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Abstract. Percolation analysis is an efficient way of evaluating the connectivity of discrete fracture networks. Except for very
simple cases, it is not feasible to use analytical approaches to find the percolation threshold of a discrete fracture network. The
most commonly used percolation threshold corresponds to the occurrence of percolation on average for the set of parameters
(p50), which is not adequate for applications in which a high confidence in the percolation threshold is required. This study
investigates the direct relationships between the percolation threshold at low probability (p0, referred to as zero-percolation
threshold) and the properties of fracture networks with one set of fractures (fractures with similar orientations) in two-
demensional domains. A generalized non-linear multivariate relationship between p0O and fracture network parameters is
established based on connectivity assessments of a significant number of numerical simulations of fracture networks. A feature
of this relationship is the invariant shape of marginal relationships. A comparison study with an analytical solution and
applications in both synthetic and real fracture networks shows that the derived relationship performs well in fracture networks
of different sizes and orientations. A significant benefit of this relationship is that, when an analytical solution is not available,
it can provide fast and reliable connectivity statistics of fracture networks based only on fracture parameters.
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1 Introduction

Discrete fracture networks (DFN) are widely used to model fracture systems in rock masses and reservoirs for flow analysis

(Dogan, 2023; Kolyukhin, 2022; Liu et al., 2019). In three-dimensional DFNs, fractures are represented using simplified
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geometric shapes such as polygons, rectangles, disks, and others. In two-dimensional DFNs, fractures are simplified as line
segments (Dong et al., 2020). DFN models are generally considered to be more realistic representations of the fracture systems
and they are more amenable to integrating geological data into the flow model (Dong et al., 2018). Fracture connectivity
analysis is a significant component in the DFN approach to assessing flow behaviour (Alghalandis et al., 2015; Einstein and
Locsin, 2012) as the conductivities of fractures are generally orders of magnitude greater than those of the surrounding porous
matrix (Thovert et al., 2017). A good understanding of the connectivity of fracture networks is essential for many applications
such as oil and gas recovery, geothermal energy exploitation, hydrology and groundwater engineering, and geological storage
of radioactive wastes.

Percolation theory (Jafari and Babadagli, 2013; Khamforoush and Shams, 2007; Or et al., 2023; Sun et al., 2023) provides
a basis for describing and quantifying the connectivity of geometrically complex systems (Xu et al., 2007) such as fracture
networks and this is reflected in many studies reported in the literature that use percolation theory in the connectivity analysis
of fracture systems (Barker, 2018; de Dreuzy et al., 2000; Dong et al., 2022; Khamforoush and Shams, 2007; Manzocchi, 2002;
Masihi and King, 2007; Mourzenko et al., 2012). Percolation describes the phenomenon in which there is at least one domain-
spanning pathway in a physical system (Tang et al., 2022; Yao et al., 2020; Yi and Tawerghi, 2009). Percolation in a DFN
involves at least one cluster of connected fractures that spans the reservoir (McKenna et al., 2020) or rock mass (one cluster
refers to a series of fractures that intersect each other). In this context, one of the most important characteristics of a fracture
network is whether or not it percolates (Bour and Davy, 1998; Bour and Davy, 1997) and the percolation threshold is commonly
used to quantify the critical value of connectivity at which the network percolates (Khamforoush and Shams, 2007; Manzocchi
et al., 2023; Walsh and Manzocchi, 2021). Using this definition, the permeability of a fracture network is zero if the
connectivity value is less than the percolation threshold (Mourzenko et al., 2005).

The percolation threshold of a DFN is a property that depends on the parameters of the fracture system (Mourzenko et
al., 2005). Features previously used to characterise percolation in DFNs include the dimensionless density derived from the
excluded volume (Barker, 2018; de Dreuzy et al., 2000; Khamforoush et al., 2008; Mourzenko et al., 2012), fractal dimensions
(Jafari and Babadagli, 2013; Jafari and Babadagli, 2009; Zhao et al., 2016), topological connectivity measures (Manzocchi,
2002), fracture clustering (Manzocchi, 2002), and the average number of intersections per fracture (Manzocchi, 2002). These
indirect characteristics of DFN models are derived from direct fracture network parameters, such as the number of fractures,
fracture locations, sizes, and orientations, which have a joint effect on the occurrence of a percolating network (Jafari and
Babadagli, 2009). For example, if the fracture size is kept constant, an increase in the number of fractures will result in a higher
fracture density, which in turn will increase the probability of a connected domain (Shokri et al., 2016).

There are many published studies on the percolation of DFN models, with different focuses on different aspects of
the problem. For fracture locations, DFN models in these studies cover both the Poisson (homogeneous) distribution (Barker,
2018; Bour and Davy, 1997; de Dreuzy et al., 2000; Huseby and Thovert, 1997, Jafari and Babadagli, 2013; Khamforoush and
Shams, 2007; Mourzenko et al., 2005; Robinson, 1983; Thovert et al., 2017; Zhao et al., 2009; Zhao et al., 2016) and non-

homogeneous (i.e., spatially correlated) distributions (Manzocchi, 2002; Mourzenko et al., 2012). For fracture sizes, some

2



65

70

75

80

85

90

95

DFNs use the monodisperse model, which means that the shape and size of every fracture are identical (Jafari and Babadagli,
2013; Khamforoush and Shams, 2007; Khamforoush et al., 2008; Manzocchi, 2002; Mourzenko et al., 2012; Robinson, 1983).
This makes the percolation study relatively simple using numerical simulation. Others use the polydisperse model in which
the sizes (Bour and Davy, 1997; Huseby and Thovert, 1997; Mourzenko et al., 2004; Mourzenko et al., 2005; Thovert et al.,
2017; Zhao et al., 2016) and shapes (Barker, 2018; Thovert et al., 2017) of fractures are different. Commonly used fracture
size distributions include the power law function (Mourzenko et al., 2004; Mourzenko et al., 2005; Zhao et al., 2016),
exponential distribution (Catapano et al., 2023; Dowd et al., 2007; Fadakar Alghalandis, 2017; Xu et al., 2007; Zhu et al., 2022)
and uniform distribution (Huseby and Thovert, 1997). For fracture orientations, many DFNs use isotropic models (uniform
and random) (Barker, 2018; Bour and Davy, 1997; Charlaix et al., 1984; de Dreuzy et al., 2000; Huseby and Thovert, 1997,
Jafari and Babadagli, 2013; Khamforoush and Shams, 2007; Khamforoush et al., 2008; Mourzenko et al., 2004; Mourzenko
et al., 2012; Mourzenko et al., 2005; Robinson, 1983; Thovert et al., 2017; Yi and Tawerghi, 2009; Zhao et al., 2016) but
anisotropic (with a single preferential orientation or several preferential orientations) models are also commonly used (Balberg
and Binenbaum, 1983; Khamforoush and Shams, 2007; Khamforoush et al., 2008; Manzocchi, 2002). The Fisher distribution
(Khamforoush and Shams, 2007; Xu and Dowd, 2010) is the most commonly used type of distribution for three-dimensional
fracture networks, while the von Mises distribution (Xu and Dowd, 2010) is the most commonly used for two-dimensional
fracture networks. Physically, fractures related to tectonic movements are, in general, anisotropic (e.g., conjugate fractures
generated around the maximum principal compressive stress (Zhao and Hou, 2017), while fractures associated with other
causes, such as diagenesis, are typically isotropic (Dong et al., 2018).

A common method used to obtain the percolation threshold of a DFN is first to calculate some indirect characteristic
parameters of the fracture network and then evaluate the percolation threshold on the basis of these parameters. However,
DFNs with the same indirect characteristic parameters may have quite different direct geometrical parameters (e.g., number
of fractures, fracture size, and orientation). Unfortunately, these geometrical parameters dictate the fracture connectivity and
hence the percolation threshold (Dong et al., 2019). For example, the two fracture networks in Figure 1 have the same number
of fractures, identical fracture lengths, and box-counting fractal dimensions, but the network in Figure 1a percolates between
sides A and B, while the other (Figure 1b) does not percolate. The different orientations of these two fracture models result in
different percolation characteristics. In this case, the box-counting fractal dimension provides a good measure of the
complexity of the system but it ignores the effect of the preferential orientation of a fracture network. Although the indirect
approach can simplify the evaluation of the percolation threshold of a fracture network, it may sometimes produce misleading
results. In addition, most percolation thresholds based on the excluded volume method correspond to the occurrence of
percolation on average (Barker, 2018; Yi and Tawerghi, 2009) (i.e., with 50% probability, p5S0) due to the stochastic nature of
fracture networks (c.f. Section 2.2). The level of confidence in such thresholds may not be sufficient for some applications.
For example, for underground radioactive waste storage facilities, selecting storage sites that minimize the potential number
of connected pathways to the biosphere is important. In this case, a low probability percolation threshold (p0, c.f., Section 2.2)

named as zero-percolation threshold is more important for the connectivity analysis of the fracture systems (Dong et al., 2019).
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Figure 1: Schematic diagram of two DFN models with different percolation features.

In practical engineering applications, it would be less problematic to use the direct relationship between the percolation
threshold and fracture network parameters for connectivity assessments instead of resolving the problem by numerical
simulations in every case. In general, it is not possible to establish such a relationship analytically due to the complexity of
DFNs. In this work, Monte Carlo simulations of the number of fractures, n, fracture size (length), L ,and fracture orientation,
¢ are used to establish this relationship for two-dimensional DFN models, the fractures are represented by vectors representing
line segments (Dong et al., 2020). In particular, fracture locations follow the Poisson distribution, fracture lengths follow the
exponential distribution f(L|A) (4: the exponential distribution parameter whose reciprocal 1/4 represents the mean fracture
length L) and fracture orientations follow the von-Mises distribution f(¢|u, k), where A, u and k are their corresponding
distribution parameters. y represents the mean/main fracture orientation, while x (concentration parameter) quantifies the
directional clustering degree of fractures in the von Mises distribution.". (see Section 2.1). The zero-percolation threshold (p0)
equation L; = f(n, u, k) was established by analysing results from an extensive set of numerical simulations for fracture
networks with one set of fractures (fractures that exhibit similar orientations) (Ali and Jakobsen, 2011; Zeng et al., 2022) (see
Sections 3.1-3.2). Besides DFN with exponential fracture length, given the widespread adoption of lognormal distribution
f(L|u, o) in characterizing fracture length distributions within DFN, it is imperative to explore the implications of this
distribution on the phenomenon of zero-percolation. Here, 4 and o are parameters of the lognormal distribution, where y is the
mean of the natural logarithm of fracture lengths and ¢ is the standard deviation of the natural logarithm of fracture lengths
(derived from the mean and standard deviation of fracture lengths). Consequently, this paper extends its investigation beyond
DFNs employing exponential distribution for fracture lengths to encompass those utilizing lognormal distribution, as detailed
in Sections 3.3-3.4.

The relationship was established by using a non-linear, multivariate fitting method for a relationship with invariant shapes
of marginal functions; this is demonstrated by a simple example in Sections 2.2 and 2.3. The verification of the derived

equations for zero-percolation underwent a comprehensive series of tests in Section 4.
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2 Principle of the mathematical method

To mitigate ambiguity, the mathematical approach will utilise DFN with exponential distributions as an instance to elucidate
the fundamental principles. Fracture parameters of a DFN model are described in Section 2.1. The percolation and percolation
threshold of a DFN are described in Section 2.2. In Section 2.3, the non-linear fitting method is illustrated using a simple

percolation example.

2.1 Discrete fracture networks

DFN modelling is a stochastic simulation method that uses marked point processes (MPP) (Dong et al., 2018c) in which
fracture location (x, y) is modelled by a point process (Figure 2a) following a Poisson, non-homogeneous cluster or Cox point
process (Mardia et al., 2007); and fracture properties (such as length L, orientation ¢) are modelled at each point by marks
(Figure 2b) following their respective probability distribution functions (e.g., f (L) and f(¢)) (Dong et al., 2018; Fadakar
Alghalandis, 2017; Xu and Dowd, 2010). To simulate a set of n fractures with similar orientations, the location of a fracture
(Figure 2a) is generated first followed by the generation of the associated marks (Figure 2b). Subsequently, these procedures

are iterated » times to culminate in the ultimate implementation of the DFN (Figure 2c¢).

e
4

(xy) (xay)//L / / /

(a) Point process (b) Mark generation (c) Discrete fracture network

Figure 2: Schematic diagram of a two-dimensional DFN realization. (a) Randomly generated fracture location; (b) Fracture
properties (Ilength, orientation) are generated from their probability distributions; (c) Repeat process (a) and (b) to generate the
entire fracture network to account for the number of fractures in each fracture set as well as the number of fracture sets.

For 2D DFN models, fracture network parameters include the number of fracture sets, number of fractures n in each
fracture set, fracture size distribution f (L) and fracture orientation distribution f(¢). The study area used in this work is
100m X 100m so P20 = n; X 10~*(m~2). P20 (2D fracture density) represents the number of fractures per unit area. Here,
P20 is the fracture number per 2D unit area (Khamforoush et al., 2008). For fracture length, a fixed size L can be used, or the

following exponential distribution (Xu and Dowd, 2010) is commonly used:
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150 where A is the distribution parameter and therefore the average length, which in this case is L = 1/A. For fracture orientation,

a von-Mises distribution (Fadakar Alghalandis, 2017; Xu and Dowd, 2010) is commonly used for 2D applications:
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where u and k are the distribution parameters, I, is the modified Bessel function defined as: I,(k) = Y15 zzlf(T)z
u and 1/k are analogous to the mean and variance of a Gaussian distribution. u represents the main fracture orientation.
155 For example, in both Figure 3a and Figure 3b, the main orientation is NE-SW (Figure 3e and Figure 3f) so ¢ = /4, while in
Figure 3¢ and Figure 3d, u = m/2 (Figure 3g and Figure 3h), following the common practice in geotechnical applications of
measuring the bearing angle from the North. k is a measure of concentration (reciprocal of the measure of dispersion). A
comparison of Figure 3a and Figure 3¢ with Figure 3b and Figure 3d shows that the dispersion of the fracture orientation
increases as 1/k increases. When k = 0, the distribution of fracture orientations is completely random. The DFN models were

160 generated by a Matlab code based on the open-source toolbox ADFNE (Fadakar Alghalandis, 2017).
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Figure 3. DFN models showing different fracture orientations with different pu, i, together with their corresponding rose diagrams.
Fractures of the same colour in the DFN model are in the same cluster, while fractures in black are isolated ones.
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2.2 Percolation threshold of DFN models

Percolation in a DFN means there is at least one cluster of fractures spanning the system (rock mass or reservoir) that allows
the fluid to permeate from one side to the other, as shown in Figure 4b, while Figure 4a shows a non-percolating DFN.
Obviously, one can easily conclude that an increase in fracture number or fracture size can lead to the percolation of the system
at some stage. In reality, the probability of percolation is a function of many different factors related to the DFN parameters
(Khamforoush et al., 2008), of which fracture density (such as P20 and P21 for 2D and P30 and P32 for 3D applications) is
the most critical. Here, P21 is the fracture length per 2D unit area, while P30 and P32 are the fracture number and area per 3D

unit volume, respectively.
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Figure 4: Schematic diagram of percolation in DFN models.

For simple fracture networks, the percolation thresholds can be found analytically. However, for most fracture networks,
approaches such as Monte Carlo (MC) simulation are required (Yi and Tawerghi, 2009). Due to the random nature of a DFN
model, its corresponding percolation status is also stochastic in nature. If N independent simulations of a DFN are repeated for
a group of parameters (n, L, ¢), resulting in N,, number of cases where the fracture network percolates, then the percolation
probability corresponding to the parameter set is P = N, /N (Barker, 2018; Yi and Tawerghi, 2009). In this study, p0, p50,
and p100 represent the percolation thresholds of the DFN corresponding to 0%, 50%, and 100% percolation, respectively. p0
(zero-percolation threshold) is defined as the critical value of a fracture parameter below which network connectivity is
completely lost, ensuring absolute impermeability. In a fracture network with two variables, fracture number (#) and fracture
length (L), p0 may be represented either by a sufficiently small n (regardless of L) or by a minimum L when n is fixed.

As illustrated in Figure 5, percolation probability typically transitions between P = 0 (no percolation) and P = 1 (full
percolation) through an intermediate band. The choice of percolation threshold depends on the application. For example, in
subterranean radioactive waste repositories, where preventing any potential connectivity to aquifers is critical (Wei et al., 2017,
Yi and Tawerghi, 2009), p0 is adopted to ensure absolute impermeability. Conversely, for applications such as unconventional
gas extraction or enhanced geothermal systems, near-complete connectivity is desired, and the threshold may correspond to P

~ 1. p50 is often adopted in resource extraction (e.g., hydrocarbon reservoirs) to balance economic viability and manageable
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risk. Noted in stochastic systems, P = 0% and 100% may not be strictly possible and therefore the definition used here means
the probability calculated by N,, /N using a reasonable number Ny (= 20 in this study). For stochastic systems, Figure 5 shows
a worked example, in which the fracture orientations follow a von-Mises distribution (4 = 90°, k = 24) and fracture lengths
are identical for each DFN. Twenty MC simulations ( Ny = 20) were conducted using pairs of parameters (n =
20,30,40, ...,250 and L = 0.06,0.08,0.1, ... 0.8). The percolation probability, P, calculated from the simulations, is shown in
Figure 5, where the horizontal axes correspond to the number of fractures n and the fracture length L, respectively, and the z

axis is the percolation probability of the corresponding DFN model.

Side

Unpercolated
DFN model Percolated

DFN model

300 0

Figure 5: Percolation probability P versus fracture number » and fracture length L for DFN models with random orientations and
identical lengths. Each P value is obtained from 20 Monte Carlo simulations for a given (n,L) pair. For each n, the fracture length
threshold corresponding to the p0 zero-percolation point is determined, and the average over 20 repeats is taken as the statistical p0
threshold.

Figure 6a presents data points in the vicinity of the p0 percolation threshold. For each fracture number (n), the statistical mean
of the fracture length threshold (L) corresponding to p0 percolation is determined from 20 independent Monte Carlo (MC)
simulations, following the same procedure as in Figure 5. The mean values are depicted as circles, with half error bars
indicating the mean + two standard deviations in Figure 6a. To further approach the true threshold values, an additional 20
repetitions of the Figure 6a procedure are performed, and the results are shown in Figure 6b. In the subsequent analyses, a total
of 400 MC simulations [20 (as in Figure 6a) x 20 (as in Figure 6b)] are conducted for each data point, providing a statistically
robust estimate that closely approximates the true value. In order to reduce the computation cost, there are a few differences
in fracture number n and length L compared with those in Figure 5, i.e., n = round(107) = 22,32, 45, ..., 251, j=1.35, 1.5,
1.65, ..., 2.4, L = 10%= 0.0316, 0.0322, 0.0327, ..., 1, k = —1.5,—1.4925,—1.485, ...,0. The corresponding non-linear

04308 with a correlation coefficient of

percolation threshold curve based on least-squares regression is L, = 1.7518 X n~
0.9288. When the specific number 7 is considered, an increase in L results in percolation. In this context, we hold the fracture

number # to determine the fracture length threshold (denoted as L;) for zero probability percolation, hence the utilisation of L,



and n. Conversely, if the fracture length is fixed, L and n, will be employed. This curve defines the percolation threshold in
terms of parameter pairs of (n, L;). The DFN corresponding to any combination of parameters below this curve, namely L <
225 L, will have a percolation probability of 0. To assess the uncertainty of this relationship, 20 groups of MC simulations as used
in Figure 6a were employed to obtain the non-linear relationship with statistical dispersion and the results are shown in Figure
6b. The circles correspond to the averages of 20 groups of 20 MC simulations (Figure 6a) and the error bars represent two
times the corresponding standard deviations. The fitted non-linear relationship based on least-squares regression of the average

values is L, = 1.592 x n~ %493 with a correlation coefficient of 0.993.
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Figure 6: Percolation threshold of (n, L;) for the example DFN model.
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Obviously, fracture orientations will also affect the percolation threshold curves. As the example to demonstrate these
effects, the von-Mises distribution is used to describe the distribution of fracture orientations for the DFN model used above.
In this case, the fracture network parameters are (n, L, k). To simplify the demonstration, the concentration parameter k is
set to 24, similar to those shown in Figure 3b and Figure 3d; u is set to values from 90° to 0° in 5° decrements. As the
horizontal percolation is of interest here, to simplify the comparison, pis transformed to an angle measured from the horizontal
direction, i.e., A= |u — 90| (Relative orientation angle, indicating the deviation angle between the dominant fracture direction
w and the horizontal direction, used for simplified horizontal percolation analysis), hence, A= 0°,5°,...,90°. The above curve
fitting process was repeated and some results are shown in Figure 6¢. As A decreases, the percolation threshold decreases. This
is consistent with the fact that lower A will increase the connectivity in the horizontal direction between the left and the right

sides; percolation therefore requires a shorter fracture length, and so the percolation threshold curve decreases.

2.3 Non-linear relationship for the percolation threshold

The general shapes of the percolation curves in Figure 6¢ can be considered to have similar shapes, which are represented as
coloured curves in Figure 7. To understand further the relationship between L, n and A, average values of 20 MC simulations
are shown in Figure 7. Coloured curves refer to slices of different n and A. The left colour curves are the variation of L, and n
with different values of A , and the right coloured curves are the variations of L; and A with different values of n. Clearly, the
threshold fracture length increases as the number of fractures decreases and the relative orientation A increases. This is because
higher fracture density leads to greater percolation probability, whereas a lower number of fractures requires longer fractures

to maintain the same percolation probability.

Figure 7: Simulated percolation threshold L; vs. (n, A). For each pair of (n,A), 20 MC simulations are implemented to obtained the
average L,. Coloured curves are lines corresponding to slices of different » and A.
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From the results in Figure 7, L, = f(n,A) is non-linear. To establish this relationship, the variation of L, with n for
different values of A is examined first, i.e., L, = f;(n)|,, followed by assessing the influence of A on the derived f;(n)
relationship. Note that at the second stage, cos A is used instead of A as it is more relevant to the quantification of the fracture
projection length in the horizontal direction (len/ cos A).

Based on the simulation results discussed above, Eq. 3 is considered an appropriate fit to f; (n):
Ly = fi(n) = an’, 3)

where a and b are parameters to be determined in the fitting process. The correlation coefficients for all curves for different A
values (0°,5°...85°, 90°) are 0.9985, 0.9895, ..., 0.9949, respectively. The high correlation coefficients (>0.96) confirm the
suitability of using Eq. 3 to represent f; (n).

The relationships between a, b and cos A, shown in Figure 8, suggest linear relationships. Least squares regression was used

to obtain the following equations:
a = a;cos?A + a,cosA + as, 4)
b = b;cos?A + b,cosA + bs, %)

with correlation coefficients of 0.9919 and 0.9712, respectively; a4, a,, as, by, by, bs are 2.726, -5.304, 2.887, -0.2552,
0.6134, and -0.5724, respectively.

0.5F

0 I L L -0. I I L J
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
cos(A) cos(A)
(a) a vs. cos A (b) b vs. cos A

Figure 8: Influence of A on a and b.

By incorporating Eqs. 4 and 5 into Eq. 3 the final form of the expression of L, in terms of the fracture network parameters
is obtained, as shown in Eq. 6. This form is then used directly in a bivariate least squares fitting using the Levenberg-

Marquardt algorithm (Ngia and Sjoberg, 2000), an optimal search technique for multivariate non-linear curve fitting. The
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original values of parameters shown in Eqgs. 4 and 5 are used as initial inputs to the optimisation algorithm to improve
computational efficiency and accuracy and the final derived parameters in this case are (aq,a,, as, by, by, bs) =
(2.4757,—4.9064, 2.7359,—-0.1841,0.5097, —0.5336) . This set of values should be a more accurate reflection of the
bivariate relationship than the values obtained in the two separate consecutive steps described above. The L, parameter (mean

fracture length threshold) quantifies the orientation-dependent critical length for percolation, defined mathematically as:
L, = (a;c0s2A + aycosA + az)n(brcos*Stbzcoshbs) (6)

The final fitted surface is shown in Figure 9a. The points are the average values of 20 groups of MC simulation results
shown in Figure 7. The suitability of the chosen functional form (Eq. 6) is confirmed by the fact that almost all the points are
on the fitted surface. The plot in Figure 9b of simulated values of L, against those predicted by Eq. 6 gives an extremely high
correlation coefficient of nearly 1. It is also encouraging that, on visual inspection, the fitted curve is conditionally unbiased.
Although this workflow is useful for multivariate non-linear fitting problems in which marginal relationships are of invariant
shape, it should be noted that difficulties may arise for very high dimensions (Dong et al., 2016).

The process described above can be summarised as an approach for fitting multiple variables. This approach starts by
fitting a hypothetical relationship between L, and n is initially fitted. Then, a new variable A is added by analysing
relationships with the parameters in the hypothetical relationship model. The parameters in the hypothetical relationship model
are then replaced by expressions of the newly added variable. Ultimately, the relationship between between L, and (n, A) can
be obtained. This approach will be applied in the relationship fitting of Section 3.2, where the independent variables are

(n, cosA, k).
r=0.996
EFitied surface i g 100 . .
o Lvs.nand A \ g
2 5 80t 50
o S
100 = E 601 o6°
= o F
; 2 :
- 50 A = 40t
2
40 =
0 § 20 -
30 8
- 0
o 20 0 20 40 60 80 100
2w s o AR L, obtained by simulation

(a) Fitted percolation threshold surface and simulation data  (b) Cross plot between simulated values of L, and those predicted by Eq. 6

Figure 9: Bivariate percolation threshold fitting.

3 Percolation analysis of DFN models

3.1 Experiment design for DFN with exponential fracture lengths
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In the example used above, the lengths and orientations were identical for all fractures in a fracture network, which was not
generally the case in practical applications. The relationship described above could be made more useful by extending it to
cover realistic fracture networks. The following numerical experiments were all implemented on a dimensionless unit square
(1x1). Based on previously published work (Dong et al., 2018; Xu et al., 2007), the lengths of rock fractures could generally
be modelled by an exponential or lognormal distribution. In this work, the exponential distribution was used, and therefore the
average length L is equal to 1/1 where A was the distribution parameter. The von-Mises distribution (Eq. 2) was used for
fracture orientation.

There are now three independent variables (n, A, k) and the aim is to establish the relationship L, = f(n, A, k). To
simulate percolation states similar to those shown in Figure 5, DFNs corresponding to a combination of 8x18x13x200 (374,400)
sets of variables were simulated and analysed, with each case simulated independently 20 times. The number of changes

explored for each variable are listed in Table 1.

Table 1: Parameters of DFNs in Section 3.2.

Parameter Values analyzed Number of values
n round(10%),i = 1.5,1.65,1.8, ...,2.4 8
A= |u—90] (i—-1)x5°%i=123,..,18 18
K round(10%),i = 0.602, ...,2 13
L=1/2 10%,i = —1.5,—1.4925,—1.485, ...,0 200

For each pair of (A, k), 20 independent realisations of DFNs with different n and L were generated to obtain the
percolation threshold curves L, = f;(n). These 20 MC simulations are used to calculate the percolation probability to obtain
the points (n, L), as shown in Figure 10. The points are the average values of 20 groups of 20 MC simulations and the error
bars represent two times of the corresponding standard deviation. The relationship in Eq. 3 was used again for L, = f; ()| -
A comparison of Figure 6b and Figure 10 indicates that the standard deviations in this case are much larger, which is expected
due to the variability in the lengths of fractures generated in simulations. Note that the uncertainty (reflected by the size of the

error bar) increases as the number of fractures, n, decreases.
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Figure 10: Variation of the percolation threshold as a function of n for k = 3 and A= 0.

3.2. Determining percolation threshold equation for DFN with exponential fracture length

Eq. 6 is only for a specific parameter k. Establishing the full relationship, L, = f(n, cosA, k), requires the relationships
between (a4, a,, as, by, by, b3) in Eq. 6 and k for different DFNs. The regression results for these parameters for different x
values are shown in Table 2, which provides the input data for the final non-linear fitting of the percolation threshold function.
The correlation coefficients for each of the regressions in the table are all greater than 0.98, which ensures the suitability of

the derived relationships.

Table 2: Regression parameters (aq, a,, a3, by, by, bs) for different values of k.

K a a as b, b, bs

3 30.1061 -0.3339 0.6003 -0.03176 0.08575 -0.329
6 0.3431 -0.8712 0.8535 -0.08643 0.2164 -0.3734
10 0.8132 -1.835 1.338 -0.1105 0.3005 -0.4269
13 1.328 -2.77 1.765 -0.1555 0.3679 -0.4494
18 1.883 -3.781 2.199 -0.2105 0.5097 -0.5119
24 2.726 -5.304 2.887 -0.2552 0.6134 -0.5724
32 3.212 -6.382 3.45 -0.3276 0.8044 -0.6671
56 6.14 -11.59 5.724 -0.2222 0.6696 -0.6211
75 8.671 -15.94 7.582 0.04139 0.3522 -0.5445

The relationships between a; and k, between a, and k and between a; and k are linear as described by Egs. 7-9; the

relationship between b; and k, between b, and k and between b; and k are quadratic as shown in Egs. 10-12. The correlation
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squares regression.

coefficients of this set of regression curves are all greater than 0.98. Overall, these variables display a clear and strong

relationship that can be described by an appropriate functional form. Table 3 lists the constants in Eqs. 7-12 obtained by least
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Figure 11: Relationship between k and fitted parameters (a,, a,, as, by, by, b3).

a; = a;1K+0ay,,

a; = Az k+as;,

az = az;k+ass,
b, = by 1k + by,x? + by,
by = byik + byyk? + byg

by = bs1k + bspk? + bas,

where a4, @15, 21, @22, A31, 32, b11, b12, D13, b21, b22, b3, 31, b3y, b33 are parameters.

Table 3: Parameters of Eqs. (7) - (12).
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a1 (V) azi az» azi asz by4 by,

0.1177 -0.296 -0.2143 0.2192 0.096 0.4064 0.0002 -0.0182
b13 b21 b22 b23 b31 b32 b33
0.0299 -0.0004 0.0377 -0.0204 0.0002 -0.0165 -0.279

Finally, the combined percolation equation L, = f(n, cosA, k) can be obtained, as shown in Eq. 13. The correlation
coefficient is again nearly 1 (0.99).
( (by1K+byaK2+be3)x? )
L= ((a11K+a12)x2 + (az kt+azy)x + (a31K+a32))n +(D21k+bazKk* +b23)xtba1k+bazic? +baz > (13)
where x = cos A. x is a derived variable that optimizes the equation structure.

Again, these parameters are used as the inputs for the final multivariate least squares optimisation based on the Levenberg-
Marquardt algorithm using all the simulation results. The final optimised values of the parameters in Eq. 13 are shown in Table
4. These values are similar to the initial parameter values obtained by the step-wise fitting process described above but they
have been refined by global optimisation. The correlation coefficient between the prediction and simulation values based on
the initial parameters (Table 3) is only 0.43 due to the error propagation in the step-wise fitting process. After global

optimisation, the correlation coefficient increases significantly to nearly 1 (0.99) based on the values listed in Table 4.

Table 4: Parameters of the percolation equation in terms of fracture properties.

a1 a2 az azz asi asz by, by,
0.0643 -0.1587 -0.1188 -0.5551 0.0549 0.9823 -0.1612 0.2501
by3 b1 b, b,3 b3y b3, b33
-0.0945 0.2633 -0.0657 0.1313 -0.2025 0.1519 -0.4730

To visualize the relationships in Eq. 26, several surfaces of L, vs (n, A) corresponding to different values x (4, 18, 42 and 75)
are shown in Figure 12. In general, higher k values correspond to higher percolation threshold values. This is because higher
Kk values correspond to lower variation of fracture orientations, which leads to lower probabilities of fracture intersections.

Consequently, this reduces the connectivity of the fracture network and hence longer fractures are needed to reach percolation.

16


javascript:;

385

390

395

L, L,

= A — 0.4
0.2 1 0.35
0.18 0.3
0.16
s 0.25
0.14
0.2
0.12
0.15
0.1
0.1
@r=4 (b)k =18
L, L,
0.6
0.8
1 0.5
0.6
0.4
305
0.3 0.4
50 > "~ 60 Mo0.2
100 > 40 0.2
150 > = 20
200 A(°)
250 0
(c) k =42 (dx=175

Figure 12: Extracted surfaces from the final percolation threshold equation.

Eq. 13 is derived for the region of a dimensionless unit square, the result is expected to be applicable to areas at different

scales (v X y). For these cases, the scaled percolation threshold L. will be used (Eq. 14) revised from Eq. 13. If the average

fracture length of a fracture network L > L, there is more probability reach percolation.

Lis =L xy,

3.3 Design of experiments for DFN with lognormal fracture lengths

Unlike the previous example, the fracture lengths in this section are modeled with a lognormal distribution. The mean fracture
length L and standard deviation v, which quantifies the dispersion of fracture lengths under the lognormal distribution, are
used to derive the distribution parameters y and o. These parameters, along with the probability density function, are calculated
according to Eqgs. 15-17. Five independent variables (L, v, A, k) are considered with the aim of establishing the relationship

ny = f(L,v,A k). In this context, n, represents the fracture number threshold at which the percolation threshold may be
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reached at a low probability (p0) in DFNs characterized by the parameters (L, v, A, k). In Section 3.1, the exponential
distribution of fracture length is defined by a single parameter. Consequently, the fracture length is selected to determine the
threshold corresponding to p0. Given that the fracture length is governed by two parameters (L,v), the parameters

corresponding to the fracture length distribution are not selected. Instead, the fracture number is chosen.

u=log(@ /v +I2), (15)
o=+/loglv/I?+1), (16)

_ 1 —(an;u)z _
f(Ll,u,o)zZGme 202 L >0, (17)

Simulations and analyses were conducted corresponding to the 8x6x6x18%13 (684,400) variable combinations for the

DFNs, with each case independently simulated 20 times. The number of variations for each variable are listed in Table 5.

Table 5: Parameters of DFNs in Section 3.3.

Parameter Values analysed Number of values
n round(10%),i = 1.5,1.65,1.8, ...,2.4 8
L 0.05,0.12,0.19,0.26,0.33,0.4 6
v 2,4,6,8,10,12 6
A= |u —90]| (i—-1)x5°%i=123,..,18 18
K round(10%),i = 0.602, ...,2 13

3.4 Derivation of percolation threshold equation for DFN with lognormal fracture lengths

The multivariable fitting process for the DFN with lognormal fracture lengths was analogous to that described in Section 3.2.
Initially, the hypothetical relationship between n, and L was fitted (Eq. 18). Subsequently, by analysing the relationship
between the parameters in the hypothetical model, new variables v, A, and k were sequentially incorporated. The expressions
for the newly added variables were then used to replace the parameters in the hypothetical model. Ultimately, this yields the

fitted relationship between n; and (L,v, A, k), with the fitting process detailed in Eqgs. 18-21, where x = cos A.

n, = f(L) = al’ +c, (18)
ne = f(L,v) = a;e®VLP1 + ¢;v%, (19)
ne = f(L,v,A) = (a1 x + ay,)e%22V[P1xthiz 4 ¢ yC12¥+crs (20)
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ne = f(Lv,A k) = [(dii+dyk + ds)x + (d4x2+d5x+d6)]e(d7f+d8)"vzd9xidmk+dn

2 b
+d12Vd13x +dqa

@n
Similarly, the parameters are used as inputs for the final multivariable least squares optimisation based on the Levenberg-

420 Marquardt algorithm, utilising all simulation results. The final optimised values of the parameters in Eq. 21 are presented in

Table 6.

Table 6: Parameters of the percolation equation in terms of fracture properties.

dl dz d3 d4 dS d6 d7
-0.0344 0.0560 0.2381 0.0335 0.0418 0.0053 -0.0002
d8 d9 d10 d11 dlZ d13 d14
0.0091 0.3048 0.0174 -1.4019 74.7657 -0.0001 0.0174
425 To visualise the relationships in Eq. 21, several surfaces of n, vs (L, v, A, k) corresponding to different values of v (2, 4,

and 12) and k (2, 7, and 10) are presented in Figure 13. Generally, higher A and lower L result in increased percolation
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Figure 13: Extracted surfaces from the final percolation threshold equation.

Eq. 21 is derived for a dimensionless unit square, with its results expected to be applicable to regions of varying scales
(y X y). For these scenarios, the percolation threshold 7, will be adjusted using a scaling modification from Eq. 21, resulting

in Eq. 22. If the number of fractures N is more than 71,,, the probability of achieving percolation will be high.

Ngs = Ng X Yns (22)

where y,, is the scaling correction factor, y, = log;, (i + 20).

4. Validation of the derived percolation threshold equation
4.1 Percolation analysis of fracture networks not used for deriving the threshold equation

(1) DFN with exponential fracture length. To test the performance of the derived zero percolation thresholds (Eq. 14),
additional DFN models with different parameters (n = 100,200, A= 3°,63°, k = 5,40,50) at different scales (2m X 2m,
60m x 60m, 300m x 300m, 900m x 900m, 1100m x 1100m, 1200m x 1200m, 1300m X 1300m) were generated for
percolation analysis. The percolation thresholds obtained from Eq. 14 and numerical simulation are shown in Figure 14. The
close agreement between the predicted thresholds and the simulation results demonstrates that the derived relationships (Eq.
14) performed extremely well for predicting of zero percolation thresholds of DFNs with different parameters at different study

scales.
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Figure 14: Validation of Eq. 14 in study areas on different scales.
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(2) DFN with lognormal fracture length. To test the derived zero percolation thresholds (Eq. 22), additional DFN models with
different parameters (L = 0.15,0.25, v = 5,7, A= 26°,56°, k = 5,9) at different scales (2m X 2m, 60m X 60m, 300m X
300m) were generated for percolation analysis. The percolation thresholds obtained from Eq. 22 and numerical simulations
were depicted in Figure 15. The remarkable concurrence between the predicted thresholds and the simulation outcomes
underscores the robust performance of the derived relationships (Eq. 22) in accurately forecasting percolation thresholds across

diverse parameter configurations and study scales for DFNs.
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Figure 15: Validation of Eq. 22 in study areas on different scales.

4.2 Comparison with analytical solutions of simple fracture networks

The equations derived in Section 3.2 are for stochastic fracture networks with fracture lengths that follow an exponential
distribution and fracture orientations that follow a von-Mises distribution. Because of the complexity of such fracture networks,
there is no analytical solution for the corresponding percolation threshold. However, for simple fracture networks, where both
fracture location and orientation follow completely random distributions and the fracture length is identical, the analytical

solution for the percolation threshold of fracture length is (Balberg et al., 1984; Berkowitz, 1995):

Lc = 42/\[mp, (23)

where p is the fracture density (=P20) calculated as p = n/y? and y? is the area of the study region. For the case of varying

fracture length, the corresponding threshold is:

L, =12 o2, (24)
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where a2 is the variance of fracture length distribution. If the length follows an exponential distribution with parameter A, Eq.
24 becomes (Berkowitz, 1995). Therefore, this section utilises fracture networks characterized by an exponential distribution

of fracture lengths as a case study to compare the derived thresholds with analytical solutions.

Lo = Le/NZ = 42/ |75 ~ 1.676 yn™°", (25)

This is a special case covered by the relationships derived in this work by setting k = 0 for a completely random

distribution of fracture orientation and ignoring cos A as it is now irrelevant. Eq. 14 then becomes:

Les = y azn®s, (26)
where a3, = 0.9823, b33 = —0.4730 The equation can be further simplified to:
Lys = 0.9823yn 04730, 27)

which should be compared to Eq. 25. Note that the difference between the two equations is due to the different
probabilities used to derive the percolation threshold. The theoretical solution is for a percolation probability of 50% while the
derived relationship is for a percolation probability of 0%, as discussed above, and therefore it should be smaller.

There is a striking similarity between the analytical solution for p50 and the solution we derived for p0. The reasons why
these two equations are so similar and what the factor of two in the first coefficient represents are important. These will be
discussed in future work instead of here since it is not the focus of this work.

To compare the solutions, fracture networks with n = 100,200, 300,400 and 500 in a square of 75m X 75m are used
for the simulations. Percolation thresholds corresponding to p0, p50 and p100 are calculated by Monte Carlo simulations and
the results are shown in Figure 16. As demonstrated, the analytical solution is close to the pS0 percolation threshold with an
average absolute difference of 4.9%. On the other hand, the solution based on the derived equation is close to that of p0 with

an average absolute difference of 11.4%.

25 , :
- - -High p100
20 —$—Medium p50
Low p0
. —— Analytical threshold
/é\ 15+ . Proposed threshold |-
10
5 L
0
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n

Figure 16: Comparison of percolation thresholds determined by the analytical solution, the derived equation, and numerical
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simulations. The points are the averages of 20 groups of MC simulations and the error bars are three times the corresponding
standard deviations.

4.3 Percolation analysis of real fracture networks using the derived equation

Two real fracture networks, as shown in Figure 17a and Figure 18a, are used to demonstrate further the application of the
derived percolation threshold equations. Figure 17a shows a set of fractures traces on a rock outcrop taken from Wilson (Wilson,
2001). Figure 18a are fracture traces in the deformation bands on the Valley of Fire State Park, Nevada (Barton and Hsieh,
1989). Mid-points of the fractures are used to represent the fracture locations, as shown in Figure 17b and Figure 18b,
respectively. They are all considered to follow approximately the Poisson distribution. The number of fractures, n, in the three
systems are 35, 186. Clearly there is one dominant direction of fracture orientations in these systems, as illustrated in the rose
diagrams shown in Figure 17c¢ and Figure 18c. The orientation dispersion parameters (k) were calculated to be 145.18 and
25.68. For fracture length, the histogram in Figure 17d indicates an approximately exponential distribution for the first fracture
set. For the second and third sets, the histograms (Figure 18d) suggest lognormal distributions. The average fracture lengths L
are 0.249m, 0.282mm, 0.9544m and the side lengths y of study areas are 2.5m, 8mm, 7m, respectively.

Using Egs. 21 and 22 with the parameters (L, v, A, k) listed in Table 7, the calculated percolation thresholds (y,, X n;) in
the horizontal and vertical directions can be calculated. For Figure 17a, the calculated percolation thresholds are 126
(horizontal) and 94 (vertical). The threshold in the horizontal direction is much greater than that in the vertical direction due
to the fact that fractures are mainly vertical in this case. The fracture numbers are all less than these two thresholds, hence the
fracture network is not percolated in both directions. This conclusion can easily be confirmed in this case by visual inspection

of the fracture system displayed in Figure 17a.

2.5 2.5

y(m)

// 1
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(a) Fracture network from an outcrop (b) Fracture centres
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Figure 17: A set of fractures from an outcrop (Wilson, 2001) and the network properties.

Table 7: Parameters of three real fracture networks in Figure 17a and percolation assessment.

Direction N A(°) v K L y Vn X Mg N =y, Xn, Percolated
Horizontal 35 72.47 0.18 145.18 0.25m 2.5m 126 No No
Vertical 35 17.53 0.18 145.18 0.25m 2.5m 94 No No

525 For the fracture set (Figure 18a), the average fracture length is 1.19m. The horizontal percolation threshold y x L, is

1.34m and the vertical threshold is 0.69m. The average fracture length in this case is greater than the vertical threshold and
therefore the fracture network is percolated vertically but not horizontally. On close inspection of Figure 18a, there is a cluster

of fractures (marked in red) connecting the top and bottom sides of the study region.

530 Table 8: Parameters of three real fracture networks in Figure 18a and percolation assessment.

Direction N A(®) K y L y XL, L>yXxL, Percolated
Horizontal 146 80.54 25.68 7m 1.19m 1.34m No No
Vertical 146 9.46 25.68 7m 1.19m 0.69m Yes Yes
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Figure 18: Fracture traces of deformation bands in the Valley of Fire State Park, Nevada (Barton and Hsieh, 1989) and the

corresponding network properties.

5 Discussions

While the simplified relationships proposed in this study provide an efficient means of estimating the zero-percolation
threshold directly from fracture network parameters, several limitations should be acknowledged. First, the present formulation
is restricted to a two-dimensional (2D) domain with a single fracture set of similar orientation. This abstraction neglects the
inherently three-dimensional (3D) nature of natural fracture systems, which typically comprise multiple intersecting sets
formed under polyphase tectonic regimes. Extending the methodology to accommodate 3D configurations with multiple
fracture sets will be a critical next step, although the associated analytical derivations are considerably more complex.
Second, the current approach relies on specific statistical assumptions for fracture attributes (e.g., Poisson-distributed
locations, exponential or lognormal length distributions, and von Mises orientation distributions). While these choices are

consistent with many prior DFN studies, natural fracture systems often exhibit spatial correlations, clustering, or heavy-tailed
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distributions that may deviate from these idealizations. Future work will explore non-parametric estimation methods to mitigate
dependency on pre-defined distribution forms and to better capture geological variability.

Third, the present formulation addresses only the geometric aspects of network connectivity. In real-world applications,
hydraulic connectivity depends on both geometry and fracture transmissivity, which is influenced by aperture, roughness, and
in-situ stress. Incorporating coupled flow—mechanical models would enable the framework to more directly predict hydraulic
properties such as permeability.

A particularly promising avenue lies in integrating the derived functional forms of percolation thresholds into physics-
informed machine learning workflows. The explicit parameter, threshold relationships, established here can serve as strong
physical constraints within emerging architectures, such as Kolmogorov—Arnold Networks (KAN), to enhance generalizability
and reduce training data requirements. Embedding these analytical insights into Al frameworks is expected to significantly
improve predictive efficiency for complex, data-limited geological systems.

While the proposed 2D, single-set formulation constitutes a foundational step, its extension to multi-set, 3D, and
distribution-flexible fracture systems, together with integration into advanced machine learning paradigms, offers a clear and

impactful trajectory for future research.

6 Conclusions

Percolation analysis of fracture networks is important for many applications, including oil and gas recovery, geothermal energy
exploitation, hydrology, and groundwater protection in radioactive waste storage. In this paper, we focus on the percolation
threshold relevant to rock impermeability, which is critically important for the safe underground storage of waste and energy
materials.

Our approach to the calculation of the percolation threshold makes direct use of the characteristic parameters of 2D
fracture network, in particular the number of fractures n, the fracture size (length) L and the fracture orientation A. This differs
from the simplified approaches of using indirect characteristic parameters (e.g., fractal dimension), which could produce
misleading results because fracture orientation is not considered. The assessment of fracture networks in this research was
made under the following assumptions: (1). the centre points of fractures are randomly and independently distributed in space;
(2). the lengths of fractures follow an exponential distribution; and (3). the orientations of fractures follow a von-Mises
distribution, the parameters of which are the mean orientation u and the concentration parameter k. The relationship between
fracture network parameters and the corresponding percolation threshold is obtained from a large number of simulations. A
non-linear multivariate fitting process was used to derive the final prediction equation for the percolation threshold in the form
of L, = f(n, cosA, k). The derived equation provides a reliable relationship and an efficient way to estimate the connectivity
and percolation state of a fracture network based directly on its parameters. The relationship was cross-validated using a
published analytical solution and was further applied to three real fracture networks. The results demonstrate that the derived

relationship can be used for fracture networks at different scales using a rescaling coefficient and can also be used for the
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assessment of percolation in different directions. The derived relationship is a useful extension for rock impermeability

evaluation (zero probability percolation p0), compared with the commonly used percolation assessment based on excluded

volume, which corresponds only to the occurrence of percolation on average (i.e., 50% probability percolation, p50).

Additionally, this work also studies fracture network models with log-normally distributed fracture lengths and derives zero

percolation formulas, reaching conclusions similar to those mentioned above.

Owing to the complexity of multiple fracture sets, the present study is confined to a 2D fracture network with a single

set. Future work will extend the framework to both 2D and 3D systems with multiple fracture sets, incorporating machine

learning techniques to address the increased complexity.

7 Description of parameters

The parameter descriptions are shown in the table 9.

Table 9: Description of parameters

Parameter Explanation Parameter Explanation
Percolation thresholds of DFNs
pO, p50, corresponding to 0%, 50%, and 100% P30, P32 quber and total fracture area of fractures per
pl00 . . unit volume.
percolation, respectively.
" Number of fractures in the network. 4 Orlentatlon. ang@e of a fracture (measured from a
reference direction, e.g., North).
ng Fracture number threshold for p0. U Meap dl'rect101‘1 of fragtures' in the von-Mises
distribution (primary orientation).
L Length of a fracture. A Relative orientation angle= ||ju — 90°]|.
Exponential distribution parameter whose
A . X X = cosA.
reciprocal represents mean fracture length.
I Mean fracture length in DEN. « Von-Mlses.conce.:ntratlon pargmeters, quantifying
fracture orientation aggregation.
o Standard deviation of lognormal fracture » Scale of the study region.
lengths.
v Variance of lognormal fracture lengths. Vn Scaling correction factor.
L; Critical fracture length threshold for p0. Iy (k) Modified Bessel function of order 0.
P20, P21  Fracture number and length per unit area. p Equal to P20
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