕ(t), which reflects changes in the internal dynamics associated with system stability. By isolating these

effects, the model aims to identify more accurately early signs of destabilization. Following the approach of Myrvoll-Nilsen

et al. (2024), we assume a linear temporal dependence for both ρ(t) and ϕ(t), estimating their respective slope parameters

within a hierarchical Bayesian framework. This statistical approach allows us to incorporate prior information and quantify the290

uncertainty of the EWS through the posterior distributions of the parameters. The performance of the model is first evaluated

using both simulated and real data, demonstrating both high estimation accuracy and robustness against false detections of

ongoing destabilization.

The methodology is applied to a proxy for the AMOC fingerprint. In order to meet stationarity assumptions, we consider

various detrending techniques, including linear and second-order polynomial detrending, as well as incorporating a forcing295

component based on the integrated meltwater runoff from Central-West Greenland. Across all model configurations, we find

statistically significant early warning signals. This is consistent with prior findings in the literature and supports the hypothesis

of a possible ongoing destabilization of the AMOC.

While assuming a linear structure for ϕ(t) has proven effective for detecting EWS, we emphasize that the model proposed

here should not be interpreted as a comprehensive or mechanistic representation of the underlying physical processes governing300

the AMOC. Despite its success in identifying early signs of destabilization, the model is limited in its ability to forecast the

future trajectory of the system or predict the timing of a potential tipping point. Addressing these limitations would require a

more flexible modeling approach, potentially involving a nonlinear or nonparametric structure for the correlation parameters,

which lies beyond the scope of the present work.

Although our analysis has focused on a specific proxy of the AMOC fingerprint, the proposed methodology is generalizable305

and can be adapted to study the stability of other critical climate components, such as the Greenland Ice Sheet, Arctic sea ice,

or the Amazon rainforest. To facilitate wider use and reproducibility, we have extended the existing R package INLA.ews to

incorporate our methodological advancements. This software provides a user-friendly interface for implementing our approach,

leveraging the computational efficiency of the INLA framework for Bayesian inference.

Code and data availability. The code and data sets used for this paper is available through the R-package, INLA.ews, which can be down-310

loaded from: github.com/eirikmn/INLA.ews (last access August 5, 2025).
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