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Abstract. Percolation analysis is an efficient way of evaluating the connectivity of discrete fracture networks. Except for very 

simple cases, it is not feasible to use analytical approaches to find the percolation threshold of a discrete fracture network. The 

most commonly used percolation threshold corresponds to the occurrence of percolation on average for the set of parameters 

(p50), which is not adequate for applications in which a high confidence in the percolation threshold is required. This study 15 

investigates the direct relationships between the percolation threshold at low probability (p0, referred to as zero-percolation 

threshold) and the properties of fracture networks with one set of fractures (fractures with similar orientations) in two-

demensional domains. A generalized non-linear multivariate relationship between p0 and fracture network parameters is 

established based on connectivity assessments of a significant number of numerical simulations of fracture networks. A feature 

of this relationship is the invariant shape of marginal relationships. A comparison study with an analytical solution and 20 

applications in both synthetic and real fracture networks shows that the derived relationship performs well in fracture networks 

of different sizes and orientations. A significant benefit of this relationship is that, when an analytical solution is not available, 

it can provide fast and reliable connectivity statistics of fracture networks based only on fracture parameters. 
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1 Introduction 

Discrete fracture networks (DFN) are widely used to model fracture systems in rock masses and reservoirs for flow analysis 

(Dogan, 2023; Kolyukhin, 2022; Liu et al., 2019). In three-dimensional DFNs, fractures are represented using simplified 
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geometric shapes such as polygons, rectangles, disks, and others. In two-dimensional DFNs, fractures are simplified as line 

segments (Dong et al., 2020). DFN models are generally considered to be more realistic representations of the fracture systems 30 

and they are more amenable to integrating geological data into the flow model (Dong et al., 2018). Fracture connectivity 

analysis is a significant component in the DFN approach to assessing flow behaviour (Alghalandis et al., 2015; Einstein and 

Locsin, 2012) as the conductivities of fractures are generally orders of magnitude greater than those of the surrounding porous 

matrix (Thovert et al., 2017). A good understanding of the connectivity of fracture networks is essential for many applications 

such as oil and gas recovery, geothermal energy exploitation, hydrology and groundwater engineering, and geological storage 35 

of radioactive wastes. 

Percolation theory (Jafari and Babadagli, 2013; Khamforoush and Shams, 2007; Or et al., 2023; Sun et al., 2023) provides 

a basis for describing and quantifying the connectivity of geometrically complex systems (Xu et al., 2007) such as fracture 

networks and this is reflected in many studies reported in the literature that use percolation theory in the connectivity analysis 

of fracture systems (Barker, 2018; de Dreuzy et al., 2000; Dong et al., 2022; Khamforoush and Shams, 2007; Manzocchi, 2002; 40 

Masihi and King, 2007; Mourzenko et al., 2012). Percolation describes the phenomenon in which there is at least one domain-

spanning pathway in a physical system (Tang et al., 2022; Yao et al., 2020; Yi and Tawerghi, 2009). Percolation in a DFN 

involves at least one cluster of connected fractures that spans the reservoir (McKenna et al., 2020) or rock mass (one cluster 

refers to a series of fractures that intersect each other). In this context, one of the most important characteristics of a fracture 

network is whether or not it percolates (Bour and Davy, 1998; Bour and Davy, 1997) and the percolation threshold is commonly 45 

used to quantify the critical value of connectivity at which the network percolates (Khamforoush and Shams, 2007; Manzocchi 

et al., 2023; Walsh and Manzocchi, 2021). Using this definition, the permeability of a fracture network is zero if the 

connectivity value is less than the percolation threshold (Mourzenko et al., 2005). 

The percolation threshold of a DFN is a property that depends on the parameters of the fracture system (Mourzenko et 

al., 2005). Features previously used to characterise percolation in DFNs include the dimensionless density derived from the 50 

excluded volume (Barker, 2018; de Dreuzy et al., 2000; Khamforoush et al., 2008; Mourzenko et al., 2012), fractal dimensions 

(Jafari and Babadagli, 2013; Jafari and Babadagli, 2009; Zhao et al., 2016), topological connectivity measures (Manzocchi, 

2002), fracture clustering (Manzocchi, 2002), and the average number of intersections per fracture (Manzocchi, 2002). These 

indirect characteristics of DFN models are derived from direct fracture network parameters, such as the number of fractures, 

fracture locations, sizes, and orientations, which have a joint effect on the occurrence of a percolating network (Jafari and 55 

Babadagli, 2009). For example, if the fracture size is kept constant, an increase in the number of fractures will result in a higher 

fracture density, which in turn will increase the probability of a connected domain (Shokri et al., 2016). 

 There are many published studies on the percolation of DFN models, with different focuses on different aspects of 

the problem. For fracture locations, DFN models in these studies cover both the Poisson (homogeneous) distribution (Barker, 

2018; Bour and Davy, 1997; de Dreuzy et al., 2000; Huseby and Thovert, 1997; Jafari and Babadagli, 2013; Khamforoush and 60 

Shams, 2007; Mourzenko et al., 2005; Robinson, 1983; Thovert et al., 2017; Zhao et al., 2009; Zhao et al., 2016) and non-

homogeneous (i.e., spatially correlated) distributions (Manzocchi, 2002; Mourzenko et al., 2012). For fracture sizes, some 
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DFNs use the monodisperse model, which means that the shape and size of every fracture are identical (Jafari and Babadagli, 

2013; Khamforoush and Shams, 2007; Khamforoush et al., 2008; Manzocchi, 2002; Mourzenko et al., 2012; Robinson, 1983). 

This makes the percolation study relatively simple using numerical simulation. Others use the polydisperse model in which 65 

the sizes (Bour and Davy, 1997; Huseby and Thovert, 1997; Mourzenko et al., 2004; Mourzenko et al., 2005; Thovert et al., 

2017; Zhao et al., 2016) and shapes (Barker, 2018; Thovert et al., 2017) of fractures are different. Commonly used fracture 

size distributions include the power law function (Mourzenko et al., 2004; Mourzenko et al., 2005; Zhao et al., 2016), 

exponential distribution (Catapano et al., 2023; Dowd et al., 2007; Fadakar Alghalandis, 2017; Xu et al., 2007; Zhu et al., 2022) 

and uniform distribution (Huseby and Thovert, 1997). For fracture orientations, many DFNs use isotropic models (uniform 70 

and random) (Barker, 2018; Bour and Davy, 1997; Charlaix et al., 1984; de Dreuzy et al., 2000; Huseby and Thovert, 1997; 

Jafari and Babadagli, 2013; Khamforoush and Shams, 2007; Khamforoush et al., 2008; Mourzenko et al., 2004; Mourzenko 

et al., 2012; Mourzenko et al., 2005; Robinson, 1983; Thovert et al., 2017; Yi and Tawerghi, 2009; Zhao et al., 2016) but 

anisotropic (with a single preferential orientation or several preferential orientations) models are also commonly used (Balberg 

and Binenbaum, 1983; Khamforoush and Shams, 2007; Khamforoush et al., 2008; Manzocchi, 2002). The Fisher distribution 75 

(Khamforoush and Shams, 2007; Xu and Dowd, 2010) is the most commonly used type of distribution for three-dimensional 

fracture networks, while the von Mises distribution (Xu and Dowd, 2010) is the most commonly used for two-dimensional 

fracture networks. Physically, fractures related to tectonic movements are, in general, anisotropic (e.g., conjugate fractures 

generated around the maximum principal compressive stress (Zhao and Hou, 2017), while fractures associated with other 

causes, such as diagenesis, are typically isotropic (Dong et al., 2018). 80 

A common method used to obtain the percolation threshold of a DFN is first to calculate some indirect characteristic 

parameters of the fracture network and then evaluate the percolation threshold on the basis of these parameters. However, 

DFNs with the same indirect characteristic parameters may have quite different direct geometrical parameters (e.g., number 

of fractures, fracture size, and orientation). Unfortunately, these geometrical parameters dictate the fracture connectivity and 

hence the percolation threshold (Dong et al., 2019). For example, the two fracture networks in Figure 1 have the same number 85 

of fractures, identical fracture lengths, and box-counting fractal dimensions, but the network in Figure 1a percolates between 

sides A and B, while the other (Figure 1b) does not percolate. The different orientations of these two fracture models result in 

different percolation characteristics. In this case, the box-counting fractal dimension provides a good measure of the 

complexity of the system but it ignores the effect of the preferential orientation of a fracture network. Although the indirect 

approach can simplify the evaluation of the percolation threshold of a fracture network, it may sometimes produce misleading 90 

results. In addition, most percolation thresholds based on the excluded volume method correspond to the occurrence of 

percolation on average (Barker, 2018; Yi and Tawerghi, 2009) (i.e., with 50% probability, p50) due to the stochastic nature of 

fracture networks (c.f. Section 2.2). The level of confidence in such thresholds may not be sufficient for some applications. 

For example, for underground radioactive waste storage facilities, selecting storage sites that minimize the potential number 

of connected pathways to the biosphere is important. In this case, a low probability percolation threshold (p0, c.f., Section 2.2) 95 

named as zero-percolation threshold is more important for the connectivity analysis of the fracture systems (Dong et al., 2019). 
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(a) Percolated DFN                      (b) Un-percolated DFN 

Figure 1: Schematic diagram of two DFN models with different percolation features. 100 

 

In practical engineering applications, it would be less problematic to use the direct relationship between the percolation 

threshold and fracture network parameters for connectivity assessments instead of resolving the problem by numerical 

simulations in every case. In general, it is not possible to establish such a relationship analytically due to the complexity of 

DFNs. In this work, Monte Carlo simulations of the number of fractures, 𝑛, fracture size (length), 𝐿 ,and fracture orientation, 105 

𝜙 are used to establish this relationship for two-dimensional DFN models, the fractures are represented by vectors representing 

line segments (Dong et al., 2020). In particular, fracture locations follow the Poisson distribution, fracture lengths follow the 

exponential distribution 𝑓(𝐿|𝜆) (λ: the exponential distribution parameter whose reciprocal 1/λ represents the mean fracture 

length 𝐿̅) and fracture orientations follow the von-Mises distribution 𝑓(𝜙|𝜇, 𝜅), where 𝜆, 𝜇 and 𝜅 are their corresponding 

distribution parameters. 𝜇 represents the mean/main fracture orientation, while κ (concentration parameter) quantifies the 110 

directional clustering degree of fractures in the von Mises distribution.". (see Section 2.1). The zero-percolation threshold (p0) 

equation 𝐿𝑡 = 𝑓(𝑛, 𝜇, 𝜅) was established by analysing results from an extensive set of numerical simulations for fracture 

networks with one set of fractures (fractures that exhibit similar orientations) (Ali and Jakobsen, 2011; Zeng et al., 2022) (see 

Sections 3.1-3.2). Besides DFN with exponential fracture length, given the widespread adoption of lognormal distribution 

𝑓(𝐿|𝜇, 𝜎)  in characterizing fracture length distributions within DFN, it is imperative to explore the implications of this 115 

distribution on the phenomenon of zero-percolation. Here, μ and σ are parameters of the lognormal distribution, where μ is the 

mean of the natural logarithm of fracture lengths and σ is the standard deviation of the natural logarithm of fracture lengths 

(derived from the mean and standard deviation of fracture lengths). Consequently, this paper extends its investigation beyond 

DFNs employing exponential distribution for fracture lengths to encompass those utilizing lognormal distribution, as detailed 

in Sections 3.3-3.4. 120 

The relationship was established by using a non-linear, multivariate fitting method for a relationship with invariant shapes 

of marginal functions; this is demonstrated by a simple example in Sections 2.2 and 2.3. The verification of the derived 

equations for zero-percolation underwent a comprehensive series of tests in Section 4. 
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2 Principle of the mathematical method 

To mitigate ambiguity, the mathematical approach will utilise DFN with exponential distributions as an instance to elucidate 125 

the fundamental principles. Fracture parameters of a DFN model are described in Section 2.1. The percolation and percolation 

threshold of a DFN are described in Section 2.2. In Section 2.3, the non-linear fitting method is illustrated using a simple 

percolation example.  

2.1 Discrete fracture networks 

DFN modelling is a stochastic simulation method that uses marked point processes (MPP) (Dong et al., 2018c) in which 130 

fracture location (𝑥, 𝑦) is modelled by a point process (Figure 2a) following a Poisson, non-homogeneous cluster or Cox point 

process (Mardia et al., 2007); and fracture properties (such as length 𝐿, orientation 𝜙) are modelled at each point by marks 

(Figure 2b) following their respective probability distribution functions (e.g., 𝑓(𝐿) and 𝑓(𝜙)) (Dong et al., 2018; Fadakar 

Alghalandis, 2017; Xu and Dowd, 2010). To simulate a set of 𝑛 fractures with similar orientations, the location of a fracture 

(Figure 2a) is generated first followed by the generation of the associated marks (Figure 2b). Subsequently, these procedures 135 

are iterated n times to culminate in the ultimate implementation of the DFN (Figure 2c). 

 

 

(a) Point process             (b) Mark generation         (c) Discrete fracture network 

Figure 2: Schematic diagram of a two-dimensional DFN realization. (a) Randomly generated fracture location; (b) Fracture 140 
properties (length, orientation) are generated from their probability distributions; (c) Repeat process (a) and (b) to generate the 

entire fracture network to account for the number of fractures in each fracture set as well as the number of fracture sets. 

 

For 2D DFN models, fracture network parameters include the number of fracture sets, number of fractures 𝑛 in each 

fracture set, fracture size distribution 𝑓(𝐿) and fracture orientation distribution 𝑓(𝜙). The study area used in this work is 145 

100𝑚 × 100𝑚 so 𝑃20 = 𝑛𝑖 × 10−4(𝑚−2). P20 (2D fracture density) represents the number of fractures per unit area. Here, 

P20 is the fracture number per 2D unit area (Khamforoush et al., 2008). For fracture length, a fixed size 𝐿 can be used, or the 

following exponential distribution (Xu and Dowd, 2010) is commonly used: 
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 𝑓(𝐿|𝜆) = {𝜆𝑒−𝜆𝐿    𝐿 ≥ 0
   0     𝐿 < 0

, (1) 

where 𝜆 is the distribution parameter and therefore the average length, which in this case is 𝐿̅ = 1/𝜆. For fracture orientation, 150 

a von-Mises distribution (Fadakar Alghalandis, 2017; Xu and Dowd, 2010) is commonly used for 2D applications:  

 𝑓(𝜙|𝜇, 𝜅) =
𝑒𝜅𝑐𝑜𝑠 (𝜙−𝜇)

2𝜋𝐼0(𝜅)
 ,  (2) 

where 𝜇 and 𝜅 are the distribution parameters, 𝐼0 is the modified Bessel function defined as: 𝐼0(𝜅) = ∑
𝜅2𝑖

22𝑖(𝑖!)2
+∞
𝑖=0 .  

𝜇 and 1/𝜅 are analogous to the mean and variance of a Gaussian distribution. 𝜇 represents the main fracture orientation. 

For example, in both Figure 3a and Figure 3b, the main orientation is NE-SW (Figure 3e and Figure 3f) so 𝜇 = 𝜋/4, while in 155 

Figure 3c and Figure 3d, 𝜇 = 𝜋/2 (Figure 3g and Figure 3h), following the common practice in geotechnical applications of 

measuring the bearing angle from the North. 𝜅 is a measure of concentration (reciprocal of the measure of dispersion). A 

comparison of Figure 3a and Figure 3c with Figure 3b and Figure 3d shows that the dispersion of the fracture orientation 

increases as 1/𝜅 increases. When 𝜅 = 0, the distribution of fracture orientations is completely random. The DFN models were 

generated by a Matlab code based on the open-source toolbox ADFNE (Fadakar Alghalandis, 2017). 160 

 

 

(a) 𝜇 = 𝜋/4 𝜅 = 4   (b) 𝜇 = 𝜋/4 𝜅 = 24  (c) 𝜇 = 𝜋/2 𝜅 = 4  (d) 𝜇 = 𝜋/2 𝜅 = 24 

 

(e) 𝜇 = 𝜋/4 𝜅 = 4   (f) 𝜇 = 𝜋/4 𝜅 = 24   (g) 𝜇 = 𝜋/2 𝜅 = 4  (h) 𝜇 = 𝜋/2 𝜅 = 24 165 

Figure 3. DFN models showing different fracture orientations with different 𝝁, 𝜿, together with their corresponding rose diagrams. 

Fractures of the same colour in the DFN model are in the same cluster, while fractures in black are isolated ones. 
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2.2 Percolation threshold of DFN models 

Percolation in a DFN means there is at least one cluster of fractures spanning the system (rock mass or reservoir) that allows 170 

the fluid to permeate from one side to the other, as shown in Figure 4b, while Figure 4a shows a non-percolating DFN. 

Obviously, one can easily conclude that an increase in fracture number or fracture size can lead to the percolation of the system 

at some stage. In reality, the probability of percolation is a function of many different factors related to the DFN parameters 

(Khamforoush et al., 2008), of which fracture density (such as P20 and P21 for 2D and P30 and P32 for 3D applications) is 

the most critical. Here, P21 is the fracture length per 2D unit area, while P30 and P32 are the fracture number and area per 3D 175 

unit volume, respectively. 

 

 

(a) Un-percolated DFN                           (b) Percolated DFN 

Figure 4: Schematic diagram of percolation in DFN models. 180 

 

For simple fracture networks, the percolation thresholds can be found analytically. However, for most fracture networks, 

approaches such as Monte Carlo (MC) simulation are required (Yi and Tawerghi, 2009). Due to the random nature of a DFN 

model, its corresponding percolation status is also stochastic in nature. If 𝑁 independent simulations of a DFN are repeated for 

a group of parameters (𝑛, 𝐿, 𝜙), resulting in 𝑁𝑝 number of cases where the fracture network percolates, then the percolation 185 

probability corresponding to the parameter set is 𝑃 = 𝑁𝑝/𝑁 (Barker, 2018; Yi and Tawerghi, 2009). In this study, p0, p50, 

and p100 represent the percolation thresholds of the DFN corresponding to 0%, 50%, and 100% percolation, respectively. p0 

(zero-percolation threshold) is defined as the critical value of a fracture parameter below which network connectivity is 

completely lost, ensuring absolute impermeability. In a fracture network with two variables, fracture number (n) and fracture 

length (L), p0 may be represented either by a sufficiently small n (regardless of L) or by a minimum L when n is fixed.  190 

As illustrated in Figure 5, percolation probability typically transitions between P = 0 (no percolation) and P = 1 (full 

percolation) through an intermediate band. The choice of percolation threshold depends on the application. For example, in 

subterranean radioactive waste repositories, where preventing any potential connectivity to aquifers is critical (Wei et al., 2017; 

Yi and Tawerghi, 2009), p0 is adopted to ensure absolute impermeability. Conversely, for applications such as unconventional 

gas extraction or enhanced geothermal systems, near-complete connectivity is desired, and the threshold may correspond to P 195 

≈ 1. p50 is often adopted in resource extraction (e.g., hydrocarbon reservoirs) to balance economic viability and manageable 
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risk. Noted in stochastic systems, P = 0% and 100% may not be strictly possible and therefore the definition used here means 

the probability calculated by 𝑁𝑝/𝑁𝑇 using a reasonable number 𝑁𝑇 ( = 20 in this study). For stochastic systems, Figure 5 shows 

a worked example, in which the fracture orientations follow a von-Mises distribution (𝜇 = 90°, 𝜅 = 24) and fracture lengths 

are identical for each DFN. Twenty MC simulations ( 𝑁𝑇 = 20 ) were conducted using pairs of parameters ( 𝑛 =200 

20,30,40, … ,250 and 𝐿 = 0.06,0.08,0.1, … 0.8). The percolation probability, 𝑃, calculated from the simulations, is shown in 

Figure 5, where the horizontal axes correspond to the number of fractures 𝑛 and the fracture length 𝐿, respectively, and the z 

axis is the percolation probability of the corresponding DFN model. 

 

 205 

Figure 5: Percolation probability P versus fracture number n and fracture length L for DFN models with random orientations and 

identical lengths. Each P value is obtained from 20 Monte Carlo simulations for a given (n,L) pair. For each n, the fracture length 

threshold corresponding to the p0 zero-percolation point is determined, and the average over 20 repeats is taken as the statistical p0 

threshold. 

 210 

Figure 6a presents data points in the vicinity of the p0 percolation threshold. For each fracture number (n), the statistical mean 

of the fracture length threshold (Lₜ) corresponding to p0 percolation is determined from 20 independent Monte Carlo (MC) 

simulations, following the same procedure as in Figure 5. The mean values are depicted as circles, with half error bars 

indicating the mean ± two standard deviations in Figure 6a. To further approach the true threshold values, an additional 20 

repetitions of the Figure 6a procedure are performed, and the results are shown in Figure 6b. In the subsequent analyses, a total 215 

of 400 MC simulations [20 (as in Figure 6a) × 20 (as in Figure 6b)] are conducted for each data point, providing a statistically 

robust estimate that closely approximates the true value.  In order to reduce the computation cost, there are a few differences 

in fracture number 𝑛 and length 𝐿 compared with those in Figure 5, i.e., 𝑛 = 𝑟𝑜𝑢𝑛𝑑(10𝑗) = 22, 32, 45, …, 251, j= 1.35, 1.5, 

1.65, …, 2.4,  𝐿 = 10𝑘 = 0.0316, 0.0322, 0.0327, …, 1, 𝑘 = −1.5, −1.4925, −1.485, … ,0. The corresponding non-linear 

percolation threshold curve based on least-squares regression is 𝐿𝑡 = 1.7518 × 𝑛−0.4308  with a correlation coefficient of 220 

0.9288. When the specific number n is considered, an increase in L results in percolation. In this context, we hold the fracture 

number n to determine the fracture length threshold (denoted as 𝐿𝑡) for zero probability percolation, hence the utilisation of Lt 
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and n. Conversely, if the fracture length is fixed, L and nt will be employed. This curve defines the percolation threshold in 

terms of parameter pairs of (𝑛, 𝐿𝑡). The DFN corresponding to any combination of parameters below this curve, namely 𝐿 <

𝐿𝑡, will have a percolation probability of 0. To assess the uncertainty of this relationship, 20 groups of MC simulations as used 225 

in Figure 6a were employed to obtain the non-linear relationship with statistical dispersion and the results are shown in Figure 

6b. The circles correspond to the averages of 20 groups of 20 MC simulations (Figure 6a) and the error bars represent two 

times the corresponding standard deviations. The fitted non-linear relationship based on least-squares regression of the average 

values is 𝐿𝑡 = 1.592 × 𝑛−0.403 with a correlation coefficient of 0.993. 

 230 

  

(a) 𝐿𝑡  vs. n from 20 MC simulations in Figure 5, with circles 

showing means and half error bars indicating twice the standard 

deviation. 

(b) 𝐿𝑡 vs. n. Each black point represents an average corresponding 

to a red circle in (a). For each n, (a) is repeated 20 times. 

 

(c) (𝒏, 𝑳𝒕) corresponding to different ∆. 

Figure 6: Percolation threshold of (𝒏, 𝑳𝒕) for the example DFN model. 

 235 
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Obviously, fracture orientations will also affect the percolation threshold curves. As the example to demonstrate these 

effects, the von-Mises distribution is used to describe the distribution of fracture orientations for the DFN model used above. 

In this case, the fracture network parameters are (𝑛, 𝐿, 𝜇,𝜅). To simplify the demonstration, the concentration parameter 𝜅 is 

set to 24, similar to those shown in Figure 3b and Figure 3d;  𝜇 is set to values from 90° to 0° in 5° decrements. As the 

horizontal percolation is of interest here, to simplify the comparison, 𝜇is transformed to an angle measured from the horizontal 240 

direction, i.e., ∆= |𝜇 − 90| (Relative orientation angle, indicating the deviation angle between the dominant fracture direction 

μ and the horizontal direction, used for simplified horizontal percolation analysis), hence, ∆= 0°, 5°, … ,90°. The above curve 

fitting process was repeated and some results are shown in Figure 6c. As ∆ decreases, the percolation threshold decreases. This 

is consistent with the fact that lower ∆ will increase the connectivity in the horizontal direction between the left and the right 

sides; percolation therefore requires a shorter fracture length, and so the percolation threshold curve decreases. 245 

2.3 Non-linear relationship for the percolation threshold  

The general shapes of the percolation curves in Figure 6c can be considered to have similar shapes, which are represented as 

coloured curves in Figure 7. To understand further the relationship between 𝐿𝑡, 𝑛 and ∆, average values of 20 MC simulations 

are shown in Figure 7. Coloured curves refer to slices of different n and ∆. The left colour curves are the variation of 𝐿𝑡 and 𝑛 

with different values of ∆ , and the right coloured curves are the variations of 𝐿𝑡 and ∆ with different values of 𝑛. Clearly, the 250 

threshold fracture length increases as the number of fractures decreases and the relative orientation ∆ increases. This is because 

higher fracture density leads to greater percolation probability, whereas a lower number of fractures requires longer fractures 

to maintain the same percolation probability. 

 

 255 

 

Figure 7: Simulated percolation threshold 𝑳𝒕 vs. (𝒏, ∆). For each pair of (𝒏, ∆), 20 MC simulations are implemented to obtained the 

average 𝑳𝒕. Coloured curves are lines corresponding to slices of different n and ∆. 
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From the results in Figure 7, 𝐿𝑡 = 𝑓(𝑛, ∆) is non-linear. To establish this relationship, the variation of 𝐿𝑡  with 𝑛 for 260 

different values of ∆ is examined first, i.e., 𝐿𝑡 = 𝑓1(𝑛)|∆ , followed by assessing the influence of  on the derived 𝑓1(𝑛) 

relationship. Note that at the second stage, cos ∆ is used instead of ∆ as it is more relevant to the quantification of the fracture 

projection length in the horizontal direction (𝑙𝑒𝑛/ cos ∆).  

Based on the simulation results discussed above, Eq. 3 is considered an appropriate fit to 𝑓1(𝑛):  

 𝐿𝑡 = 𝑓1(𝑛) = 𝑎𝑛𝑏, (3) 265 

where 𝑎 and 𝑏 are parameters to be determined in the fitting process. The correlation coefficients for all curves for different  

values (0°,5°…85°, 90°) are 0.9985, 0.9895, …, 0.9949, respectively. The high correlation coefficients (>0.96) confirm the 

suitability of using Eq. 3 to represent 𝑓1(𝑛). 

The relationships between 𝑎, 𝑏 and cos ∆, shown in Figure 8, suggest linear relationships. Least squares regression was used 

to obtain the following equations: 270 

 𝑎 = 𝑎1𝑐𝑜𝑠2∆ + 𝑎2𝑐𝑜𝑠∆ + 𝑎3, (4) 

 𝑏 = 𝑏1𝑐𝑜𝑠2∆ + 𝑏2𝑐𝑜𝑠∆ + 𝑏3, (5) 

with correlation coefficients of 0.9919 and 0.9712, respectively; 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 are 2.726, -5.304, 2.887, -0.2552, 

0.6134, and -0.5724, respectively. 

 275 

 

(a) 𝑎 vs. cos ∆                            (b) 𝑏 vs. cos ∆ 

Figure 8: Influence of ∆ on a and b. 

 

By incorporating Eqs. 4 and 5 into Eq. 3 the final form of the expression of 𝐿𝑡 in terms of the fracture network parameters 280 

is obtained, as shown in Eq. 6. This form is then used directly in a bivariate least squares fitting using the Levenberg-

Marquardt algorithm (Ngia and Sjoberg, 2000), an optimal search technique for multivariate non-linear curve fitting. The 
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original values of parameters shown in Eqs. 4 and 5 are used as initial inputs to the optimisation algorithm to improve 

computational efficiency and accuracy and the final derived parameters in this case are (𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) =

(2.4757, −4.9064, 2.7359, −0.1841,0.5097, −0.5336) . This set of values should be a more accurate reflection of the 285 

bivariate relationship than the values obtained in the two separate consecutive steps described above. The 𝐿̅𝑡  parameter (mean 

fracture length threshold) quantifies the orientation-dependent critical length for percolation, defined mathematically as: 

 𝐿̅𝑡 = (𝑎1𝑐𝑜𝑠2∆ + 𝑎2𝑐𝑜𝑠∆ + 𝑎3)𝑛(𝑏1𝑐𝑜𝑠2∆+𝑏2𝑐𝑜𝑠∆+𝑏3), (6) 

The final fitted surface is shown in Figure 9a. The points are the average values of 20 groups of MC simulation results 

shown in Figure 7. The suitability of the chosen functional form (Eq. 6) is confirmed by the fact that almost all the points are 290 

on the fitted surface. The plot in Figure 9b of simulated values of 𝐿𝑡 against those predicted by Eq. 6 gives an extremely high 

correlation coefficient of nearly 1. It is also encouraging that, on visual inspection, the fitted curve is conditionally unbiased. 

Although this workflow is useful for multivariate non-linear fitting problems in which marginal relationships are of invariant 

shape, it should be noted that difficulties may arise for very high dimensions (Dong et al., 2016). 

The process described above can be summarised as an approach for fitting multiple variables. This approach starts by 295 

fitting a hypothetical relationship between 𝐿𝑡  and 𝑛  is initially fitted. Then, a new variable ∆ is added by analysing 

relationships with the parameters in the hypothetical relationship model. The parameters in the hypothetical relationship model 

are then replaced by expressions of the newly added variable. Ultimately, the relationship between between 𝐿𝑡 and (𝑛, ∆) can 

be obtained. This approach will be applied in the relationship fitting of Section 3.2, where the independent variables are 

(𝑛, 𝑐𝑜𝑠∆, 𝜅). 300 

 

                                            

(a) Fitted percolation threshold surface and simulation data       (b) Cross plot between simulated values of 𝐿𝑡 and those predicted by Eq. 6 

Figure 9: Bivariate percolation threshold fitting. 

3 Percolation analysis of DFN models 305 

3.1 Experiment design for DFN with exponential fracture lengths 
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In the example used above, the lengths and orientations were identical for all fractures in a fracture network, which was not 

generally the case in practical applications. The relationship described above could be made more useful by extending it to 

cover realistic fracture networks. The following numerical experiments were all implemented on a dimensionless unit square 

(1×1). Based on previously published work (Dong et al., 2018; Xu et al., 2007), the lengths of rock fractures could generally 310 

be modelled by an exponential or lognormal distribution. In this work, the exponential distribution was used, and therefore the 

average length 𝐿̅ is equal to 1/𝜆 where 𝜆 was the distribution parameter. The von-Mises distribution (Eq. 2) was used for 

fracture orientation.  

There are now three independent variables (𝑛, ∆, 𝜅) and the aim is to establish the relationship 𝐿̅𝑡 = 𝑓(𝑛, ∆, 𝜅). To 

simulate percolation states similar to those shown in Figure 5, DFNs corresponding to a combination of 81813200 (374,400) 315 

sets of variables were simulated and analysed, with each case simulated independently 20 times. The number of changes 

explored for each variable are listed in Table 1. 

 

Table 1: Parameters of DFNs in Section 3.2. 

Parameter Values analyzed Number of values 

𝑛 𝑟𝑜𝑢𝑛𝑑(10𝑖), 𝑖 = 1.5,1.65,1.8, … ,2.4 8 

∆= |𝜇 − 90| (𝑖 − 1) × 5°, 𝑖 = 1,2,3, … ,18 18 

𝜅 𝑟𝑜𝑢𝑛𝑑(10𝑖), 𝑖 = 0.602, … ,2 13 

𝐿̅ = 1/𝜆 10𝑖, 𝑖 = −1.5, −1.4925, −1.485, … ,0 200 

 320 

For each pair of (∆, 𝜅) , 20 independent realisations of DFNs with different 𝑛  and 𝐿̅  were generated to obtain the 

percolation threshold curves 𝐿̅𝑡 = 𝑓1(𝑛). These 20 MC simulations are used to calculate the percolation probability to obtain 

the points (𝑛, 𝐿̅𝑡), as shown in Figure 10. The points are the average values of 20 groups of 20 MC simulations and the error 

bars represent two times of the corresponding standard deviation. The relationship in Eq. 3 was used again for 𝐿̅𝑡 = 𝑓1(𝑛)|∆,𝜅. 

A comparison of Figure 6b and Figure 10 indicates that the standard deviations in this case are much larger, which is expected 325 

due to the variability in the lengths of fractures generated in simulations. Note that the uncertainty (reflected by the size of the 

error bar) increases as the number of fractures, 𝑛, decreases.  
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Figure 10: Variation of the percolation threshold as a function of 𝒏 for 𝜿 = 𝟑 and ∆= 𝟎. 330 

 

3.2. Determining percolation threshold equation for DFN with exponential fracture length 

Eq. 6 is only for a specific parameter 𝜅. Establishing the full relationship, 𝐿̅𝑡 = 𝑓(𝑛, 𝑐𝑜𝑠∆, 𝜅), requires the relationships 

between (𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) in Eq. 6 and 𝜅 for different DFNs. The regression results for these parameters for different 𝜅 

values are shown in Table 2, which provides the input data for the final non-linear fitting of the percolation threshold function. 335 

The correlation coefficients for each of the regressions in the table are all greater than 0.98, which ensures the suitability of 

the derived relationships. 

 

Table 2: Regression parameters (𝐚𝟏, 𝐚𝟐, 𝐚𝟑, 𝐛𝟏, 𝐛𝟐, 𝐛𝟑) for different values of 𝛋. 

κ a1 a2 a3 b1 b2 b3 

3 30.1061 -0.3339 0.6003 -0.03176 0.08575 -0.329 

6 0.3431 -0.8712 0.8535 -0.08643 0.2164 -0.3734 

10 0.8132 -1.835 1.338 -0.1105 0.3005 -0.4269 

13 1.328 -2.77 1.765 -0.1555 0.3679 -0.4494 

18 1.883 -3.781 2.199 -0.2105 0.5097 -0.5119 

24 2.726 -5.304 2.887 -0.2552 0.6134 -0.5724 

32 3.212 -6.382 3.45 -0.3276 0.8044 -0.6671 

56 6.14 -11.59 5.724 -0.2222 0.6696 -0.6211 

75 8.671 -15.94 7.582 0.04139 0.3522 -0.5445 

 340 

The relationships between 𝑎1 and 𝜅, between 𝑎2 and 𝜅 and between 𝑎3 and 𝜅 are linear as described by Eqs. 7-9; the 

relationship between 𝑏1 and 𝜅, between 𝑏2 and 𝜅 and between 𝑏3 and 𝜅 are quadratic as shown in Eqs. 10-12. The correlation 
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coefficients of this set of regression curves are all greater than 0.98. Overall, these variables display a clear and strong 

relationship that can be described by an appropriate functional form. Table 3 lists the constants in Eqs. 7-12 obtained by least 

squares regression. 345 

 

  

(a) 𝜅 vs. 𝑎1             (b) 𝜅 vs. 𝑎2            (c) 𝜅 vs. 𝑎3 

 

(d) 𝜅 vs. 𝑏1            (e) 𝜅 vs. 𝑏2             (f) 𝜅 vs. 𝑏3 350 

Figure 11: Relationship between 𝜿 and fitted parameters (𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒃𝟏, 𝒃𝟐, 𝒃𝟑). 

 

 𝑎1 = 𝑎11𝜅+𝑎12, (7) 

 𝑎2 = 𝑎21𝜅+𝑎22, (8) 

 𝑎3 = 𝑎31𝜅+𝑎32, (9) 355 

 𝑏1 = 𝑏11𝜅 + 𝑏12𝜅2 + 𝑏13, (10) 

 𝑏2 = 𝑏21𝜅 + 𝑏22𝜅2 + 𝑏23 , (11) 

 𝑏3 = 𝑏31𝜅 + 𝑏32𝜅2 + 𝑏33, (12) 

where 𝑎11, 𝑎12, 𝑎21, 𝑎22, 𝑎31, 𝑎32, 𝑏11, 𝑏12, 𝑏13, 𝑏21, 𝑏22, 𝑏23, 𝑏31, 𝑏32, 𝑏33 are parameters. 

 360 

Table 3: Parameters of Eqs. (7) - (12). 
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𝑎11 𝑎12 𝑎21 𝑎22 𝑎31 𝑎32 𝑏11 𝑏12 

0.1177 -0.296 -0.2143 0.2192 0.096 0.4064 0.0002 -0.0182 

𝑏13 𝑏21 𝑏22 𝑏23 𝑏31 𝑏32 𝑏33  

0.0299 -0.0004 0.0377 -0.0204 0.0002 -0.0165 -0.279  

 

Finally, the combined percolation equation 𝐿̅𝑡 = 𝑓(𝑛, 𝑐𝑜𝑠∆, 𝜅) can be obtained, as shown in Eq. 13. The correlation 

coefficient is again nearly 1 (0.99). 

 𝐿̅
𝑡 = ((𝑎11𝜅+𝑎12)𝑥2 + (𝑎21𝜅+𝑎22)𝑥 + (𝑎31𝜅+𝑎32))𝑛

(
(𝑏11𝜅+𝑏12𝜅2+𝑏13)𝑥2

+(𝑏21𝜅+𝑏22𝜅2+𝑏23)𝑥+𝑏31𝜅+𝑏32𝜅2+𝑏33
)
, (13) 365 

where 𝑥 = cos ∆. 𝑥 is a derived variable that optimizes the equation structure. 

Again, these parameters are used as the inputs for the final multivariate least squares optimisation based on the Levenberg-

Marquardt algorithm using all the simulation results. The final optimised values of the parameters in Eq. 13 are shown in Table 

4. These values are similar to the initial parameter values obtained by the step-wise fitting process described above but they 

have been refined by global optimisation. The correlation coefficient between the prediction and simulation values based on 370 

the initial parameters (Table 3) is only 0.43 due to the error propagation in the step-wise fitting process. After global 

optimisation, the correlation coefficient increases significantly to nearly 1 (0.99) based on the values listed in Table 4. 

 

Table 4: Parameters of the percolation equation in terms of fracture properties. 

𝑎11 𝑎12 𝑎21 𝑎22 𝑎31 𝑎32 𝑏11 𝑏12 

0.0643 -0.1587 -0.1188 -0.5551 0.0549 0.9823 -0.1612 0.2501 

𝑏13 𝑏21 𝑏22 𝑏23 𝑏31 𝑏32 𝑏33  

-0.0945 0.2633 -0.0657 0.1313 -0.2025 0.1519 -0.4730  

 375 

To visualize the relationships in Eq. 26, several surfaces of 𝐿̅𝑡 vs (𝑛, ∆) corresponding to different values 𝜅 (4, 18, 42 and 75) 

are shown in Figure 12. In general, higher 𝜅 values correspond to higher percolation threshold values. This is because higher 

𝜅 values correspond to lower variation of fracture orientations, which leads to lower probabilities of fracture intersections. 

Consequently, this reduces the connectivity of the fracture network and hence longer fractures are needed to reach percolation. 

 380 
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(a) 𝜅 = 4                                     (b) 𝜅 = 18 

 

(c) 𝜅 = 42                                  (d) 𝜅 = 75 

Figure 12: Extracted surfaces from the final percolation threshold equation. 385 

 

Eq. 13 is derived for the region of a dimensionless unit square, the result is expected to be applicable to areas at different 

scales (𝑦 × 𝑦). For these cases, the scaled percolation threshold 𝐿̅𝑡𝑠 will be used (Eq. 14) revised from Eq. 13. If the average 

fracture length of a fracture network 𝐿̅ ≥ 𝐿̅𝑡𝑠, there is more probability reach percolation.  

 𝐿̅𝑡𝑠 = 𝐿̅𝑡 × 𝑦,  (14) 390 

3.3 Design of experiments for DFN with lognormal fracture lengths 

Unlike the previous example, the fracture lengths in this section are modeled with a lognormal distribution. The mean fracture 

length 𝐿̅ and standard deviation 𝜈, which quantifies the dispersion of fracture lengths under the lognormal distribution, are 

used to derive the distribution parameters 𝜇 and σ. These parameters, along with the probability density function, are calculated 

according to Eqs. 15-17. Five independent variables (𝐿̅, 𝜈, ∆, 𝜅) are considered with the aim of establishing the relationship 395 

𝑛𝑡 = 𝑓(𝐿̅, 𝜈, ∆, 𝜅). In this context, 𝑛𝑡  represents the fracture number threshold at which the percolation threshold may be 
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reached at a low probability (p0) in DFNs characterized by the parameters (𝐿̅, 𝜈, ∆, 𝜅) . In Section 3.1, the exponential 

distribution of fracture length is defined by a single parameter. Consequently, the fracture length is selected to determine the 

threshold corresponding to 𝑝0. Given that the fracture length is governed by two parameters (𝐿̅, 𝜈) , the parameters 

corresponding to the fracture length distribution are not selected. Instead, the fracture number is chosen. 400 

 𝜇 = log(𝐿̅2/√𝜈 + 𝐿̅2), (15) 

 𝜎 = √log(𝜈 ∕ 𝐿̅2 + 1), (16) 

 𝑓(𝐿̅|𝜇, 𝜎) =
1

𝐿̅σ√2𝜋
ⅇ

−(ln 𝐿̅−𝜇)2

2𝜎2 , 𝐿̅ > 0, (17) 

Simulations and analyses were conducted corresponding to the 8×6×6×18×13 (684,400) variable combinations for the 

DFNs, with each case independently simulated 20 times. The number of variations for each variable are listed in Table 5. 405 

 

Table 5: Parameters of DFNs in Section 3.3. 

Parameter Values analysed Number of values 

𝑛 𝑟𝑜𝑢𝑛𝑑(10𝑖), 𝑖 = 1.5,1.65,1.8, … ,2.4 8 

𝐿̅ 0.05,0.12,0.19,0.26,0.33,0.4 6 

𝜈 2,4,6,8,10,12 6 

∆= |𝜇 − 90| (𝑖 − 1) × 5°, 𝑖 = 1,2,3, … ,18 18 

𝜅 𝑟𝑜𝑢𝑛𝑑(10𝑖), 𝑖 = 0.602, … ,2 13 

 

3.4 Derivation of percolation threshold equation for DFN with lognormal fracture lengths 

The multivariable fitting process for the DFN with lognormal fracture lengths was analogous to that described in Section 3.2. 410 

Initially, the hypothetical relationship between 𝑛𝑡  and 𝐿̅  was fitted (Eq. 18). Subsequently, by analysing the relationship 

between the parameters in the hypothetical model, new variables 𝜈, ∆, and 𝜅 were sequentially incorporated. The expressions 

for the newly added variables were then used to replace the parameters in the hypothetical model. Ultimately, this yields the 

fitted relationship between 𝑛𝑡 and (𝐿̅, 𝜈, ∆, 𝜅), with the fitting process detailed in Eqs. 18-21, where 𝑥 = cos ∆. 

 𝑛𝑡 = 𝑓(𝐿̅) = 𝑎𝐿̅𝑏 + 𝑐, (18) 415 

 𝑛𝑡 = 𝑓(𝐿̅, 𝜈) = 𝑎1ⅇ𝑎2𝜈𝐿̅𝑏1 + 𝑐1𝜈𝑐2, (19) 

 𝑛𝑡 = 𝑓(𝐿̅, 𝜈, ∆) = (𝑎11𝑥 + 𝑎12)ⅇ𝑎22𝜈𝐿̅𝑏11𝑥+𝑏12 + 𝑐11𝜈𝑐12𝑥+𝑐13, (20) 



19 

 

 
𝑛𝑡 = 𝑓(𝐿̅, 𝜈, ∆, 𝜅) = [(𝑑1𝜅2+𝑑2𝜅 + 𝑑3)𝑥 + (𝑑4𝜅2+𝑑5𝜅+𝑑6)]ⅇ

(𝑑7
𝜅
𝐿̅

+𝑑8)𝜅𝜈𝐿̅𝑑9𝑥+
2 𝑑10𝜅+𝑑11

                                                                                                                                +𝑑12𝜈𝑑13𝑥2+𝑑14

, (21) 

Similarly, the parameters are used as inputs for the final multivariable least squares optimisation based on the Levenberg-

Marquardt algorithm, utilising all simulation results. The final optimised values of the parameters in Eq. 21 are presented in 420 

Table 6.  

 

Table 6: Parameters of the percolation equation in terms of fracture properties. 

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 

-0.0344 0.0560 0.2381 0.0335 0.0418 0.0053 -0.0002 

𝑑8 𝑑9 𝑑10 𝑑11 𝑑12 𝑑13 𝑑14 

0.0091 0.3048 0.0174 -1.4019 74.7657 -0.0001 0.0174 

 

To visualise the relationships in Eq. 21, several surfaces of 𝑛𝑡 vs (𝐿̅, 𝜈, ∆, 𝜅) corresponding to different values of 𝜈 (2, 4, 425 

and 12) and 𝜅 (2, 7, and 10) are presented in Figure 13. Generally, higher ∆ and lower 𝐿̅ result in increased percolation 

threshold 𝑛𝑡.  

 

 

(a)  𝜈 = 4, 𝜅 = 2                            (b)  𝜈 = 4, 𝜅 = 7 430 
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(c)  𝜈 = 2, 𝜅 = 10                         (d)  𝜈 = 12, 𝜅 = 10 

Figure 13: Extracted surfaces from the final percolation threshold equation. 

 

Eq. 21 is derived for a dimensionless unit square, with its results expected to be applicable to regions of varying scales 435 

(𝑦 × 𝑦). For these scenarios, the percolation threshold 𝑛̅𝑡 will be adjusted using a scaling modification from Eq. 21, resulting 

in Eq. 22. If the number of fractures 𝑁 is more than 𝑛̅𝑡𝑠, the probability of achieving percolation will be high. 

 𝑛𝑡𝑠 = 𝑛𝑡 × 𝑦𝑛, (22) 

where 𝑦𝑛 is the scaling correction factor, 𝑦𝑛 = log10 (
1

𝑦
+ 20). 

4. Validation of the derived percolation threshold equation 440 

4.1 Percolation analysis of fracture networks not used for deriving the threshold equation 

(1) DFN with exponential fracture length. To test the performance of the derived zero percolation thresholds (Eq. 14), 

additional DFN models with different parameters (𝑛 = 100,200, ∆= 3°, 63°, 𝜅 = 5,40,50) at different scales (2𝑚 × 2𝑚, 

60𝑚 × 60𝑚, 300𝑚 × 300𝑚, 900𝑚 × 900𝑚, 1100𝑚 × 1100𝑚, 1200𝑚 × 1200𝑚, 1300𝑚 × 1300𝑚) were generated for 

percolation analysis. The percolation thresholds obtained from Eq. 14 and numerical simulation are shown in Figure 14. The 445 

close agreement between the predicted thresholds and the simulation results demonstrates that the derived relationships (Eq. 

14) performed extremely well for predicting of zero percolation thresholds of DFNs with different parameters at different study 

scales. 

 

  450 

Figure 14: Validation of Eq. 14 in study areas on different scales. 
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(2) DFN with lognormal fracture length. To test the derived zero percolation thresholds (Eq. 22), additional DFN models with 

different parameters (𝐿̅ = 0.15,0.25, 𝜈 = 5,7, ∆= 26°, 56°, 𝜅 = 5,9) at different scales (2𝑚 × 2𝑚, 60𝑚 × 60𝑚, 300𝑚 ×

300𝑚) were generated for percolation analysis. The percolation thresholds obtained from Eq. 22 and numerical simulations 455 

were depicted in Figure 15. The remarkable concurrence between the predicted thresholds and the simulation outcomes 

underscores the robust performance of the derived relationships (Eq. 22) in accurately forecasting percolation thresholds across 

diverse parameter configurations and study scales for DFNs. 

 

  460 

Figure 15: Validation of Eq. 22 in study areas on different scales. 

 

4.2 Comparison with analytical solutions of simple fracture networks  

The equations derived in Section 3.2 are for stochastic fracture networks with fracture lengths that follow an exponential 

distribution and fracture orientations that follow a von-Mises distribution. Because of the complexity of such fracture networks, 465 

there is no analytical solution for the corresponding percolation threshold. However, for simple fracture networks, where both 

fracture location and orientation follow completely random distributions and the fracture length is identical, the analytical 

solution for the percolation threshold of fracture length is (Balberg et al., 1984; Berkowitz, 1995): 

 𝐿𝐶 = 4.2/√𝜋𝜌, (23) 

where 𝜌 is the fracture density (=P20) calculated as 𝜌 = 𝑛/𝑦2 and 𝑦2 is the area of the study region. For the case of varying 470 

fracture length, the corresponding threshold is: 

 𝐿̅𝑡 = √𝐿𝐶
2 − 𝜎2,  (24) 
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where 𝜎2 is the variance of fracture length distribution. If the length follows an exponential distribution with parameter , Eq. 

24 becomes (Berkowitz, 1995). Therefore, this section utilises fracture networks characterized by an exponential distribution 

of fracture lengths as a case study to compare the derived thresholds with analytical solutions. 475 

 𝐿̅𝑡 = 𝐿𝐶/√2 = 4.2/√
2𝜋𝑛

𝑦2 ≈ 1.676 𝑦𝑛−0.5, (25) 

 This is a special case covered by the relationships derived in this work by setting 𝜅 = 0 for a completely random 

distribution of fracture orientation and ignoring cos ∆ as it is now irrelevant. Eq. 14 then becomes: 

 𝐿̅𝑡𝑠 = 𝑦 𝑎32𝑛𝑏33 , (26) 

where 𝑎32 = 0.9823, 𝑏33 = −0.4730 The equation can be further simplified to: 480 

 𝐿̅𝑡𝑠 = 0.9823𝑦𝑛−0.4730, (27) 

which should be compared to Eq. 25. Note that the difference between the two equations is due to the different 

probabilities used to derive the percolation threshold. The theoretical solution is for a percolation probability of 50% while the 

derived relationship is for a percolation probability of 0%, as discussed above, and therefore it should be smaller.  

There is a striking similarity between the analytical solution for p50 and the solution we derived for p0. The reasons why 485 

these two equations are so similar and what the factor of two in the first coefficient represents are important. These will be 

discussed in future work instead of here since it is not the focus of this work. 

To compare the solutions, fracture networks with 𝑛 = 100, 200, 300, 400 and 500 in a square of 75𝑚 × 75𝑚 are used 

for the simulations. Percolation thresholds corresponding to 𝑝0, 𝑝50 and 𝑝100 are calculated by Monte Carlo simulations and 

the results are shown in Figure 16. As demonstrated, the analytical solution is close to the p50 percolation threshold with an 490 

average absolute difference of 4.9%. On the other hand, the solution based on the derived equation is close to that of 𝑝0 with 

an average absolute difference of 11.4%.  

 

  

Figure 16: Comparison of percolation thresholds determined by the analytical solution, the derived equation, and numerical 495 
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simulations. The points are the averages of 20 groups of MC simulations and the error bars are three times the corresponding 

standard deviations. 

 

4.3 Percolation analysis of real fracture networks using the derived equation 

Two real fracture networks, as shown in Figure 17a and Figure 18a, are used to demonstrate further the application of the 500 

derived percolation threshold equations. Figure 17a shows a set of fractures traces on a rock outcrop taken from Wilson (Wilson, 

2001). Figure 18a are fracture traces in the deformation bands on the Valley of Fire State Park, Nevada (Barton and Hsieh, 

1989). Mid-points of the fractures are used to represent the fracture locations, as shown in Figure 17b and Figure 18b, 

respectively. They are all considered to follow approximately the Poisson distribution. The number of fractures, 𝑛, in the three 

systems are 35, 186. Clearly there is one dominant direction of fracture orientations in these systems, as illustrated in the rose 505 

diagrams shown in Figure 17c and Figure 18c. The orientation dispersion parameters (𝜅) were calculated to be 145.18 and 

25.68. For fracture length, the histogram in Figure 17d indicates an approximately exponential distribution for the first fracture 

set. For the second and third sets, the histograms (Figure 18d) suggest lognormal distributions. The average fracture lengths 𝐿̅ 

are 0.249m, 0.282mm, 0.9544m and the side lengths 𝑦 of study areas are 2.5m, 8mm, 7m, respectively. 

Using Eqs. 21 and 22 with the parameters (𝐿̅, 𝜈, ∆, 𝜅) listed in Table 7, the calculated percolation thresholds (𝑦𝑛 × 𝑛𝑡) in 510 

the horizontal and vertical directions can be calculated. For Figure 17a, the calculated percolation thresholds are 126 

(horizontal) and 94 (vertical). The threshold in the horizontal direction is much greater than that in the vertical direction due 

to the fact that fractures are mainly vertical in this case. The fracture numbers are all less than these two thresholds, hence the 

fracture network is not percolated in both directions. This conclusion can easily be confirmed in this case by visual inspection 

of the fracture system displayed in Figure 17a.  515 

 

 

(a) Fracture network from an outcrop          (b) Fracture centres 
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   (c) Fracture orientation                    (d) Fracture length 520 

Figure 17: A set of fractures from an outcrop (Wilson, 2001) and the network properties. 

 

Table 7: Parameters of three real fracture networks in Figure 17a and percolation assessment. 

Direction 𝑁 ∆(°) 𝑣 𝜅 𝐿̅ 𝑦 𝑦𝑛 × 𝑛𝑡  𝑁 ≥ 𝑦𝑛 × 𝑛𝑡  Percolated 

Horizontal 35 72.47 0.18 145.18 0.25𝑚 2.5𝑚 126 No No 

Vertical 35 17.53 0.18 145.18 0.25𝑚 2.5𝑚 94 No No 

 

For the fracture set (Figure 18a), the average fracture length is 1.19m. The horizontal percolation threshold 𝑦 × 𝐿̅𝑡  is 525 

1.34m and the vertical threshold is 0.69m. The average fracture length in this case is greater than the vertical threshold and 

therefore the fracture network is percolated vertically but not horizontally. On close inspection of Figure 18a, there is a cluster 

of fractures (marked in red) connecting the top and bottom sides of the study region.  

 

Table 8: Parameters of three real fracture networks in Figure 18a and percolation assessment. 530 

Direction 𝑁 ∆(°) 
 

𝜅 𝑦 𝐿̅ 𝑦 × 𝐿̅𝑡 𝐿̅ ≥ 𝑦 × 𝐿̅𝑡  Percolated 

Horizontal 146 80.54  25.68 7𝑚 1.19𝑚 1. 34𝑚 No No 

Vertical 146 9.46  25.68 7𝑚 1.19𝑚 0.69𝑚 Yes Yes 
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(a) Fracture network from an outcrop          (b) Fracture centres 

 

  (c) Fracture orientation                   (d) Fracture length 535 

Figure 18: Fracture traces of deformation bands in the Valley of Fire State Park, Nevada (Barton and Hsieh, 1989) and the 

corresponding network properties. 

5 Discussions  

While the simplified relationships proposed in this study provide an efficient means of estimating the zero-percolation 

threshold directly from fracture network parameters, several limitations should be acknowledged. First, the present formulation 540 

is restricted to a two-dimensional (2D) domain with a single fracture set of similar orientation. This abstraction neglects the 

inherently three-dimensional (3D) nature of natural fracture systems, which typically comprise multiple intersecting sets 

formed under polyphase tectonic regimes. Extending the methodology to accommodate 3D configurations with multiple 

fracture sets will be a critical next step, although the associated analytical derivations are considerably more complex. 

Second, the current approach relies on specific statistical assumptions for fracture attributes (e.g., Poisson-distributed 545 

locations, exponential or lognormal length distributions, and von Mises orientation distributions). While these choices are 

consistent with many prior DFN studies, natural fracture systems often exhibit spatial correlations, clustering, or heavy-tailed 
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distributions that may deviate from these idealizations. Future work will explore non-parametric estimation methods to mitigate 

dependency on pre-defined distribution forms and to better capture geological variability. 

Third, the present formulation addresses only the geometric aspects of network connectivity. In real-world applications, 550 

hydraulic connectivity depends on both geometry and fracture transmissivity, which is influenced by aperture, roughness, and 

in-situ stress. Incorporating coupled flow–mechanical models would enable the framework to more directly predict hydraulic 

properties such as permeability. 

A particularly promising avenue lies in integrating the derived functional forms of percolation thresholds into physics-

informed machine learning workflows. The explicit parameter, threshold relationships, established here can serve as strong 555 

physical constraints within emerging architectures, such as Kolmogorov–Arnold Networks (KAN), to enhance generalizability 

and reduce training data requirements. Embedding these analytical insights into AI frameworks is expected to significantly 

improve predictive efficiency for complex, data-limited geological systems. 

While the proposed 2D, single-set formulation constitutes a foundational step, its extension to multi-set, 3D, and 

distribution-flexible fracture systems, together with integration into advanced machine learning paradigms, offers a clear and 560 

impactful trajectory for future research. 

6 Conclusions  

Percolation analysis of fracture networks is important for many applications, including oil and gas recovery, geothermal energy 

exploitation, hydrology, and groundwater protection in radioactive waste storage. In this paper, we focus on the percolation 

threshold relevant to rock impermeability, which is critically important for the safe underground storage of waste and energy 565 

materials. 

Our approach to the calculation of the percolation threshold makes direct use of the characteristic parameters of 2D 

fracture network, in particular the number of fractures 𝑛, the fracture size (length) 𝐿̅ and the fracture orientation . This differs 

from the simplified approaches of using indirect characteristic parameters (e.g., fractal dimension), which could produce 

misleading results because fracture orientation is not considered. The assessment of fracture networks in this research was 570 

made under the following assumptions: (1). the centre points of fractures are randomly and independently distributed in space; 

(2). the lengths of fractures follow an exponential distribution; and (3). the orientations of fractures follow a von-Mises 

distribution, the parameters of which are the mean orientation 𝜇 and the concentration parameter 𝜅. The relationship between 

fracture network parameters and the corresponding percolation threshold is obtained from a large number of simulations. A 

non-linear multivariate fitting process was used to derive the final prediction equation for the percolation threshold in the form 575 

of 𝐿̅𝑡 = 𝑓(𝑛, 𝑐𝑜𝑠∆, 𝜅). The derived equation provides a reliable relationship and an efficient way to estimate the connectivity 

and percolation state of a fracture network based directly on its parameters. The relationship was cross-validated using a 

published analytical solution and was further applied to three real fracture networks. The results demonstrate that the derived 

relationship can be used for fracture networks at different scales using a rescaling coefficient and can also be used for the 
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assessment of percolation in different directions. The derived relationship is a useful extension for rock impermeability 580 

evaluation (zero probability percolation p0), compared with the commonly used percolation assessment based on excluded 

volume, which corresponds only to the occurrence of percolation on average (i.e., 50% probability percolation, p50). 

Additionally, this work also studies fracture network models with log-normally distributed fracture lengths and derives zero 

percolation formulas, reaching conclusions similar to those mentioned above. 

Owing to the complexity of multiple fracture sets, the present study is confined to a 2D fracture network with a single 585 

set. Future work will extend the framework to both 2D and 3D systems with multiple fracture sets, incorporating machine 

learning techniques to address the increased complexity. 

7 Description of parameters 

The parameter descriptions are shown in the table 9. 

 590 

Table 9: Description of parameters 

Parameter Explanation Parameter Explanation 

p0, p50, 

p100 

Percolation thresholds of DFNs 

corresponding to 0%, 50%, and 100% 

percolation, respectively. 

P30, P32 
Number and total fracture area  of fractures per 

unit volume. 

n Number of fractures in the network. ϕ 
Orientation angle of a fracture (measured from a 

reference direction, e.g., North). 

𝑛𝑡 Fracture number threshold for p0. μ 
Mean direction of fractures in the von-Mises 

distribution (primary orientation). 

L Length of a fracture. Δ Relative orientation angle= ‖𝜇 − 90o‖. 

λ 
Exponential distribution parameter whose 

reciprocal represents mean fracture length. 
x x = cosΔ. 

𝐿̅ Mean fracture length in DFN. κ 
von-Mises concentration parameters, quantifying 

fracture orientation aggregation. 

σ 
Standard deviation of lognormal fracture 

lengths. 
y Scale of the study region. 

ν Variance of lognormal fracture lengths. 𝑦𝑛 Scaling correction factor. 

𝐿𝑡 Critical fracture length threshold for p0. 𝐼0(𝜅) Modified Bessel function of order 0. 

P20, P21 Fracture number and length per unit area. ρ Equal to P20 
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