
Dear Dr Orlowski, 
 
Many thanks for your positive assessment of our manuscript, and we were very pleased to read such 
positive and enthusiastic comments from both Reviewers.  
 
We have implemented all Reviewer suggestions as per our online replies to the Reviewers. Carefully 
considering your suggestion, we added only a single new supplementary figure, which is not central to the 
manuscript’s findings, and is likely to be of interest to relatively few readers. Otherwise, we stuck to what 
was really needed to address the Reviewers’ requests for extra details.   
 
In summary, we have 

o Added two new main-text figures 
o Figure 4, summarising model bias by decade 

 addressing a query from Reviewer 2 on whether model skill changes through time 
o Figure 8, comparing our directly-modelled dxs values with dxs calculated from the 

modelled δ2H and δ18O values 
 addressing a suggestion from Reviewer 1 to show how the dxs values implied by the 

separate δ2H and δ18O models deviate from the predictions of the dxs model 
o Added extra panels to one existing main-text figure 

o Figure 13, which now directly compares the random forest δ2H,  δ18O, and dxs 
climatologies with those from alternate sources (ECHAM6-wiso, linear regression 
models) 

 addressing a request from Reviewer 2 to provide these difference maps 
o Added one new supplementary figure 

o Figure S7, showing the standard deviation across the 50-member ensemble of predictions 
from the random forest models calculated with unique random seeds 

 addressing a request from Reviewer 2 to include these maps in the supplement 
 
In addition, the Zenodo repository containing all output from this paper is now live (accessible from 
https://doi.org/10.5281/zenodo.15486277) and indeed data described in this paper has already been 
downloaded 438 times. The web app where users can extract timeseries data is also live (available from 
https://wateriso-aus.shinyapps.io/apic).  
 
Please see below for point-by-point responses to the Reviewers’ comments. Original reviewer comments 
are in red, our responses directly to the reviewers are in italicised black (these are exactly as per our 
publicly available online replies), and implemented changes are described in bold black. All line numbers 
correspond to the version of the manuscript with tracked changes.  
 
Regards, 
 
Georgy Falster 
 
 
 
 



RC1 (Gabriel Bowen) 
• Falster et al. model a large precipitation isotope dataset from Australia using Random Forest, 

compare the results to those from two other methods, and present and interpret a set of historical 
monthly average precipitation isoscapes. This is an excellent study, and very well presented…in 
many ways it’s the precipitation ML isoscape study I’ve been hoping to see for several years 
now! It’s thorough, really uses the power of the method and an expanded suite of features to go 
well beyond what’s been done with other statistical methods and learn more from our isotope 
data. In so doing it represents one of the first successful attempts at a data-driven, time-explicit 
analysis of historical precipitation isotope patterns. Kudos to the authors, and I’m excited to see 
this published.  

 
Many thanks for this!! We spent a lot of time trying to do this as well as possible with the tools to hand, so 
it was really great to read this assessment from someone who has done a lot of work on this topic over 
many years.  
 

• Below are a handful of comments and suggestions that I hope might be useful and help the 
authors tie up a few loose ends. 

 
Thanks—these are all super-helpful suggestions and we have addressed each below.  
 

• I have mixed feelings about the choice to model D-excess directly. I’ve done this, too, and am not 
fundamentally opposed to this approach. But it does lead to a fundamental 
inconsistency…because D-excess is not and independent parameter you have 3 independent 
models that are describing a system with only two degrees of freedom. In an ideal world, this 
would be modeled as a multivariate system, since H and O isotopes have a lot of shared 
information. A single self-consistent model could be fit to simultaneously predict δ2H, δ18O, and 
from them D-excess. Maybe a next step, but in the current manuscript it would at least be 
interesting to see how strongly the D-excess values implied by the separate δ2H and δ18O models 
deviate from the predictions of the D-excess model. Areas w/ large differences imply 
inconsistency in the models, which could be due to the influence of specific (poorly represented) 
forcing factors, incomplete or inconsistent data, or other factors that might motivate future work. 

 
Agreed—I did waver a bit on this point before, in the end, separately modelling the precipitation 
deuterium excess. In fact, I did already perform this comparison, but didn’t include it in the original 
submission. This was in part for fear of overwhelming the readers with too enormous a supplement, but 
also because I suspect there is quite a lot of ‘science’ in that comparison that could potentially merit a 
longer discussion. But ultimately yes—it will be good for users of these isoscapes to have that assessment 
to hand. And that’s a fun suggestion to simultaneously model δ2H and δ18O—something for future work. It 
is indeed clear across all the results that when using the random forest approach, as expected from the 
isotope physics, H and O have a very high amount of shared information across predictors.  
 
In any case, the comparison is in the attached file (Fig. A), and will be included in the revised 
manuscript. Pleasingly, Fig. Aa shows that there is minimal difference in long-term annual mean 
precipitation dxs when modelled directly versus when calculated from modelled δ2HP and δ18OP. Broadly, 



the independent random forest model predicts slightly higher dxsP across inland western Australia than 
implied by the δ2HP and δ18OP models. The reverse is true for the southern and northern coastline, 
excepting the far-northern tips of the continent. However, the magnitudes of the difference are small in 
the long-term annual mean. 
 
The differences are slightly larger for the monthly climatologies, where there is a seasonal cycle in the 
difference between directly-modelled dxsP versus dxsP calculated from δ2HP and δ18OP (Fig. Ab). The 
difference is biggest in January, where the independent random forest model predicts higher dxsP across 
most of the continent than the δ2HP and δ18OP models. The difference is less for most other months, except 
around the south-western coastline in December where the reverse is true.  
 
Our sense is that digging more deeply into this would be beyond the scope of the current manuscript, 
however we are very grateful for the opportunity to provide this extra information for the readers, and 
look forward to investigating the reason for the discrepancy in more detail. We would most likely include 
Fig. Aa in a revised version of the manuscript, with the extra detail provided by Fig. Ab available here 
for interested readers.   
 
We have added a comparison of directly-modeled dxsP with dxsP as calculated from δ2HP and δ18OP. 
Text describing this comparison has been added to the Methods at L189-191 and Results at L401-
406. We have also added a new figure to the main text that shows the results of this comparison 
(Fig. 8).  
 

• Methods: Did you make any attempt at feature selection? I realize this is less important for RF 
than for many other methods but can still be beneficial. The very smooth decline in feature 
importance in Fig. 7 is interesting to me and could reflect some influence of highly correlated 
features. I think it would be work checking/reporting on this, at least. 

 
We did not perform feature selection, instead relying on 1) a careful initial choice of predictors; then 2) 
the random forest’s predictor importance algorithm to determine if any predictors were detrimental to 
model skill (not the case here). In fact, we chose the random forest method because precipitation isotopic 
variability is influenced by so many highly correlated variables, and we were hoping to capture as much 
of the nuance across those relationships as possible. We will add a statement to this effect to the Methods 
section (2.3 Predictor Variables) of the revised manuscript.  
 
We have added this statement to the Methods at L296-301. 
 

• In several places you refer to D-excess as an ‘isotope system’ (e.g., line 349, 398, others)…which 
isn’t quite correct, it’s a derived parameter that integrates information from two isotope systems. I 
suggest adjusting your terminology for correctness. For example you could refer to ‘three isotopic 
metrics’ instead of ‘three isotope systems’. 

 
Yes we dithered for quite a while on this terminology! And couldn’t find anything consistent across the 
literature. But we will change the wording to ‘isotope metrics’ in all instances.  
 



We have changed this terminology in all cases (‘isotope systems’ → ‘isotope metrics’).  
 

• L 350-354: this is an important point given RF’s inherent inability to meaningfully extrapolate 
beyond the training data’s feature space. Thank you for including this information. 

 
No worries (: we agree that this is a very important point, and something that is probably not widely 
known about the Australian continent’s climatic feature space—that actually it can be captured 
reasonably well from a small subset of locations.  
 

• L 428, also previously: The text implies that the term ‘isoscape’ refers specifically to climatology 
(long-term average models), which is not the case – the term has been applied to space- and/or 
time-explicit models of isotopic variation since its inception (e.g., Bowen, West, & Hoogewerff, 
2009; Bowen, West, Vaughn, et al., 2009; West et al., 2010). 

 
Thanks for the clarification and references—we will correct the terminology to simply differentiate 
between space-and-time-explicit isoscapes and their climatologies.  
 
Throughout the manuscript, we have adjusted our terminology to differentiate between space-and-
time-explicit isoscapes and their climatologies (‘time-mean isoscapes’).  
 

• L 580-581: This line in the data availability statement is unclear – are the data themselves also 
available in the Zenodo archive referenced in the previous section? If so, please clarify, if not, 
please indicate where they are available. 

 
The new random forest isoscapes are all now publicly available from the Zenodo archive (i.e., the link is 
now live - here it is again for reference https://zenodo.org/records/15486278). Things are more 
complicated for the underlying observational data used to train the models. The availability of those data 
is outlined in Table S1, and we will add that reference to the Data Availability statement to avoid 
confusion. But In brief: I used a combination of published data (e.g., GNIP), unpublished datasets 
obtained directly from the authors (who are co-authors in all cases), and one dataset that is published but 
not freely available (Yarrangobilly, Tadros et al. 2022 QSR). 
 
In summary: some of the underlying observational data are available from online repositories (outlined 
in Table S1), but some are as yet unpublished or not available in online archives. 
 
We have added a statement to the Data Availability section pointing to Table S1 which describes 
the availability of the underlying observational data.   
 

• Fig 5: Symbology could be adjusted to make it a little easier to distinguish the different 
series…the differences are quite subtle and hard to pick out on the small panels.  

 
Thanks for this suggestion—we will update Fig. 5 and its equivalent supplementary figures to 
differentiate the timeseries with symbols as well as the line colours.  
 

https://zenodo.org/records/15486278


I have updated Fig. 5 (now Fig. 6) and the equivalent supplementary figures (Figs. S11-12) so the 
three series are differentiated both by colour and symbol.  

 
RC2 

 
• This is a well-executed paper demonstrating a rigorous application of machine learning method to 

expand the Australian stable water isotope record. The results are clear and consistent. The 
combination of model testing, predictor diagnostics and spatial coverage makes it a valuable 
dataset to the community. My comments below are intended to strengthen the interpretation and 
presentation, however, the paper is already very strong overall. Below are my comments: 

 
Many thanks for the positive review, and we too hope for this to be a valuable community asset. Thanks 
also for the great suggestions—we have addressed each below, and provide all new analyses in the 
attached document.  
 

• The authors say that each isotope model was trained 50 times with random seeds. Figures 1-3 
already present site-level uncertainties across the 50 random-forest runs. These quantities show 
how stable these model skill parameters are relative to observations. However, understanding the 
uncertainties within the predicted isotope fields themselves would be useful too. For this, the 
authors could include a map of ensemble spread in the supplement. For example, the standard 
deviation of dD, d18O and dxs predictions across all the 50 runs at each grid cell would be useful 
to highlight where model confidence is low or high. 

 
We had in fact performed this analysis, but did not include it in the original submission for fear of 
overwhelming readers with too many supplementary figures(!) However, we agree that it is useful 
information for isoscape users, and will include the maps of ensemble spread in a revised manuscript. 
Specifically, for each precipitation isotope metric (δ2HP, δ18OP, dxsP) we show the standard deviation 
across the 50-member ensemble, for the long-term annual mean as well as the centre months of each 
season (see Fig. B in the attached file, which will be included in the supplement of a revised manuscript). 
As shown on Fig. B, the magnitude of variability across the 50-member ensemble is very small—
highlighting the stability of the models.     
 
We have added this figure to the Supplement (Fig. S7) and referenced it in the Results (L365). 
 

• The manuscript relies on ERA5 for meteorological predictors, including precipitation amount and 
intensity. While the authors mention that ERA5 and AGCDv2 precipitation show “very similar” 
results, this statement could benefit from quantitative support. Because precipitation amount and 
intensity are among the dominant predictors in the isotope models, any biases in ERA5 are likely 
to propagate into the isotope estimates. I recommend that the authors quantify ERA5 against 
AGCDv2 using a scatterplot or bias map of monthly precipitation at isotope sites (or even a table 
would do). 

 
This is another analysis that we had already performed but weren’t sure whether or not to include given 
the already-long supplement. But again, we agree that readers may be interested in this point, especially 



given there is a bit of nuance to it. We therefore provide more information here so it is accessible to 
readers (as well as an additional figure and table), and will also add this discussion to the revised 
manuscript if requested by the Editor. 
 
In the attached file, Fig. C compares monthly precipitation from the AGCDv2 and ERA5, across every 
month from 1962–2023 (the time span of the long isoscapes) at each monitoring site. The thin black line 
shows a 1:1 relationship. At some sites, precipitation estimates from the two products are extremely 
similar. At others, the slope is flatter than 1, implying that ERA5 produces slightly too little precipitation 
at the high end. 
 
However, there is some nuance to this. First (and most importantly), the sites with the ERA5~AGCDv2 
slope closest to 1 are not necessarily the same sites where the modelled precipitation δ2H/δ18O/dxs is the 
best match for observed precipitation δ2H/δ18O/dxs—including with respect to extremes (e.g., Fig. 4 in the 
original manuscript [now Fig. 5]). Second, precipitation estimates from neither ERA5 nor AGCDv2 are a 
perfect match for the precipitation amount observations recorded alongside the precipitation isotopes. 
Table A shows all precipitation isotope monitoring sites that also reported precipitation amount. For 
each, we show a) the correlation, and b) the regression coefficient (slope) with respect to precipitation 
from AGCDv2 and ERA5. The average correlation of observed precipitation with AGCDv2 precipitation 
is higher than that with ERA5 precipitation, however the regression coefficients for AGCDv2 ~Obs tend 
to be >1, whilst the regression coefficients for ERA5~Obs tend to be <1. This discrepancy increases when 
using only sites with >100 observations.  
 
This is a point that, in fact, tends to be glossed over in many studies relying on interpolated data or 
reanalysis products—there are uncertainties even in observational products. We acknowledge that this is 
an uncertainty we did not explicitly account for (e.g., by obtaining all predictor variables from multiple 
sources and doing all other method steps several times accordingly), but we considered that with all the 
other uncertainties incorporated into the method, this would make the modelled and uncertainty 
quantification processes quite unwieldy. We also considered that this would not make a major difference 
to the results, although we acknowledge that this could be a contributing factor to the under-estimated 
extreme precipitation δ2H/δ18O/dxs values (as already stated at L474-475 in the original manuscript). In 
any case, we hope that the new plots here will be of interest to some readers (for reasons beyond just this 
study, too!) and thank the Reviewer for the opportunity to include them (:  
 
As per this response, we stated already in the text that we compared AGCD precipitation with 
ERA5 precipitation (L262-264) and state that the daily values required to calculate precipitation 
intensity are not available from the AGCDv2 (L261). Given the above detailed discussion required 
to contextualise the additional figures is quite long and requires the support of extra supplementary 
figures and tables, we propose leaving this longer discussion here in the publicly-available review 
rather than adding it into the text. As stated in the reply to the Reviewer, we already provide the 
relevant summary statement of the implications of using ER5 precipitation data at L512-514.   
 

• The lowest model skill occurs for dxs, due to its linkage to moisture-source humidity and 
temperature. The authors acknowledge that these source conditions are not directly represented 
and that when “weather objects” are introduced, there is some partial improvement in the model. 



While a full trajectory modeling would indeed by very computationally expensive, the paper 
could still test or discuss some simpler methods that could capture the source-region variabilities 
(e.g., ERA5 based upwind SST or column-integrated humidity gradients, etc.). Even a short 
comparison between the dxs skill improvements with and without the introduction of weather 
objects would be useful to clarify how users should be aware of the missing source information 
for the data usage. 

 
Regarding ‘Even a short comparison…’: At L345-347 we state that dxsP is the only isotope metric for 
which the addition of the weather objects results in a major increase in a particular skill metric (the 
density estimate overlap proportion). We also state at L486-490 “The shorter models—incorporating the 
weather object data—predicted dxsP more skillfully than the longer models without the weather objects. 
Further, the skill increase resulting from inclusion of the weather objects was larger for dxsP than for δ2HP 
and δ18OP, suggesting that the moisture source and transport information inherent in the weather objects is 
particularly important for dxsP”.  
 
Regarding the suggestion that we could discuss some simpler methods for capturing the moisture-source 
conditions: the Reviewer accurately summarised that we tried to do this as comprehensively as possible 
with the inclusion of the weather objects—which in itself is a major step forward in isoscape calculation 
as this data type has not been used in any previous isoscape studies. However, considering this same 
point we did also test the effect of including the vertically-integrated water vapour flux as a predictor. 
The addition of this variable did not result in any skill increase (or indeed any change in the results), 
which suggests that the information was likely captured intrinsically in the other meteorological 
variables.  
 
The reviewer’s suggestion to use ERA5-based upwind SST would run into the same problems as the back-
trajectory modelling (outlined in the manuscript at L491-494). That is, it would be extremely 
computationally expensive to identify the relevant regions for the upwind SST for all grid cells for all 
months. However, it would be a very interesting avenue of future research to use this information to 
model dxsP at a single location (or small geographical region), and we plan to do this in the coming 
years.  
 
As per the above response provided to the Reviewer, we do not consider that there are necessary 
changes to the manuscript arising from this comment.  
 

• In section 2.2.1, the authors explain that they test temporal transitivity by randomly leaving out 
10% of all observations and using the rest to train the model. This random sampling is effective in 
checking how well the model predicts data that look similar to what it has already seen. However, 
it does not give much information on how the model will perform for changes over time. Since 
Australia’s climate has shifted over the last several decades, it would be helpful to see how stable 
the model’s performance has been over time. For this, I suggest that the authors add a simple 
figure showing the model error or correlation changes per decade, or simply plot residuals in a 
time series. These tests will help users understand whether the model’s relationship between 
isotope and climate can stay consistent over the entire record. 

 



Thanks for this suggestion—we have performed both of these additional skill tests. The results are shown 
in the attached document, and we will add these to the supplement of a revised manuscript along with a 
brief discussion in the Results (Section 3.1). 
 
Fig. D shows, for all sites, the difference (total difference rather than residuals from a model) between 
observed and modelled δ2HP

 for all months that have observations. The black line shows a perfect match 
between the observed and modelled values. A positive offset means the modelled δ2HP value is too high 
relative to the observed value and vice versa for a negative offset. Figs. E and F show the same for δ18OP 
and dxsP, respectively. The plots suggest that model performance is fairly stable though time. 
 
The same is evident from Fig. G, which summarises the bias in each isotope metric by decade (voxplot 
widths are scaled by the number of observations in that decade). Again, there is no major change through 
time in the model bias relative to observations (accounting for data density).  
 
Finally, for anyone looking for more information on temporal variability in model skill, we have also 
included Fig. H, which shows model bias by season, plotted in 5° latitude bins.  
 
We have added Fig. G from our response file as a new main-text figure (Fig. 4), along with text 
describing the figure in the Methods (L218-221) and Results (L372-373). We consider that of the 
two options suggested by the Reviewer, this is the figure that best (and most concisely) addresses 
the Reviewer’s request for more details on the temporal stability of the model.  
 

• The RF models are trained on 60 sites located in coastal and near populated regions. The 
predictive skills show no relationship with distance to the nearest site and that more than 99% of 
predictor values fall within the training range. While this confirms good coverage in predictor 
space, the manuscript will gain from a quantification over the unobserved inland regions. The 
authors could provide a difference map between RF and ECHAM6-wiso climatology across 
inland Australia.  

 
We agree that this is a tricky point, and a lack of inland monitoring data is not just an issue for 
precipitation isotopes in Australia, but for many climate variables—even including precipitation amount. 
The lack of observational data across much of the continent was a main motivator for this study, although 
I acknowledge that it does make both verification and accurate uncertainty quantification very difficult. 
Unfortunately there is currently no more data available for further model verification inland than we 
have already used in this study. 
 
In any case, we have created the difference maps as suggested (Fig. I). Broadly, the random forest 
isoscapes predict higher inland climatological δ2HP/δ18OP values than ECHAM6-wiso; the reverse is true 
for dxsP. It is difficult to say which is more accurate—Fig. S17 shows that the random forests tend to 
overestimate inland δ2HP/δ18OP values with respect to observations, but ECHAM6-wiso tends to 
underestimate them. These differences may be influenced by bias in the observational training data. 
Inland Australia is climatologically hot and dry, and is sparsely populated. Because of this sparse 
population, in many cases data are collected via composite samplers rather than daily rainfall collection, 
despite the dry climate. Composite samplers tend to be associated with isotopic bias in low-rainfall 



months, resulting in a positive (but not systematic) bias in δ2HP/δ18OP values. Accordingly, ECHAM6-
wiso—which directly simulates processes important for inland precipitation δ2H/δ18O/dxs, such as sub-
cloud evaporation (Crawford et al., 2017)—underestimates inland precipitation δ2H/δ18O with respect to 
observations, but may in fact be closer to the true values. We will add a statement to this effect to a 
revised manuscript.  
 
Nevertheless, as stated in Table 1 (and apparent visually from Fig. S17 for the inland sites), the overall 
magnitude of the (apparent) bias in the random forest isoscapes is less than that of ECHAM6-wiso, 
lending confidence to our results. This is essentially impossible to test further without new observational 
data—which we strongly advocate for whilst recognising the expense and difficulty of long-running 
observational campaigns.  
 
Crawford, J., Hollins, S., Meredith, K., Hughes, C.: Precipitation stable isotope variability and subcloud 
evaporation processes in a semi-arid region, Hydrol. Proc., 31, 20–34, 2017. 
 
We have combined Fig. I from our response file with the original main text Fig. 11 (now Fig. 13). 
We have also added the above discussion to the manuscript text (L555-567).  
 

• Section 4.3 presents useful examples showing how predictor importance varies by region, but the 
discussion could be expanded by mentioning why specific predictors dominate in each climate 
regime and what they imply isotopically. For example, how the high influence of precipitation 
amount and intensity in the Australian tropics reflects the stronger rainout or amount effect 
behavior and how to interpret it isotopically. Extending each regional examples in this way would 
help show how RF predictors reproduce physically meaningful isotope-climate linkage that were 
introduced in the Introduction. 

 
We deliberately kept this section short, recognising that this paper largely focuses on describing the 
methodology and results rather than a synthesis of the climatic drivers of precipitation stable isotopic 
variability across the Australian continent (which itself is enough for several papers!). Similarly, out of 
all the sites with enough observational data to carry out the predictor importance assessment, only 
Darwin is far enough north that we might expect a classic ‘amount effect’. However, we acknowledge 
that conceptual links to the introduction might be missing for some readers. We will add those links in a 
revised version of the manuscript—for example, touching briefly on the different broad mechanisms by 
which the various predictor variables might be linked to temporal precipitation δ2H/δ18O/dxs variability 
in different places (e.g., tropical amount effect, seasonal moisture source changes, local RH etc).  
 
For those interested in getting properly into the weeds on this point: we have a follow-up paper well 
underway which dives into the dynamical drivers of precipitation isotopic variability across the continent 
in far more detail. I think that it would not be possible to do that justice in a single discussion section 
here, although I agree that a clearer tie to L59-62 of the Introduction would improve Section 4.3 and will 
revise this section accordingly. 
 
We believe that the above comment sufficiently addresses the Reviewer’s comment.  


