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Abstract 33 

Density of seawater is a critical property that controls ocean dynamics. Previous works 34 

suggest the use of the δ18O calcite of foraminifera as a potential proxy for paleodensity. 35 

However, potential quantitative reconstructions were limited to the tropical and subtropical 36 

surface ocean and without an explicit estimate of the uncertainty in calibration model 37 

parameters. We developed the use of the δ18Oc of planktonic foraminifera as a surface 38 

paleodensity proxy using Bayesian regression models calibrated to annual surface density. 39 

Predictive performance of the models improves when we account for inter-species specific 40 

differences.   41 

We investigate the additional uncertainties that could be introduced by potential evolution 42 

of the δ18Oc-density relationship with time (from the last glacial maximum (LGM) to the 43 

preindustrial (PI)) through the combination of past isotope enabled climate model 44 

simulations and a foraminiferal growth module. We demonstrate that additional 45 

uncertainties are weak globally, except for the Nordic Seas region.  46 

We applied our Bayesian regression model to LGM and Late Holocene (LH) δ18Oc 47 

foraminifera databases to reconstruct annual surface density during these periods. We 48 

observe stronger LGM density value changes at low latitudes compared to mid latitudes. 49 

These results will be used to evaluate numerical climate models in their ability to simulate 50 

ocean surface density during the extreme climatic period of the LGM. 51 

The new calibration has great potential to reconstruct the past temporal evolution of ocean 52 

surface density over the Quaternary.  Under climates outside the Quaternary period and in 53 

ocean basins characterized by anti-estuary circulation, like the current Mediterranean Sea 54 

and Red Sea, our calibration could provide density estimates with larger uncertainty, a point 55 

that requires further investigations. 56 

 57 
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1. Introduction 69 

Temperature and salinity control the density of seawater and therefore the ocean dynamics 70 

too. Reconstruction of past ocean surface temperature with reasonable uncertainties is 71 

possible (MARGO, 2009; Tierney et al., 2020b) but reconstructions of past surface salinity 72 

remain very challenging in paleoceanography. When the current uncertainties on past 73 

temperature and salinity reconstructions are cumulated, it becomes unreasonable to 74 

combine these two parameters in order to quantify past ocean density and dynamics 75 

(Schmidt, 1999). 76 

Rather than using the combination of temperature and salinity, previous works suggest the 77 

use of the δ18O of foraminiferal calcite as a potential proxy for paleodensity (Lynch-Stieglitz 78 

et al., 1999; Billups and Schrag, 2000, LeGrande et al., 2004; Lynch-Stieglitz et al., 2007). The 79 

oxygen isotopic composition of foraminifera calcite is controlled by 1) the temperature 80 

dependence of the equilibrium fractionation during calcite precipitation and 2) the isotopic 81 

composition of seawater in which the shell grows (Urey, 1947; Shackleton, 1974). Except in 82 

areas of sea ice formation or melt, the isotopic composition of seawater (δ18Osw) is regionally 83 

related to salinity, since they are affected by processes such as evaporation, precipitation, 84 

and the water masses advection and mixing (Craig and Gordon, 1965). Therefore, both 85 

temperature and δ18Osw changes that affect the foraminifera δ18O calcite (δ18Oc) signal are 86 

also the processes that ultimately define the seawater density in which the foraminifera 87 

calcifies (Lynch-Stieglitz, 1999; Billups and Schrag, 2000).  88 

In addition to temperature and δ18Osw, the shell δ18Oc signal can also be potentially 89 

influenced by biological processes, such as: 1) photosynthesis in algal symbionts (Duplessy et 90 

al., 1970; Ravelo and Fairbanks, 1992; Spero and Lea, 1993; Spero et al., 1997) and biases 91 

due to the formation of gametogenic or ontogenetic calcite (Williams et al., 1979; Spero and 92 

Lea, 1996; Hamilton et al., 2008), 2) changes in pH and carbonate ion concentration [CO2-
3] 93 

(Spero et al., 1997; Bijma et al., 1999; Zeebe, 1999), 3) dissolution and recrystallization for 94 

shells deposited in bottom waters undersaturated in [CO2-
3] (Schrag et al., 1995), and 4) 95 

bioturbation (Waelbroeck et al., 2005). The four processes mentioned above have not been 96 

clearly demonstrated. In addition, the carbonate ion effect has been shown to have no 97 

detectable influence (Köhler and Mulitza, 2024) and core top data have been selected to 98 

limit the bioturbation effect (Waelbroeck et al., 2005). Therefore, we do not account for 99 

these processes. Transport of foraminifera shells by currents is another process that could 100 

lead to discrepancies between recorded δ18Oc and calculated δ18Oc or hydrographic data. 101 

However, this effect is likely minimal because the ambient water mass is transported 102 

together with the shells. Later in this study (Sect. 3.1.2), we confirm that planktonic 103 

foraminifera δ18Oc is mainly related to the surface ocean density, growth season and habitat 104 

depth, with weak additional influence from biological processes. 105 

Previously, Billups and Schrag (2000) used δ18Oc from the mixed layer planktonic 106 

foraminifera (Globigerinoides ruber and Trilobatus sacculifer) as a proxy of surface water 107 

density. They limited their study to the tropical and subtropical surface ocean.  108 
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In this study we investigate the use of planktonic foraminifera δ18Oc as a surface 109 

paleodensity proxy for the whole ocean, from low to high latitudes, using various 110 

foraminifera species: Globigerinoides ruber (G. ruber), Trilobatus sacculifer (T. sacculifer), 111 

Globigerina bulloides (G. bulloides), Neogloboquadrina incompta (N. incompta), and 112 

Neogloboquadrina pachyderma (N. pachyderma). Compared to Billups and Schrag (2000), we 113 

use extended late Holocene (LH) and last glacial maximum (LGM) δ18Oc databases 114 

(Malevitch et al., 2019; Caley et al., 2014, Waelbroeck et al., 2014; Tierney et al., 2020b). We 115 

develop mean annual surface density calibration models using a Bayesian approach. We also 116 

use numerical climate simulations obtained with isotope enabled climate models 117 

(iLOVECLIM and ECHAM5/MPI-OM) and a foraminiferal growth module (FAME) (Roche et al., 118 

2018) to investigate the specific seasonal dynamic and depth habitat preference of 119 

foraminifera (Roche et al., 2018; Schiebel and Hemleben 2018). We discuss the applicability 120 

and validity of the foraminifera δ18Oc to the past quantification of surface ocean density. We 121 

then reconstruct past surface density changes during the LGM. 122 

 123 

2. Methods 124 

2.1 Planktonic foraminifera δ18O databases 125 

We compiled global foraminifera oxygen isotopic datasets from published LH and LGM 126 

measurements to allow reconstruction of past density. We used core-top and LH records of 127 

planktonic foraminifera δ18Oc from Malevich et al. 2019 dataset that include records from 128 

the Multiproxy Approach for the Reconstruction of the Glacial Ocean (MARGO) (Waelbroeck 129 

et al., 2005) with additional sources. This dataset consists of 2,636 observations with 1,002 130 

for G. ruber, 635 for G. bulloides, 442 for T. sacculifer, 132 for N. incompta and 425 for N. 131 

pachyderma (Malevich et al., 2019). Similarly to Malevich et al. 2019, we gridded the core-132 

top data to reduce the impact of spatial clustering by averaging samples for each species to 133 

the nearest 1°X 1° grid point. So doing, we obtained a total of 1,415 grid points.  134 

For the LGM time period, records derived in part from the MARGO collection (Waelbroeck et 135 

al., 2014), with additional data from Caley et al., 2014, Tierney et al., 2020b, and from more 136 

recent studies (34 measurements). The final dataset consists of 474 observations. 137 

Chronostratigraphic quality for the LGM and LH is consistent between all the published 138 

databases, the additional observations and use the same MARGO definition (MARGO, 2009).  139 

2.2 Ocean dataset 140 

In order to establish and test our calibrations between foraminifera δ18Oc and observed 141 

surface density, we used different ocean datasets. We used the Multi Observation Global 142 

Ocean Sea Surface density product for our core-top and Late Holocene calibration models 143 

(Droghei et al., 2016; 2018). This means that we calibrated Late Holocene core-top samples 144 

against observed density fields influenced by anthropogenic climate change, an issue that 145 

affects all core-top calibrations. To test the residual of our models against sea surface 146 

temperature and salinity (SST and SSS respectively) we used WOA18 products (Locarnini et 147 

al., 2018; Zweng et al., 2018). 148 



 

5 
 

 149 

2.3 Bayesian calibration models and evaluation 150 

 151 

Following the general approach of Malevich et al. (2019), we use Bayesian regressions to 152 

model the relationship between the calcite oxygen isotopic composition of planktonic 153 

foraminifera, δ18Oc (‰ VPDB), and annual mean surface density, ρ (kg/m3 relative to the 154 

water density of 1000 kg/m3). By explicitly estimating uncertainty in the calibration model 155 

parameters, each model produces a full posterior predictive distribution for the predictant ρ. 156 

We implement three Bayesian models—two pooling models with first- and second-degree 157 

polynomials, and a hierarchical first-degree polynomial model—using Markov chain Monte 158 

Carlo (MCMC) methods (see Kruschke, 2014; McElreath, 2018 for review).  159 

2.3.1 Three Bayesian calibration models 160 

1. First-Degree Polynomial (Pooled), poly1_pool: 161 

A simple linear regression is fit to all foraminifera species combined: 162 

𝜌 ∼  𝑁(𝜇, 𝜎²),   𝜇 = 𝛽0 + 𝛽1𝛿¹⁸𝑂𝑐. 166 

Weakly informative data-adaptiv normal hyperpriors are used for 𝛽
0
 and 𝛽

1
, and an 163 

exponential prior for the noise term sigma. This pooled model assumes a common 164 

relationship across all foraminifera species (see Appendix). 165 

2. Second-Degree Polynomial (Pooled), poly2_pool: 167 

Motivated by empirical evidence (e.g., Billups and Schrag (2000)), the second model 168 

incorporates a quadratic term: 169 

𝜌 ∼ 𝑁(𝜇, 𝜎²),     𝜇 =  𝛽0 + 𝛽1𝛿¹⁸𝑂𝑐  + 𝛽2(𝛿¹⁸𝑂𝑐)². 172 

Again, we apply weakly informative normal priors for the 𝛽
𝑖
 parameters, ensuring 170 

flexibility while constraining the plausible range based on the observed data. 171 

3. First-Degree Polynomial (Hierarchical), poly1_hier: 173 

The third model recognizes that species-specific differences in calcification, depth, 174 

seasonality and vital effects can affect 𝛿¹⁸𝑂𝑐 (Malevich et al., 2019). Hence, we use a 175 

hierarchical structure: 176 

𝜌 ∼ 𝑁(𝜇𝑠, 𝜎𝑠²),    𝜇𝑠 =  𝛽𝑠,0 + 𝛽𝑠,1𝛿¹⁸𝑂𝑐. 180 

where each species s has its own intercept (𝛽
𝑠,0

) and slope (𝛽
𝑠,1

). These species-level 177 

parameters are drawn from common hyperdistributions 𝜈𝑖 and 𝜅𝑖 (Appendix A), 178 

ensuring partial pooling of information across species. 179 

2.3.2 Model fitting and evaluation 181 

 182 

All models were fitted with six independent MCMC chains of 4000 iterations each, discarding 183 

the first 2000 as burn-in. We used rank-normalized 𝑅̂ (Vehtari et al. 2021) to assess 184 

convergence, finding all values below 1.05. Prior and posterior predictive checks confirmed 185 

the adequacy of the models. To compare predictive performance, we computed the 186 

expected log pointwise predictive density (ELPD) via Pareto-smoothed importance sampling 187 

leave-one-out cross-validation (LOO) (Vehtari et al., 2017), which provides a principled basis 188 

for selecting the model that best characterizes the relationship between δ18Oc and ρ. The 189 
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ELPD measures the expected predictive accuracy of a Bayesian model. It is defined as the 190 

sum over all data points of the expected log posterior predictive density (Gelman et al., 191 

2014). In our case, a higher ELPD means the model makes sharper and more accurate 192 

density predictions.  193 

 194 

2.4 Isotope enabled numerical climate models 195 

2.4.1 The iLOVECLIM model 196 

The iLOVECLIM (version 1.1.3) earth system model of intermediate-complexity is a derivative 197 

of the LOVECLIM-1.2 climate model extensively described in Goosse et al. (2010). From the 198 

original model, we retain the atmospheric (ECBilt, resolution of 5.6° in latitude and 199 

longitude), oceanic (CLIO, 3x3° horizontal resolution, 20 vertical layers and a free surface), 200 

vegetation (VECODE) and land surface (LBM) components and develop a complete, 201 

conservative, water isotope cycle through all cited components. A detailed description of the 202 

method used to compute the oxygen isotopes in iLOVECLIM can be found in Roche (2013) 203 

and the validation of model results can be found in Roche and Caley (2013), Caley and Roche 204 

(2013) and Extier et al., 2024. 205 

We use the boundary conditions defined in/by the PMIP2 protocol to simulate the annual 206 

LGM climate (Caley et al., 2014). Details about the model simulations (LGM and pre-207 

industrial (PI)) and validation of results for oxygen stable isotopes and temperature can be 208 

found in Caley et al. 2014. 209 

2.4.2 The ECHAM5/MPI-OM model 210 

We also use the ECHAM5/MPI-OM coupled General Circulation Model (GCM), also 211 

previously named community Earth system model COSMOS. It is a fully coupled ocean–212 

atmosphere–sea ice– land surface model (Jungclaus et al., 2006) with stable water isotope 213 

diagnostics in all relevant model components. Mass, energy, and momentum fluxes, as well 214 

as the related isotope masses of H218O and HDO, are exchanged between the atmosphere 215 

and ocean once per day. Further details about the model can be found in Werner et al., 216 

2016.  217 

We used monthly outputs of the two simulations performed for the PI and for the LGM 218 

climate as described and evaluated for oxygen stable isotopes in Werner et al., 2016. 219 

 220 

2.5  The FAME module 221 

Foraminifera as Modelled Entities (FAME; Roche et al., 2018) is a foraminiferal growth 222 

module that tackles the dynamic seasonal and depth habitat of planktonic foraminifera. The 223 

module predicts the presence or absence of commonly used planktonic foraminifera and 224 

their δ18O values. It uses a very limited number of parameters, almost all derived from 225 

culture experiments (Lombard et al., 2009). 226 

 227 
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3. Results and discussion 228 

3.1 Ocean surface density from planktonic foraminifera calcite δ18O 229 

The three Bayesian calibration models reasonably replicate core top data spread when we 230 

predict surface density (Fig. 1). 231 
 232 

 233 

Figure 1: Bayesian calibration models for late Holocene core-top samples against observed 234 

density. (a), (b) and (c) The three Bayesian regression models between foraminifera δ18Oc 235 

and annual surface density and (d), (e) and (f) associated density residuals (predicted - 236 

observed). 237 

Compared to the Billups and Schrag (2000) study which was restricted to the 21-26 density 238 

range in tropical and subtropical regions, our models provide estimates of the density 239 

changes over the whole density range from 19 to 28 (Fig. 1).  In our new calibrations, we also 240 

explicitly estimate the uncertainty in calibration model parameters (Fig. 1) using a Bayesian 241 

approach to calculate robust confidence intervals.  242 
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We observe a saturation of density values close to 28 in the calibrations that correspond to 243 

high latitudes regions (Nordic Seas and Austral Ocean). When density is already high, 244 

temperature changes have a smaller effect. Cold water is already dense, so cooling it further 245 

doesn’t increase density as much. Consequently, we observe a sensitivity decrease. The rate 246 

of change of density with respect to temperature flattens out, meaning that the system 247 

becomes less responsive to temperature changes. Small changes in temperature and salinity 248 

no longer cause significant shifts in density. This behavior reflects to the non-linearity of the 249 

seawater equation of state.  Although the regression becomes less predictive in this range, 250 

the estimated density values remain correct and are not expected to change strongly as 251 

ocean surface density approaches its upper limits. 252 

3.1.1 Model comparison and residuals 253 

Looking at the density residual (predicted - observed) for the three models, the first model 254 

(linear pools) has the highest values of residual and the third model (hierarchical design) 255 

performs best (Fig. 1). The second model performs clearly better than the first one but less 256 

than the hierarchical design. This is supported by model evaluation using log pointwise 257 

predictive density (ELPD) (Vehtari et al., 2017) (Fig. 2). Predictive performance of the model 258 

improves when we account for species-specific differences and species-specific prediction 259 

uncertainty (sigma) in surface density predictions vary between foraminifera species (Fig. 2). 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 
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Figure 2: Model comparison and prediction uncertainty across species. (a) Expected log 277 

pointwise predictive density (ELPD) for the three models; higher values indicate better 278 

predictive performance. (b) Posterior distributions of the prediction-error parameter (sigma 279 

density) from the hierarchical model for each foraminifera species (six MCMC chains shown). 280 

Among these, N. pachyderma exhibits the lowest uncertainty, while G. bulloides shows the 281 

highest. 282 

 283 

We still observe residuals with the hierarchical model (Fig. 1), so we checked their relation to 284 

SST and SSS (Fig. 3). The residuals of the pooled linear annual calibration model exhibit a 285 

relationship with SST and a linear relationship with SSS with a relatively high correlation (R2 = 286 

0.55, p-value <0.05). In contrast, the residuals of the hierarchical annual calibration model 287 

show no correlation to SST (R2 = 0, p-value <0.05) and only a very weak correlation with SSS 288 

(R2 = 0.21, p-value <0.05).  This suggests that factors other than SST and SSS influence the 289 

remaining residual structures, and some may be indirectly associated with SSS gradients. 290 

Indeed, ecological factors (e.g. seasonality and habitat depth) and secondary environmental 291 

parameters (e.g. nutrients and light penetration) may also contribute. This is supported by 292 

the fact that the residual of individual species (Fig.  3) show various significant relations (p-293 

value <0.05) with SSS, with R2 values of 0.17 for G. ruber, 0.12 for T. sacculifer, 0.54 for G. 294 

bulloides, 0.15 for N. incompta, and 0.32 for N. pachyderma. For example, negative residuals 295 

are observed in the Benguela, Canary, Peru and North Arabian regions (Fig. 1). All these 296 

coastal areas correspond to upwelling systems and previous work already suggested that 297 

foraminifera species could have a preference for nutrient-rich waters with high turbidity. 298 

This is particularly true for the seasonal specie G. bulloides (Peeters et al., 2002; Gibson et 299 

al., 2016). The δ18Oc may therefore be biased toward colder temperatures even when 300 

accounting for seasonality and species-specific sensitivity (Malevich et al., 2019).  This could 301 

explain why all three models yield lower densities than the observed annual mean densities 302 

in the upwelling zones. The negative density residuals in these upwelling regions may reflect 303 

this habitat preference (Fig. 1). 304 

 305 
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 306 

Figure 3: Relation between density residuals (predicted - observed) and (a), (b) and (c) for 307 

SST and (d), (e) and (f) for SSS (WOA18 products, Locarnini et al., 2018; Zweng et al., 2018) 308 

for the three Bayesian regression models. R2 and p-values are indicated. 309 

Strong negative residuals are also observed in the eastern part of the Mediterranean Sea. 310 

Malevich et al. 2019 reported reduced performance of their hierarchical seasonal calibration 311 

model for δ18Oc and SST in this region and attributed it to the unusual behavior of G. 312 

ruber, potentially linked to depth-habitat migration. But estimation of seasonality for this 313 

region could also be problematic and play a role as highlighted in the study of Ayache et al. 314 

2024. Alternatively, biases in Mediterranean net freshwater fluxes and thermohaline 315 

circulation could affect late Holocene δ18Oc values (Ayache et al., 2014). Future modelling 316 

developments, such as the use of high-resolution regional model in combination with the 317 

FAME module, could help to better understand the relation between δ18Oc, density, 318 

temperature and δ18Osw during past climate changes in the Mediterranean Sea. 319 

We also observe high positive residual values in the Equatorial and South Atlantic Ocean, in 320 

particular on the equatorial African margin and to a lesser degree in the Equatorial East 321 

Pacific Ocean. As discussed later (Sect. 3.1.2), these positive density residuals could be 322 

related to ecological factors such as seasonality.  323 

It is possible to take into account seasonality based on an estimation of foraminiferal 324 

seasonal abundance (Malevich et al. 2019), or using the FAME module. This module predicts 325 

the mean δ18Oc of a foraminifera sample constituted of a number of individuals by weighting 326 

in space (depth in the water column) and time (months) the oceanic conditions by the 327 

growth rate of each individual.  328 
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We decided to not directly develop seasonal calibration models for several reasons. First, we 329 

want to predict annual surface density to be able to compare and evaluate numerical 330 

climate models against annual surface density. Second, including seasonal signals in 331 

foraminifera in our Bayesian models using sediment trap data (Malevich et al. 2019) or 332 

seasonality and habitat depth using FAME (that uses the temperature dependence of growth 333 

derived from culture experiments (Lombard et al., 2009)) would be a simplification that does 334 

not consider factors such as light and nutrient availability. Third, even if it could potentially 335 

improve the models for the present day calibration, although a hierarchical seasonal model 336 

does not necessary show an increase in validation performance compared to the hierarchical 337 

annual model (Malevich et al., 2019), this approach assumes that seasonality or habitat 338 

depth would not change during past periods. Results using FAME demonstrate that 339 

seasonality or habitat depth change during past periods (Roche et al., 2018). Therefore, 340 

changes in seasonality and habitat depth could introduce additional uncertainties when 341 

using a seasonal calibration model to predict past seasonal surface density. One possibility 342 

would be to use simulation results for past periods to force the FAME module and create 343 

past Bayesian calibration models between δ18Oc and surface density that would take into 344 

account ecological changes. However this would not be independent of climate models and 345 

would lead to circular reasoning if the purpose is to use reconstructed density for 346 

comparison and evaluation of past climate simulations. 347 

We therefore adopt a different strategy. We use past isotope enable climate model 348 

simulations for the pre-industrial (PI) and LGM periods to force the FAME module in order to 349 

test within the “model world” if a PI Bayesian calibration (hierarchical design) between the 350 

δ18Oc and annual surface ocean density is stable with time and if the changes in foraminifera 351 

growth season and habitat depth lead to additional uncertainties when applying a PI relation 352 

to past annual predictions (LGM). 353 

 354 

3.1.2 Testing the stability of the δ18Oc-density relation during past periods 355 

Because the proposed approach to reconstruct ocean surface density uses the temperature 356 

and δ18Osw influence on the δ18Oc signal, we investigated the potential evolution of the 357 

δ18Oc-density relationship with time before applying this approach to past density 358 

reconstructions. In particular, we investigated two questions: does the present day δ18Osw-359 

salinity relationship and its known past temporal evolution (Rohling, 2000, LeGrande and 360 

Schmidt, 2011, Caley and Roche, 2015) significantly affect the density-δ18Oc relation 361 

evolution? Do ecological changes (foraminifera growth season and habitat depth) 362 

significantly affect the density-δ18Oc relation evolution? 363 

We use numerical climate simulations (LGM and PI) of two isotope enabled numerical 364 

climate models, iLOVECLIM and ECHAM5/MPI-OM, to address these questions. We calculate 365 

the δ18Oc signal based on the simulated δ18Osw and ocean temperature for both PI and LGM 366 

using the quadratic approximation of Kim and O’Neil (1997) given in Bemis et al. (1998). We 367 

use the FAME module to predict the δ18Oc values and account for foraminifera specific living 368 

habitats in the water column and along the year as described in Roche et al. (2018). A 369 
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comparison of the simulated and observed core-top data δ18Oc (Fig. 4) shows high 370 

correlation (R2 of 0.93 and 0.89 for ECHAM5/MPI-OM and iLOVECLIM respectively). The 371 

slightly higher correlation with ECHAM5/MPI-OM and associated lower root mean square 372 

error (RMSE) (Fig. 4) could be related to differences in climate models but also to the fact 373 

that in the chosen configuration iLOVECLIM generated only annual δ18Osw and ocean 374 

temperature hydrographic data contrary to ECHAM5/MPI-OM that produces monthly 375 

results. Therefore, the seasonality effect is only simulated by combining FAME and 376 

ECHAM5/MPI-OM whereas the habitat depth effect is simulated in both experiments.  377 

We tested this hypothesis by using yearly ECHAM5/MPI-OM values to compute the δ18Oc 378 

and compared the results with those obtained with seasonal values (shown in Figure 4a) and 379 

better assess the effect of seasonality. Results indicate a slight decrease of the R2 of 0.02 and 380 

a slight increase in RMSE of 0.06 when seasonality is not taken into account. These 381 

differences are significant according to paired t-tests. Therefore, seasonality partly explains 382 

the small difference between the results using ECHAM5/MPI-OM and iLOVECLIM. Lower 383 

resolution of iLOVECLIM or other missing/biased processes in this model could also 384 

contribute to this small difference. 385 

Although climate models are not perfect, the observed high correlations demonstrate that 1) 386 

these numerical climate models can be used to address our questions regarding the stability 387 

of the δ18Oc-density relation during the past and 2) our hypothesis that planktonic 388 

foraminifera δ18Oc is mainly related to the surface ocean density, growth season and habitat 389 

depth, with weak additional influence by biological processes (Sect. 1.) is valid. 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

Figure 4: comparison between simulated PI foraminifera δ18Oc (FAME module forced with 401 

(a) ECHAM5/MPI-OM and (b) iLOVECLIM climate model hydrographic data) and observed LH 402 

core-top δ18Oc data. The 1:1 line is indicated. 403 

We developed two PI Bayesian calibrations (hierarchical design) between the δ18Oc and 404 

annual surface ocean density based on FAME forced by ECHAM5/MPI-OM and iLOVECLIM 405 

hydrographic data (Fig. 5a). These Bayesian calibration models are comparable to the 406 
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poly1_hier Bayesian calibration model of Fig. 1. We then used the LGM simulations to force 407 

FAME and produce δ18Oc LGM values comparable to those that could be measured in a 408 

marine sediment core (but in the model world). We can use these δ18Oc LGM values and the 409 

PI Bayesian calibrations to predict the ocean surface density at the LGM. We can then 410 

compare the density reconstructed from the δ18Oc values to the density simulated directly at 411 

the LGM by ECHAM5/MPI-OM and iLOVECLIM. This furnish a test in the model world 412 

regarding the stability of the δ18Oc-density relation during the past. 413 

Interestingly, the observed (Fig. 1) and simulated (Fig. 5b and e) density residuals (predicted 414 

- observed) are overall in good agreement for both PI ECHAM5/MPI-OM and iLOVECLIM 415 

experiments in terms of qualitative changes (positive or negative residuals) (Fig. 5b and e 416 

and Fig. 1). Nonetheless, differences for some regions in terms of magnitude of the residual 417 

values exist between ECHAM5/MPI-OM and iLOVECLIM experiments. We observe high 418 

positive residuals in the Equatorial and South Atlantic Ocean in the ECHAM5/MPI-OM 419 

experiment, in particular on the equatorial African margin and in the Equatorial East Pacific 420 

Ocean. As discussed before (Sect. 3.1.1), these positive density residuals are also visible in 421 

the observations (Fig. 1f). We attribute these high positive residuals in ECHAM5/MPI-OM 422 

(Fig. 5b) that better fit the observations (Fig. 1f) to a seasonality effect because seasonality is 423 

only taken into account in ECHAM5/MPI-OM experiment. Negative residuals previously 424 

discussed in upwelling regions are visible in simulated residuals but with lower magnitude in 425 

comparison to observations (Fig. 1f and 5b and e). This could be related to the fact that 426 

upwellings are not well simulated in the two experiments or to the role of secondary 427 

environmental parameters such as nutrients and light penetration. 428 

We apply the PI annual Bayesian calibration to the simulated LGM δ18Oc after a correction of 429 

1.0‰ of LGM δ18Osw values (value added at LGM for the ECHAM5/MPI-OM and iLOVECLIM 430 

experiments, Caley et al., 2014, Werner et al., 2016) to account to a change of the global 431 

oceanic δ18Osw signal due to the increased LGM ice sheets. This yields a prediction of the 432 

LGM surface ocean density that we can compare to the directly simulated LGM surface 433 

density in both experiments. We calculate the density residual at the LGM (density 434 

reconstructed from the δ18Oc values - density simulated directly at the LGM). Finally, we 435 

calculate the density residuals anomaly between LGM and PI as:  density residuals at LGM - 436 

density residuals at PI (Fig. 5c and f). This allows us to investigate the additional uncertainties 437 

linked to the evolution of the density-δ18Oc relation (Fig. 5c and f). 438 
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 439 

Figure 5: Stability of foraminifera δ18Oc-density relations between PI and the LGM calculated 440 

with FAME and forced by global ECHAM5/MPI-OM (left panels, Werner et al., 2016) and 441 

iLOVECLIM (right panels, Caley et al., 2014) hydrographic data. (a) and (d) PI Bayesian 442 

regression models between foraminifera δ18Oc and annual surface density. Data in the PI 443 

experiments have been selected at the same locations as observations (Fig. 1). Posterior 444 

predictive samples and the LGM δ18Oc-density relation (LGM) are visible. (b) and (e) Density 445 

residuals (predicted - observed) for the PI experiments. (c) and (f) Density residuals anomaly 446 

between LGM and PI. Results for the Mediterranean Sea have been excluded because of its 447 

difficulty to be simulated and inconsistency between the two model simulations because of 448 

their different grid resolutions. Annual mean temperature and δ18Osw were used for the 449 

iLOVECLIM experiment whereas monthly temperature and δ18Osw were used for the 450 

ECHAM5/MPI-OM experiment. 451 

The surface density residuals anomalies (LGM - PI) are overall rather close to 0 except in the 452 

Nordic Seas region (north of 40°N in the Atlantic). For the following analyses we do not 453 

consider the North Indian Ocean for iLOVECLIM. Indeed, this region is affected by a well-454 

known bias of this climate model due to a shift of the African precipitation regions from the 455 
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west to the east of the continent, leading to much less saline waters than presently observed 456 

(and unrealistically depleted δ18Osw) in the North Indian Ocean (Roche and Caley, 2013). 457 

Higher residuals anomaly in Nordic Seas region could be associated with difficulty in 458 

simulating the δ18Osw-salinity relation evolution related to ice-sheets and sea ice changes 459 

and/or to foraminifera ecological changes between LGM and PI. We also observe in this 460 

region larger surface density residuals anomalies (LGM – PI) with ECHAM5/MPI-OM than 461 
with iLOVECLIM (Figure 5c and f). This can be explained by different simulated sea ice 462 
coverage in ECHAM5/MPI-OM compared to iLOVECLIM. Indeed, the Nordic Seas is the 463 

region with the largest difference between the two model simulations of modeled annual SST 464 
below 0°C (https://doi.org/10.5194/egusphere-2025-2459-AC2). Temperature is used to 465 
calculate the δ18Oc signal, ocean density and to force the FAME module. Any temperature 466 
difference in the Nordic Seas thus affects density reconstructions and hence the density 467 
residuals (Figure 5c and f). 468 

 469 

To further investigate in a more quantitative way if the use of the PI bayesian calibration to 470 

predict LGM surface density introduces additional uncertainties, we compare probability 471 

distributions of surface density residuals anomaly (LGM - PI) using violin and box plots to the 472 

95% confidence interval (CI) of the PI bayesian calibration (Fig. 6). We consider each 473 

foraminifera species separately. Global results indicate for the G. ruber and T. sacculifer 474 

species that 1) the 5th to 95th percentile and interquartile range of the surface density 475 

residuals anomaly is well inside the 95% CI of the PI bayesian calibration for both 476 

ECHAM5/MPI-OM and iLOVECLIM experiment and 2) high probability and median values are 477 

close to 0 (Fig. 6a and c). This is not the case for G. bulloides, N. incompta, and for N. 478 

pachyderma. 479 

When the Nordic Seas region is removed, results indicate that for all the foraminifera 480 

species, the interquartile range of the surface density residuals anomaly is well inside the 481 

95% CI of the PI bayesian calibration for both experiments (ECHAM5/MPI-OM and 482 

iLOVECLIM). High probability and median values are closest to 0 (Fig. 6b and d). The 95% CI 483 

of the PI bayesian calibration is closest to the 5th to 95th percentile range of the surface 484 

density residuals anomaly. 485 

 486 
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 487 

Figure 6: probability distributions of surface density residuals anomaly (LGM - PI) for 488 

ECHAM5/MPI-OM and iLOVECLIM, for global data (a and c), and without the Nordic Seas and 489 

northern North Atlantic (north of 40°N) (b and d). North Indian Ocean data for iLOVECLIM 490 

have been removed in both cases. 491 

We conclude based on our tests that the use of a Bayesian calibration model (hierarchical 492 

design) to predict annual surface density during past periods (with the example here of the 493 

LGM climate) is valid globally within the explicitly estimated uncertainty in calibration model 494 

parameters, except for the Nordic Seas region.  495 

3.2 Reconstruction of past ocean surface absolute density  496 

To reconstruct past ocean surface absolute density based on foraminifera δ18Oc values that 497 

have been corrected from the δ18Osw ice effect, an additional correction is necessary. 498 

Indeed, it is necessary to account for mean ocean density changes related to ocean volume 499 

changes that affect mean ocean salinity. Without this additional correction, the ocean 500 

density reconstructed corresponds to density changes linked to hydrographic changes in SST 501 

and SSS.  502 
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To determine the mean ocean density change related to the change in ocean volume at LGM 503 

we used model simulation results (ECHAM/MPI-OM and iLOVECLIM) and added or removed 504 

1 psu salinity (Duplessy et al., 1991) in global salinity outputs. Note that adding 1 psu of 505 

salinity at LGM in climate model simulations has only small effects on ocean dynamics. 506 

Indeed, the effect is due to the small non-linearity in the sea-ice freezing, hence generating 507 

small differences in regions of sea ice and deep water formation. We have tested it in new 508 

simulations performed with the iLOVECLIM model and found the dynamical effect of a 1 psu 509 

salinity change in the regions we are analyzing to be very small (not shown).   510 

Both model simulations agree and yield a mean ocean salinity effect on density of 0.776 (σ = 511 

0.02) for ECHAM/MPI-OM and 0.772 (σ = 0.02) for iLOVECLIM.  We also performed a 512 

calculation to estimate this effect based on observations (reference state based on present 513 

day observations and LGM state based on Tierney et al., 2020 for SST and Duplessy et al., 514 

1991 for SSS) and found very consistent results (https://doi.org/10.5194/egusphere-2025-515 

2459-AC1).  516 

Therefore, the additional correction that is necessary to reconstruct past ocean surface 517 

absolute density at the LGM is estimated to be equal to + 0.77. 518 

3.3 LGM annual surface density reconstruction  519 

We applied the poly1_hier calibration model to the LGM and LH δ18Oc foraminifera 520 

database, excluding the Nordic Seas region, after subtraction of 1.0 ‰ from LGM δ18Oc 521 

values (Labeyrie et al. 1987; Schrag et al., 1996; Schrag et al., 2002; Adkins et al., 2002; 522 

Duplessy et al., 2002) in order to reconstruct LGM and LH annual surface density. Absolute 523 

LGM annual surface density was calculated by adding 0.77 to density changes linked to 524 

hydrographic changes in SST and SSS. The benefit of our Bayesian model is the possibility to 525 

propagate uncertainty from calibration into predictions of past climate conditions (Fig. 7). 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 
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  539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

Figure 7: reconstructions of LGM and LH annual surface ocean density from foraminifera 558 

δ18Oc. (a) Spatial distribution of the LGM - LH absolute density anomaly. (b) Spatial 559 

distribution of the LGM - LH density changes due to hydrographic changes in SST and SSS. (c) 560 

Meridional gradient of reconstructed surface annual LGM density (absolute density in dark 561 

blue, density due to hydrographic changes in light blue) and comparison with LH 562 

reconstructions (red and orange colors). Error bars for each data point represent the 68 % 563 

C.I. A polynomial fit (5th degree) and associated 95% confidence bands are shown as solid 564 

resp. dashed lines. (d) Meridional gradient of reconstructed density anomaly (LGM - LH) for 565 

absolute density in dark green and density due to hydrographic changes in light green and 566 

associated 68 % C.I (grey lines). 567 

 568 

Ocean surface density increases globally during the LGM in agreement with colder SST 569 

(MARGO, 2009; Tierney et al., 2020b) and increases global salinity (Duplessy et al., 1991; 570 

Adkins et al., 2002) (Fig. 7a). We also observe stronger LGM density value changes at low 571 
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latitudes compared to mid latitudes (Fig. 7b, c and d). This is probably the result of the LGM 572 

cooling (MARGO, 2009; Tierney et al., 2020b) in combination with a reduction of the 573 

intensity of low latitudes hydrological cycle (Kageyama et al., 2021), whereas higher latitudes 574 

are already close to ocean density maximum. Further regional analyses of ocean surface 575 

density and comparison with numerical climate models are presented in Barathieu et al. in 576 

prep. 577 

 578 

4. Conclusions 579 

We developed three Bayesian regressions to model the relationship between the calcite 580 

oxygen isotopic composition of planktonic foraminifera, δ18Oc, and annual mean surface 581 

density, ρ. This allowed us to explicitly estimate the uncertainty in calibration model 582 

parameters. We find that predictive performance of the model improves when we account 583 

for inter-species specific differences. Before applying this model to past density 584 

reconstructions, we used results of isotope enabled climate model simulations for PI and 585 

LGM time periods to force the FAME module. We then investigated the additional 586 

uncertainties that could be introduced by potential evolution of the δ18Oc-density 587 

relationship with time. It could be caused by changes in the δ18Osw-salinity relationship or 588 

by foraminifera ecology. We demonstrate that additional uncertainties are weak and that 589 

our approach is valid (except for the Nordic Seas region), within propagated uncertainty 590 

from calibration into predictions of past climate conditions. 591 

By applying our Bayesian regression hierarchical model to LGM and LH δ18Oc foraminifera 592 

databases, we reconstructed LGM and LH annual surface density and found stronger LGM 593 

density value changes at low latitudes compared to mid latitudes. The logical next step will 594 

be to compare globally and in more detail (regional scale) our quantitative annual surface 595 

density reconstruction with densities obtained by numerical climate model simulations 596 

during the LGM. This will be used to evaluate these climate models in their ability to 597 

simulate this parameter during this extreme climatic period (Barathieu et al., in prep). The 598 

quantification of density together with the estimation of uncertainties could also be used for 599 

data assimilation approaches, allowing local paleoclimate proxy information to be used to 600 

infer global climate metrics (Tierney et al., 2020a). 601 

We demonstrate that our approach is valid to quantitatively reconstruct annual surface 602 

density during one of the coldest climates of the Quaternary period. We also demonstrate 603 

this for the mid Holocene and last interglacial periods (Appendix B). Hence, our calibration 604 

has great potential to be applied to other past periods and to reconstruct past temporal 605 

evolution of ocean surface density downcore during the Quaternary. Under very extreme 606 

climates outside the Quaternary (Appendix B) and in ocean basins characterized by anti-607 

estuary circulation, like the current Mediterranean Sea and Red Sea, our calibration could 608 

provide density estimates with larger uncertainty, a point that requires further 609 

investigations. 610 

Finally, our calibration method to quantitatively reconstruct past ocean surface density is 611 

stable with time. A combination with existing calibration methods to reconstruct past SST 612 
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could lead to a “time stable” method to quantitatively reconstruct past SSS over the 613 

Quaternary, contrary to the use of the δ18Osw-SSS approach. Before realized SSS 614 

reconstructions, further investigations and calculation of uncertainties are necessary for this 615 

potential new method. This is clearly a way forward as SSS is a crucial parameter that can 616 

provide insights into hydrological cycle dynamics and its evolution. 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 
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 639 

 640 
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Appendices 642 

Appendix A. Detailed Prior Specifications 643 

Below we provide the exact prior definitions and hyperparameter settings for each of the three 644 

Bayesian models. In the following, ρ denotes annual mean surface density, and δc represents δ18Oc. 645 

Let E[ρ] and var(ρ) be the sample mean and variance of ρ, respectively, and let var(δc) be the sample 646 

variance of δc. 647 

1. First-Degree Polynomial (Pooled) 648 

 649 

𝜌 ∼  𝑁(𝜇, 𝜎²) 651 

𝜇 = 𝛽0 + 𝛽1𝛿𝑐. 652 

 650 

We chose weakly informative and data-adaptive priors, meaning they center around observed 653 

mean/variance but are broad enough to allow for uncertainty. 654 

 655 

 658 

𝛽
0

∼ 𝑁(𝐸[𝜌], 2.5 √𝑣𝑎𝑟(𝜌)),    𝛽1 ∼ 𝑁(0, 2.5 √
𝑣𝑎𝑟(𝜌)

𝑣𝑎𝑟(𝛿𝑐)
,    𝜎 ∼ 𝐸𝑥𝑝(√𝑣𝑎𝑟(𝜌)⁻¹). 656 

 657 

2. Second-Degree Polynomial (Pooled) 659 

 660 

𝜌 ∼  𝑁(𝜇, 𝜎²) 661 

𝜇 = 𝛽0 + 𝛽1𝛿𝑐 + 𝛽2𝛿𝑐². 662 

We set the priors to 663 

𝛽
𝑖

∼ 𝑁(0, 6.08²) ⬚ for 𝑖 ∈ {0, 1, 2},    𝜎 ∼ 𝐸𝑥𝑝(√𝑣𝑎𝑟(𝜌)⁻¹). 664 

 665 

Here, the normal priors were chosen to ensure that 90 % of the prior mass for each 𝛽
𝑖
 666 

lies within [-10, 10]. 667 

 668 

3. First-Degree Polynomial (Hierarchical) 669 

 670 

𝜌 ∼  𝑁(𝜇𝑠, 𝜎𝑠²) 677 

𝜇𝑠 = 𝛽𝑠,0 + 𝛽𝑠,1𝛿𝑐 678 

 679 

where each species s has its own slope and intercept. These species-level 671 

parameters share hyperpriors: 672 

 673 

Species-Level Parameters 674 

 675 

𝛽
𝑠,𝑖

∼ 𝑁(𝜈𝑖, 𝜅𝑖²),    𝑖 ∈ {0, 1},    𝜎𝑠 ∼ 𝐸𝑥𝑝(𝜆𝑠). 680 

 681 

Hyperpriors 676 
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 682 

𝜈0 ∼ 𝑁(𝐸[𝜌], 10),        𝜈1 ∼ 𝑁(0, 10) 684 

𝜅0 ∼ 𝐸𝑥𝑝(2.5 √𝑣𝑎𝑟(𝜌)),         𝜅1 ∼ 𝐸𝑥𝑝(2.5 √
𝑣𝑎𝑟(𝜌)

𝑣𝑎𝑟(𝛿𝑐)
), 685 

𝜆𝑠⁻²⬚ ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0, 1). 686 

 687 

 683 

 688 

Appendix B. Application of our calibration to other past periods 689 

Our study is focused on the LGM but it is interesting to examine if our results remain valid 690 

for other climate periods. In this appendix, we present tests using isotope-enabled model 691 

runs representing different past climate conditions in order to demonstrate that additional 692 

uncertainties due to the evolution of the δ18Oc-density relationship with time are globally 693 

small and that the new calibration has great potential to reconstruct the past temporal 694 

evolution of ocean surface density over the Quaternary period. 695 

In addition to the LGM time period investigated in our study, we tested the Mid Holocene 696 

(MH) period and the last interglacial period (LIG) (Figs. B1 and B2). Results clearly indicate 697 

a strong stability of foraminifera δ18Oc-density relations between MH, LIG and the PI, that is 698 

a very weak influence of the changes in the δ18O/Salinity relation or foraminifer ecology (i.e. 699 

habitat depth and growing season) on final density predictions (Figs. B1 and B2). 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 
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 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

Fig. B1: Stability of foraminifera δ18Oc-density relations between PI and the MH calculated 741 

with FAME and forced by global AWI-ESM-2.1-wiso (Shi et al., 2023) hydrographic data. (a) 742 

PI Bayesian regression models between foraminifera δ18Oc and annual surface density. 743 

Posterior predictive samples and the MH δ18Oc-density relation (MH) are visible. (b) Density 744 

residuals (predicted - observed) for the PI experiments. (c) Density residuals anomaly 745 

between MH and PI. (d) Probability distributions of surface density residuals anomaly (MH - 746 

PI) without Nordic Seas and northern North Atlantic (north of 40°N).  747 
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Fig. B2: Stability of foraminifera δ18Oc-density relations between PI and the LIG calculated 773 

with FAME and forced by global ECHAM5/MPI-OM (Gierz et al., 2017) hydrographic data. 774 
(a) PI Bayesian regression models between foraminifera δ18Oc and annual surface density. 775 

Posterior predictive samples and LIG δ18Oc-density relations (LIG) are visible. (b) Density 776 
residuals (predicted - observed) for the PI experiments. (c) Density residuals anomaly 777 
between LIG and PI. (d) Probability distributions of surface density residuals anomaly (LIG - 778 

PI) without Nordic Seas and northern North Atlantic (north of 40°N). 779 

 780 

Applying our calibration to past climates (and taking into account foraminifer ecological 781 
changes) provides density predictions that remain within the uncertainties of the calibration, 782 
as demonstrated for the LGM, MH and LIG time periods. These time periods correspond to 783 

extreme climate configurations over the Quaternary period as shown on Fig. B3, so the new 784 
calibration can be reliably applied to reconstruct the past temporal evolution of ocean surface 785 
density over the entire Quaternary (last 2.6 Ma). 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

Fig. B3: δ18O benthic foraminifera curve (LR04, Lisiecki and Raymo, 2005) as a proxy of ice 798 
volume and deep ocean temperature changes, used here to select extreme climatic periods 799 
(colder and more arid glacial periods versus warmer and more humid interglacial periods). 800 
Extreme climate periods tested with isotope-enabled model runs representing the mid-801 

Holocene, LIG and LGM are represented by blue dots. Blue lines indicate the range of 802 
extreme climate conditions investigated with our climate simulations tests. 803 

Nonetheless, under very extreme climates outside the Quaternary period (Fig. B3) and in 804 
ocean basins characterized by anti-estuary circulation, like the current Mediterranean Sea and 805 
Red Sea, our calibration could provide density estimates with larger uncertainty, a point that 806 
requires further investigations. 807 

 808 

 809 
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Code and data availability 810 

The Python code for Bayesian calibration models is freely available at the following 811 

repository: https://github.com/nicrie/density_uncertainty. Core top data used for this 812 

analysis are from Malevich et al. 2019 and are available at 813 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019PA003576. LGM and LH δ18Oc 814 

dataset are available at doi:10.5194/cp-10-1939-2014-supplement for Caley et al., 2014, at 815 

https://doi.org/10.1594/PANGAEA.894229 for Waelbroeck et al., 2014 and at 816 

https://doi.org/10.1594/PANGAEA.920596 for Tierney et al., 2020b. The additional LGM and 817 

LH δ18Oc dataset is available at the following repository: 818 

https://github.com/nicrie/density_uncertainty. 819 
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