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Abstract. Understanding the vertical distribution of cloud condensation nuclei (CCN) concentrations is crucial for reducing 

uncertainty associated with aerosol-cloud interactions (ACI) and their effective radiative forcing. Many studies take advantage 

of widely available remote sensing observations to develop proxies, parameterizations, and relationships between CCN 

concentration and aerosol optical properties (AOPs). Such methods generally provide a good constraint for CCN concentration, 

but many uncertainties and limitations exist, generally related to high relative humidity (RH), environments with internal or 15 

external mixtures of several different aerosol types, and differences in parts of the aerosol size distribution relevant for both 

CCN and AOPs. In this study we use in situ observations of the aerosol size distribution and chemical composition in  a recent 

airborne field campaign to inform theoretical calculations of CCN concentration (CCNtheory) and aerosol backscatter at 532 nm 

(BSCtheory) with the purpose of understanding the dominant governing factors of the CCNtheory - BSCtheory relationship. Estimates 

from random forest models indicate that for smoke, marine, and urban aerosols the aerosol size distribution, as parameterized 20 

by effective radius (Reff), is the most important predictor of the CCNtheory – BSCtheory relationship. We further investigate how 

Reff impacts CCNtheory:BSCtheory and find an exponential relationship between the parameters. We find that modelling 

CCNtheory:BSCtheory using this exponential Reff relationship can explain about 68-79% of the variance in the CCNtheory - BSCtheory 

relationship. These findings suggest that including information about aerosol size is critical for future studies in constraining 

CCN concentration from AOPs. 25 

1 Introduction 

Natural and anthropogenic atmospheric aerosols and their interactions with clouds and radiation have a significant role in 

climate change and uncertainties in future climate predictions. Specifically, the highest uncertainties compared to other climate 

forcings are attributed to effective radiative forcing due to interactions between aerosols and clouds (ERFaci; Forster et al., 

2021). Much of the uncertainty of aerosol-cloud interactions (ACI) is due to limited process-level understanding (Boucher et 30 

al., 2013) and observing methods. For example, there is limited ability for passive satellite instruments to retrieve cloud and 
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aerosol properties simultaneously in the same environment. Hygroscopic aerosol growth in high relative humidity (RH) 

environments can also complicate observations (Rosenfeld et al., 2014). Additionally, varying observational scales and 

meteorological conditions may buffer the responses of clouds to aerosol perturbations (Stevens & Feingold, 2009).  

Untangling the impact of ACI from such observational complications requires information on the distribution of those 35 

aerosols that interact with clouds by nucleating cloud droplets, i.e., cloud condensation nuclei (CCN). More specifically, 

knowledge of the vertical distribution of CCN concentration relative to clouds is needed to properly assess and understand 

ACI. The main challenge in understanding the vertical distribution of CCN lies in the sparsity of in situ observations. Ground-

based observations are useful in terms of the length of available observations, but they lack vertical extent. Alternatively,  

aircraft-based observations can provide observations of CCN closer to cloud base over shorter campaign periods, but these 40 

observations are expensive and less frequently available. Therefore, many studies have developed parameterizations, proxies, 

and retrieval methods to determine CCN from more commonly available remotely sensed observations of aerosol optical 

properties (AOPs).  

 One of the most widely used proxies for CCN concentration is aerosol optical depth (AOD), a column-integrated 

measure of aerosol extinction (EXT). While AOD may approximate CCN concentration over large spatiotemporal extents 45 

(Stier, 2016), it often cannot fully explain CCN variance (Andreae, 2009; Shinozuka et al., 2015; Stier, 2016; Choudhury & 

Tesche, 2022a; Choudhury & Tesche, 2022b), lacks any information about the vertical distribution of CCN, and is subject to 

effects of aerosol swelling and cloud contamination (Rosenfeld et al. 2016; Patel et al. 2024). Several studies have related 

CCN to a combination of other AOPs from lidar and satellite such as aerosol extinction, scattering and backscattering 

coefficients, backscatter fraction, or the ratio of backscattering to total scattering, single scattering albedo (SSA), scattering 50 

Ångström exponent, and aerosol index (AI), which is the product of Ångström exponent and extinction (Ghan & Collins, 2004; 

Ghan et al., 2006; Kapustin et al., 2006; Shinozuka et al. 2009; Jefferson, 2010; Liu & Li, 2014; Shinozuka et al., 2015; 

Mamouri & Ansmann, 2016; Stier, 2016; Tskeri et al., 2017; Lv et al., 2018; Haarig et al., 2019; Shen et al., 2019; Choudhury 

& Tesche, 2022a; Choudhury & Tesche, 2022b; Lenhardt et al., 2023; Patel et al., 2024; Redemann & Gao, 2024). Among 

such approaches, AOPs can provide constraints for CCN but several underlying uncertainties and limitations exist.   55 

 One fundamental issue in relating CCN concentration to AOPs is that particles that act as CCN are generally smaller 

than particles that have a more significant impact on AOPs when measured at visible wavelengths. Most CCN fall in the Aitken 

and accumulation modes of the aerosol size distribution, and studies have shown that changes in the aerosol size distribution 

are the primary drivers of changes in the CCN spectrum (Dusek et al., 2006; Miao et al., 2015; Perkins et al., 2022). In terms 

of AOPs, many are dominated by coarse mode particles (Shinozuka et al., 2015) and optical measurements tend to be 60 

insensitive to small particles that activate as CCN (Jefferson, 2010), causing further uncertainty in correlating both 

measurements. Another common issue in relating CCN to AOPs is hygroscopic growth of aerosols at high ambient RH. 

Hygroscopic growth increases aerosol size, thus increasing their light scattering. However, the lack of a corresponding increase 

in CCN concentration (Shinozuka et al., 2015) causes CCN – AOP relationships to change rapidly at high RH (Liu & Li, 2014; 

Shinozuka et al., 2015; Stier, 2016; Wang et al., 2025). Since CCN are of particular interest in humid environments near cloud 65 
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base, this issue can become problematic for ACI applicability. Additionally, aerosol chemical composition influences both 

CCN concentration and AOPs and their relationship. Some studies have found that CCN – AOP relationships are more 

uncertain for observations of marine aerosols (Liu & Li, 2014; Shen et al., 2019; Choudhury et al., 2025), which may be related 

to their more dominant coarse mode and tendency for marine aerosol shapes to be non-spherical (Fitzgerald, 1990; von 

Hoyningen-Huene & Posse, 1996; Bi et al. 2018). In summary, the three most common sources of potential error when relating 70 

CCN to AOPs are related to high ambient RH, the shape of the aerosol size distribution, and aerosol chemical composition.  

While each of these sources of uncertainty and potentially weak correlation have been noted by numerous studies, 

many that investigate underlying causes of error focus on each source individually. Additionally, many studies that take a 

modeling or calculation-based approach to investigating CCN and/or AOPs often use idealized, generated, or average size 

distributions as a starting point (Li et al., 2015; Lowe et al., 2016; Shen et al., 2019) or vary individual observed size 75 

distributions in concentration but not the functional shape (Chuang et al., 1999). While this approach avoids the uncertainties 

inherent to in situ aerosol size distribution observations, it also does not capture the full range of variability seen in ob served 

size distributions.  

In this study we investigate the collective impact of ambient RH, aerosol size distribution, and aerosol chemical 

composition on CCN – AOP relationships using a broad range of actual observed aerosol properties. Specifically, we follow 80 

and expand on Lenhardt et al. (2023), hereafter L23, by applying the same methodology to multiple aerosol types under a 

variety of ambient RH conditions observed during the Aerosol Cloud meTeorology Interactions oVer the western ATlantic 

Experiment (ACTIVATE) campaign (Sect. 2). L23 focused on optimizing a linear regression model between in situ CCN 

concentration and aerosol extinction and backscatter from the High Spectral Resolution 2 (HSRL-2) for observations of smoke 

in mostly dry (RH ≤ 50%) conditions during the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) 85 

campaign. In this study, we perform an L23-motivated analysis and follow it with a more in-depth investigation of the 

underlying factors that govern how CCN concentration and backscatter at 532 nm (BSC) are related to understand which one 

may be the most important predictor. To achieve this, we perform observation-informed theoretical calculations of CCN 

(CCNtheory) and aerosol BSC (BSCtheory) using in situ observed aerosol size distribution and chemical composition as inputs to 

both the κ-Köhler and Mie theories (Sect. 3 and 4). Throughout the study, all observations and calculations of BSC will be at 90 

532 nm. Requisite input data for both calculations comes from ACTIVATE in situ observations, meaning that we do not 

assume average values for the hygroscopicity parameter or use a singular idealized, representative aerosol size distribution.  

This approach allows us to capture the observation-informed variability in aerosol size and composition to investigate how 

such variability impacts the theoretical relationship between CCN and BSC.  

2 Field Deployment Background and Motivation for the Present Study 95 

The National Aeronautics and Space Administration (NASA) ACTIVATE campaign took place between February 2020 and 

June 2022 across six deployments over the northwest Atlantic Ocean and generated a unique in situ and remote sensing data 
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set relevant for investigating aerosol-cloud-meteorology interactions. Unlike subtropical regions frequently chosen for ACI-

related campaigns, the northwest Atlantic features numerous cloud types, including warm and mixed phase cumulus, that are 

less well-understood than stratocumulus cloud decks (Sorooshian et al., 2023). Additionally, observations over different 100 

seasons allow for analysis of a wide range of aerosol and meteorological conditions. Data were collected using coordinated 

flights of the NASA Langley Research Center HU-25 Falcon for in situ measurements and King Air aircraft for remote sensing 

observations. In this study, we collocate in situ and remote sensing observations from both aircraft. Th e study region and 

locations of these collocated data points broken down by aerosol type  are shown in Fig. 1. 

 105 

 

Figure 1: Maps showing the ACTIVATE study area and locations of collocated data points for observations of (a) 

smoke and fresh smoke, (b) marine and polluted marine, and (c) urban aerosols. Langley Research Center (LaRC) in 

Hampton, Virginia, and Bermuda, the two major bases of operations, are also shown. 

 110 

During the ACTIVATE campaign, the HU-25 Falcon aircraft conducted profiling flights within, above, and below 

boundary layer clouds while collecting in situ observations, and the spatially coordinated King Air flew above the Falcon (~9 

km) conducting remote sensing observations and launching dropsondes (Sorooshian et al., 2023). Following the methodology 

of L23, our first step is a direct comparison between observed CCN concentration (CCNobs) and BSC at 532 nm (BSCobs), the 

instrumentation for which are described in Section 3.1. Due to the different spatiotemporal resolutions of the in situ and remote 115 

sensing data sets, we first collocate both data sets to enable a one-to-one comparison. Fortunately, ACTIVATE prioritized 

systematic and spatially coordinated flights between both aircraft , with approximately 73% of the cumulative dataset having 

the two aircraft within 6 km and 5 minutes of one another (Schlosser et al., 2024). Therefore, collocation between both aircraft 
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results in many collocated data points for remaining analyses. Our collocation process uses three independent collocation 

criteria to find in situ measurements that fall within a set amount of time (dt = ±0.1 h) from when an HSRL-2 profile was 120 

measured, within a set horizontal distance (dd = ± 0.01°, or ± ~1.1 km) from the profile, and within set vertical bins (dh = 45 

m). After these criteria have been applied, in situ observations that meet all three criteria are averaged to enable a one -to-one 

comparison with HSRL-2 BSC. For more details on our sensitivity testing method to determine appropriate values for dt, dd, 

and dh, and a schematic describing the collocation process, see L23.  

We analyze the correlation between collocated CCNobs and BSCobs separated by aerosol type (Fig. 2), indicated by 125 

the HSRL-2 Aerosol ID product (Sect. 3.1.2). In this study, we combine smoke with fresh smoke (SFS) and marine with 

polluted marine (MPM) due to similarity in their optical properties. We also consider the urban/pollution (URB) aerosol type. 

Following L23, we fit all relationships using a bisector regression to account for both variables being measured with 

observational uncertainty. Additionally, we show the coefficient of determination (R2), a measure of the proportion of variation 

in CCNobs that is explained by variation in BSCobs, root mean square error (RMSE), a measure of the average difference 130 

between linear regression predicted CCN and CCNobs, and number of data points (n). Observations are limited to a small 

supersaturation range of 0.36-0.38% and marker colors correspond to ambient RH. One of our primary findings in L23 was 

that the correlation between CCNobs and BSCobs was strongest at low ambient RH (≤ 50%). Therefore, we show separate 

statistics and regression lines for all observations and the subset observed at RH ≤ 50%.  

 R2 values for all aerosol types across the full RH spectrum range from 0.0014-0.14, and for RH ≤ 50% range from 135 

0.0023-0.038, suggesting that there is no aerosol type for which variations in CCNobs are well-explained by changes in BSCobs. 

For all RHs, R2 is strongest for URB, while smoke has the highest R2 under limited RH conditions. For SFS and URB, R2 

decreases when limiting the data set to low RH, contrary to the findings of L23. In the case of the SFS and MPM analyses, 

RMSE increases when limiting the data set to low RH. Overall, RMSE varies from 342-592 cm-3, and these values are 

significantly higher than the median CCNobs uncertainty of approximately 150 cm-3 for this data set (assuming a relative 140 

uncertainty of 10% as reported in the data). Additionally, we see the impact of hygroscopic growth most clearly in the MPM 

results, where several observations made at RH > 80% show increased BSCobs associated with nearly constant, and low, CCNobs 

values. This aerosol type is primarily influenced by sea salt, one of the most hygroscopic aerosols with a high growth factor 

and kappa that can range from 0.91-1.33 (Petters & Kreidenweis, 2007). If we consider, as an example, the subset of SFS 

CCNobs with BSCobs between 0.0006-0.0008 km-1sr-1 and RH between 80-90%, both small ranges that capture the peak of 145 

observed conditions for SFS aerosols, CCNobs ranges from 25 to 2128 cm-3. While this range captures the maximum observed 

variability, similar magnitudes can also be seen for MPM and URB aerosols within similar small ranges of BSCobs and RH. 
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Figure 2: Bisector regression of CCNobs vs. BSCobs at 532 nm for (a) smoke and fresh smoke, (b) marine and polluted 150 

marine, and (c) urban aerosols. This combined data set covers all years of ACTIVATE and represents 76 flight days. 

Supersaturation for these observations ranges between 0.36-0.38%. The number of collocated data points (n) is given, 

as well as the R2 value and root mean square error (RMSE). Statistics are given for the full data set (black-outlined 

box), as well as the subset of data observed at RH ≤ 50% (blue-outlined box). The solid black line of best fit applies to 

the full data set, and the dashed blue line of best fit applies to the low RH subset of data.  155 

 

Unlike in L23, the direct relationship between CCNobs and BSCobs in the ACTIVATE data cannot be represented well 

using a linear approximation. We find that even when limiting the data set to observations made at low ambient RH that  the 

correlation is weak and scatter around the regression line is high. Additionally, we find that within individual aerosol types 

and for small ranges of BSCobs and ambient RH that the magnitude of CCNobs can vary by nearly two orders of magnitude. 160 

Another difference between this analysis and ORACLES results is the relatively low frequency of observations made in low 

RH environments. While more than half of the smoke plume observations in ORACLES were made at low RH, only about 2-

10% of the observations in Fig. 2 were observed at low RH since the HU-25 Falcon primarily sampled in the marine boundary 

layer (MBL) during ACTIVATE. This observed non-linearity between CCNobs and BSCobs in the ACTIVATE data (Fig. 2) 

serves as motivation for the rest of this study – unlike L23, we do not try to optimize a linear relationship between CCNobs and 165 

BSCobs. Rather, we perform calculations of CCNtheory and BSCtheory based on actual observations of aerosol size distribution 

and chemical composition to understand this observed non-linearity and determine which factors dominate in governing the 

CCNtheory – BSCtheory relationship. The goal of this theoretical investigation is to use observations from ACTIVATE as a basis 



7 
 

to determine what additional information is most important in constraining CCN concentration from remotely sensed AOPs 

such as lidar aerosol backscatter.  170 

3 Data & Theoretical Calculation Methods  

The four primary ACTIVATE data sets used in this study are described in Sect. 3.1 and summarized in Table 1. Our 

methodologies for calculations of CCNtheory and BSCtheory are outlined in Sect. 3.2 and 3.3, respectively. Lastly, we describe 

pre-analysis data filtering steps in Sect. 3.4.  

3.1 Instrumentation 175 

3.1.1 Droplet Measurement Technologies (DMT) CCN Counter 

The Droplet Measurement Technologies (DMT) CCN counter measures in situ CCN concentration at multiple levels of water 

vapor supersaturation (S) and can be run in constant S or scanning S modes (Moore & Nenes, 2009), with most observations 

from ACTIVATE made at approximately S = 0.37%. This instrument is designed as a continuous-flow streamwise thermal-

gradient chamber (CFSTGC; Roberts & Nenes, 2005) where a quasi-uniform supersaturation is generated in the center of a 180 

cylindrical flow chamber as heat and water vapor are continuously transported from wetted walls under a temperature gradient.  

Supersaturation levels vary based on the instrument pressure, flow rate, and imposed column temperature gradient. The 

continuous-flow feature enables quick (1 Hz frequency) sampling (Roberts & Nenes, 2005), which is important for airborne 

observations in quickly evolving environments. At the end of the growth chamber, aerosols that activated into  droplets with a 

radius greater than 0.5 μm are counted as CCN. The uncertainty reported for CCN concentration is ±10%, with a 185 

supersaturation uncertainty of ±0.04% (Rose et al., 2008).  

3.1.2 High Spectral Resolution Lidar 2 (HSRL-2) 

The NASA Langley Research Center HSRL-2 measures aerosol backscatter and depolarization at 355, 532, and 1064 nm and 

aerosol extinction via the HSRL technique at 355 and 532 nm (Shipley et al., 1983; Hair et al., 2008; Burton et al., 2018). 

Using the spectral distribution of the return signal, the HSRL measurement technique enables separation of aerosol and 190 

molecular backscatter signals, which in turn allows independent, accurate retrieval of aerosol backscatter and extinction 

profiles without reliance on external assumptions such as the value of the lidar ratio, as is common for basic elastic backscatter 

lidars (Hair et al., 2008). In this study, we focus on particulate backscatter at 532  nm. The 532 nm wavelength is more 

frequently available in the data set, and results from L23 suggested that when directly relating CCN concentration with HSRL-

2 backscatter and extinction at 355 and 532 nm, there was no substantial difference in performance between either product or 195 

wavelength. Additionally, BSC at 532 nm is broadly applicable to existing ground-based and spaceborne lidars and may also 

be more applicable to observations from a Raman lidar potentially included in the future NASA Atmosphere Observing System 
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(AOS) mission. Uncertainty in the HSRL-2 observables depends on factors such as contrast ratio and aerosol loading, but 

uncertainties within 5% can be achieved under certain conditions (Burton et al., 2018).  

 Additionally, since we are interested in the impact of different aerosol types on the CCN – BSC relationship, we also 200 

use the HSRL-2 Aerosol ID variable from the observed data set. This Aerosol ID is a qualitative indication of aerosol type 

from a classification scheme based on HSRL-2 measurements of aerosol intensive parameters including lidar ratio at 532 nm, 

1064-to-532 nm backscatter color ratio, depolarization at 532 nm, and depolarization spectral ratio (Burton et al., 2012). The 

method categorizes eight particle types, which include ice, dusty mix, marine, urban/pollution, smoke, fresh smoke, polluted 

marine, and dust. As in Sect. 2, we combine smoke with fresh smoke (SFS) and marine with polluted marine (MPM) due to 205 

similarity in their optical properties. We also consider the urban/pollution (URB) aerosol type . These three aerosol types are 

the most frequently available in the ACTIVATE data. We do not consider observations categorized as ice, dusty mix, or dust 

in this study. Optically thin ice is infrequently detected by the HSRL-2 in ACTIVATE and does not designate an aerosol type 

relevant for CCN activation. Aerosols characterized as dust or dusty mix are also infrequently observed, making up only about 

9% of the data points with a valid Aerosol ID, which does not permit a statistically relevant consideration of dust-related 210 

aerosol types. Implications regarding the applicability of this analysis for dust contributions to aerosol mixtures will be 

discussed in Sect. 5.3. 

3.1.3 Scanning Mobility Particle Sizer (SMPS) and Laser Aerosol Spectrometer (LAS)  

In situ aerosol size distributions come from a combination of the Scanning Mobility Particle Sizer (SMPS) and Laser Aerosol 

Spectrometer (LAS), both part of the Langley Aerosol Research Group Experiment (LARGE) instrument suite. The uncertainty 215 

reported for data from the SMPS and LAS in ACTIVATE is 20% (Sorooshian et al., 2023). 

The SMPS uses a soft X-ray aerosol charger (TSI model 3088) to impart an aerosol sample with a known charge 

distribution and classifies the electric mobility of charged particles with a nano-column differential mobility analyzer (DMA; 

TSI Model 3085). The particle concentration of aerosols between 0.003-0.089 μm midpoint diameter is then measured using 

an ultrafine condensation particle counter (CPC; TSI Model 3776; Moore et al., 2017). The resultant size-resolved particle 220 

number size distribution is reported as dN/dlogDp at standard temperature and pressure (STP; 0°C and 1013.25 mb) with 45 

second time resolution. Size-dependent corrections have been applied based on laboratory calibration that result in excellent 

closure with total number concentrations measured by an independent CPC (Sorooshian et al., 2023).  

The LAS measures the particle number size distribution (dN/dlogDp) of aerosols with midpoint diameters between 

0.1-3.5 μm using an optical method where light intensity scattered from a laser is used to measure particle size ( TSI Model 225 

3340; Moore et al., 2021). Unlike less sophisticated optical instruments, a wide-angle scattering technique allows for a 

monotonic response to the intensity of light scattering to resolve Mie scatter sizing issues. Additionally, an intracavity he lium-

neon laser design allows for higher light scattering sensitivity at lower laser power. The LAS is calibrated with monodisperse 

ammonium sulfate particles owing to a refractive index (n = 1.52) close to many ambient aerosols (Shingler et al., 2016). 



9 
 

Concentrations are reported at STP and with 1 Hz time response. The combination of SMPS and LAS measurements provides 230 

a continuous size distribution.  

3.1.4 Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) 

The Aerodyne high-resolution time-of-flight (HR-ToF) aerosol mass spectrometer (AMS) measures submicron, non-refractory 

composition, including mass concentrations of sulfate, nitrate, ammonium chloride, and organic aerosols, as well as several 

mass spectral markers (DeCarlo et al., 2008; Sorooshian et al., 2023). The AMS uses an aerodynamic lens to focus particles 235 

into a narrow beam within a vacuum chamber, and particles are then impacted onto a 600°C vaporizer. This results in flash 

vaporization and ionization of non-refractory aerosol components. Ion extraction then allows for the generation of a complete 

mass spectrum (Jimenez et al., 2003; Drewnick et al. 2005). Refractory components including black  carbon, sea salts, and 

crustal species are not measured efficiently by the AMS (Jimenez et al., 2003; Cai et al., 2018). Additionally, AMS 

measurements apply to aerosols with an aerodynamic diameter of approximately 60-600 nm, where transmission efficiencies 240 

can be nearly 100% (Jimenez et al., 2003). Although this size range does not cover the full aerosol size distribution, it covers 

sizes that make up the majority of CCN, so uncertainty due to particle sizes covered by the AMS is small. The AMS was 

operated at 1 Hz in FastMS mode (i.e., 25 s open, 5 s closed) and averaged to 30 s resolution for the data archive. The 

uncertainty of AMS observations measured during ACTIVATE is reported to be up to 50% based on processing assumptions  

related to collection efficiency.  245 

 

Table 1: List of instruments and data sets used in this study, including their respective resolution, measurement type, 

and aircraft location. 

Instrument Variables Resolution 

(temporal/vertical) 

Measurement 

Type 

Aircraft 

DMT Cloud 

Condensation 

Nuclei (CCN) 

Counter 

CCN concentration 

at given 

supersaturation (S) 

1 s In Situ HU-25 Falcon 

High Spectral 

Resolution Lidar 2 

(HSRL-2) 

Aerosol backscatter 

coefficient (532 

nm), Aerosol ID 

10 s /15 m Remote Sensing King Air 

Scanning Mobility 

Particle Sizer 

(SMPS) 

Aerosol size 

distribution 

(diameter =  0.003-

0.1 μm) 

45 s In Situ HU-25 Falcon 
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Laser Aerosol 

Spectrometer 

(LAS) 

Aerosol size 

distribution 

(diameter =  0.1-3.5 

μm) 

1 s In Situ HU-25 Falcon 

Aerodyne High 

Resolution Time-

of-Flight Aerosol 

Mass Spectrometer 

(HR-ToF-AMS) 

Non-refractory 

chemically resolved 

mass concentration 

30 s In Situ HU-25 Falcon 

Diode Laser 

Hygrometer (DLH) 

Ambient relative 

humidity (RH) 
1 s In Situ HU-25 Falcon 

 

3.2 κ-Köhler Theory 250 

The activation of aerosols into cloud droplets is described by Köhler theory, in which the water vapor supersaturation in stable 

equilibrium with a condensed water droplet is a function of the particle radius. For a constant water vapor supersaturation, 

particles larger than a critical diameter will experience uncontrolled water condensation and growth to form a cloud droplet  

(Köhler, 1936). For calculations of CCNtheory in this study, we use κ-Köhler theory, which uses a single, bulk hygroscopicity 

parameter kappa (κ) to represent the relative hygroscopicities of individual aerosol components (Petters & Kreidenweis, 2007). 255 

Using this methodology, the critical diameter (Dcrit) of activation can be calculated with Eq. (1), 

𝐷𝑐𝑟𝑖𝑡 =  (
4𝐴3

27𝜅𝑙𝑛2𝑆𝑐
)

1/3

 ,           (1) 

where Sc is the specified instrument supersaturation during ACTIVATE, and A is defined in Eq. (2), 

𝐴 =  
4𝜎𝑠/𝑎 𝑀𝑤

𝑅𝑇𝜌𝑤
 ,            (2) 

where σs/a is droplet surface tension, which is assumed to be a constant equivalent to that of pure water (0.0728 N m -1; Petters 260 

& Kreidenweis, 2007), Mw is the molecular weight of water (18.01528 g mol-1), R is the universal gas constant (8.3145 J mol-

1 K-1), T is temperature (298.15 K), and ρw is the density of water (1000 kg m-3).   

3.2.1 Kappa Calculations from AMS Data 

As shown in Eq. (1), Dcrit depends on a bulk kappa value representing aerosol chemical composition, and we calculate it using 

AMS observations and the Zdanovskii-Stokes-Robinson (ZSR) mixing rule (Zdanovskii, 1948; Stokes & Robinson, 1966) 265 

given in Eq. (3), 
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𝜅 =  ∑ 𝜀𝑖𝜅𝑖𝑖 ,             (3) 

where εi represents the volume fraction of each chemical component and κ i is the hygroscopicity value of each component.  

This set of calculations is done using the collocation-averaged AMS data associated with each collocated data point (Appendix 

A) and a histogram of calculated kappa values for all three aerosol types is given in Fig. 3. Additionally, we show a literature-270 

average kappa range for each aerosol type, along with the standard deviation for each end of the range. These values are 

calculated using six literature values per aerosol type, including SFS (Carrico et al, 2008; Petters et al., 2009; Cerully et  al., 

2011; Engelhart et al., 2012; Bougiatioti et al., 2016; Gomez et al., 2018; Twohy et al., 2021), MPM (Andreae & Rosenfeld, 

2008; Pringle et al., 2010; Gaston et al., 2018; Quinn et al., 2019; Miyazaki et al. 2020; Gong et al., 2023), and URB (Andreae 

& Rosenfeld, 2008; Pringle et al., 2010; Hung et al., 2014; Kim et al., 2017, Cai et al., 2018, Zamora et al., 2019). Note that 275 

Cerully et al. (2011) and Engelhart et al. (2012) provide the same range for SFS, but this value is only counted once in the 

average. Overall, calculations tend to agree well with those seen in the literature. Typical kappa values for marine and polluted 

marine aerosols can vary widely depending on the amount of pollution in a region or if observations are made in cleaner, more 

remote areas. 

 280 

 

Figure 3: Distribution of kappa values calculated using the methodology in Section 2.3.1 for each aerosol type. 

Literature average ranges, with standard deviation, for each aerosol type are given in parentheses.  
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3.2.2 Critical Diameter (Dcrit) and CCNtheory calculation 

After calculating kappa following the methodology in Sect. 3.2.1, we use Eq. (1) to calculate Dcrit and calculate CCNtheory using 285 

Eq. (4), 

𝐶𝐶𝑁𝑡ℎ𝑒𝑜𝑟𝑦  (𝑆) =  ∫
𝑑𝑁

𝑑𝑙𝑜𝑔𝐷𝑝
𝑑𝑙𝑜𝑔𝐷𝑝

𝐷𝑚𝑎𝑥

𝐷𝑐𝑟𝑖𝑡
,          (4) 

where Dmax signifies the diameter of the largest bin from the combined SMPS and LAS number size distribution  (Schmale et 

al. 2018; Patel et al., 2021), dN/dlogDp represents the number concentration of aerosols in each bin of the combined size 

distribution, and S is the CCN counter supersaturation. For direct comparisons between CCNtheory and CCNobs, we use the exact 290 

CCN counter supersaturation value reported for each collocated data point within a small range of 0.36-0.38% (Sect. 4.1). For 

analyses using only CCNtheory without a comparison to CCNobs, we use a constant 0.37% supersaturation (Sect. 4.2-4.3).  

 

3.3 Mie Calculations 

The properties of light scattered by atmospheric aerosols are described by Mie theory, where aerosols are assumed to be 295 

homogeneous, spherical, and have a diameter approximately equal to the wavelength of incident radiation (Mie, 1908). For 

our calculations of BSCtheory, we calculate size-resolved particle backscattering efficiencies (Qbsc) using the Mie scattering 

program by Bohren & Hoffman (1998) implemented in the libRadtran library of radiative transfer routines and programs 

(Emde et al., 2016). The two inputs needed to calculate Qbsc are particle size, complex refractive index, and wavelength. To 

correspond to BSCobs, we only use a wavelength of 532 nm. We use typical refractive index values as retrieved by the Aerosol 300 

Robotic Network (AERONET) for different aerosol types to inform our refractive index selection (Dubovik et al., 2002), with 

exact values given in Table B1.  

For particle size input we use the SMPS and LAS size distribution bin diameters. However, here we must account for 

a significant difference in how in situ and HSRL-2 observations are made. With these BSCtheory calculations, we want to model 

ambient BSCobs from the HSRL-2 to understand the relationship with in situ CCNobs. However, since in situ instruments dry 305 

ambient air before collecting measurements, we need to account for the change in particle diameters due to water uptake at 

ambient RH conditions, since particle size has a significant impact on the magnitude of light scattered. Calculations made to 

account for changes in particle diameter and refractive index due to hygroscopic growth are outlined in Appendix B. After 

these adjustments, humidified bin diameters (Dwet) and refractive index components (mwet and nwet) are the final inputs into the 

Mie scattering calculations run in libRadtran. The size-resolved Qbsc values returned from these calculations are used to 310 

calculate BSCtheory at 532 nm from the full aerosol size distribution, as shown in Eq. (5), 

𝐵𝑆𝐶𝑡ℎ𝑒𝑜𝑟𝑦 =  ∫ 𝜋𝑟ℎ𝑢𝑚𝑖𝑑
2𝑟𝑛

𝑟1
𝑄𝑏𝑠𝑐 𝑛(𝑟ℎ𝑢𝑚𝑖𝑑)𝑑𝑟ℎ𝑢𝑚𝑖𝑑 ,        (5)
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where rhumid is each humidified bin radius, n(rhumid)drhumid represents the aerosol number concentration in each bin, and rn 

represents the largest bin in the SMPS and LAS combined and humidified size distribution. This set of calculations is done 315 

using the collocation-averaged size distribution data associated with each collocated data point. 

 

3.4 Data Filtering 

All input data for κ-Köhler and Mie calculations come from the collocated data set used for the observational analysis in 

Section 2. Each collocated data point contains an average value of CCNobs, BSCobs, as well as an average combined SMPS and 320 

LAS size distribution and set of AMS observations. Therefore, to enable a direct comparison between CCN theory and CCNobs, 

as well as BSCtheory and BSCobs, this collocated data set is used throughout the entirety of the study. In this section we describe  

several filtering steps that are performed to minimize potential errors in the subsequent analyses. Some are motivated by the 

observational methodology taken in L23, and others are specific to the CCNtheory and BSCtheory calculations. All steps are 

summarized in Fig. 4.  325 

We begin with the filtering criteria applied to data in the CCNobs – BSCobs relationships shown in Section 2. Since 

these data points are the basis for the rest of the analysis, each of these filtering steps also applies to data used for calculating 

CCNtheory and BSCtheory. As we are analyzing these relationships by aerosol type, we start by removing observations from the 

collocated data set where an HSRL-2 Aerosol ID is not determined, which typically occurs if the full set of HSRL-2 observables 

are not available. This step removed 51% of the collocated data set. Additionally, we remove any points where the collocation 330 

method averages across varying Aerosol IDs to avoid introducing additional uncertainty into the aerosol type. Similarly, we 

remove points where the standard deviation is greater than the mean of CCN concentration that fall within our collocation 

criteria to avoid potential errors due to large variability or gradients in aerosol concentration. Lastly, we remove any collocated 

points where fewer than two samples comprise the average. This is done to reduce potential noise in the data set, especially 

for the in situ size distribution data that have a critical role in both sets of theoretical calculations. In general, collocated data 335 

points represent an average of 10 observations from the 1-second merged in situ data files, some of which have a lower original 

resolution (Table 1). Each of these filtering steps is applied to all data in this study, and the impact of each step on the total 

number of collocated data points is shown in Fig. 4. 

 In L23, we found that the correlation between CCN concentration and HSRL-2 observations was strongest for 

supersaturations greater than 0.25%. Additionally, since CCN strongly depends on supersaturation, we limit observations to a 340 

small range of supersaturation values to reduce additional variability. Therefore, for analyses that are strictly observational 

(Sect. 2) or that compare theoretical calculations with observations (Sect. 4.1), we limit our collocated data set to a 

supersaturation range of 0.36-0.38%. This range was chosen due to a supersaturation of 0.37% being the most frequent value 

during ACTIVATE. This step is only applied to analyses that include observations because for calculations of CCN theory we 

apply a constant supersaturation of 0.37% to any observed size distribution. That is, we do not unnecessarily limit the data 345 

used for theoretical calculations by filtering according to CCN counter supersaturation.  
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The last data filtering step serves as a check to CCNtheory calculations. In addition to using Eq. 1 to calculate Dcrit, as 

described in Sect. 3.2, we also use an estimation method to validate κ-Köhler calculated values. This method integrates the 

combined SMPS and LAS number size distribution from largest toward smallest bin diameters until the difference between 

the summed aerosol concentration and observed CCN concentration reaches a minimum. We refer to the bin diameter where 350 

this difference reaches a minimum as the estimated Dcrit (Dcrit,est). We compare these values to the κ-Köhler calculated values 

(Dcrit,calc) and require that Dcrit,calc values fall within ±20% of the Dcrit,est values.  This step ensures that our calculated CCNtheory 

values will closely match CCNobs values and removes size distributions that may have higher noise or several bins with missing 

concentrations. The threshold of ±20% is chosen to correspond to the SMPS and LAS reported uncertainty that impacts the 

accuracy of the Dcrit,est value. This step applies to all analyses involving calculations of CCNtheory and BSCtheory (Sect. 4).  355 

As seen in Fig. 4, some of these steps remove a significant amount of data from the analysis. While the amount of 

data removed was taken into consideration at each step, all steps were taken as a precaution against introducing anomalous 

variation and uncertainty into the analysis. The application of slightly different combinations of filtering steps to the analyses 

in Sect. 4 was done intentionally to allow for as much data as possible to be included in each step. Therefore, while the D crit 

agreement filtering step is applied everywhere we calculate CCNtheory and BSCtheory, the CCN counter supersaturation filter is 360 

only applied where it needs to be used to control the supersaturation dependence of CCNobs. Since the goal of this study is to 

understand the relationship between CCNobs – BSCobs through the lens of the theoretical calculations, removal of extraneous 

noise and variability from the input data allows for analyses to more accurately determine the true underlying factors governing 

the CCNtheory – BSCtheory relationship. We discuss a comparison between observed and theoretically calculated CCN and BSC 

in Sect. 4.1, but a detailed discussion of closure for these variables is beyond the scope of this study.  365 
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Figure 4: Flowchart describing the data filtering steps applied to data for all analyses and filtering steps applied to data 

for specific analyses. The number of points remaining after each step (n) is given in parentheses. Therefore, 

approximately 25% of the original number of collocated samples remain for the observational analysis in Sect. 2, 5% 370 

for analyses comparing observations and theoretical values in Sect. 4.1, and 7% for purely theoretical analyses in Sect. 

4.2 and 4.3. 

4 Results 

4.1 CCN and BSC Observations vs. Calculations 

We first calculate CCNtheory and BSCtheory under observed ambient conditions and compare calculations to observations. 375 

CCNtheory is calculated for all data using the corresponding CCN counter supersaturation, and BSC theory is calculated from 

humidified aerosol size distributions using the corresponding observed RH value. Since this step involves theoretical 

calculations and comparison with observations, we limit the data set to observations made at CCN counter supersaturation 

between 0.36-0.38% and apply the Dcrit agreement filtering step (Fig. 4).  

 The comparison between CCNobs and CCNtheory is given in Fig. 5. We show results requiring a Dcrit agreement outlined 380 

in gray, while calculations without this requirement are plotted in the background. Results for calculations not requiring Dcrit 

agreement are shown to demonstrate how this requirement impacts the data set. Results of a linear regression between CCNobs 

and CCNtheory for data requiring the Dcrit agreement show that for all aerosol types R2 ranges from 0.91-0.94 and RMSE ranges 

from 87-133 cm-3. These RMSE values are very close to the approximate median value of CCN uncertainty of 150 cm-3. Data 
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are generally clustered very close to the 1:1 line for all aerosol types, and the lines of best fit also fall close to the 1:1 li ne. 385 

Overall, this analysis gives us confidence that our methodology accurately calculates CCNtheory, as a necessary precursor for 

the correlation analysis with BSCtheory. 

 

 

Figure 5: CCNobs vs. CCNtheory for (a) smoke and fresh smoke, (b) marine and polluted marine, and (c) urban aerosols. 390 

The 1:1 lines are dashed, and the lines of best fit for the linear regressions between both variables are solid.  Markers 

outlined in gray denote results for calculations requiring a certain level of Dcrit agreement. Results for calculations not 

requiring a Dcrit agreement are shown in the background with lighter transparency to demonstrate how this 

requirement impacts the data set.  

 395 

The same statistics are shown for our comparison between BSCobs and BSCtheory at 532 nm in Fig. 6 where marker 

colors correspond to RH to show the impact of hygroscopic growth on calculated BSCtheory. Here, our R2 values range from 

0.45-0.75, and RMSE ranges from 2.7E-04 to 1.6E-03 km-1sr-1. We find that the performance of our calculations does not 

appear to systematically decline for observations made at high RH, providing confidence in our humidification calculation 

methods. The R2 and RMSE values indicate a weaker correlation between observations and calculations than for CCN, but 400 

data remain primarily clustered around the 1:1 line. While use of the Dcrit filtering step for this analysis and subsequent removal 

of size distributions with higher noise or missing concentrations does benefit BSC theory calculations, it does not force a degree 

of agreement between BSCobs and BSCtheory in the same way that it does for agreement between CCNobs and CCNtheory. 

Additionally, CCNobs and the inputs for the CCNtheory calculation all come from in situ observations, while the BSCtheory 

calculation uses in situ observations as input but is compared to BSCobs from remote sensing instrumentation on a separate 405 

platform. Varying resolutions and collocation averaging between in situ and HSRL-2 observations may cause discrepancies 
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between BSCobs and BSCtheory. Other discrepancies in the BSCtheory calculation may come from approximations including the 

Mie theory assumption of spherical particles and our use of literature average refractive index values for different aerosol 

types. As with the CCN comparison (Fig. 5), this analysis also gives us confidence that our methodology results in BSC theory 

values of a similar magnitude as BSCobs.  410 

Figure 6: BSCobs vs. BSCtheory at 532 nm for (a) smoke and fresh smoke, (b) marine and polluted marine, and (c) urban 

aerosols. The 1:1 lines are dashed, and the lines of best fit for the linear regressions between both variables are solid. 

Marker colors correspond to ambient RH that was observed by each BSCobs and applied to calculate each 

corresponding BSCtheory. 

 415 

4.2 Estimating Predictor Importance 

In investigating the CCNobs – BSCobs relationship for different aerosol types, we determined that a linear regression is not an 

appropriate model for the ACTIVATE data (Fig. 2). Additionally, we have shown reasonable agreement between CCNobs and 

CCNtheory and between BSCobs and BSCtheory at ambient conditions. Next, we use the theoretical calculations to investigate and 

interpret causes of scatter and non-linearity in the CCNobs – BSCobs relationship. Analyses in this and the next section use 420 

CCNtheory calculated at a constant supersaturation of 0.37%.  

 Recall that the three main factors influencing how CCN concentration relates to AOPs are ambient RH, the shape of 

the aerosol size distribution, and aerosol chemical composition. Due to the highly interconnected nature of these factors and  

their relationships with CCN and BSC, we use random forest (RF) models to determine the relative importance of each factor 

in controlling the CCNtheory – BSCtheory relationship. A random forest is an ensemble of decision trees where each tree is created 425 

using the best split from a randomly selected subset of predictors. The final prediction comes from a majority vote among 

individual trees (Breiman, 2001; Hu et al., 2017). This method was chosen due to its high accuracy, generalization capability, 

ability to handle non-linear relationships between features, and ability to provide estimates of predictor importance. Another 
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benefit of this method is the ability to consider all input variables collectively, as opposed to investigating or perturbing  

individual input variables one at a time. For each model, we use 200 ensemble learning cycles and specify that all predictor 430 

variables are used at each node to ensure that each tree uses all predictor variables. Ten-fold cross-validation is used during 

training to prevent overfitting by any single model. The final predictor importance is determined by averaging the importance 

estimates across the 10 models, and the standard deviation is used to reflect the variations in the final calculat ed predictor 

importance estimates. Additionally, we do not separate our data into training and testing subsets, because our purpose is not 

to train and refine a model that predicts CCNtheory or the CCNtheory – BSCtheory relationship. Redemann & Gao (2024) provide a 435 

well-tested machine learning method with which CCN concentration is predicted from several HSRL-2 and reanalysis input 

variables. Rather, here we use RF predictor importance as a tool to help investigate the impact that ambient RH, aerosol size 

distribution, and aerosol chemical composition each have on the CCNtheory – BSCtheory relationship.  

 We use a combination of observed effective radius (Reff), geometric mean radius (GMR), RH, and kappa as predictors 

of the CCNtheory:BSCtheory ratio in our RF models. Effective radius is the ratio of the 3 rd and 2nd moments of the aerosol size 440 

distribution, sometimes called the area-weighted mean radius. This makes it useful for optical measurements as the energy 

removed from light by an aerosol is proportional to its area. Effective radius is calculated using Eq. ( 6), 

𝑅𝑒𝑓𝑓 =  
∫ 𝜋𝑟𝑤𝑒𝑡

3 𝑛(𝑟𝑤𝑒𝑡)𝑑𝑟𝑤𝑒𝑡
∞
0

∫ 𝜋𝑟𝑤𝑒𝑡
2 𝑛(𝑟𝑤𝑒𝑡)𝑑𝑟𝑤𝑒𝑡

∞
0

,          (6)

  

where rwet is humidified particle radius and n(rwet)drwet is the aerosol concentration within each bin of the humidified size 445 

distribution. Geometric mean radius is the mean of the humidified aerosol size distribution in log space, as given by Eq. (7), 

𝐺𝑀𝑅 =  (
∫ ln 𝑟𝑤𝑒𝑡 𝑛(𝑟𝑤𝑒𝑡)𝑑𝑟𝑤𝑒𝑡

∞
0

𝑁0
),          (7)

  

where N0 is the total number of particles in the size distribution. It is important to note that the predictors used in this analysis 

are not fully independent. For example, RH impacts Reff depending on the corresponding kappa value, meaning that the 450 

influence of RH on the CCNtheory – BSCtheory relationship may be captured through Reff. However, we include both parameters 

separately to investigate if one of these variables is more important than the other in constraining the CCNtheory – BSCtheory 

relationship. Additionally, both Reff and GMR capture the shape of the size distribution and can be related through functional 

relationships. We use Reff and GMR separately because of their different information content. The weighting of Reff toward 

larger particles increases its relevance for AOPs, while GMR tends to fall within the fine mode of the size distribution closer 455 

to Dcrit and aerosol sizes relevant for CCN activation. Therefore, based on this combination of input variables we train the RF 

models to predict the ratio of CCNtheory:BSCtheory.   

 First, we train a model for all aerosol types combined. Here, the Aerosol ID from our collocated in situ and remote 

sensing data set is added as an additional predictor to test the dependence of CCNtheory:BSCtheory on lidar-indicated aerosol type. 
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Average relative predictor importance estimates across all 10 folds are shown in Fig. 7a with a standard deviation designated 460 

for each average. Overall, Reff is determined to be the most important predictor of CCNtheory:BSCtheory, followed by RH. Aerosol 

ID is the 3rd most important predictor, and GMR and kappa are approximately equal as the 4 th and 5th most important predictors, 

respectively.  

Next, we train three individual models that predict CCNtheory:BSCtheory for each individual aerosol type as separated 

by Aerosol ID and again average the relative predictor importance estimates across all 10 folds (Fig. 7b). We find that after 465 

separating aerosol types, Reff remains the most important predictor of CCNtheory:BSCtheory for all aerosol types. Kappa ranking 

least important for each aerosol type indicates that separating aerosol types using the Aerosol ID adequately constrains the 

impact of aerosol chemical composition on the CCNtheory – BSCtheory relationship. These separate models also indicate that RH 

is the second most important predictor for all aerosol types. The relatively low importance of Aerosol ID and kappa in these 

models is expected, considering BSCtheory is primarily determined by aerosol size and CCN activation is also more sensitive to 470 

size than to aerosol chemical composition (Dusek et al., 2006).  

 

 

Figure 7: Average random forest predictor importance estimates across 10-fold cross-validation for (a) the model run 

for a combination of aerosol types combined and (b) individual models run for the three different aerosol types. Each 475 
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model predicted the CCNtheory:BSCtheory ratio based on the observed input variables listed on each x-axis. All importance 

estimates are relative. Error bars designate standard deviation across the 10-fold cross-validation.  

 

4.3 Modeling CCNtheory:BSCtheory using Effective Radius 

Based on the RF predictor importance estimate indication that Reff is the most important predictor for the CCNtheory – BSCtheory 480 

relationship compared to RH, kappa, and GMR (Fig. 7), we now investigate the physical relationship between Reff and the 

CCNtheory:BSCtheory ratio. We focus on Reff to further explore and understand the RF indication of its high importance compared 

to the other predictors and to understand how much variance in CCNtheory:BSCtheory can be explained by Reff alone. 

We start by humidifying each dry aerosol size distribution at 10% RH increments from 10 -99% and calculating 

CCNtheory, BSCtheory, and Reff from each humidified size distribution. This process allows us to model all variables at a wide 485 

range of plausible environmental RH values that are not constrained to observed ambient conditions and to form a more 

comprehensive understanding of the underlying physical relationship between Reff and CCNtheory:BSCtheory. When comparing 

CCNtheory:BSCtheory and Reff, we fit two-term exponential curves for each aerosol type to represent the relationship (Fig. 8). A 

two-term exponential was chosen for each aerosol type due to a slightly higher R2, lower RMSE, and better visual fit to the 

larger Reff values than a one-term exponential fit. For each aerosol type we provide the R2 and RMSE (Fig. 8), and fit 490 

coefficients are provided in Table 2. 

 

 

Figure 8: CCNtheory:BSCtheory vs. Reff for (a) smoke and fresh smoke, (b) marine and polluted marine, and (c) urban 

aerosols. Marker colors correspond to the density of surrounding points, with red shades indicating high density and 495 

blue shades indicating lower density. The black line represents the two-term exponential curve fit for each aerosol type. 

R2, RMSE, mean relative error (MRE), and number of data points (n) for each exponential fit are also provided. 
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Table 2: Coefficients for the two-term exponential curves fit to each aerosol type to model the CCNtheory:BSCtheory – Reff 

relationship. All fit equations take the form of 𝒚 = 𝒂𝟏𝒆𝒙𝒑(𝒃𝟏𝒙)  + 𝒂𝟐𝒆𝒙𝒑(𝒃𝟐𝒙) , where y corresponds to the 500 

CCNtheory:BSCtheory ratio in cm-3/km-1sr-1 and x corresponds to Reff in μm.  Relative uncertainties for each coefficient are 

given in parentheses, estimated using 95% confidence bounds.  

 a1 (cm-3/km-1sr-1) b1 (μm-1) a2 (cm-3/km-1sr-1) b2 (μm-1) 

Smoke + Fresh Smoke 1.417E09 (26.4%) -75.64 (4.2%) 7.627E06 (1.4%) -5.512 (1.4%) 

Marine + Polluted Marine 6.134E08 (1.3%) -62.01 (0.6%) 6.028E06 (1.1%) -3.846 (1.4%) 

Urban 7.032E08 (21.3%) -65.73 (3.9%) 6.919E06 (2.4%) -7.231 (1.9%) 

 

Next, we use each of these two-term exponential fits to calculate CCN:BSC from values of Reff in our ambient 

collocated data set and compare to CCNtheory:BSCtheory. Here, we refer to CCN:BSC modelled using the two-term Reff 505 

exponential fits as “(CCN:BSC)model” to capture that the ratio itself is modelled using Reff, not each term individually, and to 

distinguish it from CCNtheory:BSCtheory. This comparison is shown in Fig. 9, where we find that overall, most data is clustered 

around the 1:1 line for each aerosol type. We see that RMSE and mean relative error (MRE) are lowest for the URB category 

and highest for MPM. Additionally, SFS and URB have many data points at or slightly below the 1:1 line and a majority of 

(CCN:BSC)model ratios have magnitudes of about 2E06 to 4E06 cm-3/km-1sr-1, while most values for MPM are less than 2E06 510 

cm-3/km-1sr-1. The R2 values for all aerosol types range between 0.68-0.79. 
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Figure 9: Comparison of CCNtheory:BSCtheory to (CCN:BSC)model for (a) smoke and fresh smoke, (b) marine and polluted 

marine, and (c) urban aerosols. (CCN:BSC)model values come from the two-term exponential fits shown in Fig. 8 and 

defined in Table 2. The units for both axes are cm-3/km-1sr-1. Marker colors correspond to the density of surrounding 515 

points, with red shades indicating high density and blue shades indicating lower density. The dashed line on each panel 

is the 1:1 line. R2, RMSE, MRE, and number of data points (n) for each exponential fit are also provided. 

5 Discussion 

Several recent studies have used lidar observed aerosol optical properties to develop physics-based or ML (Machine Learning)-

based parameterizations and retrieval methods for CCN concentration for different aerosol types (Mamouri & Ansmann, 2016; 520 

Lv et al., 2018; Haarig et al., 2019; Choudhury & Tesche, 2022a; Patel et al., 2024; Redemann & Gao, 2024). In this study, 

we have included in situ observed aerosol size and chemical composition information to determine which factors most strongly 

govern the CCNtheory – BSCtheory relationship.  Therefore, this analysis provides a broad theoretical context in which 

relationships between observed CCN and aerosol optical properties can be interpreted. In this section, we discuss the physical 

interpretation of the relationships found, implications for future remote sensing techniques, and a summary of the sources of 525 

uncertainty and limitations of the study. 

 

5.1 Physical Relationships 

Based on a set of predictors for the CCNtheory:BSCtheory relationship including Reff, GMR, kappa, and RH, RF predictor 

importance estimates indicated that Reff was the most important predictor for all three aerosol types of interest in this study. 530 

Therefore, we further investigated the relationship between CCNtheory:BSCtheory and Reff for a wide range of plausible 

environmental RH conditions and found a two-term exponential relationship. In further understanding this pattern, it is 

important to recall that Reff is influenced more significantly by coarse mode than fine mode particles. As the coarse mode 

number concentration increases, we expect BSCtheory to increase more compared to CCNtheory, thus decreasing the 

CCNtheory:BSCtheory ratio. This finding is similar that of Shen et al. (2019), where an exponential relationship was found between 535 

a CCN:AOP ratio and the geometric mean diameter of generated lognormal unimodal size distributions. Additionally, the 

exponential fits here show a steeper decrease in CCNtheory:BSCtheory with Reff for MPM aerosols compared to other aerosol 

types (Table 2). Since MPM aerosols are expected to have a more significant coarse mode contribution, it appears that the 

effect of BSCtheory increasing more than CCNtheory with Reff is more pronounced for this aerosol type. As previously mentioned, 

RH also has an impact on Reff that depends on kappa. The indication that Reff is the most important predictor suggests that 540 

understanding the CCNtheory:BSCtheory relationship as based on ACTIVATE observations is not as straightforward as simply 

constraining RH, as could be done in L23. Rather, the impact of RH on the aerosol size distribution is more important in 

determining how CCNtheory and BSCtheory are related.  
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 Based on the R2 values of 0.68-0.79 in our comparison of CCNtheory:BSCtheory and (CCN:BSC)model (Fig. 9), we find 

that modelling CCNtheory:BSCtheory using two-term exponential Reff relationships can explain approximately 68-79% of the 545 

variance in the CCNtheory – BSCtheory relationship. Whereas we previously hypothesized in L23 that aerosol hygroscopic growth 

at high ambient RH may be the leading cause of variability when relating CCNobs and BSCobs, here we find that most variability 

is attributable to differences in Reff. Furthermore, this analysis also speaks to inherent differences in how CCNtheory relates to 

BSCtheory for different aerosol types. We find that when using a large set of actually observed aerosol size distributions as  the 

input to theoretical calculations, there is a significant difference in the range of possible Reff values for each aerosol type (Fig. 550 

8). For example, many MPM observations span a wide range of Reff between approximately 0.1-0.5 μm while SFS and URB, 

even at wide range of possible ambient RH, primarily see Reff values limited to a small range between 0.1-0.2 μm. Additionally, 

when we look at the magnitude of CCNtheory:BSCtheory values for each aerosol type, MPM tends to have much lower values 

than SFS and URB (Fig. 9). Higher Reff values in addition to a higher likelihood for hygroscopic growth in humid marine 

environments act to increase BSCtheory more than CCNtheory, thus decreasing the CCNtheory:BSCtheory ratio more than for other 555 

aerosol types.  

 Here we present three CCNtheory:BSCtheory – Reff exponential fits as a methodology for explaining variance in the 

CCNtheory – BSCtheory relationship. The exact functional forms presented in Fig. 8 are most appropriate for ACTIVATE 

observations, and the coefficients would likely need to be adjusted before applying to other data sets. While we expect the 

general exponential pattern to hold for other data sets, any differences in observed aerosol size distribution or chemical 560 

composition would likely change the exact fit coefficients. 

 

5.2 Implications for Remote Sensing Techniques 

This study indicates several important considerations for future work constraining CCN concentration from remote sensing 

observations and future spaceborne lidar data sets. Most importantly, given our finding that particle size, as parameterized by 565 

Reff, is the most important predictor in determining the CCNtheory – BSCtheory relationship, this suggests two key points. First, a 

simple linear approximation with BSCobs will not well-constrain CCNobs in most cases in the ACTIVATE data set. Many 

previous studies have suggested that the relationship between CCN concentration and various AOPs is often non-linear, 

specifically for AOD. Considering this background, the results here suggest that variations in aerosol size distribution may be 

a leading cause of non-linearity when using AOD as a proxy for CCN concentration. Seemingly in contrast with the results 570 

presented here, in L23 we investigated the relationship between CCN concentration and aerosol index (AI), an indicator of 

particle size, and found little to no difference between CCN – AI and the CCN – EXT or CCN – BSC relationships. Therefore, 

for observations of smoke at low RH over the ORACLES region, we concluded that there was a very small variation of aerosol 

size in the observations. With minimal differences in aerosol size and most smoke plume observation s made at low ambient 

RH, conditions permitted a simple linear approximation to relate CCNobs and BSCobs. On the contrary, the larger data set from 575 

the ACTIVATE campaign is characterized not only by a variety of aerosol types, but by a wider range of aerosol size 
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distributions and a higher fraction of observations made at high ambient RH in the MBL, all of which contribute to increased 

non-linearity between CCNobs and BSCobs.  

Related to this non-linearity, a second key point from this analysis is that in most cases, efforts to constrain CCN 

concentration using AOPs need to include a measure of the aerosol size distribution to accurately represent variability in the 580 

relationship. Here, we have taken advantage of the availability of in situ aerosol size distributions and represented them using 

Reff. However, to constrain CCN concentration solely from spaceborne lidar observations, our findings suggest that either 

satellite retrievals of Reff would need to be collocated with lidar observations, or a different lidar-derived indicator of aerosol 

size would need to be used. For example, AI can be calculated using two wavelengths of aerosol extinction from lidar, and 

other multi-wavelength parameters such as the lidar ratio or backscatter color ratio contain information about aerosol size that 585 

could be tested in place of Reff for future methods based solely on a spaceborne lidar system. Additionally, Reff retrievals from 

the recently launched SPEXone multi-angle polarimeter onboard the NASA Plankton, Aerosol, Cloud, and ocean Ecosystem 

(PACE) mission (Hasekamp et al., 2019) are another option for quantifying aerosol size in CCN concentration estimates.  

Lastly, when predicting CCNtheory:BSCtheory for all aerosol types combined, the RF predictor importance estimates 

indicated that aerosol type, as represented by the HSRL-2 Aerosol ID, is the third most important predictor (Fig. 7a). Since the 590 

Aerosol ID product categorizes aerosol types based on HSRL-2 optical properties, such as BSC, this may explain why Aerosol 

ID is estimated to be a more important predictor of CCNtheory:BSCtheory than kappa in terms of aerosol type and chemical 

composition. This finding, in addition to the qualitative differences seen in the impact of high RH between aerosol types (Fig. 

4), suggests that while Aerosol ID is not the most important predictor, separately analyzing the CCN – BSC relationship for 

different aerosol types provides insight into physical differences in CCN – AOP relationships between aerosol types.  595 

 

5.3 Sources of Uncertainty and Limitations 

There are several assumptions underlying both κ-Köhler and Mie theories in addition to uncertainties associated with the 

observations used as input. Individual instrument uncertainties are discussed in Sect. 2.1, and calculation assumptions are 

discussed in Sect. 2.3 and 2.4. Here we acknowledge the primary sources of uncertainty underlying this analysis and the 600 

limitations to its applicability. 

 First, the most significant sources of uncertainty come from uncertainty associated with in situ observations. For 

example, we use AMS observations to calculate a bulk kappa value needed for κ-Köhler calculations. While we find that our 

calculated values are generally close to those found in the literature for all three aerosol types (Fig. 2), there are a vari ety of 

factors that may cause discrepancies. For example, the fraction of mass observed at sizes close to Dcrit is generally small, 605 

meaning that AMS sensitivity to chemical composition at relevant CCN sizes can be limited. Additionally, κ-Köhler theory 

assumes that chemical composition is fixed across all aerosol sizes (Petters & Kreidenweis, 2007), which may cause 

discrepancies between CCNobs and CCNtheory. Additionally, Kim et al. (2017) found that CCN closure using AMS-calculated 

kappa values was less accurate than when using kappa calculated from humidified tandem differential mobility analyzer 

(HTDMA) observations.  610 
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We also consider observational uncertainty associated with in situ size distributions that impact both CCNtheory and 

BSCtheory calculations. For example, when considering the comparison between BSCobs and BSCtheory, we see the lowest R2 for 

the MPM comparison (Fig. 6b), for which we present two possible causes. First, marine aerosols have a greater tendency 

compared to smoke and urban aerosols to be non-spherical in shape, as was observed over Barbados by Haarig et al. (2017) 

and has been discussed for the ACTIVATE dataset by Ferrare et al. (2023), while Mie theory assumes that particles are 615 

spherical (von Hoyningen-Huene & Posse, 1996; Bi et al. 2018). Second, in situ aerosol size distributions tend to 

underrepresent coarse mode aerosols due to inefficient sampling at large sizes (McMurry, 1999; Ryder et al., 2018; 

Kangasluoma et al., 2020). Since marine aerosols tend to have a dominant coarse mode that contributes significantly to light 

scattering, and since this coarse mode is likely underrepresented by the in situ size distributions used as input to Mie 

calculations, this may be another cause of the discrepancy between BSCobs and BSCtheory. Lastly, aerosols may be undersized 620 

due to loss of volatile aerosol components that occurs during the heating and drying of in situ observations during inlet 

transmission (Shrestha et al., 2018; Sandvik et al., 2019), and this may be another source of uncertainty in BSCtheory and 

CCNtheory calculations. However, overall Fig. 5 and 6 provide confidence that the combination of uncertainties in the size 

distributions and other input variables do not prohibit reasonable agreement between CCNobs and CCNtheory or between BSCobs 

and BSCtheory. Therefore, while uncertainties in the in situ data are likely to cause errors in our theoretical calculations, the 625 

intermediate comparison between observations and calculations provides confidence that these uncertainties do not undermine 

the validity of this study.  

 Lastly, there are a few important considerations for the applicability and limitations of this study. While the 

ACTIVATE campaign collected one of the most complete airborne datasets in terms of the range of aerosol types and 

meteorological conditions, our findings are limited to the campaign study area and the encountered aerosol mixtures; they have 630 

not been tested on other datasets. For example, since we are unable to include dust in the analysis due to observational 

constraints, our results cannot speak to differences in the CCNtheory – BSCtheory relationship for aerosol mixtures with large 

proportions of dust. We would expect the results shown here to differ for observations of dust due in part to its hydrophobic 

nature and large, generally non-spherical sizes and shapes not easily represented using Mie theory. Recent studies have started 

using lidar products to better model and understand dust aerosol optical properties (Saito & Yang, 2021; Haarig et al., 2022), 635 

but more work is needed to understand the relationship between dust optical properties and its ability to activate as CCN.  

Additionally, as previously mentioned, we would also expect the general exponential relationship between CCNtheory:BSCtheory 

– Reff to hold for other non-dust data sets, but the exact fit coefficients would likely need to be adjusted.  

6 Conclusion 

To improve our understanding of CCN distributions, many techniques have developed proxies and parameterizations using 640 

remotely sensed AOPs. Such strategies often provide a good constraint for CCN, but challenges remain due to factors such as 

aerosol hygroscopic growth and variations in the aerosol size distribution. In this study, we investigate the dominant governing 
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factors of the CCNtheory – BSCtheory relationship at 532 nm for different aerosol types using observation-informed theoretical 

calculations and find that Reff is the most important predictor for smoke, marine, and urban aerosols .    

This dependence of CCNtheory – BSCtheory on the aerosol size distribution explains why, as expected, a linear 645 

approximation generally is not an appropriate method for well-representing the relationship. Rather, this approach only works 

in limited, specific cases. For example, when analyzing the CCNobs – BSCobs relationship for observations of smoke at low 

ambient RH with a narrow range of aerosol sizes in ORACLES, a linear regression performed well. However, in cases such 

as ACTIVATE where (i) most observations are made at high ambient RH, (ii) there are a variety of aerosol types present, and 

(iii) there exists a wider range of observed aerosol size distributions, this approach is not possible. Through these observation-650 

informed analyses, we have provided a theoretical framework for understanding the impact of different governing factors on 

the CCNobs – BSCobs relationship and the relative importance of the size distribution compared to chemical composition and 

hygroscopic growth at high ambient RH.  

Our findings suggest a few key takeaways for future studies using spaceborne remote sensing instrumentation, such 

as CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) or other future spaceborne lidar 655 

observations, to retrieve CCN concentrations at cloud-relevant altitudes. Most importantly, we found through using a wide 

range of in situ observed size distributions that Reff well-captures the strong dependence of the CCNtheory – BSCtheory relationship 

on the aerosol size distribution for non-dust aerosol mixtures. That is, for areas with a wide variety of observed size 

distributions, CCN cannot be well-estimated from BSC without including aerosol size. Therefore, future remote sensing 

methods based on estimating NCCN from particulate backscatter would require a lidar capable of providing Reff, a backscatter 660 

lidar in combination with a polarimeter, or collocated satellite retrievals of Reff. Overall, we found that there is great benefit in 

using a wide variety of in situ observed aerosol size distributions as an input for CCNtheory and BSCtheory calculations to 

understand in detail how the size distribution impacts the relationship between CCN and AOPs. 

Appendix A 

The AMS-measured ion concentrations of NH4
+, SO4

2-, and NO3
- must first be converted into volume fractions required by Eq. 665 

(3). For this conversion, we first use the simplified ion pairing scheme developed by Gysel et al. (2007) to calculate the number 

of moles (n) of ammonium nitrate (NH4NO3), sulfuric acid (H2SO4), ammonium bisulfate (NH4HSO4), and ammonium sulfate 

((NH4)2SO4), as outlined in Eq. (A1)-Eq. (A5), 

𝑛𝑁𝐻4𝑁𝑂3
=  𝑛𝑁𝑂3

− .            (A1) 

𝑛𝐻2𝑆𝑂4
= max (0, 𝑛𝑆𝑂4

2− −  𝑛𝑁𝐻4
+ +  𝑛𝑁𝑂3

− )          (A2) 670 

𝑛𝑁𝐻4𝐻𝑆𝑂4
= min (2𝑛𝑆𝑂4

2− − 𝑛𝑁𝐻4
+ + 𝑛𝑁𝑂3

− , 𝑛𝑁𝐻4
+ −  𝑛𝑁𝑂3

− )        (A3) 

𝑛(𝑁𝐻4)2𝑆𝑂4
= max (𝑛𝑁𝐻4

+ − 𝑛𝑁𝑂3
− − 𝑛𝑆𝑂4

2−, 0)         (A4) 
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𝑛𝐻𝑁𝑂3
=  0,             (A5) 

where the number of moles of NH4
+, SO4

2-, and NO3
- are calculated using their AMS-observed ion concentrations and molar 

mass values. Next, the number of moles of ammonium nitrate, sulfuric acid, ammonium bisulfate, and ammonium sulfate are 675 

converted to units of mass. After this step, their dry densities, as given in Table A1 (Gysel et al., 2007; Kuang et al., 2020), 

are used to convert each mass to a volume. During this step, the AMS-measured concentration of organics is also converted to 

a volume. The five resultant volumes are summed, and the total volume is used to calculate the volume fraction (ε i) of each 

component. Following this step, the individual volume fractions and κ i values given in Table A1 (Cai et al., 2018; Kuang et 

al., 2020) are used in Eq. (3) to calculate a bulk kappa.  680 

 

Table A1: Density and hygroscopicity constants of individual chemical components used to calculate bulk 

hygroscopicity value. 

Compound NH4NO3 H2SO4 NH4HSO4 (NH4)2SO4 Organics 

Density ρ (kg/m3) 1720 1830 1780 1769 1400 

κi 0.58 0.90 0.56 0.48 0.10 

Appendix B 

Table B1: Dry refractive indices for each aerosol type. The two bottom rows represent the two combined aerosol types 685 

used in this study. Their refractive indices are calculated using an average of both components from both aerosol types 

(i.e., the real and imaginary components for SFS are an average of the real and imaginary components for smoke and 

fresh smoke). 

Aerosol Type Real Component (mdry) Imaginary Component (ndry) 

Smoke 1.505 2.005E-02 

Fresh Smoke 1.425 2.005E-02 

Marine 1.389 1.005E-03 

Polluted Marine 1.407 5.050E-04 

Urban (URB) 1.475 5.500E-03 

Smoke + Fresh Smoke (SFS) 1.465 2.005E-02 

Marine + Polluted Marine (MPM) 1.398 7.550E-04 

 

 690 

The change in particle diameter is described using a hygroscopic growth factor g(RH), as defined in Eq. ( B1), 

𝑔(𝑅𝐻) =  
𝐷𝑤𝑒𝑡(𝑅𝐻)

𝐷𝑑𝑟𝑦
 .            (B1) 
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Here Ddry is the dry particle diameter from the SMPS and LAS observed size distribution, and Dwet is the adjusted particle 

diameter at a given RH. To calculate Dwet, we follow the methodology of Zieger et al. (2013), who note that the RH dependence 

of Eq. (9) can be parameterized using a relationship introduced by Petters & Kreidenweis (2007), as given in Eq. ( B2), 695 

𝑔(𝑎𝑤) =  (1 + 𝜅
𝑎𝑤

1− 𝑎𝑤
)

1
3⁄

 ,           (B2) 

where aw is water activity and κ is the bulk hygroscopicity parameter as calculated in Section 2.3.1. If the Kelvin effect can be 

neglected, aw can be replaced with RH. Since the Kelvin term of the Köhler equation is small for large particles (D > 80 nm), 

we make this replacement moving forward since particles larger than 80 nm contribute most to BSC compared to smaller 

particles. Therefore, we calculate humidified aerosol sizes using Eq. (B3), 700 

𝐷𝑤𝑒𝑡(𝑅𝐻) =  𝐷𝑑𝑟𝑦 (1 + 𝜅
𝑅𝐻

1− 𝑅𝐻
)

1
3⁄

.         (B3) 

Additionally, the change of the refractive index due to hygroscopic growth is calculated using Eqs. (B4) and (B5) for the real 

(mwet) and imaginary (nwet) components, respectively, 

𝑚𝑤𝑒𝑡(𝑅𝐻) = 
𝑚𝑑𝑟𝑦+ 𝑚𝐻2𝑂(𝑔(𝑅𝐻)3−1)

𝑔(𝑅𝐻)3 ,         (B4) 

𝑛𝑤𝑒𝑡(𝑅𝐻) =  
𝑛𝑑𝑟𝑦+ 𝑛𝐻2𝑂(𝑔(𝑅𝐻)3−1)

𝑔(𝑅𝐻)3  .          (B5) 705 

Here, mdry and ndry are the dry real and imaginary refractive indices for each aerosol type, as given in Table B1 and informed 

by Dubovik et al. (2002). Additionally, mH2O and nH2O are the real (1.33) and imaginary (0) refractive indices for water.  
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