
RESPONSE TO REFEREES 

Ms. Ref. No.: Egusphere-2025-2438  

Title: Non-Stationary Dynamics of Compound Climate Extremes: A WRF-CMIP6-GAMLSS 

Framework for Risk Reassessment in Southeastern China 

To Anonymous Referee #1 

Thank you for your thoughtful and detailed review of our manuscript. We greatly appreciate 

the time and effort you dedicated to providing feedback. Your constructive suggestions have 

been invaluable, and we will implement all changes in a revised version of the manuscript. 

1.In the introduction, where you mention the need for fine-resolution models, you may need to 

add the reasons for the required high-resolution models for capturing compound extremes (e.g., 

local convective precipitation, spatial heterogeneity, …). 

We thank the reviewer for this valuable comment. Following your suggestion, we will add 

in the revised manuscript the reasons why high-resolution models are necessary to capture 

compound climate extremes (CCEs), emphasizing factors such as local convective 

precipitation and spatial heterogeneity. 

Compared to Global Climate Models (GCMs), Regional Climate Models (RCMs) offer 

higher spatial resolution, allowing for more precise simulations of local climate effects induced 

by topography, such as local convective precipitation, orographic effects, and regional climate 

heterogeneity (Gilbert et al., 2025). In regions with complex terrain, RCMs are particularly 

effective at capturing spatial variations of climate variables, such as the differences in wind 

patterns, precipitation, and their distribution caused by topography in mountainous or basin 

areas (Imran and Evans, 2025). For example, Byun et al. (2023) assessed the ability of RCMs 

and GCMs to simulate storm tracks in East Asia, revealing that RCMs are better able to capture 

high-resolution topography, thereby reducing the biases found in GCMs. Lin et al. (2022) 

showed that RCMs driven by ERA-Interim reanalysis data are capable of capturing small-scale 

processes, such as orographic effects, and outperform GCMs in reproducing the large-scale 

features of the Heat Wave Magnitude Index-daily (HWMId). Torrez‐Rodriguez et al. (2023) 



also demonstrated that RCMs are better at reproducing the main spatio-temporal characteristics 

of precipitation in subtropical complex terrain regions. 

2.May you please check the following articles and discuss how you improve their work and 

what your innovation is compared to it? https://link.springer.com/article/10.1007/s00382-020-

05538-2 

Thank you for your insightful comment regarding the comparison of our work with the 

study by Singh et al. (2021) on non-stationary compound extreme events (CCEs). After 

reviewing their work alongside our own, we would like to point out the following key 

differences and innovations that distinguish our study. Additionally, we will include this 

comparison in the discussion section of the revised manuscript.: 

Compared to the study by Singh et al. (2021), our research presents significant innovations 

in both spatial scale and methodology. First, while Singh et al. (2021) focus on large-scale 

ensemble simulations to analyze compound extreme events in Canada, our study targets the 

medium-to-small scale of the Minjiang River Basin (MRB), a region heavily influenced by 

complex monsoonal climates and topography. Through high-resolution WRF model dynamic 

downscaling, we are able to conduct a more fine-grained risk assessment of compound extreme 

events and their spatial heterogeneity, offering a more localized approach to climate risk 

evaluation. Second, in terms of methodology, Singh et al. (2021) employ a Bayesian Copula 

model to analyze the dependence structure between temperature and precipitation, whereas we 

introduce the GAMLSS model to capture the non-stationary changes and assess the risk of 

compound extremes. Through the GAMLSS model, we are able to simultaneously handle 

variations in both the mean and variance of climate variables, providing a more comprehensive 

and detailed framework for risk assessment.

https://link.springer.com/article/10.1007/s00382-020-05538-2
https://link.springer.com/article/10.1007/s00382-020-05538-2


3.May you make a list of the 18 climate models you applied for your study in the supplementary file? 

Thank you for your suggestion. We will provide a list of the 18 models used in the bias-corrected CMIP6 dataset (Xu et al., 2021) in the 

supplementary file as requested. 

Table S1 CMIP6 models used in CMIP6bc. 

No. Model Institution Approximate 
grid spacing 

1 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation (Australia) 1.875° × 1.25° 
2 ACCESS-ESM1–5 Commonwealth Scientific and Industrial Research Organisation (Australia) 1.875° × 1.25° 
3 CanESM5 Canadian Centre for Climate Modelling and Analysis (Canada) 2.81° × 2.81° 
4 BCC-CSM2-MR Beijing Climate Center (China) 1.125° × 1.125° 
5 FGOALS-f3-L Institute of Atmospheric Physics, Chinese Academy of Sciences (China) 1.25° × 1° 
6 FGOALS-g3 Institute of Atmospheric Physics, Chinese Academy of Sciences (China) 2° × 2.25° 
7 EC-Earth3 European EC-Earth Consortium (Europe) 0.70° × 0.70° 
8 EC-Earth3-Veg European EC-Earth Consortium (Europe) 0.70° × 0.70° 
9 IPSL-CM6A-LR Institute Pierre Simon Laplace (France) 2.5° × 1.26° 
10 AWI-CM-1-1-MR Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (Germany) 0.94° × 0.94° 
11 MPI-ESM1-2-HR Max Planck Institute for Meteorology (Germany) 0.94° × 0.94° 
12 MPI-ESM1-2-LR Max Planck Institute for Meteorology (Germany) 1.875° × 1.875° 
13 MIROC6 Japan Agency for Marine-Earth Science and Technology (Japan) 1.41° × 1.41° 
14 MRI-ESM2-0 Meteorological Research Institute, Japan Meteorological Agency (Japan) 1.125° × 1.125° 
15 NorESM2-LM Norwegian Climate Center (Norway) 2.5° × 1.875° 
16 CESM2 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research (USA) 1.25° × 0.94° 
17 CESM2-WACCM Climate and Global Dynamics Laboratory, National Center for Atmospheric Research (USA) 1.25° × 0.94° 
18 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmosphere Administration (USA) 1.25° × 1.0° 



4.You mentioned that “The dataset used in this study covers the historical period (2005–2014)”, 

why did you choose only 10 years as historical data? 

Thank you very much for your insightful comment. We would like to clarify that the bias-

corrected CMIP6 dataset (Xu et al., 2021) we used has already been extensively validated 

(Jamal et al., 2023; Huang et al., 2024; Wu and Zheng, 2023). Given that the focus of our study 

is on assessing the non-stationary changes of future compound climate extremes (CCEs), a 

comprehensive and detailed evaluation of the dataset was not conducted. Additionally, running 

WRF simulations requires substantial computational resources—for example, simulating one 

year over the MRB takes approximately 4 days on 80 CPU cores. Considering both the 

reliability of the dataset and the need to optimize computational resources, we select a 10-year 

historical period (2005–2014) as being sufficient to demonstrate the reliability of the bias-

corrected data for our study purposes. 

5.Why did you only use SSP2-4.5 and SSP5-8.5? Why not SSP1-2.6? 

Thank you for your insightful comment. The reason we focused on SSP2-4.5 and SSP5-

8.5 scenarios is that the bias-corrected dataset we used (Xu et al., 2021) only provides data for 

these two scenarios. This limitation is due to the specific selection of SSP scenarios made 

during the dataset development. We speculate that the dataset creators aimed to highlight the 

differences between the moderate and high-emission scenarios, particularly to emphasize the 

potential impacts of future climate changes under these contrasting pathways. By focusing on 

SSP2-4.5 (moderate emission scenario) and SSP5-8.5 (high-emission scenario), the dataset 

offers a clear comparison of how differing levels of greenhouse gas emissions can influence 

climate projections, especially in terms of temperature rise, extreme events, and other key 

climate variables. Although SSP1-2.6, which represents a low-emission scenario, is also highly 

relevant, it may not have been included to maintain the dataset's focus on the more critical 

scenarios that are likely to dominate future climate projections. 

6.Please make clearer how the downscaling integrates with your GAMLSS framework. 

We perform dynamical downscaling using the WRF model to downscale the bias-

corrected CMIP6 data (1.25° × 1.25°) to a 3 km resolution. Subsequently, compound extreme 

climate events (CCEs) are calculated based on the high-resolution WRF outputs. These 



calculated CCEs are then used as input for the GAMLSS framework to analyze their non-

stationary characteristics. This approach allows the integration of high-resolution dynamical 

downscaling with the statistical modeling of extremes, ensuring that both local-scale variability 

and non-stationarity are adequately captured. We will provide a more detailed description of 

this method in the revised manuscript. 

7.Please make it clear what you mean by “enhanced” or “advanced” GAMLSS in the 

manuscript. Do you mean the GAMLSS, which considers non-stationary characteristics? 

Thank you for your valuable comment. We apologize for the ambiguity in the description 

of “enhanced” or “advanced” GAMLSS. We clarify it as follows: Most existing studies apply 

the two-parameter GAMLSS that only models the mean and variance to constrain data fitting. 

In contrast, our “enhanced/advanced GAMLSS” extends this framework by incorporating four 

parameters—mean, variance, skewness, and kurtosis—to comprehensively characterize the 

data distribution (line 158-160). This extension enables the model to capture more complex 

distributional features (e.g., asymmetry and tail thickness) that cannot be fully described by the 

two-parameter setting. We will revise the relevant descriptions in the manuscript to explicitly 

define this parameter extension, ensuring clarity for readers.  



8.In the supplementary file, please provide a table showing the validation results. 

Thank you for your comment. We will provide several tables showing the validation results in 

the supplementary file. 

Table S2 Meteorological stations information. 
ID Name Longitude (°N) Latitude (°E) Elevation (m) 
1 Jiuxianshan 118.1 25.72 1653.5 
2 Gutian 118.73 26.58 361.5 
3 Datian 117.83 25.7 400.1 
4 Youxi 118.15 26.17 126.1 
5 Dehua 118.23 25.48 521.4 
6 Yongtai 118.93 25.87 85.6 
7 Fuzhou 119.28 26.08 83.8 
8 Changle 119.5 25.97 4.1 
9 Minhou 119.15 26.15 57.8 
10 Minqing 118.85 26.23 40.8 
11 Sanming 117.62 26.27 215 
12 Ninghua 116.63 26.23 358.9 
13 Yong’an 117.35 25.97 206 
14 Shaxian 117.8 26.4 120.6 
15 Qingliu 116.85 26.2 310.6 
16 Liancheng 116.75 25.72 380.0 
17 Guangze 117.3 27.52 265.4 
18 Nanping 118.17 26.65 125.6 
19 Jiangle 117.47 26.73 154.7 
20 Jianning 116.85 26.83 342.3 
21 Shaxi 117.15 26.4 357.4 
22 Taining 117.17 26.9 342.9 
23 Shaowu 117.47 27.33 191.5 
24 Shunchang 117.8 26.8 175.2 
25 Jianou 118.31 27.05 154.9 
26 Jianyang 118.12 27.33 196.9 
27 Zhenghe 118.82 27.37 221.5 
28 Songxi 118.8 27.52 205.4 
29 Wuyishan 118.03 27.77 220.6 
30 Pucheng 118.53 27.92 276.9 



Table S3 Temperature simulation results based on ERA5 

Station STD RMSE CC 
Jiuxianshan 1.14 0.59 0.99 

Gutian 0.98 0.29 0.99 
Datian 0.97 0.07 1.00 
Youxi 0.99 0.23 0.99 
Dehua 0.98 0.20 0.99 
Yongtai 1.00 0.22 0.99 
Fuzhou 0.97 0.26 0.98 
Changle 0.92 0.20 0.98 
Minhou 0.97 0.35 0.95 
Minqing 0.98 0.16 0.99 
Sanming 1.03 0.30 0.99 
Ninghua 0.99 0.12 0.99 
Yongan 1.01 0.32 0.99 
Shaxian 1.03 0.36 0.99 
Qingliu 0.96 0.14 0.99 

Liancheng 1.01 0.27 0.99 
Guangze 1.01 0.19 0.99 
Nanping 1.02 0.29 0.99 
Jiangle 1.02 0.29 0.99 

Jianning 1.02 0.19 0.99 
Shaxi 0.97 0.26 0.99 

Taining 0.99 0.21 0.99 
Shaowu 1.03 0.31 0.99 

Shunchang 1.03 0.32 0.99 
Jianou 0.78 0.25 0.99 

Jianyang 0.75 0.36 0.99 
Zhenghe 1.01 0.14 0.99 
Songxi 0.99 0.14 0.99 

Wuyishan 0.82 0.27 1.00 
Pucheng 1.05 0.26 0.99 

  



Table S4 Temperature simulation results based on CMIP6bc 

Station STD RMSE CC 
Jiuxianshan 1.10  0.66  0.96  

Gutian 0.96  0.37  0.97  
Datian 0.94  0.29  0.96  
Youxi 0.95  0.30  0.96  
Dehua 0.97  0.30  0.96  
Yongtai 0.96  0.29  0.96  
Fuzhou 0.96  0.32  0.96  
Changle 0.88  0.28  0.96  
Minhou 0.53  0.68  0.96  
Minqing 0.94  0.27  0.96  
Sanming 0.97  0.37  0.96  
Ninghua 0.93  0.25  0.97  
Yongan 0.95  0.30  0.96  
Shaxian 0.96  0.33  0.97  
Qingliu 0.91  0.26  0.97  

Liancheng 0.93  0.32  0.96  
Guangze 0.96  0.28  0.98  
Nanping 0.98  0.37  0.97  
Jiangle 0.95  0.27  0.97  

Jianning 0.96  0.28  0.98  
Shaxi 0.92  0.33  0.97  

Taining 0.94  0.28  0.97  
Shaowu 0.95  0.27  0.97  

Shunchang 0.95  0.30  0.97  
Jianou 0.79  0.32  0.97  

Jianyang 0.73  0.41  0.97  
Zhenghe 0.95  0.25  0.97  
Songxi 0.94  0.25  0.97  

Wuyishan 0.81  0.35  0.97  
Pucheng 0.95  0.24  0.98  

  



Table S5 Precipitation simulation results based on ERA5 

Station STD RMSE CC 
Jiuxianshan 1.20  0.71  0.80  

Gutian 1.13  0.55  0.87  
Datian 1.20  0.71  0.81  
Youxi 1.35  0.72  0.86  
Dehua 1.16  0.64  0.83  
Yongtai 1.04  0.69  0.78  
Fuzhou 0.94  0.75  0.74  
Changle 0.76  0.89  0.62  
Minhou 1.04  0.79  0.73  
Minqing 1.10  0.65  0.81  
Sanming 0.98  0.61  0.81  
Ninghua 1.18  0.74  0.78  
Yongan 1.12  0.61  0.84  
Shaxian 0.97  0.56  0.84  
Qingliu 1.16  0.72  0.79  

Liancheng 1.36  0.89  0.75  
Guangze 1.24  0.51  0.92  
Nanping 0.97  0.53  0.85  
Jiangle 1.07  0.45  0.91  

Jianning 1.12  0.69  0.79  
Shaxi 1.01  0.57  0.84  

Taining 1.11  0.46  0.91  
Shaowu 1.35  0.82  0.80  

Shunchang 1.06  0.51  0.88  
Jianou 0.96  0.54  0.85  

Jianyang 0.99  0.46  0.89  
Zhenghe 1.06  0.44  0.91  
Songxi 1.17  0.55  0.89  

Wuyishan 1.23  0.48  0.93  
Pucheng 1.06  0.59  0.84  

  



Table S6 Precipitation simulation results based on CMIP6bc 

Station STD RMSE CC 
Jiuxianshan 1.19  0.98  0.61  

Gutian 1.12  0.92  0.63  
Datian 1.38  1.05  0.65  
Youxi 1.11  0.85  0.68  
Dehua 1.06  0.83  0.69  
Yongtai 0.94  0.97  0.52  
Fuzhou 0.94  0.94  0.57  
Changle 0.82  0.70  0.73  
Minhou 0.93  0.96  0.54  
Minqing 1.16  0.97  0.60  
Sanming 1.10  0.84  0.68  
Ninghua 1.12  0.81  0.71  
Yongan 1.26  1.04  0.59  
Shaxian 0.97  0.82  0.66  
Qingliu 1.23  0.98  0.63  

Liancheng 1.31  1.11  0.56  
Guangze 1.13  0.86  0.68  
Nanping 0.98  0.75  0.71  
Jiangle 1.13  0.84  0.69  

Jianning 1.06  0.88  0.64  
Shaxi 1.26  0.96  0.67  

Taining 1.16  0.89  0.66  
Shaowu 1.15  0.92  0.64  

Shunchang 1.11  0.78  0.73  
Jianou 1.01  0.80  0.68  

Jianyang 1.13  0.89  0.65  
Zhenghe 1.11  0.96  0.59  
Songxi 1.15  0.90  0.66  

Wuyishan 1.18  0.83  0.72  
Pucheng 1.11  0.80  0.71  

  



9.In the results and discussion, I could not find how the results show that considering the non-

stationary characteristics leads to better or more reliable results. May you compare the results 

with previous studies in which the time series was assumed to be stationary? 

Thank you for the constructive comment. We will enrich our results and add a discussion 

comparing them with previous studies in the revised manuscript. 

Within the GAMLSS framework, we constructed both stationary and non-stationary 

models and evaluated their performance using the Akaike Information Criterion (AIC), 

adhering to the established principle that a smaller AIC value indicates a better model fit. The 

results show that, compared to the stationary model, the non-stationary model occupies more 

grid points (i.e., has a lower AIC value), indicating its stronger ability to adapt to the 

characteristics of the time series (Fig. 6). Furthermore, the comparative analysis of the return 

period results between the two models (Fig. 8) shows that the non-stationary model exhibits 

more extreme trends in compound extreme events (CEEs), reinforcing the importance of 

accounting for non-stationarity in such analyses. Additionally, the subsequent evaluation using 

the Filliben coefficient confirmed the goodness-of-fit of the selected models (Fig. S3), further 

validating our approach. We would like to clarify that the statement in the original manuscript 

claiming that the “non-stationary model is better than the stationary model” is misleading. A 

more accurate description is that the non-stationary model is more appropriate when accounting 

for temporal trends and mean-state changes, whereas the stationary model tends to 

underestimate the recurrence risk of CCEs based on the results. 

Many previous studies have detected the non-stationary characteristics of hydro-

meteorological variables (e.g., precipitation and runoff), indicating that their statistical 

properties are not constant over time (Shao et al., 2022; Awasthi et al., 2022; Slater et al., 2021). 

In a case study in Colombia (Gonzalez-Alvarez et al., 2018), the research compared return 

values under stationary and non-stationary conditions and found that rainfall estimates for the 

10-year and 2-year return periods were significantly higher under non-stationary conditions, 

indicating that in extreme rainfall analysis, using a non-stationary model can better capture the 

increasing trend of rainfall than a stationary model. A low-flow frequency analysis study in 

Turkey indicated that non-stationary models outperform stationary models (Yılmaz and 

Muhammet, 2024), suggesting that when watershed hydrological relationships may change 

over time, relying solely on the stationary assumption could underestimate the associated risks. 

However, some studies have shown that in certain cases (De Luca and Galasso, 2018), 



stationary models are sufficient, while non-stationary frameworks perform slightly better 

during periods with trends or variability. In this study, we assessed changes in the recurrence 

risk of CCEs based on the WRF-CMIP6-GAMLSS framework. The results indicate that CCEs 

in most areas of the MRB exhibit non-stationarity, primarily driven by mean-state shifts 

induced by climate warming. Overall, over time, stationary models systematically 

underestimate the risk of CCEs, particularly after 2045. These findings underscore the 

importance of incorporating non-stationary approaches in future climate risk assessments to 

improve the accuracy of extreme event predictions. 



 
Fig. 6 Stationary and non-stationary characteristics for CCEs in the MRB (a-e and k-o), 

percentage 240 of non-stationary and stationary characteristics across five basins (f-j and p-t). 



 

Fig. 8. Comparison of non-stationary (NS) and stationary (S) characteristics for CCEs under 

20-, 50-, and 100- year return periods (a-j). Spatial distributions of trends in CCEs under 100-

year return periods (k-t), 20- and 50-year return period result are provided in Supplement Fig. 

S4.  



 
Fig. S3 Maps of the Filliben Coefficient for CCEs. 

10.The English language also should be assessed more carefully. 

Thank you for your suggestion. We will carefully revise the manuscript to further improve the 

clarity and quality of the English language. 
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