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Abstract. The stable isotopic composition of precipitation (δ2HP, δ18OP; ‘water isotopes’) is a powerful tool for tracking 

water through the atmosphere, as well as fingerprinting land-surface water masses and identifying water cycle biases in 30 

isotope-enabled climate models. Water isotopes also underpin our understanding of multi-decadal to multi-centennial water 

cycle variability via their retrieval from palaeoclimate archives. Water isotopes thereby increase our understanding of past 

and present—and hence future—water cycle variability. Understanding the drivers of spatial and temporal water isotope 

variability is a critical first step in applying these tracers for a better understanding of the water cycle. However, water 

isotope observations are sparse in both space and time. Here we develop and apply a machine learning (random forest) 35 

approach to predict spatially continuous monthly δ2HP and δ18OP across the Australian continent at 0.25° resolution from 

1962–2023. We train the random forest models on monthly δ2HP (n = 5199) and δ18OP (n = 5217) observations from 60 sites 

across Australia. We also predict the deuterium excess of precipitation (dxsP, defined as δ2HP − 8*δ18OP). Out-of-sample 
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δ2HP and δ18OP prediction skill is high both geographically and temporally. Skill is slightly lower for the secondary 

parameter dxsP, likely reflecting the larger reliance of spatio-temporal dxsP variability on moisture source conditions. The 40 

random forest models accurately capture both the seasonal cycle of precipitation isotopic variability and long-term annual-

mean precipitation isotopic variability across the continent, and outperform estimates from an isotope-enabled atmosphere 

general circulation model over an equivalent time period. We show that spatio-temporal variability in precipitation amount, 

precipitation intensity, and surface temperature are particularly important for monthly δ2HP and δ18OP variations across the 

continent, with local surface pressure also important for dxsP. Drivers of site-level δ2HP, δ18OP, and dxsP are more varied. 45 

Overall, the new random forest modelled dataset reveals clear spatial and temporal variability in δ2HP, δ18OP, and dxsP across 

the Australian continent over the past decades—providing a robust foundation for hydrology, ecology, and palaeoclimate 

research, as well as an accessible framework for predicting water isotope values in other locations.  

1 Introduction 

The stable isotopic composition of precipitation (δ2HP, δ18OP
1) is an integrative tracer of the dynamical processes resulting in 50 

a particular amount of precipitation falling in a particular place at a particular time (Bowen et al., 2019; Galewsky et al., 

2016). Water molecules comprising only the common light (1H, 16O) isotopes have higher saturation vapour pressures than 

water molecules containing a rarer heavy (2H, 18O) isotope. Consequently, a mass-dependent isotopic fractionation occurs 

every time water changes phase (evaporation, condensation, sublimation, riming). For example, when water vapour 

condenses to liquid, water molecules with heavy isotopes will preferentially go to the liquid phase relative to those with light 55 

isotopes. The magnitude of equilibrium fractionation depends on the ambient temperature (Majoube, 1970, 1971). Diffusive 

processes impart additional kinetic fractionation, resulting in important impacts from, for example, ambient relative humidity 

and the time available for isotopic equilibration between the two phases (Galewsky et al., 2016). Hence, information about 

any process involving a water phase change is recorded in the stable isotope composition of a moisture parcel as it moves 

through the atmosphere, and may be preserved in the ultimate isotope composition of surface precipitation. These water 60 

cycle processes include (but are not limited to): evaporation from a particular oceanic source (e.g., Araguás-Araguás et al., 

1998; Wolf et al., 2020), cloud formation (Aggarwal et al., 2016), sub-cloud evaporation (e.g., Graf et al., 2019; Risi et al., 

2010a), and prior rainout along a moisture parcel’s trajectory (e.g., Dansgaard, 1964; Gat, 1996; Wang et al., 2020). The 

derived parameter ‘deuterium excess’ (dxs; δ2H − 8*δ18O) describes a water sample’s deviation from equilibrium isotope 

fractionation (Craig, 1961; Dansgaard, 1964). dxsP provides additional information about temperature and relative humidity 65 

at a moisture parcel’s source—including any continental moisture recycling (Aemisegger et al., 2014; Pfahl and Sodemann, 

2014).  

 
1There is a third stable oxygen isotope, 17O. δ2HP and δ18OP have been widely measured since the 1960s (e.g., Araguás-
Araguás et al., 2000). Observations of ‘triple oxygen’ (Δ17OP) are far less common than δ2HP and δ18OP due to the difficulty 
of accurately measuring 17O/16O ratios (Aron et al., 2021), and are not dealt with further in this study. 

https://paperpile.com/c/gCvMbJ/a3gF/?prefix=e.g.%2C
https://paperpile.com/c/gCvMbJ/a3gF/?prefix=e.g.%2C
https://paperpile.com/c/gCvMbJ/DZtO
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The integrative nature of precipitation isotope tracers means they have applications beyond understanding dynamical 

variability in the water cycle. For example, water isotopes are useful for fingerprinting terrestrial water masses (e.g., rivers, 70 

groundwater) because environmental waters tend to strongly reflect the isotopic composition of the source precipitation 

(Bowen et al., 2011; Jasechko, 2019; Vystavna et al., 2024). Spatial and temporal water isotope patterns can be further 

incorporated into flora and fauna that use environmental waters to form tissues or biomolecules containing H and/or O (e.g., 

bone, cellulose, chitin, enamel, feather, fur, lipids) (Anon, 2008; Hobson, 2023; Meier-Augenstein, 2019). This allows use of 

spatio-temporal isotope fingerprints for tracking insect and animal migration (e.g., Hobson et al., 2021; Rogers et al., 2022; 75 

Wunder, 2012), identifying illegal plant and animal trafficking (e.g., Hopkins et al., 2022; Retief et al., 2014), identifying 

movement of invasive species (Heinrich and Collins, 2017), food provenancing (Camin et al., 2017; Kelly et al., 2005; Varrà 

et al., 2023), and tracing the origin and movements of modern and ancient humans—with applications in archaeology, 

anthropology, and criminal forensics (Bartelink and Chesson, 2019; Depaermentier, 2023; Font et al., 2015; Fraser and 

Meier-Augenstein, 2007; Mützel Rauch et al., 2009; Obertová et al., 2023).  80 

 

Water isotope tracers are also used to reconstruct past climates. The stable isotope composition of environmental waters can 

be incorporated into natural archives with minimal transformation relative to other environmental proxies for climatic 

variables (Konecky et al., 2020). Palaeoclimate archives that preserve information about their source water isotope 

composition are globally distributed and include coral and cave carbonate, lake and marine sediments, tree wood, and ice 85 

(Konecky et al., 2020)—allowing reconstruction of many aspects of the global water cycle. Water isotope proxy records 

from these archives have been used to quantify decadal to multi-centennial variability in climate variables ranging from the 

El Niño-Southern Oscillation (e.g., Falster et al., 2023; Thompson et al., 2013) and the Pacific-North American 

teleconnection (Liu et al., 2014) to local precipitation amount (e.g., Bird et al., 2020; Hu et al., 2008; Kurita et al., 2016; 

Sinha et al., 2007; Tierney et al., 2017), groundwater recharge (e.g., Priestley et al., 2023), and dynamical variability in the 90 

global water cycle (Konecky et al., 2023).  

 

Water isotope transport and fractionation processes have also been incorporated into the atmospheric water cycle of some 

general circulation models (GCMs) (e.g., Brady et al., 2019; Hoffmann et al., 1998; Joussaume et al., 1984; Risi et al., 

2010b; Steen-Larsen et al., 2017). Understanding water cycle bias in GCMs is important as they are used for both future 95 

climate projections and paleoclimate reconstructions. Comparing outputs from isotope-enabled GCMs with precipitation and 

vapour isotope observations has revealed previously unidentified biases in how these GCMs simulate dynamical variability 

in the atmospheric water cycle. Identified biases include: model overestimates of deep convection over the mid-latitude 

oceans (Nusbaumer et al., 2017); too-weak shallow convective mixing in the tropical mid-troposphere (Tanoue et al., 2023); 

and biases in both mid-troposphere rain evaporation and stratiform rain fraction over India (Nimya et al., 2022).  100 

 



4 
 

Understanding the drivers of spatial and temporal δ2HP, δ18OP, and dxsP variability is a critical first step in applying water 

isotope tracers for a better understanding of the water cycle. However, δ2HP and δ18OP observations are sparse in both space 

and time (Terzer-Wassmuth et al., 2021). Previous attempts to understand precipitation isotopic variability beyond data from 

discrete monitoring stations have mostly been via temporally invariant long-term mean precipitation ‘isoscapes’. Long-term 105 

mean isoscapes (or ‘time-mean isoscapes’) infer spatially continuous precipitation isotopic variability between monitoring 

stations (Bowen, 2010; Bowen et al., 2009). Interpolation is usually performed with a linear geostatistical algorithm that uses 

information from one or more explanatory variables to predict climatological δ2HP, δ18OP, and/or dxsP over a particular 

spatial domain. Explanatory variables are generally geographical, and have commonly included elevation, latitude, and 

minimum distance to the coast (e.g., Bowen and Wilkinson, 2002)—with the assumption that these variables provide 110 

adequate proxies for the dynamical processes affecting a moisture parcel’s isotopic composition. When creating time-mean 

isoscapes, observational data are temporally reduced into long-term mean annual, seasonal, or monthly values. More 

recently, machine learning approaches have been used to infer spatial variability in global surface seawater δ18O (Murray et 

al., 2023) and spatio-temporal variability in precipitation isotopes over  New Zealand (Hill et al., 2025) and Europe (Erdélyi 

et al., 2023; Nelson et al., 2021). In the case of the latter, the machine learning models performed better than both 115 

geostatistical models and isotope-enabled GCMs.  

 

The Australian continent has a network of current and former precipitation isotope monitoring stations (Hollins et al., 2018) 

that has very large gaps in both space and time. This low density of observational precipitation isotope data mirrors the small 

number of water isotope-based palaeoenvironmental reconstructions for the continent (Konecky et al., 2020), as well as 120 

limiting the use of water isotopes in ecological, hydrological, and forensic studies compared with other regions. There are 

isoscape estimates of spatially-continuous precipitation variability across the continent (e.g., Hollins et al., 2018; Terzer et 

al., 2013; Terzer-Wassmuth et al., 2021). However, these isoscapes either 1) do not provide information about precipitation 

isotope variability through time, or 2) span at most a two-year period, across the subset of the continent with relatively high 

observational data density (Duff et al., 2025). Here we develop and apply a machine learning (random forest) approach to 125 

predict monthly δ2HP, δ18OP, and dxsP across the entire Australian continent, at 0.25° resolution from 1962–2023. We 

quantify the random forest models’ out-of-sample predictive skill in both the spatial and temporal domains, and compare the 

predicted values with outputs from a state-of-the-art isotope-enabled GCM. This allows us, for the first time, to characterise 

spatio-temporal variability in δ2HP, δ18OP, and dxsP across the entire Australian continent—and facilitates a wide range of 

future applications. Outputs are available in netcdf format at monthly and annual resolution from 130 

https://doi.org/10.5281/zenodo.15486277. We also provide a web app (https://wateriso-aus.shinyapps.io/apic—the 

‘Australian Precipitation Isotope Calculator’) where users can: 1) download δ2HP, δ18OP, and/or dxsP time series at locations 

and temporal resolutions of their choice; and 2) obtain maps of locations across the continent matching specific input values 

(e.g., for sample provenance searches).  

 135 
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2 Methods 

We used a machine learning approach to model the relationships between each of δ2HP, δ18OP and dxsP (the ‘target 

variables’) and a range of geographical, meteorological, and dynamical variables (the ‘predictors’). The models were then 

used to predict time series precipitation isotope maps spanning the Australian continent, and to explore the drivers of their 

predictability across different locations. 140 

2.1 Precipitation isotope training data 

We trained the models on δ2HP and δ18OP observations from 60 unique sites across Australia (Table S1). We also calculated 

dxsP for the 59 sites with both δ2HP and δ18OP values. The δ2HP and δ18OP data are from a mix of published, ‘grey’, and 

unpublished sources, as well as the Australian contributions to the Global Network of Isotopes in Precipitation (GNIP) 

database, which in turn is facilitated by the International Atomic Energy Agency. ‘Grey’ refers to data published in 145 

government reports or student theses. Where water isotope data were sub-monthly, the values were converted to amount-

weighted monthly means using the precipitation amount measurements associated with the water isotope data. If 

precipitation amount measurements were not available, we used the daily precipitation amount data from the Australian 

Gridded Climate Dataset v1 (AGCDv1), which is available at 0.05° latitude by 0.05° longitude resolution from 1900 to 2022 

(Jones et al., 2009). At some sites there were months with observations from multiple sources (Table S1); in those cases, 150 

monthly values were averaged. Temporal coverage at the sites ranged from 2 to 573 months of data, with data in between 1 

and 56 calendar years. The dataset spans 1962–2023; this interval was used to set the temporal bounds on our predictions. 

All site information is summarised in Table S1.   

2.2 Random forest models to predict precipitation isotopes 

We used random forest regression models to predict monthly δ2HP, δ18OP, and dxsP values from a suite of 26 geographical, 155 

meteorological, and dynamical predictor variables (described in Section 2.3). Random forest models are ideal for capturing 

highly non-linear relationships and handling correlated predictors, and perform well with a small number of target variable 

samples. These features make random forest models suitable for the target variables and predictors used in this study. 

Precipitation isotopic variability is influenced by many highly correlated variables, and by using a random forest approach 

we aim to capture as much of the nuance across those relationships as possible. 160 

 

In brief, our random forest models are ensembles of regression trees (Breiman, 2001). Each tree in the forest is created with a 

unique bootstrapped (with replacement) subset of the full training dataset. That is, the forest’s trees are trained on different 

but overlapping datasets, introducing randomisation and variability across the forest. Data omitted from the bootstrapped 

subset are used by the algorithm to compute the training error and optimise tree construction. In each tree, the training data 165 

undergo recursive binary partitioning (‘splitting’), with each split at a node defined by a particular threshold in a particular 
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predictor variable. For example, at one node, the precipitation isotope data may be grouped according to whether the amount 

of precipitation in that month was more or less than 70 mm. At another node, the data may be split according to whether the 

site elevation is above or below 20 m. At each node, the predictor variable by which the data are split is chosen from a 

reduced set of predictor variables randomly selected from the full available set of predictors. From that reduced set, the 170 

model chooses 1) the variable (e.g., precipitation amount) and 2) the threshold (e.g., 70 mm) that best homogenise the 

precipitation isotope samples in subsequent ‘child’ nodes, reducing the variability of the child nodes compared to the parent 

node. A different randomly determined subset of predictor variables is used to choose the variable for each split. This binary 

partitioning continues until the number of samples remaining at a node falls below a threshold. These nodes, which no longer 

undergo splitting, constitute the leaves of the tree, with their values representing the average precipitation isotope value of 175 

the remaining samples. Predictions from all trees in the forest are averaged to provide the final predictions for the given set 

of predictors.  

 

The random forest models were built using the ranger package (Wright and Ziegler, 2017) in R (v4.4.0; R Core Team, 

2024). Random forest model hyperparameters were determined objectively using the tuneRanger package (Probst et al., 180 

2018). The hyperparameters tuned for each model (with the parameter name in ranger shown in italics) were: 1) the size of 

the reduced set of predictor variables used at each node for splitting (mtry); 2) the minimum number of samples in a node to 

continue splitting (min.node.size); and 3) the fraction of the training dataset used in each tree’s training dataset 

(sample.fraction). All other model parameters were as per the ranger defaults. Random forest models incorporate 

randomness in both the data subset used to grow the trees, and the subset of variables available for splitting at each node. To 185 

account for this inherent randomness, we repeated each of the stages described below 50 times, each with a different random 

seed. 

 

Each precipitation isotope metric (δ2HP, δ18OP, dxsP) was modelled separately. We acknowledge that this represents a 

fundamental inconsistency, in that dxsP is not an independent parameter. After producing the models, we therefore compared 190 

the independently modelled dxsP values with dxsP as calculated from the modelled δ2HP and δ18OP. 

2.2.1 Quantifying model predictive skill 

We tested out-of-sample model skill separately in the spatial and temporal domains (spatial and temporal transitivity). To 

test spatial transitivity we excluded all data from one site (the ‘test site’) from the full training dataset, trained a random 

forest model using the remaining data, then used that model to predict values for the excluded test site. We repeated that 195 

process for all sites. To test temporal transitivity we excluded a random 10% of observations from the full training dataset, 

trained the model on the remaining 90%, then used the model to predict values for the excluded 10%. We repeated that 

process so every data point was tested out-of-sample. 
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To formally quantify skill, we used a suite of seven independent skill metrics (Table S4 in Abramowitz et al., 2024). The 200 

skill metrics are independent in the sense that a change can be made to the predicted values that affects one metric but not 

the others. The metrics are: 

● The Pearson correlation coefficient (r) between the observed and modelled monthly values; 

● the Mean Bias Error (MBE), which describes the average size of the deviation between model and observation; 

● the Normalised Mean Error (NME), which is the ratio of MBE to the average deviation of observations from the 205 

observational mean; 

● the difference between the Standard Deviation (SD) of the observed and modelled monthly values (modified from 

Abramowitz et al. (2024), who report the absolute difference); 

● the difference in the 5th percentile of modelled versus observed values (modified from Abramowitz et al. (2024), 

who report the absolute difference); 210 

● the difference in the 95th percentile of modelled versus observed values (modified from Abramowitz et al. (2024), 

who report the absolute difference); and  

● the density estimate overlap proportion, which summarises the degree of overlap between density estimates 

calculated for the modelled and observed values (a value of 1 indicates perfect overlap; 0 indicates no overlap).  

 215 

We report the mean and variance of each skill score across models created with the 50 unique seeds.  

 

Finally, we qualitatively evaluated the stability of model performance through time. For this, we calculated the difference 

between observed and modelled δ2HP, δ18OP, and dxsP values for all months that have observations. We then summarised 

these bias values by decade. For this analysis, we used the final δ2HP, δ18OP, and dxsP estimates (Section 2.2.3) from the 220 

longer models trained over 1962–2023 (see Section 2.3.1), and show the mean of the 50 models created with unique random 

seeds. 

2.2.2 Estimating predictor importance 

Random forest models assess the relative importance of predictor variables based on their impact on the model's predictive 

skill. This relative importance can be estimated using methods such as permutation and impurity importance. The 225 

permutation method involves selecting a predictor variable, shuffling its values, and observing the resulting degradation in 

model performance based on the out-of-bag error (see Section 2.2) across the entire forest (see Breiman, 2001 for details). 

Predictor variables that cause a larger degradation in performance are considered more important for accurately predicting 

the target variable. The impurity importance method, on the other hand, quantifies the extent to which a predictor variable 

contributes to reducing the dataset's variability at each split within the forest (Ishwaran, 2015). Variables that result in greater 230 
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variance reduction have higher impurity importance. It is important to note that relative importance values compare the 

importance of predictors with each other, rather than being interpreted as absolute measures of importance. 

 

The two methods were tested and yielded similar results; in the interest of brevity we report only results from the 

permutation method—which is easily interpretable in that in effect, it ‘removes’ each variable in turn by randomising its 235 

values, thereby removing any predictive power. This is also the importance method used by Hill et al. (2025) in their recent 

assessment of precipitation isotopic variability over New Zealand. We report predictor importance estimates for the final 

models (incorporating information from all sites). We also report predictor importance estimates for the seven individual 

sites with over 200 monthly observations; results are likely not meaningful with fewer than ~200 observations. In all cases, 

for each predictor variable we report its average rank across the models created with the 50 unique seeds, with 1 being the 240 

least important and a rank equivalent to the number of included variables being the most important. Note that the random 

forest predictor importance estimation algorithms assign a negative importance value to variables that decrease model skill 

(this was not the case with any of our chosen predictor variables).   

2.2.3 Building final models 

When creating the final models, we trained the random forest models using the entire water isotope observation dataset. We 245 

then used those models to predict monthly δ2HP, δ18OP, and dxsP values for each 0.25° grid cell over the Australian continent 

across 1962–2023. 

2.3 Predictor variables 

To predict monthly precipitation isotope variability on a spatially continuous grid across the Australian continent, we 

assembled a suite of known meteorological, dynamical, and geographical drivers of precipitation isotope spatio-temporal 250 

variability (Table S2). Geographical variables include latitude, longitude, minimum distance to the coast (‘continentality’), 

and elevation (of these, only elevation was included in the final models; see Section 2.3.2). Continentality was calculated 

using the Australian Statistical Geography Standard GDA2020 digital boundary file. Elevation data are from the GEODATA 

9 Second Digital Elevation Model Version 3 (Hutchinson et al., 2008), available at 9 second latitude by 9 second longitude 

resolution (approximately 250 m) over Australia. All meteorological data were derived from the European Centre for 255 

Medium-Range Weather Forecasts Reanalysis v5 (ERA5), available at 6-hourly and monthly resolution on a 0.25° latitude 

by 0.25° longitude grid (approximately 31 km) from 1940 to present (Hersbach et al., 2020; Soci et al., 2024). 

Meteorological variables include: air temperature, evaporation, fraction of precipitation delivered as snow, mean sea level 

pressure, precipitation amount, precipitation intensity, ratio of convective to total precipitation, relative humidity, wind 

direction, and wind strength (more details provided in Table S2). We note that there is a gridded precipitation amount 260 

product specific to Australia that spans our 1962–2023 analysis interval—the AGCDv2 (Evans et al., 2020). However, 
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AGCDv2 is only available at monthly resolution, and daily data are required to calculate precipitation intensity. 

Nevertheless, we compared monthly precipitation amount in ERA5 with AGCDv2 in discrete locations across Australia and 

the two were similar (not shown). We therefore used the ERA5 precipitation amount data for consistency across the 

predictor variables. 265 

 

The source and delivery mechanism of precipitation are important drivers of local precipitation isotopic variability, but 

extremely difficult to condense into discrete site-level variables. We therefore included ‘weather objects’ in our suite of 

predictor variables, providing a proxy for many of these processes (Table S2). In brief, the synoptic processes responsible for 

daily precipitation over the Australian continent can be classified into eight weather object categories: anticyclone, cutoff 270 

low (troposphere), cutoff low (stratosphere), cyclone, front, potential vorticity streamer, warm conveyor belt (ascent), and 

warm conveyor belt (inflow)—see Jin et al. (2024) and Sprenger et al. (2017) for details. The weather object/s responsible 

for precipitation are implicitly linked to particular weather systems that characteristically transport moisture from distinct 

source regions, and follow particular trajectories. Therefore, including the weather object data as predictors incorporates 

information about the processes that brought the moisture to its ultimate precipitation location. The precipitation-bringing 275 

weather objects were originally calculated at daily resolution, on a 0.5° latitude by 0.5° longitude grid from 1980–2019 (Jin 

et al., 2024). 

 

To include information about possible broader-scale dynamical drivers of Australian precipitation isotopic variability, we 

included indices for known remote drivers of Australian precipitation amount. These are: the Niño 3.4 index for the strength 280 

of the El Niño-Southern Oscillation (ENSO); the trans-Pacific sea level pressure gradient (ΔSLP) index for the strength of 

the Pacific Walker Circulation; the Dipole Mode Index (DMI) for the strength of the Indian Ocean Dipole; the difference in 

the zonal mean SLP between 40°S and 65°S for the Southern Annular Mode (SAM); and the first principal component of 

Indian Ocean SST for the Indian Ocean Basin Mode (IOBM). The Nino 3.4 index was calculated as area-mean sea surface 

temperature (SST) anomalies in a box 10°S–10°N, 170°W–120°W. The ΔSLP index was calculated as the difference in SLP 285 

anomalies averaged over the central/east Pacific (5°S–5°N, 160°W–80°W) and the Indian Ocean/west Pacific (5°S–5°N, 

80°E–160°E) (following Vecchi et al., 2006). The DMI was calculated as the difference in SST anomalies averaged over the 

west (10°S–10°N, 50°E–70°E) and east (10°S–0°, 90°E–110°E) Indian Ocean (following Saji et al., 1999). The SAM index 

was calculated as the difference in SLP anomalies averaged over 40°S and 65°S (following Velasquez-Jimenez and Abram, 

2024). The IOBM index was calculated as the first principal component of linearly detrended SST anomalies over the Indian 290 

Ocean (following Yu et al., 2022). All indices were calculated using SST or SLP data from ERA5 and all area means were 

area weighted.     

 

Finally, we explicitly accounted for the seasonal cycle by encoding the month of the year using sine and cosine 

transformations and including these as predictors.  295 
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When similarly using a regression tree approach to model precipitation isotopic variability, Nelson et al. (2021) started with 

a broad suite of possible predictor variables. They then used the impurity importance method (see Section 2.2.2) to identify 

their models’ least important predictor variables, and excluded those variables in their final models. We did not perform a 

similar feature selection step, instead relying on 1) a careful initial choice of predictors; then 2) the random forest’s predictor 300 

importance algorithm to determine if any predictors were detrimental to model skill (which was not the case; see Section 

2.2.2)  

2.3.1 Predictor data processing 

All predictor variable datasets not sourced from ERA5 were regridded to a common 0.25° latitude by 0.25° longitude grid 

using bilinear interpolation (matching the spatial resolution of ERA5). The weather object data were converted from daily to 305 

monthly resolution by calculating the proportion of total monthly precipitation delivered by each weather object category. To 

train the models, we extracted the predictor data from the 0.25° grid cells matching the location of each monitoring site, then 

filtered the monthly time series to only retain months with observations. Together with the δ2HP, δ18OP, and dxsP data, this 

formed the set of full training datasets. We retained the full spatio-temporally continuous set of predictor variables for 

making predictions with the final models.  310 

 

The weather object data are available from 1980-2019; all other datasets are either time-invariant or available for the full 

calendar years matching the precipitation isotope data availability (1962–2023). We therefore performed all methodological 

steps described in Section 2.2 twice: once using the longer, reduced set of predictor variables (without the weather objects; 

spanning 1962–2023), and once using the shorter, complete set of predictor variables (including the weather objects; 315 

spanning 1980–2019).  

2.3.2 Predictor variables included in the final models 

Previous spatially-continuous estimates of precipitation isotope variability across the Australian continent were predicted 

based solely on geographical variables (latitude, elevation, continentality). We initially incorporated these as predictors in 

our random forest models; however, latitude, longitude, and continentality induced visible artifacts in derived metrics (e.g., 320 

the slope of the meteoric water line, not shown). Repeating the skill tests (Section 2.2.1) on results from models using a 

predictor set without these variables did not impact the results, so they were omitted from the final models.   

2.4 Comparison with observations and precipitation stable isotopic estimates from other sources 

We compared final modelled δ2HP, δ18OP, and dxsP values (Section 2.2.3) with 1) observations from each site; and 2) outputs 

from an isotope-enabled atmospheric GCM, ECHAM6-wiso, which simulates δ2HP and δ18OP (Cauquoin and Werner, 2021). 325 
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The ECHAM6-wiso simulation had its 3D fields of temperature, vorticity, and divergence, as well as its surface pressure 

field, nudged toward ERA5 data—and is therefore directly comparable with monthly observations (Cauquoin and Werner, 

2021). Outputs from ECHAM6-wiso are available globally at 0.9° latitude by 0.9° longitude resolution from 1979 to 2021 

(1979–2018 publicly available, with an additional three years provided by the authors). We assessed both models’ (random 

forest and ECHAM6-wiso) performance in retrieving 1) the full distribution of observed δ2HP, δ18OP, and dxsP values at each 330 

site; and 2) the seasonal cycle of δ2HP, δ18OP, and dxsP at each site. When calculating the density functions and seasonal 

cycles, we used isotope values from the time interval in which all three data sources overlap (1979–2021), only including 

months with observations. In the case of the random forest models, we used predictions from the longer models trained over 

1962–2023 with the reduced set of predictor variables (without weather objects), and show the mean of the 50 models 

created with unique random seeds. 335 

 

We also used both models (random forests and ECHAM6-wiso) to estimate long-term mean precipitation amount-weighted 

annual mean δ2HP, δ18OP, and dxsP (‘time-mean isoscapes’), and compared this with a set of linear regression-based time-

mean isoscapes (Hollins et al., 2018). The linear regression-based time-mean isoscapes were estimated from latitude, 

altitude, and distance from the nearest coastline, and are available at 0.17° latitude by 0.17° longitude resolution (no time 340 

dimension). When directly comparing the three time-mean isoscapes, we used a mass-conservative interpolation scheme to 

regrid the climatological δ2HP, δ18OP, and dxsP from the ECHAM6-wiso and linear regression models to match the spatial 

resolution of the random forest isoscapes.  

 

In all three cases, we estimated the isoscape bias relative to observations by calculating observed long-term mean amount-345 

weighted annual mean δ2HP, δ18OP, and dxsP at each site with five or more years of observations, then calculating the 

difference between this observed value and the matching grid cell in each of the three modelled time-mean isoscapes. We 

report both total and absolute mean bias across all sites—noting that this is not representative of the true isoscape skill given 

the temporal and geographical bias in site distribution. Values are reported as a percentage of the total observed range in 

mean annual mean δ2HP, δ18OP, and dxsP at each site, so the bias estimates for the three isotope metrics are roughly 350 

comparable. At each site, we only included years with >3 monthly observations (sites north of 23°S, where it is common for 

no precipitation to be delivered in dry-season months) or >8 monthly observations (sites south of 23°S, where precipitation 

delivery is relatively uniform through the year). Noting that these bias estimates compare average observed values over 

different time periods: for the random forest and ECHAM6-wiso models we additionally calculated the absolute and overall 

bias, only including model years with matching observations. This test was not possible for the temporally-invariant linear 355 

regression-based isoscape.  
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We note that Duff et al. (2025) used a linear (kriging) approach to estimate monthly δ2HP and δ18OP isoscapes across south-

eastern Australia over a two-year time period (2007–2008). However, formal comparison of our random forest results with 

the regional monthly δ2HP and δ18OP isoscapes of Duff et al. (2025) was not possible as these data are not publicly available.  360 

3 Results 

3.1 Overall model skill 

The random forest models’ out-of-sample predictive skill across all metrics is high in both the geographical (Figs. 1–2, S1–

S4) and temporal (Figs. 3, S5–S6) domains, indicating that the random forest approach is suitable for modelling precipitation 

isotope variability across the Australian continent. All results are robust to the inherent randomness of the method, with 365 

minor differences between the 50 instances of each model (Fig. S7). Temporal transitivity is generally superior to spatial 

transitivity; that is, the random forest models are better at filling gaps in time than filling gaps in space. There is little 

difference in predictive skill between shorter models trained over 1980–2019 (including the weather objects) and the longer 

models trained over 1962–2023 (omitting the weather objects). Skill scores for the shorter models are generally slightly 

better: for example, the average model-observation correlation coefficient for δ2HP and δ18OP spatial transitivity in the 370 

shorter models is 0.7 (not shown) compared with 0.68 for the longer models (Figs. 2a, S3a). The exception is the density 

estimate overlap proportion for dxsP with respect to temporal transitivity, which is much higher in the shorter models 

(including the weather objects) than the longer models (omitting the weather objects; Fig. S6g). Model performance is fairly 

stable through time (Fig. 4). 

 375 

In terms of predictive skill in modelling isotope variability at out-of-sample locations: for all three isotope metrics, there was 

no relationship between skill and the distance to the nearest site included in the training dataset (Figs. 1, S1–S2). This 

provides confidence that the model predictions for locations with no training data are likely no worse than indicated by the 

skill tests at the training data locations—noting that on average, for over 98% of grid cells, >99% of predictor values are 

within the range of the training dataset (Fig. S8).   380 

 

When predicting values out-of-sample, the random forest models generally under-estimate extreme values at both ends of the 

distribution. That is, the slope of the linear relationship between observed and modelled values is generally less than 1 (Figs. 

5, S9–S10). This is the case for both spatial (Figs. 1–2e-f, S1–S4e-f) and temporal transitivity (Figs. 3e-f, S5–S6e-f), where 

the modelled 5th percentile values are mostly positively biased, and the modelled 95th percentile values are mostly 385 

negatively biased, and standard deviations are mostly lower than in observations. However, the seasonal cycles of δ2HP, 

δ18OP, and dxsP are well represented by the random forest models (blue versus grey curves in Figs. 6, S11–S12). This is the 

case even at sites with very few observations (e.g., rows 7–10 of Figs. 6, S11–S12).  
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3.1.1 Relative predictability of the three isotope metrics 390 

Predictive skill for δ2HP and δ18OP is similar whilst predictive skill for dxsP is slightly lower across all metrics. This is the 

case for out-of-sample skill in both the temporal and spatial domains (Figs. 1–3,5, S1–S6, S9–S10), for predictions based on 

the full training dataset (Figs. 6–7, S11–S14), and for the models with the full versus reduced predictor sets. For example, 

both the mode and shape of site-wise density functions for observed versus modelled δ2HP and δ18OP are similar (Figs. 7, 

S13, grey versus blue curves). This is particularly the case for sites with over ~50 observations (first four rows in Figs. 7, 395 

S13) where there is generally a large overlap between the grey (observations) and blue (random forest models) distributions. 

Additionally, the random forest models accurately reproduce features such as the left-skewed δ2HP and δ18OP distributions at 

the tropical sites (Cairns, Willis Island). In comparison, although the mode of the random forest-modelled dxsP values is 

generally accurate at sites with over ~50 observations, the distributions generally have excessive kurtosis (Fig. S14).   

3.2 Comparison of independently modelled dxsP with dxsP calculated from δ2HP and δ18OP 400 

There is minimal difference in long-term dxsP across the Australian continent as estimated from the independent set of 

random forest models, compared with long-term mean dxsP calculated from modelled δ2HP and δ18OP (Fig. 8). Broadly, the 

independent random forest models (Fig. 8a) predict slightly higher dxsP across inland western Australia than implied by the 

δ2HP and δ18OP models (Fig. 8b). The reverse is true for the southern and northern coastline, excepting the far-northern tips 

of the continent. However, the magnitudes of the difference are small in the long-term annual mean (Fig. 8c). 405 

 

3.3 Key predictors of δ2HP, δ18OP, and dxsP spatio-temporal variability 

For the final models (incorporating all training data), precipitation amount and precipitation intensity were the most 

important predictors of δ2HP and δ18OP spatio-temporal variability (Fig. 9). Relative humidity, surface temperature, the ratio 

of convective to total precipitation, and the seasonal cycle were also important. For dxsP, surface temperature and mean sea 410 

level pressure were the most important predictors, followed by precipitation amount and relative humidity. 

 

In the shorter models including the weather object data, the weather objects (shown in lavender on Fig. 9) were generally of 

middling importance, with precipitation delivered by potential vorticity streamers the most important weather object for 

spatio-temporal variability in all three isotope metrics. Remote drivers (e.g., ENSO, SAM, shown in green) tended to be less 415 

important across all isotope metrics. Of the remote drivers, the ΔSLP and Niño 3.4 indices for tropical Pacific variability 

were the most important. The fraction of precipitation delivered as snow was the least important predictor of spatio-temporal 

variability in all isotope metrics—likely because it is only relevant for a very small geographical region. Nevertheless, all 
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predictors contributed meaningfully to the final models. Predictor importance was robust to the inherent randomness of the 

models, with minimal differences between the models produced with the 50 unique seeds.   420 

3.3.1 Predictor importance for individual sites 

Predictor importance for temporal variability in δ2HP, δ18OP, and dxsP varied by site (Fig. 10). For δ2HP and δ18OP: 

precipitation amount, precipitation intensity, relative humidity, and the seasonal cycle were prevalent in the top five most 

important predictors across sites, but other variables—including those less important for continental spatio-temporal δ2HP 

and δ18OP variability—also scored highly. These include the ratio of convective to total precipitation and local evaporation; 425 

weather objects also regularly featured in the five most highly-ranked predictors. 

 

Relative to δ2HP and δ18OP, there was more inter-site variability in dxsP predictor importance (Fig. 10 third column). Both 

surface temperature and precipitation delivered by potential vorticity streamers appeared the most frequently in the five most 

highly-ranked predictors across the five sites. Weather objects (shown in lavender) tended to be ranked more highly than for 430 

δ2HP and δ18OP, with local precipitation amount and intensity generally less important.  

3.4 Spatio-temporal variability in precipitation stable isotopes over the Australian continent 

The spatio-temporally complete modelled dataset shows clear interannual variability in all three isotope metrics (Figs. 11–

12, S15–S16). For one example, the unprecedentedly extreme 2017–2019 eastern Australian ‘Tinderbox’ drought (Devanand 

et al., 2024; Falster et al., 2024) is associated with distinct isotopic anomalies in the annual mean (see also Fig. S17). This is 435 

particularly the case for dxsP, where negative dxsP values associated with the final year of the drought are the most extreme 

of any in the past 20 years (Figs. S16–S17). 

 

In terms of the total range of values spanned at any one location (i.e., the maximum value occurring at a location minus the 

minimum value occurring at that location, across 1962–2023), monthly precipitation isotopic ranges span 30.1–114.3‰, 4.1–440 

17.4‰, and 5.7–30.9‰ for δ2H, δ18O, and dxs, respectively (Fig. 12a–c). Annual-mean site-wise total ranges span 5–61.7‰, 

0.5–9.4‰, and 0.8–12.7‰ for δ2H, δ18O, and dxs, respectively (Fig. 12d–f). 

3.5 Comparison with precipitation isotopic estimates from other sources 

3.5.1 Monthly variability 

In terms of both the seasonal cycle (Figs. 6, S11–S12, grey versus blue and green curves) and the overall distribution of 445 

values (Figs. 7, S13–S14), the random forest models generally outperform the physically-based ECHAM6-wiso estimates of 

δ2HP, δ18OP, and dxsP for the equivalent months. For example, the site-wise seasonal cycles of δ2HP and δ18OP in ECHAM6-
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wiso (green curves in Figs. 6, S11) are generally damped (e.g., Yarrangobilly, Mt. Werong), offset (e.g., Cape Grim, 

Macquarie Marshes), or both (e.g., Melbourne) relative to both observations and the random forest models. The random 

forest models perform particularly well compared with ECHAM6-wiso in retrieving the seasonal cycle of dxsP, where the 450 

random forest models generally capture both the magnitude and timing of the seasonality, but estimates from ECHAM6-

wiso generally have either a larger overall bias (e.g., Margaret River, Lucas Heights) and/or bias in the seasonal cycle 

magnitude (e.g., Brisbane, Sydney)  (Fig. S12).  

 

Differences in skill between the two models are less distinct in predicting the overall distribution of δ2HP and δ18OP values 455 

(Figs. 7, S13)—both the random forest and general circulation models perform well. Whilst the distributions of random 

forest-predicted values are generally closer to observations than those predicted by ECHAM6-wiso, there are sites where 

ECHAM6-wiso out-performs the random forest models (e.g., Adelaide, Alice Springs). There are also instances where 

estimates from the two models are similar but both diverge from observations (e.g., Lucas Heights, Mt. Isa). The dxsP 

estimates from ECHAM6-wiso lack the positive kurtosis of the random forest estimates (Fig. S14). However, the ECHAM6-460 

wiso estimates have a negative dxsP bias at most sites; this negative bias is not present in the random forest estimates.  

3.5.2 Long-term mean precipitation isoscapes 

In terms of the long-term mean annual-mean δ2HP and δ18OP across the Australian continent (‘time-mean isoscapes’; Fig. 

13), there are some similarities between estimates from the random forest models, the physical ECHAM6-wiso model 

(Cauquoin and Werner, 2021), and linear regressions using geographic variables (Hollins et al., 2018). Common features 465 

include: relatively negative values over the Australian Alps, relatively positive values in south-central continental Australia, 

and a trend to more negative values northward and westward (Fig. 13a–j). The random forest and linear regression time-

mean isoscapes also predict relatively negative δ2HP and δ18OP values over the Tasmanian Alps. The ECHAM6-wiso and 

linear regression time-mean isoscapes predict large areas of very negative δ2HP and δ18OP across northern Australia; these are 

not so strongly present in the random forest isoscape.  470 

 

The three dxsP time-mean isoscapes are quite different (Fig. 13k–o). Overall, there are more similarities between the two 

statistically-derived isoscapes where dxsP was modelled directly (random forests and linear regressions) than the physically-

based isoscape (ECHAM6-wiso) where dxsP was calculated from δ2HP and δ18OP. For example, the random forest and linear 

regression time-mean isoscapes predict relatively positive values over higher-elevation areas (Australian Alps, Tasmanian 475 

Alps, MacDonnell Ranges). These features are not present in the ECHAM6-wiso dxsP time-mean isoscape which relies on 

accurate modelling of the relative variability in δ2HP and δ18OP.  
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The random forest δ2HP and δ18OP time-mean isoscapes are the most similar to long-term mean annual-mean observations; 

the linear regression-based isoscape has slightly lower absolute dxsP bias at the sites/years with observations (mean absolute 480 

bias in Table 1). In the random forest δ2HP and δ18OP time-mean isoscapes, values tend to be positively biased in central to 

north-western Australia, and negatively biased in eastern Australia (Figs. S18–S19). The reverse is broadly true for the 

ECHAM6-wiso time-mean isoscape; most sites have a negative bias in the linear regression isoscape (Fig. S18, mean overall 

bias in Table 1). The random forest dxsP time-mean isoscape has a negative bias at most sites (Figs. S18g, S19f, mean overall 

bias in Table 1). Overall, the random forest models’ absolute biases are similar across the three isotope metrics (Table 1). 485 

The ECHAM6-wiso dxsP time-mean isoscape has much larger mean absolute bias than the ECHAM6-wiso δ2HP and δ18OP 

isoscapes; the linear regression dxsP isoscape has much smaller mean absolute bias than the linear regression δ2HP and δ18OP 

isoscapes (Table 1). When biases are calculated using only model values in years with observations (as opposed to the full 

long-term mean), the random forest models’ absolute biases are uniformly lower; the ECHAM6-wiso biases are higher (Fig. 

S19, Table 1). Nevertheless, the values are similar to those calculated using all model years, suggesting that these bias 490 

estimates provide a reasonable approximation of skill across the three time-mean isoscapes.  

4 Discussion 

Our new spatially and temporally continuous estimates of monthly δ2HP, δ18OP, and dxsP reveal strong variability across the 

Australian continent, both in space (Fig. 13) and through time (Figs. 11–12, S15–S16). Rainfall-related climate extremes 

(e.g., the 2017–2019 Tinderbox Drought; Fig. S16) are reflected in distinct isotopic anomalies, suggesting that dynamical 495 

atmospheric processes associated with extreme climate events could be further interrogated using precipitation isotopic data. 

Importantly, we show that even at individual locations, both monthly and interannual variability in the isotopic composition 

of precipitation is high (Fig. 12). This has implications for water isotope-based provenance studies, which have often relied 

on temporally invariant isoscapes for isotopic fingerprinting (e.g., Fig. 12 compared with Fig. 13).  

 500 

Comprehensive skill testing suggests that random forest modelling is a robust method for reliably estimating water isotope 

variability across the Australian continent in places/times where direct observations are not available. This may include both 

sites lacking observations, and times at current or previous monitoring stations where data were not collected. Random forest 

models may be particularly useful for the latter, given their relatively high skill in filling time gaps (Figs. 3, S5–S6). 

4.1 Reasons for mismatch between modelled and observed values 505 

As is common for any predictive model of physical climate variables (e.g., Hill et al., 2025; Nelson et al., 2021), the random 

forest models tend to under-estimate extreme values in all three isotope metrics (Figs. 5, S9–S10). This may be due to 

several factors. First, the most extreme monthly δ2HP, δ18OP, and dxsP values may be driven by a small number of extreme 
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precipitation events (e.g., Griffiths et al., 2022; Munksgaard et al., 2012), which ERA5 underestimates compared with 

precipitation events closer to the mean (Lavers et al., 2022). Second, we may have missed predictor variables specifically 510 

relevant for the most extreme negative or positive δ2HP, δ18OP, and dxsP values that have also not been previously identified 

in the literature or are not practical for inclusion in random forest models. Third, the mismatch in the extremes may be due to 

observational error, and therefore not well simulated by the random forest models that are mostly trained on data closer to 

the median. For example, during low precipitation months, high δ2HP and δ18OP and low dxsP values may result from 

evaporation during sample collection (discussed in Section 4.2 in more detail). Fourth, random forest modelling is an 515 

ensemble method where each prediction is the average of predictions from all trees. This approach enhances robustness to 

biases by reducing the influence of any single tree's error. However, it also dampens extremes due to the averaging process, 

limiting the models' ability to capture outliers. 

 

Regarding the lower skill in simulating dxsP relative to δ2HP and δ18OP: compared with δ2HP and δ18OP, dxsP variability is 520 

strongly driven by ambient conditions at the precipitation source (Pfahl and Sodemann, 2014). Moisture source conditions 

are not well captured in our models, which by necessity rely on largely site-level predictors. The shorter models—

incorporating the weather object data—predicted dxsP more skillfully than the longer models without the weather objects. 

Further, the skill increase resulting from inclusion of the weather objects was larger for dxsP than for δ2HP and δ18OP, 

suggesting that the moisture source and transport information inherent in the weather objects is particularly important for 525 

dxsP. Nevertheless, these proxies for the moisture source location and conditions were evidently insufficient for fully 

capturing spatio-temporal dxsP variability. Future work could attempt to incorporate information about moisture source and 

transport path via moisture parcel back-trajectory analysis (e.g., Munksgaard et al., 2012; Stein et al., 2015), although this 

would be computationally expensive as calculations would need to be performed for all precipitation events in all months, at 

all grid cells (in this case, 744 months for >8,000,000 grid cells).  530 

4.2 Comparison with linear regression isoscape and isotope-enabled model 

In terms of long-term mean annual-mean δ2HP and δ18OP, the random forest models have lower absolute bias than linear 

regression-based isoscapes using only geographical predictors (Hollins et al., 2018)—despite the random forest models being 

calculated at lower spatial resolution (Fig. S18, Table 1). This demonstrates the importance of meteorological and dynamical 

variables for precipitation isotope variability across the Australian continent—and that the impact of that variability on 535 

precipitation isotopes is not solely controlled by geography.  

 

One of the major advances of our new random forest models from the linear regression-based isoscape is the addition of the 

time dimension. Information about spatio-temporal precipitation isotope variability was previously available from isotope-

enabled GCMs, including the state-of-the-art nudged isotope-enabled ECHAM6-wiso model. Like the random forest models, 540 
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ECHAM6-wiso accurately simulates the seasonal cycle and overall distribution of δ2HP, δ18OP, and dxsP values at most sites 

(Figs. 6–7, S11–14). However, ECHAM6-wiso predictions of long-term mean δ2HP, δ18OP, and dxsP are less accurate in 

high-elevation regions (Figs. 13, S19). This lower accuracy at high-elevation sites is likely due to the lower spatial resolution 

of ECHAM6-wiso (0.9°) compared with the random forests (0.25°), affecting the model topography (Cauquoin and Werner, 

2021). High-elevation regions such as the Australian and Tasmanian alps form the headwaters for catchments important for 545 

both domestic water supply and generation of hydro-electric power (Donohue et al., 2011). The random forests’ relatively 

high skill in modelling high-elevation precipitation isotopic variability will therefore be particularly useful in understanding 

surface water and groundwater movements in catchments critical for Australia’s water security. 

 

Inland and western Australia are poorly sampled by the observational network, making our new estimates particularly useful 550 

in these areas. Broadly, the random forest isoscapes predict higher inland climatological δ2HP and δ18OP values than 

ECHAM6-wiso; the reverse is true for dxsP (Fig. 13, third and fifth columns). It is difficult to say which is more accurate—

Fig. S18 shows that the random forests tend to overestimate inland δ2HP and δ18OP values with respect to observations, but 

ECHAM6-wiso tends to underestimate them. These differences may be influenced by bias in the observational training data. 

Inland Australia is climatologically hot and dry, and is sparsely populated. Because of this sparse population, in many cases 555 

precipitation samples for isotopic analysis are collected via composite samplers rather than daily rainfall collection, despite 

the dry climate. Composite samplers tend to be associated with isotopic bias in low-rainfall months, resulting in a positive 

(but not systematic) bias in δ2HP and δ18OP values. Accordingly, ECHAM6-wiso—which directly simulates processes 

important for inland precipitation δ2H/δ18O/dxs, such as sub-cloud evaporation (Crawford et al., 2017)—underestimates 

inland precipitation δ2H/δ18O with respect to observations, but may in fact be closer to the true values. Nevertheless, as 560 

shown in Table 1 (and apparent visually from Fig. S18 for the inland sites), the overall magnitude of the (apparent) bias in 

the random forest isoscapes is less than that of ECHAM6-wiso and this is essentially impossible to test further without new 

observational data. 

4.3 Drivers of precipitation isotopic variability across the Australian continent 

Australia’s precipitation is highly variable both spatially and temporally, with large gradients in precipitation amount and 565 

seasonality across the continent, and large variations from year to year (Nicholls et al., 1997). Our models reveal that this 

spatio-temporal heterogeneity in Australian precipitation and its intensity is closely linked to spatio-temporal heterogeneity 

in the isotopic composition of that precipitation (Fig. 9). However, relative predictor importance for monthly δ2HP, δ18OP, 

and dxsP variability varies spatially (Fig. 10)—reflecting the large spatial variability in the drivers, sources, and seasonality 

of Australian precipitation. For example, tropical northern Australia receives most of its rainfall in the austral summer, with 570 

rain generally delivered by monsoon troughs and tropical cyclones (Sharmila and Hendon, 2020; Suppiah, 1992). Moisture 

in the monsoon season mostly originates from the proximal seas north of Australia, with up to ~11% local recycled 
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precipitation (Holgate et al., 2020). In comparison, much of southern Australia has winter-dominated precipitation, with 

moisture generally delivered by extratropical cyclones, fronts, and thunderstorms, and minimal precipitation recycling 

(Holgate et al., 2020; Pepler et al., 2020, 2021). Inland Australia is mostly arid, with highly variable precipitation (Van 575 

Etten, 2009), delivered by a wide range of weather systems (Acworth et al., 2016), and with moisture sourced from oceans 

all around Australia as well as terrestrial recycling (Acworth et al., 2024; Holgate et al., 2020). South of the tropics, moisture 

sources to the Australian continent vary widely, with the Coral and Tasman seas supplying much of the south-eastern to 

eastern coasts, and the proximal Indian and Southern oceans supplying south-western Australia (Holgate et al., 2020). The 

timing and source of precipitation over the Australian continent is influenced by both local weather systems and remote 580 

drivers (Risbey et al., 2009)—including ENSO (McBride and Nicholls, 1983), the IOD (Ummenhofer et al., 2009), and the 

SAM (Hendon et al., 2007). 

 

Accordingly: at Darwin in tropical northern Australia, mean sea level pressure, rainfall amount, and rainfall intensity are in 

the top five most important predictors of variability in all three isotope metrics (Fig. 10 top row). This is likely linked to the 585 

monsoon troughs typically associated with the intense rainfall delivered during ‘active’ phases of the austral summer 

monsoon season—and which are associated with moisture that generally comes from the same source region and follows the 

same trajectory (Berry and Reeder, 2016). Rain delivered during ‘inactive’ phases of the monsoon is typically not associated 

with a monsoon trough, and results from a different range of circulation and moisture flux regimes (Godfred-Spenning and 

Reason, 2002). In contrast, at Cape Grim in south-eastern Australia (Fig. 10 bottom row): whilst precipitation amount and 590 

intensity are important for precipitation isotopic variability, the particular weather systems delivering that precipitation—

including fronts, anticyclones, and potential vorticity streamers—are also important. This is likely due in part to these 

systems bringing precipitation along different trajectories from different ocean sources. 

4.4 Applications 

Our analyses reveal distinct spatial and temporal variability in δ2HP, δ18OP, and dxsP across the Australian continent. This 595 

isotopic heterogeneity—combined with the random forest models’ unprecedented out-of-sample skill, high spatial resolution, 

and monthly temporal resolution over a span of 62 years—provides a strong foundation for future Australia-focussed 

hydrological, ecological, and archaeological research (e.g., Adams et al., 2022, 2023; Bunney et al., 2023; Gibson et al., 

2008; Keegan-Treloar et al., 2024; McInerney et al., 2023; Theden-Ringl et al., 2011), as well as food provenancing (e.g., 

Anh et al., 2022; Simpkins et al., 1999) and forensic investigations (e.g., Jones et al., 2016; Smith et al., 2022). Further, site-600 

level research previously restricted to using precipitation isotopic data from the nearest GNIP station—often over >100 km 

away (e.g., Banks et al., 2021; Buzacott et al., 2020; Zhou et al., 2022)—can now incorporate site-specific estimates from 

our spatio-temporally continuous random forest model outputs.  
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The new δ2HP, δ18OP, and dxsP maps provide an unprecedented opportunity for quantifying the particular hydroclimatic 605 

signal/s preserved in water isotope proxy records (e.g., better defining modern isotope-climate relationships), which can then 

be reconstructed over preceding centuries to millennia. This will be especially valuable for input to proxy system models 

(Dee et al., 2015; Evans et al., 2013), which explicitly resolve the range of environmental processes by which a precipitation 

isotopic signal is encoded in a particular palaeoclimate archive (e.g., tree wood (Roden et al., 2000), lake sediment (Dee et 

al., 2018), cave carbonate (Hu et al., 2021)). Proxy system models can provide detailed insights into the drivers of temporal 610 

variability in a water isotope proxy record—and ultimately more accurate palaeoclimate reconstructions—but generally 

require estimates of precipitation isotopic variability as inputs.  

Conclusions 

We developed a dataset of monthly δ2HP, δ18OP, and dxsP values at 0.25° spatial resolution from 1962–2023 over the entire 

Australian continent, using a random forest modelling approach. The dataset provides unprecedented insights into 615 

precipitation isotope variability in both space and time, as well as the drivers of that variability. The precipitation isotope 

data are predicted using a freely available suite of meteorological, geographical, and dynamical variables. Additional models 

spanning 1980–2019 include a set of ‘weather object’ data, but the predictive skill increase from addition of these additional 

predictors is mainly restricted to dxsP. Our preliminary analyses reveal distinct spatial and temporal variability in δ2HP, 

δ18OP, and dxsP values across the Australian continent, with applications in many fields. Future work will focus on 620 

quantifying the nature and drivers of spatio-temporal variability in Australian precipitation isotope variability. 

 

We show that random forest modelling provides an accurate and inexpensive means of estimating missing δ2HP, δ18OP, and 

dxsP values both in space and through time. Prediction errors relative to observations are lower than existing predictive tools. 

For an area the size of the Australian continent—and using a carefully-selected suite of predictor variables—random forest 625 

models can be built and tested on a personal computer using open-source software. Our methods therefore provide an 

accessible framework for predicting water isotope values in other locations with sufficient observational data density. 

Data Availability 

The continent-wide modelled precipitation δ2HP, δ18OP, and dxsP isoscapes produced in this study are available in netcdf 

format from the following Zenodo repository: https://doi.org/10.5281/zenodo.15486277. The isoscapes are available at 630 

monthly or annual resolution, from both the shorter models trained over 1980–2019 (including the weather objects) and the 

longer models trained over 1962–2023 (omitting the weather objects). We also provide pre-calculated long-term means.  
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Users can view and download (as csv) time series of modelled precipitation δ2H, δ18O, and dxs values at locations of their 

choice from the following website: https://wateriso-aus.shinyapps.io/apic. In this case, the data come from the models 635 

trained over 1962–2023 (omitting the weather objects). At the same website, users can also produce maps of locations where 

particular δ2HP, δ18OP, and dxsP values occur over a specified time window.  

 

The availability of observational δ2HP and δ18OP data underlying the models is outlined in Table S1. 
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Tables and figures 

Table 1: Modelled isoscape δ2HP, δ18OP, and dxsP bias with respect to observed long-term means. Only including sites 

with five or more years of observations. The values state the average bias across all sites (shown in Figs. 10, S17). All bias 

estimates are shown as a percentage of the total range of variability in that particular isotope metric (δ2HP, δ18OP, or dxsP). 965 

Values in parentheses were calculated using the subset of values present in both the random forest and ECHAM6-wiso 

datasets, to facilitate direct comparison between the two (shown in Fig. S18). Rows in the top half of the table show the 

absolute bias values; rows in the bottom half of the table show the overall bias (i.e., highlighting the average direction of 

each product’s bias). Note that dxsP was modelled directly in the random forest and linear regression models. For ECHAM6-

wiso, dxsP was calculated from the simulated δ2HP and δ18OP and the bias values are shown in italics. To facilitate fair 970 

comparison, we show the average absolute bias for only δ2HP and δ18OP (estimated directly in all three products) as well as 

the average absolute bias across the three isotope metrics. .  
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 Random forests ECHAM6-wiso Linear regression 
 Mean absolute bias (%): all years 

δ2HP 8.8 (7.4) 15.6 (19) 16.4 
δ18OP 7.1 (5.8) 13 (15.5) 13 
dxsP 8.2 (7.1) 25.6 (27) 6.9 

Average (δ2HP & 
δ18OP) 

8.0 (6.6) 14.3 (17.2) 14.7 

Average (all) 8.0 (6.8) 18.1 (20.5) 12.1 
 Mean overall bias (%): all years 

δ2HP -1 (-0.7) -3.4 (-6.6) -15.4 
δ18OP -0.1 (-0.4) 0.7 (-1.3) -11.9 
dxsP -6.6 (-5.3) -18.7 (-20.2) 1 
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 995 
Figure 1: Crossplots summarising a suite of independent metrics describing out-of-sample random forest model skill 
in predicting spatial δ18OP variability. Scores were calculated by removing one site from the training data (the ‘test site’), 
training a random forest model using the remaining data, then using that model to predict values for the excluded test site. 
This process was repeated 50 times for each site, each time initialising the random forest model with a different random 
seed. Each point shows the skill for a single site. Sites are plotted according to the distance to the nearest site included in the 1000 
training dataset. Each site has two points on each crossplot: triangles show results for δ18OP predicted using the longer 
models trained over 1962–2023 using the reduced set of predictor variables (without weather objects). Circles show results 
for δ18OP predicted using models trained over 1980–2019 using the full set of predictor variables (including weather objects). 
Sites are coloured according to record length. The vertical line over each point shows +/- one standard deviation in that skill 
score across the 50 models. In all cases, the dashed black line shows the expected value if the modelled values perfectly 1005 
matched observations. Panel (a) shows the Pearson correlation coefficient between the observed and modelled monthly δ18OP 
values. Panel (b) shows the Mean Bias Error (MBE). Panel (c) shows the Normalised Mean Error (NME). Panel (d) shows 
the difference between the Standard Deviation (SD) of the observed and modelled values (following (Abramowitz et al., 
2024), a positive value denotes modelled values have lower SD than observations). Panel (e) shows the difference in the 5th 
percentile of modelled versus observed values (a positive value denotes the 5th percentile of the modelled values has a 1010 
positive bias relative to observations). Panel (f) shows the difference in the 95th percentile of modelled versus observed 
values (a negative value denotes the 95th percentile of the modelled values has a negative bias relative to observations). 
Panel (g) shows the density estimate overlap proportion (DEOP), which summarises the degree of overlap between density 
estimates calculated for the modelled and observed values (a value of 1 would indicate perfect overlap; 0 would indicate no 
overlap). See Section 2.2.1 or Table S4 in Abramowitz et al. (2024) for skill metric definitions.  1015 
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Figure 2: Maps showing average random forest model skill in predicting out-of-sample δ18OP variability at the 60 1020 
sites across Australia with δ18OP observations. Scores were calculated by removing one site from the training data (the 
‘test site’), training a random forest model using the remaining data, then using that model to predict values for the left-out 
test site. This process was repeated 50 times for each site, each time initialising the random forest model with a different 
random seed. Points are coloured according to the average skill score from the 50 models, and are sized according to the 
record length (record lengths range from 2 to 573 months). Values are monthly δ18OP predicted using the longer models 1025 
trained over 1962–2023, using the reduced set of predictor variables (without weather objects). Skill metrics across panels 
(a–g) are all as per Fig. 1. The average skill score across all sites is shown in the lower left corner.  
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 1035 
Figure 3: Violin-and-boxplots (‘voxplots’) summarising a suite of independent metrics describing model skill in 
predicting out-of-sample temporal δ18OP variability (across all sites). Scores were calculated by removing a random 10% 
of all training data, predicting the missing values, then assessing the model’s skill in retrieving the held-out data. This 
process was repeated such that all training data were tested out-of-sample. Additionally, each random forest model was 
calculated 50 times, each time with a different random seed. These two iterative processes comprise the distributions. In each 1040 
panel, the left voxplot shows results for monthly δ18OP predicted using models trained over 1962–2023, using the reduced set 
of predictor variables (without weather objects). The right voxplot shows results for monthly δ18OP predicted using models 
trained over 1980–2019, using the full set of predictor variables (including weather objects). Skill metrics across panels (a–
g) are all as per Fig. 1.  
 1045 
 
 
 
 
 1050 



35 
 

 
 
 
 
 1055 
 
 
 
 
 1060 
 
 
 
 
 1065 
 
 
 
 
 1070 
 
 
 
 
 1075 
 
 
 
 
 1080 
 
 
 
 
 1085 
 
 
 
 
 1090 
 
Figure 4: Violin-and-boxplots (‘voxplots’) summarising bias in modelled monthly δ2HP, δ18OP, and dxsP values with 
respect to observed values at the equivalent months/locations. Each distribution summarises all months at all locations 
for each decade. Modelled values are from the longer models trained over 1962–2023, using the reduced set of predictor 
variables (without weather objects), and in all cases are the mean of values predicted by 50 unique random forest models, 1095 
each initiated with a different random seed. Note that the 1960s and 2020s are incomplete decades (comprising 1962–1969 
and 2020–2023, respectively).  
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Figure 5: Crossplots comparing modelled and observed monthly δ18OP values at the 60 sites across Australia with δ18OP 
observations. For each site, δ18OP values were predicted out of sample (i.e., that site’s data was removed from the training dataset). Each 1100 
point shows the mean of values predicted by 50 unique random forest models, each initiated with a different random seed. Sites are 
arranged by decreasing latitude, with the northern-most site (Darwin) in the top left corner and the southern-most site (Margate) in the 
bottom right corner. Site details are as per Table S1. In each panel, the thin black line shows the expected relationship if modelled δ18OP 
values exactly matched observations (1:1). The blue line shows the linear relationship between the modelled and observed δ18OP values, 
with the 95% confidence interval shown in the blue shading. Data points are coloured by month to highlight the seasonal cycle. Values are 1105 
from the longer models trained over 1962–2023, using the reduced set of predictor variables (without weather objects).  
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Figure 6: Average seasonal cycle of δ18OP at 60 sites across Australia, in observations (grey circles); the random forest models 
described in this paper (blue diamonds); and the ECHAM6-wiso simulation nudged to the ERA5 reanalysis (see Methods; green 
squares). Seasonal cycles are calculated from δ18OP values in the interval overlapped by all three data sources (1979–2021), and only 1110 
include months with observations present in all three data sources. In the case of the random forest-predicted δ18OP, values are from the 
longer models trained over 1962–2023, using the reduced set of predictor variables (without weather objects), and show the mean of the 50 
models created with unique random seeds. Sites are arranged by decreasing number of observations. Brisbane (top left) has the most 
observations (n = 500); Wilkawatt and Exmouth (bottom right) have the equal fewest observations (n = 3). 
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 1115 
Figure 7: Density plots comparing the distributions of monthly δ18OP values at 60 sites across Australia, from observations (grey); 
the random forest models described in this paper (blue); and the ECHAM6-wiso simulation nudged to the ERA5 reanalysis (see 
Methods; green). Density curves are calculated from δ18OP values in the interval overlapped by all three data sources (1979–2021), and 
only including months with observations (i.e., curves are constructed with δ18OP values from exactly the same months). In the case of the 
random forest-predicted δ18OP, values are from the longer models trained over 1962–2023, using the reduced set of predictor variables 1120 
(without weather objects), and show the mean of the 50 models created with unique random seeds. Sites are arranged by decreasing 
number of observations across 1979–2021. Brisbane (top left) has the most observations (n = 500); Wilkawatt and Exmouth (bottom right) 
have the equal fewest observations (n = 3). 
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Figure 8: Maps showing the effects of modelling dxsP across the Australian continent directly versus calculating dxsP 1140 
from modelled δ2H and δ18O. Panel (a) shows long-term annual mean precipitation dxs across the Australian continent, 
modelled directly as described in Section 2.2 (and shown in Fig. 13k).  Panel (b) shows long-term annual mean precipitation 
dxs across calculated from the random forest-modelled δ2HP and δ18OP as follows: dxsP = δ2HP - 8 * δ18OP. Panel (c) shows 
the difference between dxsP as estimated by the two approaches; the dxsP values implied by the separate δ2HP and δ18OP 
models subtracted from the directly-modelled dxsP values. 1145 
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Figure 9: Average importance rank of each predictor variable with respect to the random forest models’ predictive 
performance, calculated using the ‘permutation’ method. The panels show the overall rank of each variable’s relative 
importance in predicting spatio-temporal precipitation isotopic variability across the Australian continent. Ranks are the 1160 
average for that variable across 50 random forest models, each created with a different random seed. The least important 
variable for a predictor model receives a rank of 1; the most important variable receives a rank equal to the number of 
variables included. So, the most important variables for the model are shown at the top of each panel; the least important at 
the bottom. Predictors are coloured according to the variable type: blue for meteorological variables, lavender for weather 
objects, forest green for climate indices (representing remote dynamical drivers), black for month of the year, and lime green 1165 
for elevation. Panel (a) shows results for the δ2HP models trained over 1962–2023, using the reduced set of predictor 
variables (without weather objects). Panel (b) is as per panel (a) but for δ18OP. Panel (c) is as per panel (a) but for dxsP. 
Panels (d–f) are as per panels (a–c) but for the models trained over 1980–2019, using the full set of predictor variables 
(including weather objects).  Variable names and descriptions are as per Table S2. 
 1170 
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Figure 10: Average importance rank of each predictor variable with respect to the random forest models’ predictive 1175 
performance, calculated using the ‘permutation’ method. The panels show the overall rank of each variable’s relative 
importance in predicting temporal precipitation isotopic variability at the seven longest precipitation isotopic monitoring 
stations in Australia. Site details are as per Table S1. Sites are arranged in order of descending latitude from top to bottom. 
Ranks are as per Fig. 9, with the most important variable receiving the highest rank, and less important variables receiving 
lower ranks. As per Fig. 9, predictors are coloured according to the variable type; variable names and descriptions are as per 1180 
Table S2. Here only showing the five most important predictor variables at each site. The first column shows results for δ2HP 
predicted at the seven sites, with models trained over 1980–2019, using the full set of predictor variables (including weather 
objects). Second column is as per the first column but for δ18OP. Third column is as the first column but for dxsP.  
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 1185 
Figure 11: Precipitation amount-weighted annual mean δ18OP values across Australia for the 20 most recent years of the 
random forest models trained over 1962–2023, using the reduced set of predictor variables (without weather objects).  
 
 
 1190 
 
 
 
 
 1195 
 



43 
 

 
Figure 12: Maps showing the total range in precipitation isotopic values over the 1962–2023 period. Maps show the 
total inter-month (top row) and inter-annual (bottom row) range in δ2HP (first column), δ18OP (second column) and dxsP 
(third column) values at all locations across the Australian continent. That is, at each location the maps shows the difference 1200 
between the most positive value occurring in the 1962–2023 period and the most negative value occurring in that period. 
Ranges calculated using the random forest models trained over 1962–2023, using the reduced set of predictor variables 
(without weather objects). Annual values are precipitation amount-weighted annual means.  
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 1225 
Figure 13: Long-term annual mean precipitation isotopic variability across the Australian continent (‘time-mean 
isoscapes’). Panel (a) shows long-term (1962–2023) annual-mean precipitation amount-weighted δ2HP as calculated from the 
random forest models described in this paper (showing the mean of the 50 models created with unique random seeds). Panel 
(b) shows long-term (1979–2021) annual-mean precipitation amount-weighted δ2HP as simulated by ECHAM6-wiso nudged 
to ERA5 (Cauquoin and Werner, 2021). Panel (c) shows the difference between climatological δ2HP from ECHAM6-wiso 1230 
and the random forest models (i.e., panel (b) minus panel (a)).Panel (d) shows long-term (1962–2014) annual-mean 
precipitation amount-weighted δ2HP as estimated by linear regression using geographical variables (Hollins et al., 2018). 
Panel (e) shows the difference between climatological δ2HP from the linear regression and the random forest models (i.e., 
panel (d) minus panel (a)). Panels (f–j) are as per panels (a–e) but for δ18OP. Panels (k–o) are as per panels (a–e) but for dxsP. 
Note that the isoscapes from Hollins et al. (2018) were calculated using data spanning 1962–2014, which exceeds the total 1235 
coverage of the ECHAM6-wiso simulation. As we could not average across matching time periods for all three data sources, 
we show annual means across each dataset’s entire coverage interval to provide the most representative long-term isoscapes. 
Points show the long-term annual mean precipitation isotopic values at each site with 2 or more years of observations (see 
Section 2.4 for details). Point sizes scale log-linearly with record length (in years). 
 1240 
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