RESPONSE TO REFEREES
Ms. Ref. No.: Egusphere-2025-2438
Title: Non-Stationary Dynamics of Compound Climate Extremes: A WRF-CMIP6-GAMLSS

Framework for Risk Reassessment in Southeastern China

To Anonymous Referee #1
Thank you for your thoughtful and detailed review of our manuscript. We greatly appreciate
the time and effort you dedicated to providing feedback. Your constructive suggestions have

been invaluable, and we will implement all changes in a revised version of the manuscript.

1.In the introduction, where you mention the need for fine-resolution models, you may need to

add the reasons for the required high-resolution models for capturing compound extremes (e.g..

local convective precipitation, spatial heterogeneity, ...).

We thank the reviewer for this valuable comment. Following your suggestion, we will add
in the revised manuscript the reasons why high-resolution models are necessary to capture
compound climate extremes (CCEs), emphasizing factors such as local convective
precipitation and spatial heterogeneity.

Compared to Global Climate Models (GCMs), Regional Climate Models (RCMs) offer
higher spatial resolution, allowing for more precise simulations of local climate effects induced
by topography, such as local convective precipitation, orographic effects, and regional climate
heterogeneity (Gilbert et al., 2025). In regions with complex terrain, RCMs are particularly
effective at capturing spatial variations of climate variables, such as the differences in wind
patterns, precipitation, and their distribution caused by topography in mountainous or basin
areas (Imran and Evans, 2025). For example, Byun et al. (2023) assessed the ability of RCMs
and GCMs to simulate storm tracks in East Asia, revealing that RCMs are better able to capture
high-resolution topography, thereby reducing the biases found in GCMs. Lin et al. (2022)
showed that RCMs driven by ERA-Interim reanalysis data are capable of capturing small-scale
processes, such as orographic effects, and outperform GCMs in reproducing the large-scale

features of the Heat Wave Magnitude Index-daily (HWMId). Torrez-Rodriguez et al. (2023)



also demonstrated that RCMs are better at reproducing the main spatio-temporal characteristics

of precipitation in subtropical complex terrain regions.

2.May vou please check the following articles and discuss how you improve their work and

what your innovation is compared to it? https://link.springer.com/article/10.1007/s00382-020-

05538-2

Thank you for your insightful comment regarding the comparison of our work with the
study by Singh et al. (2021) on non-stationary compound extreme events (CCEs). After
reviewing their work alongside our own, we would like to point out the following key
differences and innovations that distinguish our study. Additionally, we will include this
comparison in the discussion section of the revised manuscript.:

Compared to the study by Singh et al. (2021), our research presents significant innovations
in both spatial scale and methodology. First, while Singh et al. (2021) focus on large-scale
ensemble simulations to analyze compound extreme events in Canada, our study targets the
medium-to-small scale of the Minjiang River Basin (MRB), a region heavily influenced by
complex monsoonal climates and topography. Through high-resolution WRF model dynamic
downscaling, we are able to conduct a more fine-grained risk assessment of compound extreme
events and their spatial heterogeneity, offering a more localized approach to climate risk
evaluation. Second, in terms of methodology, Singh et al. (2021) employ a Bayesian Copula
model to analyze the dependence structure between temperature and precipitation, whereas we
introduce the GAMLSS model to capture the non-stationary changes and assess the risk of
compound extremes. Through the GAMLSS model, we are able to simultaneously handle
variations in both the mean and variance of climate variables, providing a more comprehensive

and detailed framework for risk assessment.


https://link.springer.com/article/10.1007/s00382-020-05538-2
https://link.springer.com/article/10.1007/s00382-020-05538-2

3.May vou make a list of the 18 climate models you applied for your study in the supplementary file?

Thank you for your suggestion. We will provide a list of the 18 models used in the bias-corrected CMIP6 dataset (Xu et al., 2021) in the

supplementary file as requested.

Table S1 CMIP6 models used in CMIP6bc.

No. Model Institution Approx1mate
grid spacing
1 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation (Australia) 1.875° x 1.25°
2 ACCESS-ESMI1-5 Commonwealth Scientific and Industrial Research Organisation (Australia) 1.875° x 1.25°
3 CanESMS5 Canadian Centre for Climate Modelling and Analysis (Canada) 2.81°x2.81°
4 BCC-CSM2-MR Beijing Climate Center (China) 1.125° x 1.125°
5 FGOALS-f3-L Institute of Atmospheric Physics, Chinese Academy of Sciences (China) 1.25° % 1°
6 FGOALS-g3 Institute of Atmospheric Physics, Chinese Academy of Sciences (China) 2°x2.25°
7 EC-Earth3 European EC-Earth Consortium (Europe) 0.70° x 0.70°
8 EC-Earth3-Veg European EC-Earth Consortium (Europe) 0.70° x 0.70°
9 IPSL-CM6A-LR Institute Pierre Simon Laplace (France) 2.5° % 1.26°
10  AWI-CM-1-1-MR Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (Germany) 0.94° x 0.94°
11 MPI-ESM1-2-HR Max Planck Institute for Meteorology (Germany) 0.94° x 0.94°
12 MPI-ESM1-2-LR Max Planck Institute for Meteorology (Germany) 1.875° x 1.875°
13 MIROC6 Japan Agency for Marine-Earth Science and Technology (Japan) 1.41° x 1.41°
14 MRI-ESM2-0 Meteorological Research Institute, Japan Meteorological Agency (Japan) 1.125° x 1.125°
15 NorESM2-LM Norwegian Climate Center (Norway) 2.5° x 1.875°
16 CESM2 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research (USA) 1.25° x 0.94°
17  CESM2-WACCM Climate and Global Dynamics Laboratory, National Center for Atmospheric Research (USA) 1.25° x 0.94°

18 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmosphere Administration (USA) 1.25° x 1.0°




4.You mentioned that “The dataset used in this study covers the historical period (2005-2014)”,

why did vou choose only 10 vears as historical data?

Thank you very much for your insightful comment. We would like to clarify that the bias-
corrected CMIP6 dataset (Xu et al.,, 2021) we used has already been extensively validated
(Jamal et al., 2023; Huang et al., 2024; Wu and Zheng, 2023). Given that the focus of our study
is on assessing the non-stationary changes of future compound climate extremes (CCEs), a
comprehensive and detailed evaluation of the dataset was not conducted. Additionally, running
WREF simulations requires substantial computational resources—for example, simulating one
year over the MRB takes approximately 4 days on 80 CPU cores. Considering both the
reliability of the dataset and the need to optimize computational resources, we select a 10-year
historical period (2005-2014) as being sufficient to demonstrate the reliability of the bias-

corrected data for our study purposes.

5.Why did you only use SSP2-4.5 and SSP5-8.5? Why not SSP1-2.6?

Thank you for your insightful comment. The reason we focused on SSP2-4.5 and SSP5-
8.5 scenarios is that the bias-corrected dataset we used (Xu et al., 2021) only provides data for
these two scenarios. This limitation is due to the specific selection of SSP scenarios made
during the dataset development. We speculate that the dataset creators aimed to highlight the
differences between the moderate and high-emission scenarios, particularly to emphasize the
potential impacts of future climate changes under these contrasting pathways. By focusing on
SSP2-4.5 (moderate emission scenario) and SSP5-8.5 (high-emission scenario), the dataset
offers a clear comparison of how differing levels of greenhouse gas emissions can influence
climate projections, especially in terms of temperature rise, extreme events, and other key
climate variables. Although SSP1-2.6, which represents a low-emission scenario, is also highly
relevant, it may not have been included to maintain the dataset's focus on the more critical

scenarios that are likely to dominate future climate projections.

6.Please make clearer how the downscaling integrates with your GAMLSS framework.

We perform dynamical downscaling using the WRF model to downscale the bias-
corrected CMIP6 data (1.25° x 1.25°) to a 3 km resolution. Subsequently, compound extreme
climate events (CCEs) are calculated based on the high-resolution WRF outputs. These



calculated CCEs are then used as input for the GAMLSS framework to analyze their non-
stationary characteristics. This approach allows the integration of high-resolution dynamical
downscaling with the statistical modeling of extremes, ensuring that both local-scale variability
and non-stationarity are adequately captured. We will provide a more detailed description of

this method in the revised manuscript.

7.Please make it clear what you mean by “enhanced” or “advanced” GAMLSS in the

manuscript. Do you mean the GAMLSS. which considers non-stationary characteristics?

Thank you for your valuable comment. We apologize for the ambiguity in the description
of “enhanced” or “advanced” GAMLSS. We clarify it as follows: Most existing studies apply
the two-parameter GAMLSS that only models the mean and variance to constrain data fitting.
In contrast, our “enhanced/advanced GAMLSS” extends this framework by incorporating four
parameters—mean, variance, skewness, and kurtosis—to comprehensively characterize the
data distribution (line 158-160). This extension enables the model to capture more complex
distributional features (e.g., asymmetry and tail thickness) that cannot be fully described by the
two-parameter setting. We will revise the relevant descriptions in the manuscript to explicitly

define this parameter extension, ensuring clarity for readers.



8.In the supplementary file, please provide a table showing the validation results.

Thank you for your comment. We will provide several tables showing the validation results in
the supplementary file.

Table S2 Meteorological stations information.

1D Name Longitude (°N) Latitude (°E) Elevation (m)
1 Jiuxianshan 118.1 25.72 1653.5
2 Gutian 118.73 26.58 361.5
3 Datian 117.83 25.7 400.1
4 Youxi 118.15 26.17 126.1
5 Dehua 118.23 25.48 521.4
6 Yongtai 118.93 25.87 85.6
7 Fuzhou 119.28 26.08 83.8
8 Changle 119.5 25.97 4.1
9 Minhou 119.15 26.15 57.8
10 Minging 118.85 26.23 40.8
11 Sanming 117.62 26.27 215
12 Ninghua 116.63 26.23 358.9
13 Yong’an 117.35 25.97 206
14 Shaxian 117.8 26.4 120.6
15 Qingliu 116.85 26.2 310.6
16 Liancheng 116.75 25.72 380.0
17 Guangze 117.3 27.52 265.4
18 Nanping 118.17 26.65 125.6
19 Jiangle 117.47 26.73 154.7

20 Jianning 116.85 26.83 3423

21 Shaxi 117.15 26.4 357.4

22 Taining 117.17 26.9 3429

23 Shaowu 117.47 27.33 191.5

24 Shunchang 117.8 26.8 175.2

25 Jianou 118.31 27.05 154.9

26 Jianyang 118.12 27.33 196.9

27 Zhenghe 118.82 27.37 221.5

28 Songxi 118.8 27.52 205.4

29 Wuyishan 118.03 27.77 220.6
30 Pucheng 118.53 27.92 276.9




Table S3 Temperature simulation results based on ERAS

Station STD RMSE CC
Jiuxianshan 1.14 0.59 0.99
Gutian 0.98 0.29 0.99
Datian 0.97 0.07 1.00
Youxi 0.99 0.23 0.99
Dehua 0.98 0.20 0.99
Yongtai 1.00 0.22 0.99
Fuzhou 0.97 0.26 0.98
Changle 0.92 0.20 0.98
Minhou 0.97 0.35 0.95
Minging 0.98 0.16 0.99
Sanming 1.03 0.30 0.99
Ninghua 0.99 0.12 0.99
Yongan 1.01 0.32 0.99
Shaxian 1.03 0.36 0.99
Qingliu 0.96 0.14 0.99
Liancheng 1.01 0.27 0.99
Guangze 1.01 0.19 0.99
Nanping 1.02 0.29 0.99
Jiangle 1.02 0.29 0.99
Jianning 1.02 0.19 0.99
Shaxi 0.97 0.26 0.99
Taining 0.99 0.21 0.99
Shaowu 1.03 0.31 0.99
Shunchang 1.03 0.32 0.99
Jianou 0.78 0.25 0.99
Jianyang 0.75 0.36 0.99
Zhenghe 1.01 0.14 0.99
Songxi 0.99 0.14 0.99
Wuyishan 0.82 0.27 1.00
Pucheng 1.05 0.26 0.99




Table S4 Temperature simulation results based on CMIP6bc

Station STD RMSE CC
Jiuxianshan 1.10 0.66 0.96
Gutian 0.96 0.37 0.97
Datian 0.94 0.29 0.96
Youxi 0.95 0.30 0.96
Dehua 0.97 0.30 0.96
Yongtai 0.96 0.29 0.96
Fuzhou 0.96 0.32 0.96
Changle 0.88 0.28 0.96
Minhou 0.53 0.68 0.96
Minging 0.94 0.27 0.96
Sanming 0.97 0.37 0.96
Ninghua 0.93 0.25 0.97
Yongan 0.95 0.30 0.96
Shaxian 0.96 0.33 0.97
Qingliu 0.91 0.26 0.97
Liancheng 0.93 0.32 0.96
Guangze 0.96 0.28 0.98
Nanping 0.98 0.37 0.97
Jiangle 0.95 0.27 0.97
Jianning 0.96 0.28 0.98
Shaxi 0.92 0.33 0.97
Taining 0.94 0.28 0.97
Shaowu 0.95 0.27 0.97
Shunchang 0.95 0.30 0.97
Jianou 0.79 0.32 0.97
Jianyang 0.73 0.41 0.97
Zhenghe 0.95 0.25 0.97
Songxi 0.94 0.25 0.97
Wuyishan 0.81 0.35 0.97
Pucheng 0.95 0.24 0.98




Table S5 Precipitation simulation results based on ERAS

Station STD RMSE CC
Jiuxianshan 1.20 0.71 0.80
Gutian 1.13 0.55 0.87
Datian 1.20 0.71 0.81
Youxi 1.35 0.72 0.86
Dehua 1.16 0.64 0.83
Yongtai 1.04 0.69 0.78
Fuzhou 0.94 0.75 0.74
Changle 0.76 0.89 0.62
Minhou 1.04 0.79 0.73
Minging 1.10 0.65 0.81
Sanming 0.98 0.61 0.81
Ninghua 1.18 0.74 0.78
Yongan 1.12 0.61 0.84
Shaxian 0.97 0.56 0.84
Qingliu 1.16 0.72 0.79
Liancheng 1.36 0.89 0.75
Guangze 1.24 0.51 0.92
Nanping 0.97 0.53 0.85
Jiangle 1.07 0.45 0.91
Jianning 1.12 0.69 0.79
Shaxi 1.01 0.57 0.84
Taining 1.11 0.46 0.91
Shaowu 1.35 0.82 0.80
Shunchang 1.06 0.51 0.88
Jianou 0.96 0.54 0.85
Jianyang 0.99 0.46 0.89
Zhenghe 1.06 0.44 0.91
Songxi 1.17 0.55 0.89
Wuyishan 1.23 0.48 0.93
Pucheng 1.06 0.59 0.84




Table S6 Precipitation simulation results based on CMIP6bc

Station STD RMSE CC
Jiuxianshan 1.19 0.98 0.61
Gutian 1.12 0.92 0.63
Datian 1.38 1.05 0.65
Youxi 1.11 0.85 0.68
Dehua 1.06 0.83 0.69
Yongtai 0.94 0.97 0.52
Fuzhou 0.94 0.94 0.57
Changle 0.82 0.70 0.73
Minhou 0.93 0.96 0.54
Minging 1.16 0.97 0.60
Sanming 1.10 0.84 0.68
Ninghua 1.12 0.81 0.71
Yongan 1.26 1.04 0.59
Shaxian 0.97 0.82 0.66
Qingliu 1.23 0.98 0.63
Liancheng 1.31 1.11 0.56
Guangze 1.13 0.86 0.68
Nanping 0.98 0.75 0.71
Jiangle 1.13 0.84 0.69
Jianning 1.06 0.88 0.64
Shaxi 1.26 0.96 0.67
Taining 1.16 0.89 0.66
Shaowu 1.15 0.92 0.64
Shunchang 1.11 0.78 0.73
Jianou 1.01 0.80 0.68
Jianyang 1.13 0.89 0.65
Zhenghe 1.11 0.96 0.59
Songxi 1.15 0.90 0.66
Wuyishan 1.18 0.83 0.72
Pucheng 1.11 0.80 0.71




9.1n the results and discussion, I could not find how the results show that considering the non-

stationary characteristics leads to better or more reliable results. May you compare the results

with previous studies in which the time series was assumed to be stationary?

Thank you for the constructive comment. We will enrich our results and add a discussion
comparing them with previous studies in the revised manuscript.

Within the GAMLSS framework, we constructed both stationary and non-stationary
models and evaluated their performance using the Akaike Information Criterion (AIC),
adhering to the established principle that a smaller AIC value indicates a better model fit. The
results show that, compared to the stationary model, the non-stationary model occupies more
grid points (i.e., has a lower AIC value), indicating its stronger ability to adapt to the
characteristics of the time series (Fig. 6). Furthermore, the comparative analysis of the return
period results between the two models (Fig. 8) shows that the non-stationary model exhibits
more extreme trends in compound extreme events (CEEs), reinforcing the importance of
accounting for non-stationarity in such analyses. Additionally, the subsequent evaluation using
the Filliben coefficient confirmed the goodness-of-fit of the selected models (Fig. S3), further
validating our approach. We would like to clarify that the statement in the original manuscript
claiming that the “non-stationary model is better than the stationary model” is misleading. A
more accurate description is that the non-stationary model is more appropriate when accounting
for temporal trends and mean-state changes, whereas the stationary model tends to
underestimate the recurrence risk of CCEs based on the results.

Many previous studies have detected the non-stationary characteristics of hydro-
meteorological variables (e.g., precipitation and runoff), indicating that their statistical
properties are not constant over time (Shao et al., 2022; Awasthi et al., 2022; Slater et al., 2021).
In a case study in Colombia (Gonzalez-Alvarez et al., 2018), the research compared return
values under stationary and non-stationary conditions and found that rainfall estimates for the
10-year and 2-year return periods were significantly higher under non-stationary conditions,
indicating that in extreme rainfall analysis, using a non-stationary model can better capture the
increasing trend of rainfall than a stationary model. A low-flow frequency analysis study in
Turkey indicated that non-stationary models outperform stationary models (Yimaz and
Muhammet, 2024), suggesting that when watershed hydrological relationships may change
over time, relying solely on the stationary assumption could underestimate the associated risks.

However, some studies have shown that in certain cases (De Luca and Galasso, 2018),



stationary models are sufficient, while non-stationary frameworks perform slightly better
during periods with trends or variability. In this study, we assessed changes in the recurrence
risk of CCEs based on the WRF-CMIP6-GAMLSS framework. The results indicate that CCEs
in most areas of the MRB exhibit non-stationarity, primarily driven by mean-state shifts
induced by climate warming. Overall, over time, stationary models systematically
underestimate the risk of CCEs, particularly after 2045. These findings underscore the
importance of incorporating non-stationary approaches in future climate risk assessments to

improve the accuracy of extreme event predictions.
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Fig. 6 Stationary and non-stationary characteristics for CCEs in the MRB (a-e and k-0),

percentage 240 of non-stationary and stationary characteristics across five basins (f-j and p-t).
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Fig. 8. Comparison of non-stationary (NS) and stationary (S) characteristics for CCEs under
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S4.
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10.The English language also should be assessed more carefully.

Thank you for your suggestion. We will carefully revise the manuscript to further improve the

clarity and quality of the English language.

References

Awasthi, C., Archfield, S.A., Ryberg, K.R., Kiang, J.E., Sankarasubramanian, A., 2022.
Projecting Flood Frequency Curves Under Near-Term Climate Change. Water Resour. Res.
58, €2021WRO031246. https://doi.org/10.1029/2021WR031246

Byun, U., Chang, E., Kim, J., Ahn, J., Cha, D., Min, S., Byun, Y., 2023. Investigation of Added
Value in Regional Climate Models for East Asian Storm Track Analysis. J. Geophys. Res.:
Atmos. 128, €2023JD039167. https://doi.org/10.1029/2023JD039167

De Luca, D.L., Galasso, L., 2018. Stationary and Non-Stationary Frameworks for Extreme
Rainfall Time Series in Southern Italy. Water 10, 1477.
https://doi.org/10.3390/w10101477

Gilbert, E., Pishniak, D., Torres, J.A., Orr, A., Maclennan, M., Wever, N., Verro, K., 2025.
Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves:
insights from kilometre-scale regional climate modelling. The Cryosphere 19, 597-618.
https://doi.org/10.5194/tc-19-597-2025

Gonzalez-Alvarez, A., Coronado-Hernandez, O.E., Fuertes-Miquel, V.S., Ramos, H.M., 2018.
Effect of the Non-Stationarity of Rainfall Events on the Design of Hydraulic Structures
for Runoff Management and Its Applications to a Case Study at Gordo Creek Watershed
in Cartagena de Indias, Colombia. Fluids 3, 27. https://doi.org/10.3390/fluids3020027

Huang, Y., Xue, M., Hu, X., Martin, E., Novoa, H.M., McPherson, R.A., Liu, C., Chen, M.,



Hong, Y., Perez, A., Morales, 1.Y., Ticona Jara, J.L., Flores Luna, A.J., 2024. Increasing
frequency and precipitation intensity of convective storms in the Peruvian Central Andes:
Projections from convection-permitting regional climate simulations. Quart. J. Royal
Meteoro. Soc. 150, 4371-4390. https://doi.org/10.1002/qj.4820

Imran, H.M., Evans, J.P., 2025. Observational uncertainty in the added value of regional
climate modelling over Australia. Clim. Dyn. 63, 73. https://doi.org/10.1007/s00382-024-
07562-y

Jamal, K., Li, X., Chen, Y., Rizwan, M., Khan, M.A., Syed, Z., Mahmood, P., 2023. Bias
correction and projection of temperature over the altitudes of the Upper Indus Basin under
CMIP6 climate scenarios from 1985 to 2100. J. Water Clim. Change 14, 2490-2514.
https://doi.org/10.2166/wcc.2023.180

Lin, C., Kjellstrom, E., Wilcke, R.A.L., Chen, D., 2022. Present and future European heat wave
magnitudes: climatologies, trends, and their associated uncertainties in GCM-RCM model
chains. Earth Syst. Dynam. 13, 1197-1214. https://doi.org/10.5194/esd-13-1197-2022

Shao, S., Zhang, H., Singh, V.P., Ding, H., Zhang, J., Wu, Y., 2022. Nonstationary analysis of
hydrological drought index in a coupled human-water system: Application of the
GAMLSS with meteorological and anthropogenic covariates in the Wuding River basin,
China. J. Hydrol. 608, 127692. https://doi.org/10.1016/j.jhydrol.2022.127692

Singh, H., Najafi, M.R., Cannon, A.J., 2021. Characterizing non-stationary compound extreme
events in a changing climate based on large-ensemble climate simulations. Clim. Dyn. 56,
1389-1405. https://doi.org/10.1007/s00382-020-05538-2

Slater, L., Villarini, G., Archfield, S., Faulkner, D., Lamb, R., Khouakhi, A., Yin, J., 2021.
Global Changes in 20-Year, 50-Year, and 100-Year River Floods. Geophys. Res. Lett. 48,
€2020GL091824. https://doi.org/10.1029/2020GL091824

Torrez-Rodriguez, L., Goubanova, K., Mufioz, C., Montecinos, A., 2023. Evaluation of
temperature and precipitation from CORDEX-CORE South America and Eta-RCM
regional climate simulations over the complex terrain of Subtropical Chile. Clim. Dyn. 61,
3195-3221. https://doi.org/10.1007/s00382-023-06730-w

Wu, L., Zheng, H., 2023. Regional Climate Effects of Irrigation under Central Asia Warming
by 2.0 °C. Remote Sens. 15, 3672. https://doi.org/10.3390/rs15143672

Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L., Fu, C., 2021. Bias-corrected CMIP6 global dataset
for dynamical downscaling of the historical and future climate (1979-2100). Sci. Data 8§,



293. https://doi.org/10.1038/s41597-021-01079-3

Yilmaz, M., Tosunoglu, F., 2024. Non-stationary low flow frequency analysis under climate
change. Theor. Appl. Climatol. 155, 7479-7497. https://doi.org/10.1007/s00704-024-
05081-8



	References

