
RESPONSE TO REFEREES 

Ms. Ref. No.: Egusphere-2025-2438  

Title: Non-Stationary Dynamics of Compound Climate Extremes: A WRF-CMIP6-GAMLSS 

Framework for Risk Reassessment in Southeastern China 

To Anonymous Referee #2 

We sincerely appreciate your thorough and constructive comments, which have been 

instrumental in improving our manuscript. We also apologize for the lack of clarity in the 

introduction and methodology sections of the manuscript, and we assure you that these issues 

will be addressed in the revised version. Please find the detailed point-by-point responses below. 

Major Comments: 

1.Throughout the manuscript (and also in the title), the authors state that this study addresses 

the ‘risk’ of CCEs. As risk assessment typically involves an (monetary) impact analysis (see 

e.g. UNDRR (2007) for the definition of natural hazard risk), it may be more accurate to frame 

the study in terms of frequency changes or recurrence, which the authors mentioned somewhere 

in the manuscript. Therefore, I recommend carefully reviewing and revising all uses of “risk” 

or “risk assessment” to avoid overstating the study’s scope. 

-Answer: We fully agree with and appreciate your suggestion regarding the use of the term 

"risk." As the reviewer pointed out, risk assessment typically involves an analysis of impacts, 

particularly economic or social impacts. From the perspective of disaster-inducing factors 

(hazard), we have not delved into analyzing the exposure of disaster-bearing bodies (such as 

society, ecosystems, etc.) and their capacity to withstand these impacts. Therefore, in this 

context, the term "risk" is indeed not entirely appropriate. Consequently, we plan to revise the 

title and related statements in the revised manuscript to more accurately reflect the actual 

content and scope of our study. Specifically, we will remove the phrase "Risk Reassessment" 

from the title, resulting in the revised title: Non-Stationary Dynamics of Compound Climate 

Extremes: A WRF-CMIP6-GAMLSS Framework for Southeastern China. 

2.While research gaps are introduced in L60-62, they require clearer identification. There are 

a number of studies looking into the frequency changes in compound events, both in China and 

other parts of the world. To name a few: Zscheischler et al. (2018), Fang et al. (2025) npj 

climate and atmospheric science, Wu et al. (2023) Earth’s Future, Ridder et al. (2022) npj 

climate and atmospheric science, and so on. How does the present study compare or advance 



beyond these works? 

-Answer: Thank you for your valuable comment. We appreciate your suggestion and will will 

add a comparison with previous studies to highlight how the present study advances beyond 

these works and emphasizes its unique contributions in the revised manuscript.  

Recent studies have increasingly focused on compound climate extremes (CCEs), 

highlighting their growing significance in the context of climate change. Zscheischler et al. 

(2018) were the first to clearly define the concept of compound events, emphasizing how the 

interaction of multiple climate and meteorological drivers can amplify extreme impacts. 

Building on this, Ridder et al. (2022) conducted the first global-scale assessment of the changes 

in compound events, specifically examining the co-occurrence of heatwaves and drought, 

extreme winds, and precipitation. Wu et al. (2023) revealed that under warming conditions, the 

risks associated with global compound pluvial–hot extreme events are projected to be 

significantly greater in the future than those observed during the historical period. Fang et al. 

(2025) investigated the future changes of sequential heatwaves and precipitation events (SHP) 

as well as concurrent drought and heatwave events (CDH) in China, with projections indicating 

an increase in both the frequency and intensity of these events. 

While large-scale studies play a crucial role in advancing our understanding of global 

climate change and extreme events, their practical relevance for disaster risk management 

and adaptation strategies in medium- and small-scale regions is relatively limited due to their 

lower spatial and temporal resolution. To overcome this constraint, dynamical downscaling, 

which utilizes nested high-resolution regional climate models (RCMs), provides a critical 

technical pathway to investigate climate response mechanisms at fine-scales (Tapiador et al., 

2020; Rahimi et al., 2024). In this context, over the past decade, an increasing number of studies 

have begun to use RCMs to obtain high-resolution climate information. Bozkurt et al. (2019) 

used the Regional Climate Model, version 4 (RegCM4), to evaluate the spatiotemporal 

variations of temperature and precipitation over the Pacific coast and the Andes Mountains. 

The results indicated that increasing the resolution effectively eliminates simulation errors 

caused by complex topography. McCrary et al. (2020) used multiple RCMs from the North 

American Coordinated Regional Downscaling Experiment (NA-CORDEX) to predict future 

snow changes in North America. They found that, particularly in high-elevation areas, the 

percentage of snow loss projected by GCMs was significantly higher than that projected by the 

RCMs. As an advanced convection-permitting RCM, the WRF model significantly enhances 



the simulation capability for meteorological processes at 1-10 km scales through its fully 

compressible, non-hydrostatic dynamic core framework (Talbot et al., 2012). This high-

resolution simulation capability gives the WRF model a unique advantage in capturing small-

scale meteorological phenomena. Zhou et al. (2024) developed a 9 km resolution regional 

reanalysis dataset covering the Tibetan Plateau based on the WRF model, and demonstrated its 

superior applicability compared to the fifth generation European Centre for Medium-Range 

Weather Forecasts Reanalysis (ERA5). Yang et al. (2024) revealed that the WRF model 

provides better accuracy in simulating snow depth during the cold season in high-elevation 

regions compared to ERA5-Land. 

Additionally, traditional extreme event analyses rely on stationarity assumptions, 

presuming that the probability and distributional parameters of climate variables are constant 

(Sun et al., 2018; Nerantzaki et al., 2023). However, driven by synergistic effects of global 

warming and anthropogenic forcing, extremes exhibit significant shifts in distributional 

characteristics (Gao et al., 2018). Therefore, traditional models are not suitable for evaluating 

extreme changes in the changing environment. To capture these changes, many studies have 

applied the Generalized Additive Models for Location, Scale, and Shape (GAMLSS) (Rigby 

and Stasinopoulos 2005) to address non-stationary problems in hydrological and 

meteorological extremes, enabling updated risk analysis of evolving climate extremes (Lei et 

al., 2021; Shao et al., 2022; Jin et al., 2023; Li et al., 2024). However, existing non-stationary 

analyses only focus on individual extremes, and the potential non-stationarity of CCEs has 

not been established. The comprehensive assessment of future changes in CCEs recurrence 

risk within a non-stationary framework is also lacking. 

To address these research gaps, this study adopts a high-resolution approach, 

combining the WRF model with GAMLSS. This approach overcomes the limitations of 

traditional coarse-resolution models and addresses the shortcomings of stationary 

assumptions in analyzing compound climate extremes (CCEs). By focusing on the Minjiang 

River Basin (MRB), this research aims to explore four types of CCEs: hot-wet events (HW), 

hot-dry events (HD), cold-wet events (CW), and cold-dry events (CD). The analysis proceeds 

as follows (Fig. 1): Supplement Section S1 presents the validation of CMIP6bc applicability. 

Section 3.1 characterizes the spatio-temporal patterns of CCEs under both a middle-of-the-road 

scenario (SSP2-4.5) and a high-emissions scenario (SSP5-8.5). The non-stationarity detection 

of CCEs is described in Section 3.2. The recurrence risk changes in CCEs under non-stationary 



conditions is evaluated in Section 3.3. The work establishes a scientific basis for addressing 

the environmental and climatic challenges posed by CCEs, thereby contributing to effective 

strategies for regional sustainability and climate resilience. 
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3.Fig. 1 outlines the key methodological steps in this study. Many unintroduced acronyms e.g. 

WRFOUT, CC and PBIAS are used without prior explanation, which may reduce the 

readability and understanding of the framework. 

-Answer: Thank you for your comment. We agree with your suggestion and will revise Figure 

1 in the revised manuscript to ensure better readability for the readers. 

 
Fig. 1. Flowchart of CCEs projection in a non-stationary framework. 

4.Please elaborate on the types of CCEs commonly occurring during the flood season (Line 

99). Including examples of historical events would help illustrate this. 

-Answer: Thank you for your constructive comment. We agree that providing more details in 

the revised manuscript. 

The basin displays spatio-temporal heterogeneity in precipitation, with flood seasons from 

April to September that often accompany CCEs. Particularly in the late flood season (July to 



September), the MRB experiences frequent typhoon-related compound disasters: the upper and 

middle reaches are commonly affected by typhoon-rainstorm-landslide events, while the lower 

reaches face high occurrences of typhoon-rainstorm-urban waterlogging and typhoon-

rainstorm-flood events (Yang et al., 2025). In 2023, for example, Typhoon Doksuri (No. 2305) 

caused approximately 66,794 people to be affected in Fuzhou, the downstream city of the MRB, 

with direct economic losses reaching 588 million RMB (Yan et al., 2024). In addition, the 

region also exhibits a climate characteristic of concurrent rainfall and heat, with CCEs 

frequently occurring during the warm season, driven by high temperatures and heavy rainfall 

(Sun et al., 2025). 
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5.Section 2 provides a description of critical methodological steps of this work; however, they 

lack sufficient detail to fully convey its approach and practical implementation. I suggest to 

clarify the following concerns: 

a.For validation of historical simulation results: 

i.Why is the validation only focused on a 10-year period (2005–2014)? 

-Answer: Thank you very much for your insightful comment. We would like to clarify that the 

bias-corrected CMIP6 dataset (Xu et al., 2021) we used has already been extensively validated 

(Jamal et al., 2023; Huang et al., 2024; Wu and Zheng, 2023). Given that the focus of our study 

is on assessing the non-stationary changes of future compound climate extremes (CCEs), a 

comprehensive and detailed evaluation of the dataset was not conducted. Additionally, running 

WRF simulations requires substantial computational resources—for example, simulating one 



year over the MRB takes approximately 4 days on 80 CPU cores. Considering both the 

reliability of the dataset and the need to optimize computational resources, we select a 10-year 

historical period (2005–2014) as being sufficient to demonstrate the reliability of the bias-

corrected data for our study purposes. 

References 

Huang, Y., Xue, M., Hu, X., Martin, E., Novoa, H.M., McPherson, R.A., Liu, C., Chen, M., 

Hong, Y., Perez, A., Morales, I.Y., Ticona Jara, J.L., Flores Luna, A.J., 2024. Increasing 

frequency and precipitation intensity of convective storms in the Peruvian Central Andes: 

Projections from convection‐permitting regional climate simulations. Quart. J Royal 

Meteoro. Soc. 150, 4371–4390. https://doi.org/10.1002/qj.4820 

Jamal, K., Li, X., Chen, Y., Rizwan, M., Khan, M.A., Syed, Z., Mahmood, P., 2023. Bias 

correction and projection of temperature over the altitudes of the Upper Indus Basin under 

CMIP6 climate scenarios from 1985 to 2100. J. Water Clim. Change 14, 2490–2514. 

https://doi.org/10.2166/wcc.2023.180 

Wu, L., Zheng, H., 2023. Regional Climate Effects of Irrigation under Central Asia Warming 

by 2.0 °C. Remote Sens. 15, 3672. https://doi.org/10.3390/rs15143672 

Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L., Fu, C., 2021. Bias-corrected CMIP6 global dataset 

for dynamical downscaling of the historical and future climate (1979–2100). Sci. Data 8, 

293. https://doi.org/10.1038/s41597-021-01079-3  



ii.Why would the ERA5 serve as the benchmark not the observed data (L113-115)? 

-Answer: Thank you for your question. We would like to clarify that, in fact, we have three sets 

of data: observed data, WRF-ERA5, and WRF-CMIP6bc. ERA5, as a widely used WRF-driven 

dataset, is utilized here as a reference for the simulation results. Indeed, the actual validation 

data comes from the meteorological station observations (Figure S1). 

 
Figure S1. Evaluation of WRF-simulated precipitation and temperature over the MRB (2005- 

2014). Spatial patterns of precipitation (a–c), temperature (d–f). Temporal evolution of 

precipitation (g) and temperature (h). Panels (i–l) present sub-basin comparisons of 

precipitation and temperature from ERA5 (i, k) and CMIP6bc (j, l). 

iii.How were the spatial results constructed from the observed data at 30 stations? 

-Answer: Thank you for your question. The spatial distribution results of the CCEs were 

constructed by performing spline interpolation on the observed data from the 30 stations in the 

MRB using Arc Geographic Information System (ArcGIS). To eliminate the interpolation 

errors, we extracted the nearest WRF grid points for each meteorological station and compared 



them by plotting a Taylor diagram. We believe that using both spatial interpolation and point-

to-point validation can effectively reduce uncertainty in the results. We will provide a more 

detailed explanation of this approach in the revised manuscript. 

iv.Please define in the manuscript what CC and PBIAS mean, and clarify whether they 

represent averages across all grid cells. 

-Answer: Thank you for your comment. We will add definitions of the evaluation metrics in 

the revised manuscript (Table 2). We would also like to clarify that in the spatial maps, CC and 

PBIAS represent the averages across all stations, whereas in the Taylor diagrams, CC, RMSE, 

and STD are calculated based on the nearest WRF grid point to each station. 

Table 2 Definition of evaluation criteria. 
Metric Formula Optimal value Range 

CC 𝐶𝐶𝐶𝐶 =
∑ (𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑖𝑖)(𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�∑ (𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑀𝑀𝑖𝑖 −𝑀𝑀𝑖𝑖)2𝑛𝑛

𝑖𝑖=1

 1 (0, 1) 

PBIAS 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �
𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖
𝑂𝑂𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 0 (-∞, +∞) 

RMSE 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛� (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
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STD 𝑆𝑆𝑆𝑆𝑆𝑆 = �
1
𝑛𝑛� (𝑂𝑂𝑖𝑖 − 𝑂𝑂�)2

𝑛𝑛

𝑖𝑖=1
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Notes: Where 𝑂𝑂𝑖𝑖 presents hydrometeorological data at the 𝑖𝑖 station, 𝑀𝑀𝑖𝑖 presents data at 

the WRF grid point closest to the 𝑖𝑖 station, 𝑛𝑛 is the numbers of stations. 

v.What are subplots a-f in Figure S1 based on? The mean value per grid over the 10-year 

historic period? Please add necessary details on what you are comparing. 

Thank you for your question. Subplots a–f in Figure S1 represent the interpolated annual 

mean values at each meteorological station and the nearest WRF grid point over the 10-year 

historical period. We will add this description in the revised manuscript. 

vi.Is there also an explanation on those misestimated CMIP6bc temperatures? And why are the 

results particularly worse in the downstream sub-basin of the MRB? 

-Answer: Thank you for your question. We will provide an explanation for this issue in the 

supplement. 

The WRF model's simulation of temperature in complex terrain is mainly influenced by 

factors such as radiation transfer, surface type, and meteorological initial conditions (Jiménez-

Esteve et al., 2018; Liu et al., 2019; Lu et al., 2021). High-altitude areas typically experience 



stronger radiation effects, especially in mountainous regions with thinner atmospheres. The 

WRF model may have errors in simulating radiation transfer, leading to temperatures in high-

altitude areas being lower than actual conditions (Varga et al., 2020). In addition, the 

downstream area of the MRB is an urban agglomeration, where urban areas typically 

experience stronger radiation and heat accumulation effects. These effects may not be fully 

accounted for in the model, leading to simulated temperatures being higher than actual 

conditions (Li et al., 2014; Chen et al., 2025). Ntoumos et al. (2023) also revealed that the WRF 

model tends to overestimate the maximum temperatures and underestimate the minimum 

temperatures, with the errors being closely related to the geographic location. 
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b.I suggest to swap Sect. 2.3 and 2.4, since you first run the model and then extract CCEs from 

the model results. 

-Answer: Thank you for your constructive suggestion. We agree with your point and will swap 

Sections 2.3 and 2.4 in the revised manuscript 

i.When identifying the CCE events, did you do it independently for each grid? What are the 

spatiotemporal definitions of CCEs? 

-Answer: Thank you for your question. In response to your inquiry, indeed, when identifying 

compound climate extremes (CCEs), we performed calculations independently for each grid 

point. Specifically, we sorted the precipitation and temperature data for each grid point over a 

40-year period and defined extreme events based on the 10th and 90th percentiles. The 

methodology we used is based on the approach outlined by Wang et al. (2024), and the 

calculations are conducted using independent thresholds for each grid point, without 

considering co-occurrence of extreme events across multiple grid points. As for the issue of 

spatially compound disasters, I will address that in my response to the next question. 
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ii.Did you consider the spatially compound events, i.e. the same CCE event occur at multiple 

locations simultaneously? If not, please discuss if the proposed approach may double count 

CCEs and how does this affect your conclusion. 

-Answer: Thank you for your question. You’ve raised a very important point, and we fully 

understand your concern about whether the simultaneous occurrence of the same compound 

climate extreme event (CCE) across multiple grid points might lead to double counting, 

potentially affecting the reliability of the results. In response, we would like to clarify that when 

calculating the compound extreme indices, we perform the calculations independently for each 

grid point. For example, in Fig. 3, subplots a-j show the annual mean spatial distribution of 

each type of CCE for each grid point over the 40-year period, rather than the total sum. 

Therefore, even if the same event occurs at multiple grid points simultaneously, this will not 



lead to double counting (For example, even if the same CCE occurs on the same day at two 

grid points, it will still be counted as one day after averaging.). Similarly, for subplots k-o, the 

time series variations are averaged across the grid points, representing the mean values of the 

entire basin, not the total sum, so there is no issue of double counting in these results either. 

Nevertheless, we appreciate the insightful nature of your comment. Spatially compound 

events are a more complex concept, and we intend to conduct separate analyses for such cases 

in future studies. 

c.Please include the results of your sensitivity experiments (L130) in the supplementary 

materials. 

-Answer: Thank you for your suggestion. We will include the results of the sensitivity 

experiments in the supplementary materials. 

In our previous study, we conducted a detailed sensitivity analysis and optimization of 

parameterization schemes specifically for the MRB (Lin et al., 2023). We focused on two 

schemes that have the most significant impact on precipitation: microphysics and cumulus 

convection. By cross-combining these schemes, we developed 16 combinations (as shown in 

Table S2) and assessed their performance in simulating precipitation across different 

magnitudes. Through a comprehensive evaluation of the temporal (Fig. S1 and Fig. S3) and 

spatial (Fig. S3 and Table S3) characteristics, we determined that the 9th configuration (Lin 

and NT) is the most suitable for simulating extreme precipitation events in the MRB. As a 

result, this configuration was adopted in the present study to ensure the most accurate 

simulation of extreme precipitation events in this region. 

Table S2 Parameterization scheme combinations design. 

Combinations Microphysics scheme (MP) Cumulus scheme (CU) 
EXP1 WSM6 Betts-Miller-Janjic (BMJ) 
EXP2 WSM6 Betts-Miller-Janjic (BMJ) 
EXP3 WSM6 Betts-Miller-Janjic (BMJ) 
EXP4 WSM6 Betts-Miller-Janjic (BMJ) 
EXP5 WDM6 Kain-Fritsch (KF) 
EXP6 WDM6 Kain-Fritsch (KF) 
EXP7 WDM6 Kain-Fritsch (KF) 
EXP8 WDM6 Kain-Fritsch (KF) 
EXP9 Purdue Lin (Lin) New Tiedtke (NT) 
EXP10 Purdue Lin (Lin) New Tiedtke (NT) 



EXP11 Purdue Lin (Lin) New Tiedtke (NT) 
EXP12 Purdue Lin (Lin) New Tiedtke (NT) 
EXP13 Thompson Grell-Devenyi (GD) 
EXP14 Thompson Grell-Devenyi (GD) 

EXP15 Thompson Grell-Devenyi (GD) 

EXP16 Thompson Grell-Devenyi (GD) 

 
Fig. S2. Box plot of TS scores for 24-hour accumulated precipitation simulated by WRF. 

Table S3 Evaluation metrics for total accumulated precipitation 
Combination TS (light) TS (moderate) TS (heavy) TS (torrential) TS���� POD������ FAR������ 

EXP1 0.22 0.11 0.07 0.15 0.14 0.24 0.71 
EXP2 0.22 0.10 0.14 0.08 0.14 0.24 0.69 
EXP3 0.24 0.11 0.09 0.16 0.15 0.27 0.66 
EXP4 0.22 0.05 0.14 0.14 0.14 0.25 0.70 
EXP5 0.14 0.07 0.07 0.11 0.10 0.16 0.71 
EXP6 0.12 0.09 0.09 0.07 0.09 0.15 0.74 
EXP7 0.18 0.09 0.10 0.12 0.12 0.20 0.64 
EXP8 0.16 0.09 0.11 0.14 0.12 0.19 0.68 
EXP9 0.26 0.11 0.12 0.16 0.16 0.29 0.66 
EXP10 0.22 0.10 0.11 0.11 0.14 0.24 0.74 
EXP11 0.24 0.12 0.13 0.14 0.16 0.23 0.55 



EXP12 0.25 0.10 0.10 0.13 0.15 0.24 0.71 
EXP13 0.22 0.10 0.07 0.11 0.12 0.21 0.67 
EXP14 0.21 0.08 0.08 0.06 0.11 0.20 0.74 
EXP15 0.24 0.09 0.10 0.13 0.14 0.25 0.70 
EXP16 0.24 0.12 0.13 0.12 0.15 0.26 0.67 

Note: TS (light rain, moderate rain, heavy rain, torrential rain) refers to the average of daily 

24-hour accumulated precipitation. TS����、POD������、FAR������ represent the average values of the scores 

for the four precipitation levels. 

 
Fig. S3. Spatial distribution of biases of total accumulated precipitation from WRF 

parametrization scheme sensitivity experiments. 
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d.While Sect. 2.4.2 introduces the GAMLSS model, it lacks the detail on how WRF results are 

used in this model. The authors may include suitable examples when explaining the proposed 

approach. For example, how are the daily temperature and precipitation or the identified CCEs 

used in the model? 

-Answer: Thank you for your suggestion. In our study, the output from the WRF model 

(precipitation and temperature) is used as meteorological variables to identify and calculate 

compound climate extreme events (CCEs), including hot-wet events (HW), hot-dry events 

(HD), cold-wet events (CW), and cold-dry events (CD). After calculating the CCEs for each 

grid point, these events are input into the GAMLSS model for further analysis. In the GAMLSS 

model, time (year) is used as the independent variable (x), and the number of days per year for 

each type of CCE is treated as the dependent variable (y), thereby enabling the calculation of 

the non-stationary characteristics of each CCE. 

e.L158-159: “we fit non-stationary GAMLSS models with two parameters (mean, variance) 

and four parameters (mean, variance, skewness, kurtosis) at each grid point, selecting the 

optimal model for subsequent analysis.” What is the difference between the mean and variance 

in the first mention (two parameters) and in the following (four parameters)? And how are the 

changes between the current and future CCE frequency estimated and in what unit/form? 

-Answer: We appreciate the reviewer’s attention to this point. We employed two types of 

GAMLSS models to capture potential changes in the distribution of meteorological variables. 

The first is the traditional two-parameter location–scale model (mean μ and variance σ), which 

assumes a fixed distributional shape. The second is a more flexible four-parameter location–

scale–shape model (mean μ, variance σ, skewness ν, and kurtosis τ), which allows the 

distributional shape to vary over time. These extended distributions retain the mean and 

variance parameters but include two extra shape parameters to capture asymmetry and tail 

behavior. We evaluate these models by comparing their goodness of fit and then select the 

model that best represents the data distribution for subsequent analyses. Additionally, skewness 

and kurtosis are unitless statistics that measure the asymmetry and tail thickness of the data 



distribution, respectively. The unit of frequency change is days per decade, and it was 

calculated by using linear regression based on annual data to estimate the trend of frequency 

change. 

6.Please describe in the methodology how metrics such as annual event distribution, seasonal 

variations, and non-stationary characteristics were calculated. 

-Answer: Thank you for your suggestion. We will include this additional information in the 

methodology section. In calculating the interannual and seasonal variations of CCEs, we used 

different threshold values. Specifically, for interannual variation, we sorted the precipitation 

and temperature data over a 40-year period and determined the thresholds based on the 10th 

and 90th percentiles to identify CCEs. For seasonal variations, we separately extracted the 

precipitation and temperature data for the summer (JJA) and winter (DJF) seasons, applying 

the same sorting method to calculate the respective thresholds, thus analyzing the distribution 

characteristics of CCEs for each season. 

Regarding the calculation of stationarity, we employed the GAMLSS to fit the changes in 

the mean and variance of CCEs. To assess their stationarity over time, we consider the CCEs 

to be stationary if both the mean and variance remain stable. If either the mean or variance 

shows significant variation, the CCEs are considered non-stationary. 

7.In Fig. 3 (a-j), do the annual spatial values refer to the mean yearly event number over 2025-

2065? What does d/10a mean? 

-Answer: Thank you for your question. We apologize for the previous lack of clarity in our 

description. In Fig. 3 (a-j), the annual spatial values represent the mean yearly event number 

over the period 2025-2065. Regarding the term "d/10a," we will revise it to "days per decade" 

to ensure clearer understanding. 

8.When looking at the temporal changes in CCEs (Fig. 3 k-o), it is interesting to see the 

projections for two SSPs sometimes show a completely different year-to-year trend. For 

example, for hot-dry events, the value in blue increases from 2032 to 2033 while the red one 

decreases. There are also similar discrepancies for different years and different compound 

events. Is there an explanation for this? 

-Answer: Thank you for pointing out this important issue. The inconsistency, or even opposite 

trends, of extreme events in some regions under the SSP2-4.5 and SSP5-8.5 pathways in 

climate simulations is reasonable and expected. This is mainly due to the dominant role of 

internal climate variability at the regional scale. Although the greenhouse gas forcing in SSP5-



8.5 is stronger, the global warming and atmospheric circulation responses (such as changes in 

jet stream positions or shifts in storm tracks) caused by it differ spatially from those in SSP2-

4.5. These differences interact in complex ways with decadal-scale internal oscillations, such 

as the Pacific Decadal Oscillation (PDO) or the Atlantic Multidecadal Oscillation (AMO). 

During specific periods and in certain regions, these strong natural variability signals may 

temporarily mask or even reverse the long-term trends driven by external forcing, leading to 

different short-term evolution paths under the two scenarios. Additionally, similar cases have 

been observed in previous studies (Fig. 5 (Wu et al., 2023); Fig. 7 (Ren et al., 2023); Fig.2 

(Fang et al., 2025)), demonstrating that short-term variability under different emission 

scenarios is quite common. 
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9.Similar to my earlier comment, if you did not consider the same CCE occurring across cells. 

Be careful with drawing conclusions from the averaged days as you may double count some 

events. 

-Answer: Thank you very much for your question. The response to this issue is the same as for 

question 5. b. Ⅱ. 

We perform the calculations independently for each grid point. For example, in Fig. 3, 

subplots a-j show the annual mean spatial distribution of each type of CCE for each grid point 

over the 40-year period, rather than the total sum. Therefore, even if the same event occurs at 

multiple grid points simultaneously, this will not lead to double counting (For example, even 

if the same CCE occurs on the same day at two grid points, it will still be counted as one day 

after averaging.). Similarly, for subplots k-o, the time series variations are averaged across the 



grid points, representing the mean values of the entire basin, not the total sum, so there is no 

issue of double counting in these results either. 

Nevertheless, we appreciate the insightful nature of your comment. Spatially compound 

events are a more complex concept, and we intend to conduct separate analyses for such cases 

in future studies. 

10.For showing the seasonal variations, I was wondering would it be better to compare the 

event number/frequency between different seasons for a given CCE, instead of presenting 

results for all four CCEs for a given season. 

-Answer: Thank you for your suggestion. We will make the adjustment as you recommended 

in the revised manuscript. 

11.How were the return periods calculated? 

-Answer: Thank you for your question. In this study, the calculation of return periods is based 

on the threshold exceedance method, which fundamentally links the return period to the 

frequency of extreme events. Specifically, we extracted all extreme events from the historical 

data that exceeded the predetermined threshold and constructed a sequence of their "frequency 

(days per year)." By analyzing this frequency and fitting the optimal distribution (Gao et al., 

2018), we calculated the "frequency for a 10-year return period" (for example, X days per year). 

This means that a "10-year return period event" refers to the frequency of such an event 

occurring. We will clarify this concept further in the revised manuscript. 
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12.I find the discussion section relatively weak, as certain findings lack sufficient reasoning or 

possible explanations. Furthermore, the biases in precipitation simulation are considered as a 

key limitation of this study. How big are the influences of these biases on your findings? Do 

you consider using bias-correction methods in the future studies? 

-Answer: We sincerely appreciate your insightful comments. We agree that the discussion 

section can be further strengthened. 

4 Discussion 

Although earlier research has emphasized the necessity of analyzing extreme events under 

non-stationary conditions (Cheng et al., 2014; Byun and Hamlet, 2020; Liu et al., 2024), the 



evolution of CCEs within a non-stationary climate framework remains poorly understood. Our 

study develops an innovative non-stationary framework integrating WRF-based dynamical 

downscaling with GAMLSS to reassess future recurrence risks of CCEs. The results reveal 

systematic underestimation of CCE frequencies by traditional stationary models, underscoring 

the critical need for time-varying risk assessments to avoid misleading projections and support 

robust climate adaptation strategies (Abdelmoaty and Papalexiou, 2023). This framework is 

transferable to other regions facing complex hydroclimatic interactions. 

4.1 Dominance of hot extremes and temperature-driven shifts 

The projected increase in CCEs, particularly under SSP5-8.5, aligns with global trends of 

intensifying hydroclimatic risks under continued warming (Asadieh and Krakauer, 2017; 

Zhang et al., 2021). Our findings indicate that hot-dry extremes dominate both spatially and 

temporally, increasing at 2.26 days per decade in summer under SSP5-8.5, while cold extremes 

decline. This pattern is consistent with studies highlighting the rising prevalence of hot-

stagnation and hot-dry extremes in East Asia (Yin et al., 2025). The reversal between hot and 

cold extremes has been robustly linked to enhanced radiative forcing from anthropogenic 

greenhouse gas emissions (Samset et al., 2018; Kramer et al., 2021). Our analysis further 

reveals that temperature—not precipitation—is the primary driver of CCE changes in the MRB, 

as evidenced by the strong warming trend (0.46°C per decade under SSP5-8.5) alongside 

relatively stable precipitation (Fig. S2). This supports the hypothesis that thermodynamic 

effects, rather than dynamic ones, dominate mean-state changes in extremes (Horton et al., 

2016; Van Der Wiel and Bintanja, 2021). 

4.2 Non-stationarity: mean shifts outpace variability 

A key advance of this study is the explicit detection of non-stationary characteristics in 

CCEs, which has been largely overlooked in prior compound event analyses. We find that 

under SSP5-8.5, 95.20% of grid cells exhibit non-stationarity, predominantly driven by 

changes in the Mn rather than Var, accounting for 80.81% of the transitions. This suggests that 

climate warming amplifies extremes primarily through shifts in baseline intensity—a 

thermodynamic effect—rather than through increased temporal variability. Similar findings 

have been reported at global scales, where mean warming dominates changes in extreme 

temperature distributions (Patel et al., 2024; Nordling et al., 2025). The spatial concentration 

of Mn-driven non-stationarity in downstream MRB and the Shaxi River Basin may reflect 

localized warming amplification due to urban heat islands or land-atmosphere feedbacks, a 



phenomenon noted in other subtropical regions (Gao et al., 2018; Wu et al., 2020). 

4.3 Frequency of recurrence systematically underestimated by stationary models 

Our comparison between stationary and non-stationary models reveals that the latter 

captures a significant increase in recurrence risks, particularly for 100-year CCEs (3.12 days 

per decade under SSP5-8.5). Stationary models systematically underestimate these risks after 

2045, consistent with global studies showing that conventional extreme value models fail to 

capture escalating severities under climate change (Feng et al., 2020; Xu et al., 2025). The 

stronger non-stationary response of 100-year events highlights the heightened vulnerability of 

high-impact, low-probability extremes—a critical insight for infrastructure design and disaster 

preparedness. The west-to-east gradient in recurrence risk, with hotspots in the Shaxi River 

Basin, may be attributed to topographic and land-surface heterogeneity, which modulate local 

hydroclimatic responses (Zheng et al., 2023; Zhang et al., 2025). 

4.4 Methodological advances and limitations 

Our integrated “bias-corrected CMIP6–WRF dynamical downscaling–GAMLSS” 

framework represents a significant methodological advancement over the direct use of raw 

GCM outputs or purely statistical downscaling for projecting CCEs. By resolving mesoscale 

circulations and explicitly simulating convective processes, our approach more faithfully 

captures the fine-scale spatiotemporal heterogeneity of precipitation and temperature fields in 

complex terrain, a capability that statistical methods, reliant on historically derived statistical 

relationships, fundamentally lack (Gutmann et al., 2012; Rahimi et al., 2024). Crucially, 

initializing the WRF model with a bias-corrected CMIP6 dataset mitigates the propagation and 

amplification of inherent GCM systematic errors, a strategy proven to enhance the credibility 

of regional climate projections (Zhang et al., 2024; Rahimi et al., 2024). Nonetheless, certain 

limitations persist. Even at convection-permitting resolution (3 km), the WRF model exhibits 

systematic biases in simulating orographic precipitation, a well-documented challenge often 

stemming from uncertainties in microphysical parameterization schemes and the representation 

of land-atmosphere energy and moisture exchanges over mountainous regions (Talbot et al., 

2012; Zhang et al., 2025). Furthermore, while statistically robust, our current non-stationary 

GAMLSS framework employs time merely as a proxy covariate for climate change. This 

approach effectively detects and projects temporal trends in risk but falls short of elucidating 

the underlying physical drivers, such as the specific roles of evolving large-scale circulation 

patterns or soil moisture-atmosphere feedbacks. To overcome these constraints and solidify the 



physical foundations of our projections, future work should focus on three promising avenues: 

first, explicitly embedding physical drivers like atmospheric circulation indices, antecedent soil 

moisture, or global mean temperature as covariates within the GAMLSS to establish a clearer 

causal chain from forcing to statistical response (Zeng et al., 2024; Ma et al., 2025); second, 

leveraging machine learning, such as convolutional neural networks, for the statistical post-

processing of WRF outputs to correct systematic biases, or developing hybrid physics-

informed machine learning models as a complementary approach to dynamical downscaling 

(Yin et al., 2021; Xie et al., 2023); and third, systematically quantifying the full cascade of 

uncertainty from GCMs through downscaling to statistical modeling, ideally through a super-

ensemble of multiple CMIP6 models and WRF physical parameterizations, to provide 

probabilistic risk estimates crucial for informed decision-making. 
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Minor Comments: 

1.L29: Write out 3.55d/10a. 

-Answer: Thank you for your valuable comment. We apologize for the incorrect expression of 

"3.55 d/10a." Following your suggestion, we will revise the manuscript and change all such 

expressions to "days per decade" in the revised version to ensure clarity and consistency. 

2.L32: Define stationarity. 

-Answer: Thank you for your suggestion. We will include a definition of stationarity in the 

revised manuscript as you recommended. Specifically, stationarity refers to the assumption that 

the statistical properties of a process, such as the mean, variance, and autocorrelation, do not 

change over time. In the context of climate and hydrological data, a stationary process implies 

that the distribution of climate variables remains constant throughout the time series, and the 

underlying parameters (such as mean and variance) do not exhibit long-term trends or shifts. 

We will clarify this definition in the revised manuscript. 

3.L55: considering rephrasing the sentence into Therefore, traditional models fail to capture 

the non-stationary changes in these extreme events. 

-Answer: Thank you for your suggestion. We agree with this expression and will rephrase the 

sentence as recommended in the revised manuscript. 

4.In L71, the WRF model appears rather abruptly. Please introduce its relation with the RCMs. 

-Answer: Thank you for your suggestion. We will enhance the explanation of the relationship 

between the WRF model and regional climate models (RCMs) in the revised manuscript to 

make it clearer and more coherent. 

To overcome this constraint, dynamical downscaling, which utilizes nested high-

resolution regional climate models (RCMs), provides a critical technical pathway to investigate 

climate response mechanisms at fine-scales (Tapiador et al., 2020; Rahimi et al., 2024). In this 

context, over the past decade, an increasing number of studies have begun to use RCMs to 

obtain high-resolution climate information. Bozkurt et al. (2019) used the Regional Climate 



Model, version 4 (RegCM4), to evaluate the spatiotemporal variations of temperature and 

precipitation over the Pacific coast and the Andes Mountains. The results indicated that 

increasing the resolution effectively eliminates simulation errors caused by complex 

topography. McCrary et al. (2020) used multiple RCMs from the North American Coordinated 

Regional Downscaling Experiment (NA-CORDEX) to predict future snow changes in North 

America. They found that, particularly in high-elevation areas, the percentage of snow loss 

projected by GCMs was significantly higher than that projected by the RCMs. As an advanced 

convection-permitting RCM, the WRF model significantly enhances the simulation capability 

for meteorological processes at 1-10 km scales through its fully compressible, non-hydrostatic 

dynamic core framework (Talbot et al., 2012). This high-resolution simulation capability gives 

the WRF model a unique advantage in capturing small-scale meteorological phenomena. Zhou 

et al. (2024) developed a 9 km resolution regional reanalysis dataset covering the Tibetan 

Plateau based on the WRF model, and demonstrated its superior applicability compared to the 

fifth generation European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5). 

Yang et al. (2025) revealed that the WRF model provides better accuracy in simulating snow 

depth during the cold season in high-elevation regions compared to ERA5-Land. 
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5.Similarly, in L78, please add how GAMLSS and WRF fit in here. While introducing the 

objective of this paper, the authors should mention what types of CCEs they are looking into. 

-Answer: Thank you for your comment. We perform dynamical downscaling using the WRF 

model to downscale the bias-corrected CMIP6 data (1.25° × 1.25°) to a 3 km resolution. 

Subsequently, compound extreme climate events (CCEs) are calculated based on the high-

resolution WRF outputs. These calculated CCEs are then used as input for the GAMLSS 

framework to analyze their non-stationary characteristics. This approach allows the integration 

of high-resolution dynamical downscaling with the statistical modeling of extremes, ensuring 

that both local-scale variability and non-stationarity are adequately captured. We will provide 

a more detailed description of this method in the revised manuscript. In addition, based on your 

suggestion, we will mention the four types of CCEs (hot-wet events, hot-dry events, cold-wet 

events, and cold-dry events) in the introduction section. 

6.Please add references to support the statement ‘complex interactions between topography 

and climate give rise to high-intensity compound hydroclimatic extremes.’ (L81-82). 

-Answer: We focus on the Minjiang River Basin (MRB), a subtropical monsoon-dominated 

basin of southeastern China, where complex interactions between topography and climate give 

rise to high-intensity compound hydroclimatic extremes (Gan et al., 2025; Geng et al., 2024; 

Wang et al., 2024). 
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7.Define non-stationarity detection (L85). 

-Answer: Thank you for your suggestion. We will include a definition of non-stationarity 

detection in the revised manuscript as you recommended. Non-stationarity detection refers to 

the identification of changes in the statistical properties of a time series over time, indicating 

that the process is no longer stationary. This may include shifts in the mean, variance, or 

autocorrelation, as well as changes in the underlying distribution or trend of the data. 

8.L109, write out ERA5 if it is the first use. 

-Answer: Thank you for your comment. We will make sure to address this issue and provide 

the full name of ERA5 (the fifth generation European Centre for Medium-Range Weather 

Forecasts Reanalysis) when it is first mentioned in the revised manuscript.



9.Provide the names and associated details of the 18 models used in your dataset. 

-Answer: Thank you for your suggestion. We will provide a list of the 18 models used in the bias-corrected CMIP6 dataset (Xu et al., 2021) 

in the supplementary file as requested. 

Table S1 CMIP6 models used in CMIP6bc. 

No. Model Institution Approximate 
grid spacing 

1 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation (Australia) 1.875° × 1.25° 
2 ACCESS-ESM1–5 Commonwealth Scientific and Industrial Research Organisation (Australia) 1.875° × 1.25° 
3 CanESM5 Canadian Centre for Climate Modelling and Analysis (Canada) 2.81° × 2.81° 
4 BCC-CSM2-MR Beijing Climate Center (China) 1.125° × 1.125° 
5 FGOALS-f3-L Institute of Atmospheric Physics, Chinese Academy of Sciences (China) 1.25° × 1° 
6 FGOALS-g3 Institute of Atmospheric Physics, Chinese Academy of Sciences (China) 2° × 2.25° 
7 EC-Earth3 European EC-Earth Consortium (Europe) 0.70° × 0.70° 
8 EC-Earth3-Veg European EC-Earth Consortium (Europe) 0.70° × 0.70° 
9 IPSL-CM6A-LR Institute Pierre Simon Laplace (France) 2.5° × 1.26° 
10 AWI-CM-1-1-MR Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (Germany) 0.94° × 0.94° 
11 MPI-ESM1-2-HR Max Planck Institute for Meteorology (Germany) 0.94° × 0.94° 
12 MPI-ESM1-2-LR Max Planck Institute for Meteorology (Germany) 1.875° × 1.875° 
13 MIROC6 Japan Agency for Marine-Earth Science and Technology (Japan) 1.41° × 1.41° 
14 MRI-ESM2-0 Meteorological Research Institute, Japan Meteorological Agency (Japan) 1.125° × 1.125° 
15 NorESM2-LM Norwegian Climate Center (Norway) 2.5° × 1.875° 
16 CESM2 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research (USA) 1.25° × 0.94° 
17 CESM2-WACCM Climate and Global Dynamics Laboratory, National Center for Atmospheric Research (USA) 1.25° × 0.94° 
18 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmosphere Administration (USA) 1.25° × 1.0° 
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10.In Fig. 2, please consider using another color for the meteorological stations as they are 

sometimes hard to tell due to the elevation data. 

-Answer: Thank you for your suggestion. We will modify the manuscript accordingly and use 

a different color for the meteorological stations in the revised version to avoid confusion with 

the elevation data (Fig. 2). 

 
Fig. 2. Study area and model configuration. (a) Topographic features of the MRB (m) and (b) 

Model configuration with 9-km (D01) and 3-km (D02) nested domains (Zhang et al., 2025). 

Basemap source: © Esri, https://services.arcgisonline.com 
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11.When referring to the figures, please use Fig. instead of Figure to make sure it is consistent 

with the captions. 

-Answer: We sincerely appreciate your valuable comments, and we apologize for the 

inconsistency in referring to the figures. Following your suggestion, we will ensure format 

consistency in the revised manuscript to align with the figure captions. Thank you once again 

for your careful review and valuable suggestions. 


