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Abstract.

Data assimilation involves sequential inference in geophysical systems with nonlinear dynamics and observational operators.

Non-parametric filters are a promising approach for data assimilation because they are able to represent non-Gaussian densities.

The mapping particle filter is an iterative ensemble method that incorporates the Stein Variational Gradient Descent to produce

a particle flow transforming state vectors from prior to posterior densities. At every pseudo-time step, the Kullback-Leibler5

divergence between the intermediate density and the target posterior is evaluated and minimized. However, for applications in

geophysical systems, challenges persist in high dimensions, where sample covariance underestimation leads to filter divergence.

This work proposes two localization methods, one in which a local kernel function is defined and the particle flow is global.

The second method, given a localization radius, physically partitions the state vector and performs local mappings at each

grid point. The performance of the proposed Local Mapping Particle Filters (LMPFs) is assessed in synthetic experiments.10

Observations are produced with a two-scale Lorenz system, while a one-scale Lorenz model is used as surrogate, introducing

model error in the inference. The methods are evaluated with both full and partial observations, as well as with different linear

and non-linear observational operators. The LMPFs with Gaussian mixtures in the prior density perform similarly to Gaussian

filters such as ETKF and LETKF in most cases, and in some scenarios, they provide competitive performance in terms of

analysis accuracy.15

1 Introduction

Particle filters have emerged as a valuable approach for addressing non-linear data assimilation challenges, especially in the

context of geophysical systems, with particular promise for improving short-term meteorological forecasting. This potential

derives from the inherently non-Gaussian nature of convective instabilities—which dominate short-term weather patterns—and

their rapid growth rates compared to synoptic-scale phenomena (Hohenegger and Schar, 2007). As model resolution increases30

and observation operators become more complex, including non-linear relationships with the model state, the challenge of accu-
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rately representing these growing non-linear and non-Gaussian features becomes more pronounced. Gaussian data assimilation

techniques, such as Kalman filter-based methods, encounter limitations when confronted with non-linearity. These methods

assume a Gaussian prior probability density function for the state. Variational methods struggle under strong non-Gaussianity

resulting in multimodal cost functions or when the observational errors deviate from being Gaussian as well. Ensemble Kalman35

filters (EnKFs) explicitly assume that the prior density function and the observation likelihood follow a Gaussian distribution.

Notably, Ruiz et al. (2021) show that even when drastically reducing LETKF’s assimilation window from 5 minutes to 30

seconds in 1km-resolution experiments, residual non-Gaussianity persists at 40% levels.

In contrast, particle filters are non-parametric and offer distinct advantages in handling non-Gaussian error statistics (van

Leeuwen et al., 2019). However, particle filters face challenges when dealing with high dimensionality, which is particularly40

prominent in geophysical applications characterized by a large number of variables. The standard Sequential Importance Re-

sampling filter (SIR, Doucet et al., 2001) preserves and statistically replicates only the particles near the observations, leading

to sample impoverishment and weight degeneracy. To address this issue, the proposal density can incorporate information

from both model dynamics and current observations, guiding particles toward high-probability regions and improving particle

diversity by updating weights based on the ratio between the proposal density and the actual posterior density (van Leeuwen45

et al., 2019).

The problem of high dimensionality has also led to the development of several methods. Localization was first introduced

for particle filters, and independently, in Bengtsson et al. (2003) and van Leeuwen (2003). Further implementations can be

found in Poterjoy (2016); Robert and Künsch (2017). Further methods are based on tempering m(Neal, 1996), which mitigate

the computational burden, instability and inaccuracy associated with high-dimensional problems, and jittering (Cotter el al.,50

2020), also referred to as regularisation, used to rejuvenate particles before or after resampling, as well as after tempering

steps. An alternative approach to overcome these limitations is provided by particle flow filters (PFFs, Daum et al., 2010

and van Leeuwen et al., 2019). Instead of relying on the two-step process of weighting and resampling, PFFs move particles

continuously through state space via a differential equation over a pseudo-time —drawing on ideas from MCMC methods such

as those in Gallego and Ríos Insua (2018)— transforming the prior into the posterior distribution without modifying particle55

weights and thus avoiding the resampling and jittering steps required in traditional particle filters.

This work is concerned with developing a localization scheme for the variational mapping particle filter (MPF) proposed by

Pulido and van Leeuwen (2019). The MPF is a particle flow filter that holds potential for non-linear applications in meteorology

and oceanography. It is a sequential Monte Carlo algorithm that uses the Stein Variational Gradient Descent (SVGD) method,

proposed by Liu and Wang (2016). In the MPF, state vectors, also known as particles, are propagated from the state predicted60

by the model (referred to as the background or forecast state) to states whose probability density function matches the posterior

density, through a series of mappings. These gradient descent mappings aim to minimize the Kullback-Leibler divergence

between the posterior density, which is obtained by applying Bayes’ formula, and the sequence of intermediate densities.

The SVGD is a deterministic inference algorithm that converges in the limit of many particles (Del Moral, 2013), but it still

faces the commonly referred problem known as ‘the curse of dimensionality’, for representing densities in high-dimensional65

spaces. This is a common problem in particle filters (Snyder et al., 2008). One of its manifestations is the underestimation of
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the sample covariance and the subsequent divergence of the filter. Zhuo et al. (2018) demonstrated that SVGD often collapses

into the modes of the target distribution, and this drawback becomes more severe with higher dimensions. Additionally, Ba et

al. (2022) have demonstrated that SVGD-based algorithms offer few convergence guarantees. This issue persists even when the

number of particles (or ensemble members) is larger than the dimension of the state. Among these limited cases, convergence70

is achievable in the mean-field regime, which occurs when the number of particles tends to infinity. To improve its convergence

properties, Ba et al. (2022) proposed alternative formulations of SVGD. Furthermore, the SGVD tends to produced biased

samples. Leviyev et al. (2022) solved the bias issue and accelerated the convergence through a Newton method that incorporates

information from the Hessian and also adds noise in order to guarantee asymptotic correction. Gallego and Ríos Insua (2018)

added a noisy term to the SVGD that corrects the bias at any ensemble size. Finally, Ma et al. (2015) offered a complete and75

general framework for designing samplers based on the SVGD that guarantee a correct stationary distribution and facilitate the

exploration of the space.

In the field of geophysical modeling, ensemble-based methods and particle filters are recognized as key frameworks for

data assimilation. Both can incorporate localization methods to enhance their performance. Localization is a well-founded

assumption considering that the state-dependent correlation between physical variables decreases with the distance between80

them. In the context of these frameworks, localization techniques serve the purpose of reducing the dimensionality of the

assimilation process, ensuring accurate integration of observed data into the model state. For the EnKF, localization is typically

achieved by adjusting the influence of observations and the prior error covariances based on their spatial proximity to the

estimation point (Houtekamer and Mitchell, 2001; Hamill and Whitaker, 2001; Whitaker and Hamill, 2002). Developing and

implementing these localization techniques within the EnKF and particle filters are critical for optimizing their effectiveness85

in real-world scenarios with spatio-temporal dynamics.

In particle filters, localization can be implemented in many ways (Farchi and Bocquet, 2018), including resampling-based

approaches. For instance, Penny and Miyoshi (2016) proposed a local particle filter (LPF) that uses observation-space local-

ization to compute independent analyses at each grid point. By applying deterministic resampling and smoothing the analysis

weights across neighboring points, the LPF effectively mitigates particle degeneracy and enhances performance in highly non-90

linear and non-Gaussian scenarios. While that work demonstrates the advantages of resampling-based localization, alternative

particle flow-based methods avoid resampling and apply continuous transformations to particles from the prior density to the

posterior.

Hu and van Leeuwen (2021) addressed the application of the Particle Flow Filter (algorithm based on what we call MPF) in

high-dimensional systems, evaluating its performance in a Lorenz-96 system with 1,000 variables and 20 particles, observing95

25% of the state variables and using three different observation operators. To avoid the problem of marginal distribution

collapse in sparsely observed, high-dimensional settings, they proposed the use of a matrix-valued kernel, noting that a scalar

kernel failed in these scenarios. They implemented a preconditioning matrix within the particle flow formulation to accelerate

convergence. This matrix was chosen as the localized prior covariance matrix, which was localized using a Schur product

with a distance-decaying matrix. This approach resulted in the cancellation of the prior covariance matrix in the particle flow100
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expression. Its performance was comparable to the LETKF and did not require explicit covariance inflation. This method was

also applied to a full atmospheric model in Hu et al (2024).

In this work, two localization schemes in the MPF are introduced to reduce dimensionality and mitigate the problem of the

curse of dimensionality in the MPF. These schemes are evaluated in the two-scale Lorenz model using both total and partial

observations and nonlinear observation operators.105

The work is structured as follows: section 2 introduces two LMPFs methodologies, section 3 describes the experimental

design, section 4 presents the results of the experiments and section 5 draws the conclusions of the work.

2 Methodology

2.1 Mapping particle filter’s review

The Mapping Particle Filter (MPF), introduced by Pulido and van Leeuwen (2019), is a non-parametric deterministic data110

assimilation method based on sample points, i.e., particles. It involves the transformation of the sample states from a prior

density function to a posterior density by passing through intermediate states. These intermediate states are driven by an

interacting particle flow designed to minimize the Kullback-Leibler divergence (KL) between a kernelized distribution of the

sample states and the target posterior distribution. Subrahmanya et al. (2025) presents a general formulation to minimize the

KL divergence. It formulates the flow field using the Fokker-Planck equation to evolve particles and sample the posterior115

distribution without using a reproducing kernel Hilbert space.

In the MPF, based on a hidden Markov model, a state vector evolves over time using a dynamical model and is observed

using an observational model simultaneously,

xk =M(xk−1,ηk), (1)

yk =H(xk,νk), (2)120

where xk ∈ RNx represents the state at time k, ηk denotes the random model error, yk ∈ RNy are the observations, H is the

observation operator, and νk represents the observational error. Here, a general framework is presented in which both model

and observational errors can be non-additive.

The target density function of the particle flow corresponds to the posterior probability density using Bayes’ formula during

the assimilation stage,125

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (3)

This probability density function delineates the analysis states by capturing the likelihood of the forecast given a particular

set of observations and a specified prior density.

Consider a set of Np particles {x(1:Np)
k−1 } that samples the posterior density at time k− 1. To obtain a state that matches the

posterior density at time k, the MPF iteratively computes intermediate states from the prior to the target. The particles that130

sample the prior density at time k are states that undergo dynamical evolution from the particles that sample the posterior
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density at time k−1, denoted as {xf(j)k = x
(j)
k,1 =M(x

a(j)
k−1,η

(j)
k )}Np

j=1, where the second subscript represents the pseudo-time

of the mapping iteration. The superscript f(j) indicates the jth particle of the forecasted states, and a(j) indicates the jth

particle of the analysis states (previous estimates). At each iteration, the particles are transformed by

x
(j)
k,i = T (x

(j)
k,i−1) = x

(j)
k,i−1 + ϵv(x

(j)
k,i−1), (4)135

where T represents the iteration mapping, v represents the velocity of the particle flow in pseudo-time, ϵ represents the step size

of the mapping. It may be considered fixed or estimated adaptively by means of stochastic optimization algorithms (Kingma

and Ba, 2014).

The velocity seeks to minimize the Kullback-Leibler divergence between the target posterior density function, and the

density of the intermediate states. Therefore, the sample from the prior density is transformed towards a sample from the140

posterior density through a set of discrete transformations, which in the infinitesimal limit may be interpreted as a flow in the

state space.

MPF is inspired by the Stein Variational Gradient Descent method (Liu and Wang, 2016) which is kernel-based. These

methods are algorithms that rely on kernel functions to measure similarities between state vectors from different particles.

The MPF selects a space of functions known as the unit ball of a reproducing kernel Hilbert space (RKHS), denoted as F.145

The optimization task is to find v ∈ F that indicates the steepest descent direction of the Kullback-Leibler Divergence DKL

between the target posterior density and the intermediate density.

By choosing an isotropic kernel K and given a set of particles {x(1:Np)
k,i−1 } representing a sample of the intermediate density

at pseudotime i− 1, the gradient of the Monte Carlo integration of the KL divergence is computed as:

v(x) =
1

Np

Np∑
j=1

[
K(x

(j)
k,i−1,x)

(
∇

x
(j)
k,i−1

log p(x
(j)
k,i−1)+∇

x
(j)
k,i−1

logK(x
(j)
k,i−1,x)

)]
. (5)150

The first term of eq. (5), called the kernel-smoothed gradient of the posterior density, acts as a central force guiding the samples

from an initial distribution density function towards the modes of the posterior density. The second term acts as the repulsive

force and prevents the particles from collapsing into modes of the posterior. Note that the variables in eq. (4) and eq. (5) are

nondimensionalized by proper scaling as in previous works (Pulido and van Leeuwen, 2019; Liu and Wang, 2016; Lu et al,

2019). To consider dimensional variables one may rewrite ϵ=Dδt, whereD is a diffusion coefficient and δt is the pseudo-time155

step. In that case, the diffusion coefficient controls the optimization convergence rate as in gradient flows (Jordan et al., 1998)

and must be incorporated into the velocity term. In this work, however, we keep ϵ as the single effective parameter controlling

the convergence rate and adapt it during gradient descent using low-order momentum estimates (Kingma and Ba, 2014).

Radial basis functions are used as kernels in this work,

K(x,x′) = e−
1
2∥x−x′∥2

Σ , (6)160

where ∥x−x′∥2Σ = (x−x′)⊤Σ−1(x−x′) denotes the square of the Mahalanobis distance and Σ is referred to as the kernel co-

variance matrix. This matrix needs to be specified at the beginning of the process. In this work, it is assumed to be proportional

to the forecast covariance matrix, though other approaches for defining it are possible.
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The gradient of the logarithm of the posterior density requires the analytical forms of the prior density and the likelihood

function. In this work, observational errors are assumed to be additive and Gaussian, but the framework is general and other165

observational error distributions may be readily considered. The resulting gradient of the log posterior density, evaluated at

x
(j)
k,i−1 is:

∇
x
(j)
k,i−1

log p
(
x
(j)
k,i−1

)
=H⊤R−1

k

(
yk −H

(
x
(j)
k,i−1

))
+∇

x
(j)
k,i−1

log p(x
(j)
k,i−1|y1:k−1). (7)

The first term is the observation likelihood function, in which H is the observational operator, (∈ RNy×Nx), and H denotes

the tangent linear observation operator, H= dH
dx (x), while R stands for the observational error covariance matrix (∈ RNy×Ny ).170

The second term in eq. (7) is the gradient of the logarithm of the prior density.

In the case of a Gaussian prior density, where

p(x
(j)
k |y1:k−1) = Z · e

− 1
2

∥∥∥x(j)
k,i−1−xk,0

∥∥∥2

Bk , (8)

the second term is reduced to

∇
x
(j)
k,i−1

log p(x
(j)
k |y1:k−1) =−B−1

k

(
x
(j)
k,i−1 −xk,0

)
, (9)175

where Z is the normalizing constant, Bk is the prior or background covariance matrix and xk,0 is the prior mean. For sequential

Monte Carlo, the prior density in eq. (9) is given by the forecast density, such that Bk = P̂f
k .

Alternatively, if we assume the prior density is a Gaussian mixture based on the forecast particles, the prior is

p(x
(j)
k |y1:k−1) = Z · exp

{
−1

2

∥∥∥x(j)
k,i−1 −µk,i,j

∥∥∥2
Qk

}
, (10)

where µk,i,j =
∑Np

m=1ψkijmM(x
(m)
k−1)∑Np

m=1ψkijm

are the Gaussian centroids, ψk,i,j,m = exp

[
− 1

2

∥∥∥x(j)
k,i−1 −M(x

(m)
k−1)

∥∥∥2
Qk

]
that represents180

the adaptive weights, and Qk represents the covariance matrix of the Gaussian mixture . Then, the second term in eq. (7) results

in

∇
x
(j)
k,i−1

log p(x
(j)
k |y1:k−1) =−Q−1

k

[
x
(j)
k,i−1 −

∑Np

m=1ψkijmM(x
(m)
k−1)∑Np

m=1ψkijm

]
, (11)

If the model is stochastic with additive Gaussian errors, eq. (11) is exact (Pulido and van Leeuwen, 2019).

To illustrate the practical implementation of this approach, we evaluate eq. (5) under the assumption of a Gaussian prior185

distribution with a radial basis function kernel,

v(x) =
1

Np

Np∑
j=1

{
e
− 1

2

∥∥∥x(j)
k,i−1−x

∥∥∥2

Σ

[
H⊤R−1

k

(
yk −H

(
x
(j)
k,i−1

))
−B−1

k

(
x
(j)
k,i−1 −xk,0

)
−Σ−1

k

(
x
(j)
k,i−1 −x

)]}
. (12)

The computational cost of a single pseudo-time iteration in the Gaussian-mixture prior case is

O
(
N2
xN

2
p +N2

yNp+NxNyNp
)
, (13)
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where the first term corresponds to the kernel and its gradient calculation, while the second and third terms correspond to the190

computational cost of the likelihood. Assuming that the matrix inversion can be performed in Oinv(Nx), the overall computa-

tional cost becomes

O
(
Oinv(Nx)+Ni

[
N2
xN

2
p +N2

yNp+NxNyNp
])
, (14)

where Ni denotes the number of pseudo-time iterations.

2.2 Localization methods195

The underlying assumption in the two developed localization methods is that on average, error correlations decay with the

physical distance so that when the distance between two variables is larger than a given threshold known as the localization

radius, the correlation is assumed to be negligible. The correlations of these far points are neglected so that it becomes feasible

to produce an inference using only the points of the background state and the observations within the localization radius.

This reduction in algorithmic complexity allows to reduce sampling noise and enhance the quality of the analysis for high-200

dimensional state spaces.

Both Hu and van Leeuwen (2021) and the present work address the challenge of applying MPF in high-dimensional systems,

but through different approaches. Hu and van Leeuwen focus on an intrinsic modification of the particle interaction mechanism

by transitioning from a scalar kernel to a matrix kernel; within the matrix kernel, they assume the distance between particles is

independent for each component of the state vector. In addition to the kernel modification, their work also applies localization205

to the prior covariance matrix through a Schur product with a distance-decaying correlation matrix. In contrast, this work starts

from a localization assumption, and applies it coherently to both the posterior distribution and the kernel. This results in explicit

localization schemes that restructure how the optimization process is applied in state space, thereby modifying the sequencing

of the optimization process.

The α-localization algorithm assumes that the kernels are localized around each variable, so that distances between particles210

are measured in a low dimensional space. Furthermore, it uses a localized prior covariance matrix, for instance, by keeping

blocks of the global sample covariance via the Schur product. The state updates are determined globally.

On the other hand, the β-localization algorithm assumes the full local variational mapping process is localized around

each variable. In terms of the localization assumption, this method is similar to the localization in Hunt et al. (2007) and has

also some resemblance to the methodology implemented in Hu et al (2024). For each variable, the optimization is conducted215

separately considering the observations and the prior state variables within the localization radius.

2.2.1 α-Localization

Given a variable xl of the state x, we consider a neighborhood Cl of xl and denote the variables within this neighborhood as

x̃l = {xl′ ; l′ ∈ Cl}. We assume that the variables located outside of Cl are statistically independent of xl,

p(xl|x) = p(xl|x̃l). (15)220
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For simplicity, we assume a single physical type of variable in the state space. In this approach, the local state x̃(j)k,i,l is defined

with four indices: k (time index), i (pseudo-time iteration index), l (space index) and j (particle index). To avoid overclutter,

time and iteration indices are omitted. In a one dimensional space for a localization radius ℓ, the vector of neighbor variables

is x̃l = {xl′ ; l− ℓ≤ l′ ≤ l+ ℓ} with dimension Nx̃ = 2ℓ+1.

The global update of variable xl from eq. (5) is225

vl(x) =
1

Np

Np∑
j=1

[
K(x(j),x)

(
∂
x
(j)
l

log p(x(j))+ ∂
x
(j)
l

logK(x(j),x)
)]
. (16)

where ∂
x
(j)
l

is the partial derivative with respect to the l variable. Since the variables beyond the localization radius are assumed

to be uncorrelated, we approximate eq. (16) by considering a local kernel following Wang et al. (2018) in which only the

variables within the localization radius around l are considered. This local kernel is denoted as Kl(x̃
(j)
l , x̃l).

The local kernel is specific to each grid point xl. It calculates the Mahalanobis distance between particles using a state vector230

that is centered at xl and includes only the neighboring points that fall within the defined localization radius.

The local kernel is defined with a radial basis function as the global one, but with a kernel covariance matrix defined as the

Schur (element-wise) product of a localization matrix and the global covariance matrix, Λl = Γl ◦Σ, where the localization

matrix Γl could be a block matrix around l with one’s and zeros, as in eq. (17), or some decaying coefficient with the distance

of the rest of the points to the l-th grid point (e.g. Gaspari and Cohn (1999) factor). The neighborhood variables x̃l are the ones235

where Γl is not null.

(Γl)mn =

1 if l− ℓ≤m,n≤ l+ ℓ

0 otherwise
(17)

The resulting local kernel is:

Kl(x̃l, x̃
′
l) = e

− 1
2∥x̃l−x̃′

l∥2

Λl (18)

The crucial feature of the local kernel is that the Mahalanobis distance calculation only takes into account low-dimensional240

states. The local flow in the l variable is therefore approximated by

vl(x̃l)≈
1

Np

Np∑
j=1

[
Kl(x̃

(j)
l , x̃l)

(
∂
x
(j)
l

log p(x̃
(j)
l )+ ∂

x
(j)
l

logKl(x̃
(j)
l , x̃l)

)]
(19)

The gradient of the posterior density will be calculated following eq. (7) with these modifications:

– For the gradient of the likelihood term, it is calculated globally using the first term of eq. (7), resulting in a matrix in

RNx×Np . The term used in eq. (19) corresponds to the l-th row of that global matrix.245

– For the prior density term, we calculate it according to eq. (9) or eq. (11) (depending on our hypothesis), but we use the

localized vector x̃l and apply the localized covariance matrix Γl ◦Bk or Γl ◦Qk. This approach is the same as in the local

kernel calculation in eq. (18).
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We could also derive the local velocity, eq. (19), under the assumption that state-space covariance matrices are l-block

diagonal while keeping the state vectors global. In preliminary experiments, we evaluated a hybrid methodology in which250

the kernel was local, with a block Λl matrix, but the prior density was global with l-banded background covariance matrices.

However the performance of this hybrid methodology was suboptimal.

Once the complete velocity vector is reconstructed with each component computed separately, the global states in the

next pseudo-time are determined by eq. (4). Therefore, covariance inversion and the mappings are global. In algorithm 1,

a pseudocode of the α-localization algorithm is presented. In this case, the time index is omitted, while the pseudo-time,255

space, and particle indices are retained. The computational complexity of the LMPF-α using a Gaussian-mixture prior is

O
(
Oinv(Nx, ℓ)+Ni

[
Nx(2ℓ+1)2N2

p +N2
yNp+NxNyNp

])
, where Oinv(Nx, ℓ) is the cost of inverting an ℓ-banded matrix.

2.2.2 β-Localization

The β-localization involves a physical partitioning of the state space centred around each variable based on distance between

variables. Subsequently, it leverages the same principles of the global MPF to each partition.260

This methodology is based on Zhuo et al. (2018) in which the KL divergence is decomposed as,

DKL (q||p) =DKL (q(xl|x¬l)q(x¬l)||p(xl|x̃l)p(x¬l))+DKL (q(x¬l)||p(x¬l)) (20)

where x¬l is composed by all the state variables except xl. Therefore, we can solve a local minimization problem for xl to find

q(xl|x̃l) and by keeping fixed the rest, q(x¬l).

This approach guarantees that the analysis is performed independently for each state variable, with no dependency on265

intermediate updates of other grid points. However, the neighborhood variables are considered to define the map for each state

variable. This means that while the local analysis at a given grid point depends on nearby observations, the convergence at each

point remains independent. This reminds the application of normalizing flows with transformations in each direction (Tabak

and Turner, 2012). These local minimizations are iterated along l.

The β-localization algorithm consists of applying the global MPF to the neighborhood of xl. For a given localization radius270

ℓ, we use the neighborhood vector as in the α-localization: x̃l. The local velocity is defined as the global velocity in eq. (5),

but calculated only over the localized state vector x̃l. Therefore, it considers a kernel as in eq. (6) calculated in the physically

partitioned state. A localized posterior density is also used, in which only the forecast states in the local domain x̃l
f(j) ∈Nx̃l

are considered. Observations within the localization radius are selected. This localization algorithm can only be applied for

observations that have a well-defined location in physical space. For that purpose we define Il as the set of observation indices275

corresponding to the observations that are relevant to the localized state vector x̃l. Specifically, for a one-dimensional domain

this is

Il = {m | the position of observation ym lies within the interval [l− ℓ, l+ ℓ]}. (21)

The localized observation vector ỹl is then defined as the subset of observations whose indices belong to Il:

ỹl = {ym |m ∈ Il}. (22)280
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The blocks of H̃l ∈Nỹl
×Nx̃l

and Rl ∈Nỹl
×Nỹl

are also coherently selected,

H̃l = (H̃)mn with m ∈ Il,n= l− ℓ, . . . , l+ ℓ, (23)

Rl = (R)mn with m,n ∈ Il. (24)

Thus, we are using observations from a subspace and their associated error covariance related to that subset of observations.

Additionally, for large localization radii where distant spurious covariances might still occur, a length-decaying factor could be285

useful.

For each grid point in the domain, i.e. state variable, the following iterative transformation is applied:

x̃
(j)
i+1,l = x̃

(j)
i,l + ϵvl(x̃

(j)
i,l ) (25)

The convergence is independent for each grid point. To obtain the global analysis vector, only the element at position l from

this local analysis vector is kept. This process is repeated for every spatial point on the grid, i.e. variable of the state vector.290

When updating a given grid point in the β approach, the values of all other grid points are taken from the original prior state

of the particle, not from previously updated points in the same cycle. This avoids any dependence on the order in which the

domain is processed.

The order of pseudo-time iterations and localized step iterations is reversed between the two methodologies. In the α ap-

proach, for each pseudo-time step, the entire domain is updated, resulting in a global state for each pseudo-time step. In contrast,295

in the β approach, for each local point in the domain, all pseudo-time steps are iterated independently before moving to the

next state variable, leading to localized convergence without a global state. The exchange of iterations is easier to observe by

looking at the algorithms of LMPF-α in algorithm 1 and LMPF-β in algorithm 2.

Algorithm 1 LMPF-α: Global update
Compute global Σ

# Number of pseudo time step iterations is denoted as Nit

for i= 1 to Nit do

for l = 1 to Nx do

x̃(j)
i,l ← x

(j)
i,m , with m= l− ℓ, . . . , l+ ℓ and j = 1, . . . ,Np

Compute Λ−1
l

Compute localized log posterior

Compute v
(j)
l

(
x̃(1:Np)

i,l

)
as in eq. (19)

x
(j)
i+1,l← x

(j)
l + ϵv

(j)
l

(
x̃(1:Np)

i,l

)
end for

# Global state updated at pseudo-time step i+1

end for

Algorithm 2 LMPF-β: Local update
for l = 1 to Nx do

x̃(j)
l ← x

(j)
1,m, with m= l− ℓ, . . . , l+ ℓ and j = 1, . . . ,Np

for i= 1 to Nit do

Compute Σ−1 in the local set {x̃(1:Np)

i,l }

Compute v(j)
l

(
x̃(1:Np)

i,l

)
x̃(j)
i+1,l← x̃(j)

i,l + ϵv(j)
l

(
x̃(1:Np)

i,l

)
end for

Retain center value from x̃(j)
Nit,l

# Local convergence at point l

end for
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The computational cost of the LMPF-β is O
(
NxOinv(2ℓ+1)+NxNi

[
(2ℓ+1)2N2

p +N ′2
y Np+(2ℓ+1)N ′

yNp
])

, where

N ′
y denotes the maximum number of observations within any localized domain. This is equivalent to O(Nx)OMPF(2ℓ+300

1,N ′
y,Np), which represents the computational complexity of the global MPF algorithm.

3 Numerical setup

The global MPF and the two variants of the localized MPF are assessed in experiments with synthetic observations. In these

experiments, observations are generated based on a known dynamical model. The true state is the solution of the known

model, referred to here as the nature model. In contrast, the forecast model is a surrogate for the nature model, so we consider305

the assimilation experiments in the presence of model error. The surrogate model is used to produce forecasts within the

assimilation system, xf(j)k =Msu(x
a(j)
k−1). After evolving the previous analysis ensemble states, xa(j)k−1 with this surrogate

model, the data assimilation step is conducted, and so on. This approach allows us to examine the assimilation scheme with

a known true state in the presence of model errors. In these proof-of-concept experiments, the nature model is the two-scale

Lorenz system (section 3.1), while the surrogate model is the one-scale Lorenz (Section section 3.2) so that the source of model310

errors is the lack of the explicit representation of small-scale dynamics. Both models are deterministic, with no explicit additive

stochastic error terms.

3.1 Description of the true model

The nature model is defined by the two-scale Lorenz system equations (Lorenz, 2005):Ẋn =−Xn−1(Xn−2 −Xn+1)−Xn+F − hc
b

∑nJ
j=J(n−1)+1Yj n= 1, · · · ,NLS

Ẏm =−cbYm+1(Ym+2 −Ym−1)− cYm+ hc
b Xint[(m−1)/J]+1 m= 1, · · · ,NSS

(26)315

within a cyclic domain, i.e,XNLS+1 =X1,X0 =XNLS
, andX−1 =XNLS−1; YNSS+1 = Y1, YNSS+2 = Y2 and Y0 = YNSS

.

NLS is the number of large-scale (LS) variables, and NSS the number of the small-scale (SS) variables. The equations are

solved using a fourth-order Runge-Kutta scheme. The parameters of the nature model are specified in table 1. They correspond

to the standard configuration of the two-scale Lorenz system following Wilks (2005).

3.2 Description of the surrogate model320

The forecast model employed in the data assimilation system is the corresponding one-scale Lorenz system (Lorenz and

Emanuel, 1998). This model exclusively replicates the large-scale equations so that the influence of the small-scale variables

must be parameterized. As the true model, the equations are solved using a fourth-order Runge-Kutta scheme. The equations

for the one-scale case are

Ẋn =−Xn−1(Xn−2 −Xn+1)−Xn+ f(Xn) n= 1, · · · ,NSU (27)325

within a cyclic domain.NSU is the number of variables of the surrogate model. In order to be consistent,NSU must be equal to

NLS . The external forcing,f(Xn), is defined as f(Xn) = F+f∗(Xn) and consists of a linear parameterization of the effects of
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small-scale dynamics. The parameterization coefficients, F and f∗, are estimated using the methodology proposed by Pulido

et al. (2016). The parameters of the forecast model are specified in table 2.

Table 1. True model parameters.

Variable Value Variable Name

NLS 40 Large-scale dimension

NSS 1280 Small-scale dimension

J 32 NLS/NSS

F 26 External forcing

c 10 Time scale-ratio

b 10 Space scale-ratio

h 1 Coupling constant

dt 1.25×10−3 Time integration step

Table 2. Surrogate model parameters.

Variable Value Variable Name

NSU 40 Surrogate model dimension

f(Xn) 26 +f∗(Xn) Forcing terms

f∗(Xn) 0.73 ·Xn +0.91 Parameterized forcing

dt 5×10−3 Time integration step

3.3 Experimental setup330

3.3.1 Initial state and observations

To generate the synthetic observations, an initial true state xt0 is obtained after integrating the nature model from random

initial condition over a long period. The nature model is then evolved from this initial true state for Nt = 10,000 cycle times.

Observations are then generated from the large-scale part (LS) of the true states
(
xtk

∣∣∣
LS

)
every 0.05 time units,

yk =H
(
xtk

∣∣∣
LS

)
+νk, (28)335

where observational errors are unbiased with variance Rk, i.e. νk ∼N (0,Rk) and xtk represents the evolution of the nature

model xtk =Mt(xtk−1). The observation operator is assumed to be constant over time. We assume that the observational

covariance matrix is also fixed, and diagonal, i.e.

Rk = σ2
R · INy×Ny

(29)

Three different observational operators are used: A linear operator H, where H(x) = x and σ2
R = 0.5. A square operator340

H, where H(x) = x2 and σ2
R = 0.5. A logarithmic operator H, where H(x) = log(|x|+1) and σ2

R = 0.05. The logarithmic

operator log(|x|+1) was chosen instead of log(|x|) because, for values of x close to zero, the observation operator may

diverge and worsen the performance of the assimilation, making it necessary to apply a quality control routine. Also, following

Kurosawa and Poterjoy (2021), a smaller observation error is used to avoid filter divergence.

Experiments for each observation operator were conducted with full observations (that is, Ny = 40) and with partial obser-345

vations (that is, Ny = 20 with observations at every other grid point). In addition, each combination of observation operator

and observation network was run with Np = 20 and Np = 50 particles.
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To set the Np initial states of the particles, we use randomly chosen times from a long simulation of the surrogate model.

This selection is used to create the first ensemble, whose particles are independent of the initial true state.

3.3.2 Specifications of the MPF350

As mentioned, a Gaussian radial basis function is used as the kernel in eq. (6), with its covariance matrix taken to be propor-

tional to the forecast covariance estimated from the sample,

Σ= γ · P̂f =
γ

Np− 1

Np∑
j=1

(xf(j) −xf )(xf(j) −xf )⊤ (30)

where γ is a bandwidth hyperparameter and xf denotes the sample mean of the forecasts across the particles. In this work,

we tune this γ hyperparameter for the experiments using a brute-force search. The step size of the mapping ϵ is determined355

adaptively using the Adam optimization method (Kingma and Ba, 2014) with up to 500 iterations of pseudo-time in each cycle.

Experiments with different observation operators and observation networks were conducted using 20 and 50 particles. For

two key experimental setups—the fully observed linear case and the partially observed logarithmic case—we first performed

sensitivity analysis by varying the localization radius, which led us to establish a default value of ℓ= 3 for all subsequent

experiments. We then conducted additional sensitivity tests for these same two scenarios to assess performance dependence360

on particle number. Finally, for these two scenarios, to evaluate algorithm behavior under large model error conditions, we

conducted experiments where the linear parameterization was omitted from the surrogate model, significantly increasing the

model error.

A non-Gaussian posterior density may be the result of a non-linear observation operator or a non-Gaussian prior density

distribution resulting from non-linear forecasts. One of the objectives of this work is to evaluate the performance of the MPF365

in experiments with two prior density distributions: a Gaussian and a Gaussian mixture. In the Gaussian experiments, the

resulting gradient of the logarithm of the prior density function is given by eq. (9), in which we take B= P̂f . In the global and

α-localization cases, this matrix is scaled by a Gaspari-Cohn decaying factor. However, in β-localization, scaling of the prior

covariance matrix is not required for small localization radii and thus will not be applied.

In the Gaussian mixture experiments, we use the expression given in eq. (11) for the density. The matrix Qk is defined as370

Qk = ξ ·Pf where ξ is a bandwidth hyperparameter of the mixtures. Tuning this hyperparameter contributes to enhancing the

performance of the MPF. The number of Gaussians corresponds to the number of particles.

In preliminary experiments, we found that a multiplicative or additive inflation factor is not required in the MPF even when

applied over an extended period. In fact, adding an inflation factor degraded the performance of the filter.

4 Results375

In each experiment, a comparison is made between the global MPF, both localization schemes, the Ensemble Transform

Kalman Filter and the Local Ensemble Transform Kalman Filter (Hunt et al., 2007) with ℓ= 3. We compare the LMPFs
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against the LETKF and ETKF as these represent classical, computationally efficient ensemble filters that provide good baseline

performance and are widely used in operational data assimilation systems.

The Root Mean Square Error (RMSE) between the true state and the analysis ensemble mean, and the spread of the analysis380

ensemble are the primary metrics used to compare the performance of each experiment. The time series consists of 10,000

cycles, with the initial 1,000 cycles designated as the spin-up period and excluded from the analysis. The temporal averages of

the RMSE and spread are then calculated over the subsequent 9,000 cycles. Besides, to evaluate the dependence on the initial

conditions, for each experiment, 10 realizations were conducted. The results show the mean of these realizations and the error

bar represent the sample standard deviation.385

Before the experiments, we conducted a hyperparameter optimization. In the case of Kalman filters, this involves a multi-

plicative inflation factor that minimizes the RMSE of the analyses.

For the MPF and its local versions, one of the key hyperparameters is the proportionality factor of the kernel sample covari-

ance γ. For experiments assuming a Gaussian mixture, another hyperparameter is the width of the Gaussian mixtures, ξ. Thus,

the optimization is performed in the 2D space defined by γ and ξ for the Gaussian mixture case by brute force. The hyperpa-390

rameters are selected to minimize RMSE in order to examine how the methodologies represent ensemble spread under optimal

RMSE conditions. The goal is to evaluate whether the methodologies produce a reasonable spread representation at their lowest

RMSE without explicitly tuning for it. As an example of the hyperparameter tuning, fig. 1 shows the optimization of the global

MPF with Gaussian mixture prior in a fully observed linear case using 20 particles. As illustrated in fig. 1, the dependence of

RMSE on γ and ξ is nontrivial and non-intuitive, which prevents the definition of a simple rule of thumb. Optimization for the395

different variants of the MPF and the ensemble Kalman filters is performed for each particle size and observation network. In

section 5 we present the optimal parameters for some of the experiments.

Figure 1. Time and variable averaged RMSE for the MPF experiment as a function of the bandwidth of the Gaussian mixtures ξ and the

bandwidth of the kernel γ.
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For the experiments shown in this work with the two-scale Lorenz system and its surrogate one-scale Lorenz model, a

model integration without data assimilation achieves an RMSE of 6.78 and a spread of 6.55. The RMSE of 6.78 represents the

maximum error of the forecast model without assimilation, providing a top value for evaluating the impact of incorporating400

observational data in the assimilation process. Hereafter, we refer to this value as the NoDA-RMSE.

4.1 Linear observational operator

The first experiment evaluates the performance of the local mapping particle flow filters under a linear observation operator,

as in eq. (28). Figure 2 shows the results for the fully observed (left panels) and partially observed (right panels) scenarios,

employing 20 in fig. 2a and 50 particles in fig. 2b. Black dots and crosses represent Gaussian filters or MPFs that assume405

Gaussian priors. Red dots and crosses represent particle flow filters with Gaussian mixture priors.

(a) Np = 20

(b) Np = 50

Figure 2. RMSE and spread in the linear observation operator for 20 and 50 particles, under both fully and partially observed scenarios.

All MPF experiments exhibit better performance than ETKF for the 20-particle experiments with a full observed state, as

in fig. 2a, except for the global MPF using a pure Gaussian prior PDF. This last case converges to an RMSE of 0.644±0.001
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but with an extremely high spread value (6.70±0.04). On the other hand, when a Gaussian mixture prior density is utilized,

represented by the red dots, all three MPF experiments demonstrate performances similar to LETKF.410

Regarding the spread, MPF and LMPF with pure Gaussian priors tend to have large dispersion. In the case of LMPF-β, the

spread is 0.92 and is not shown. However, this pattern changes in Gaussian mixture experiments, where the spread is much

closer to the RMSE. The global case provides the spread that is closest to the RMSE. It is important to note that these spread

results come from experiments using optimal hyperparameters in terms of RMSE.

Despite the linearity of the observational operator, the model dynamics is non-linear. Consequently, it is expected that415

Gaussian mixtures capture non-linearities more effectively compared to experiments utilizing pure Gaussian priors. This could

explain the better performance of the Gaussian mixture experiments.

The right panel of fig. 2a shows results for partially observed experiments. In the Gaussian prior case, the global MPF

converged to a very high RMSE (1.85±0.03) and is therefore not shown. The localized filters achieve a lower RMSE than

ETKF, and perform similarly than LETKF.420

As in the fully observed scenario, the Gaussian mixture experiments show a significant improvement across all MPFs. The

resulting RMSE is comparable to that of LETKF.

Figure 2b presents the results for the 50-particle experiments. The performance relationships among the experiments are

similar to the previous case, with the notable exception of ETKF, which shows the most significant improvement. In this

case, the Gaussian-prior global MPF achieves convergence, although its RMSE remains higher than that of the Kalman filters.425

Similarly, the Gaussian mixture experiments demonstrate a significant improvement in RMSE.

In the partially observed scenario, the ETKF demonstrates the most significant improvement, and the Gaussian-prior MPF

successfully converges. Additionally, the spread of the Gaussian-mixture prior MPF is closer to the RMSE in the global case.

The localized particle filters exhibit a similar behavior to that observed in the fully observed case.

We note that these experiments use a localization radius of ℓ= 3 which is only optimal for the LETKF with Np = 20.430

The localization radius of ℓ= 3 was fixed in all the experiments to ensure fair comparison across all methods and ensemble

sizes, recognizing that this choice may not be individually optimal for each configuration. Notably, the LMPFs exhibit better

performance for longer radii, so that the ℓ= 3 fixed radius choice does not systematically favor the proposed localization

methods. This setup ensures that differences in performance can be attributed solely to the algorithms themselves rather than

variations in the localization radius.435

4.2 Square observational operator

A square observational operator presents a challenge for data assimilation schemes, as it treats negative and positive true states

with the same absolute value as equivalent, so that the error distributions in the hidden state space are likely to be a bimodal

distribution.

Figure 3a presents the square-H results for the 20-particle experiments. Overall, the RMSE values are smaller compared to440

the linear case. This difference is linked to the choice of model error variance. While σ2
R = 0.5 in both cases, the magnitude
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of nonlinear observations is typically much greater than that of linear observations, resulting in a relatively smaller error in the

nonlinear case.

In the fully observed case, both the ETKF and the global MPF with a Gaussian prior converged to very high RMSE values.

The Gaussian-prior MPF achieved an RMSE>NoDA-RMSE. However, the LETKF and Gaussian-prior LMPFs achieve good445

RMSE performance, though with a significant underestimation of the spread in the LMPF-α. On the other hand, the three

experiments employing Gaussian-mixture priors demonstrate very good performance, similar to the LETKF. The impact of

localization is pronounced in the ensemble Kalman filters (as seen in the ETKF vs. LETKF performance) but has only a minor

effect on the Gaussian-mixture MPFs.

(a) Np = 20

(b) Np = 50

Figure 3. RMSE and spread for the experiments with a square observation operator for 20 (a) and 50 (b) particles, under both fully (left

panels) and partially observed (right panels) scenarios.

In the partially observed case, the ETKF diverged for all inflation parameters tested and the Gaussian-prior MPF achieved450

an RMSE>NoDA-RMSE. LETKF shows a similar RMSE than the Gaussian-mixture particle filters. Figure 3b presents the

results for the 50-particle experiments. In the fully observed scenario, the Gaussian-prior MPF successfully converges, unlike

in the 20-particle case, but with a high RMSE for this observational operator (0.367±0.007) and a significant low spread.
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The ETKF demonstrates a notable improvement in accuracy, outperforming its localized version. A similar effect is observed

in the Gaussian-mixture experiments, where the MPF achieves similar accuracy than its localized counterparts. In this case,455

the Gaussian-mixture particle filters provide a higher spread compared to the Gaussian-prior filters, with the exception of the

Gaussian-prior LMPF-β.

In the partially observed scenario, the ETKF achieves convergence with an RMSE similar to that of LETKF. Once again,

the Gaussian-mixture filters demonstrate the best performance, comparable to the Kalman filters, with the exception of the

global MPF, which showed a very high RMSE value. In this case, the effect of localization is very positive. However, as in the460

20-particle case, all filters significantly underestimate the spread.

4.3 Logarithmic observational operator

Figure 4 shows the performance of the filters in the logarithmic observation operator case, assessing a highly non-Gaussian

regime.

(a) Np = 20

(b) Np = 50

Figure 4. RMSE and spread in the logarithm operator for 20 (a) and 50 (b) particles, under both fully and partially observed scenarios.
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For the 20-particle experiments in fig. 4a, both the ETKF and the Gaussian-prior global MPF achieved very high RMSE465

values in fully observed cases. In the partially observed case, the ETKF reached an RMSE>NoDA-RMSE. Meanwhile, the

LETKF achieves excellent RMSE values with a closely matching spread in the fully observed case. In contrast, the Gaussian-

priors filters exhibit the worst performance, while the Gaussian-mixture prior localized filters show good performance, compa-

rable to the LETKF. While the LETKF shows the best mean RMSE, it exhibits large error bars due to its sensitivity to initial

conditions. The Gaussian-mixture localized filters show slightly higher mean RMSE values, but these fall within the LETKF’s470

error band and have much smaller error bars, resulting in comparable overall performance.

For 50 particles, fig. 4b, the ETKF successfully converges in the fully observed case, showing performance comparable to

that of the LETKF. In this scenario, the Gaussian-mixture particle filters also demonstrate competitive results. In the partially

observed scenario, ETKF and LETKF again show good results, but with large error bar in the case of ETKF. Meanwhile, the

localized Gaussian-mixture filters have performance comparable to LETKF. In the case of LMPF-α, the RMSE falls within the475

LETKF’s error band. The MPF’s in all its versions show smaller sensitivity to initial conditions, particularly in the partially

observed case.

4.4 Sensitivity to the localization radius

The performance of localized particle filters is assessed by varying the radius of localization. This study is made on the linear

fully observed case, and on the logarithm and partially observed case, the most non-Gaussian scenario. The number of particles480

used is 20 and only Gaussian-mixture prior densities are used in the MPFs.

Figure 5 shows the results of the linear experiment. The LETKF achieves a minimum RMSE at a localization radius of ℓ= 3.

This is the main reason why we selected this localization radius to conduct all localized experiments.

Figure 5. RMSE as a function of localization radius for the LMPFs and the LETKF for the linear and fully observed case with Np = 20.

For radii greater than 4, the LETKF degrades more rapidly than LMPFs. The LMPFs tend to converge to the same RMSE

performance as the global MPF when using a localization radius of 18. This suggests that for Np = 20 the local algorithm485

benefits from incorporating distant covariances, even with reduced weights, to improve the estimation at each grid point.
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LMPF-α exhibits a behavior similar to the β-case but results in slightly higher RMSE values and reaches a minimum around

ℓ= 12. However, the difference is small considering that the RMSE as a function of the localization radius is almost flat for

that range of localization scales.

These results reflect the relationship between localization needs and the system’s effective dimensionality relative to the490

ensemble size. For the 40-dimensional single Lorenz dynamics, the number of positive Lyapunov exponents is smaller than the

ensemble size used in these experiments (20 particles). In the case of this surrogate model, using a forcing f = 26, the number

of positive Lyapunov exponents calculated were around 16-17 with the parameterized forcing, f∗, and around 18-19 without

it. With 20 particles exceeding the number of unstable directions, the ensemble in principle provides sufficient rank to capture

the system’s dynamics without requiring strong localization, explaining the optimal performance at larger radii.495

To test this hypothesis, we conducted additional experiments with reduced ensemble size (10 particles), where the ensemble

rank falls below the number of positive Lyapunov exponents.

Figure 6. RMSE as a function of localization radius for the LMPFs and the LETKF for the linear and fully observed case with Np = 10.

The results of this experiment are shown in \cref{LiF_loc_10}. The LETKF exhibits behavior similar to the 20-particle case.

For the localized particle filters, a minimum value appears around \(\ell = 9\). In the case of the LMPF-\(\alpha\), the filter does

not converge for localization radii greater than 14.500

Figure 7. RMSE as a function of localization radius for the LMPFs and the LETKF for the logarithmic and partially observed case with

Np = 20.
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We remind that the experiments are under the presence of model error. This affects the optimal localization radius; in

particular, the LETKF has a longer optimal localization radius for twin perfect-model experiments. In realistic applications,

the presence of model errors is also expected to affect long-range correlations. The MPF appears to behave more robustly to

this effect.

Figure 7 shows the performance of the filters for the logarithmic and partially observed experiments for 20 particles. In this505

scenario, all the filters achieve a minimum RMSE around ℓ= 2,3. The LETKF shows more sensitivity to initial conditions

than the localized filters; however, it achieves slightly lower RMSEs.

4.5 Sensitivity to the particle number

The two extreme experimental setups—fully observed with a linear observation operator, and partially observed with a loga-

rithmic observation operator—are used to evaluate the sensitivity of performance to the number of particles. As in the previous510

subsection, only Gaussian-mixture prior densities are considered. The localization radius is fixed at ℓ= 3, and the experiments

are conducted with particle numbers of 5, 10, 20, 50, and 100.

Global MPF and LMPF-α demonstrate very good performance for small particle numbers in the linear experiment, fig. 8a.

For larger particle numbers, both localized particle filters achieve excellent performance, comparable to that of the LETKF.

(a) Fully observed linear case. (b) Partially observed logartihmic case.

Figure 8. RMSE as a function of particle number for extreme cases.

In contrast, the results for the partially observed logarithmic case, fig. 8b, are unexpected. For a small number of particles,515

only Gaussian-mixture MPFs achieved RMSE less than NoDA-RMSE, although with a high RMSE. At larger particle numbers,

LMPF-α achieves convergence with an accuracy greater than that of the Kalman filters. The performance of LMPF-β is similar

to Kalman filters.

The performance of the LETKF in this non-Gaussian experiment deteriorates for ensembles of 50 and 100 particles. A

plausible explanation is that certain ensemble members diverge and fail to return to the Lorenz attractor, an effect that is520
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found in deterministic filters (Amezcua et al., 2012). The underlying reason for this behavior is that the data assimilation in

Kalman filters only scales the prior density without changing its shape. Consequently, if the prior density contains outliers, they

persist in the posterior density and can grow towards the next data assimilation cycle. LMPFs do not degrade in performance

with increasing numbers of particles and appear to be unaffected by this issue, as the particle communication during pseudo-

time iterations modifies the prior’s shape, effectively removing outliers. This issue in the LETKF could be mitigated through525

techniques such as applying random rotations to the analysis perturbations. However, for the purpose of this comparison, we

implement a standard LETKF without additional enhancements to provide a consistent baseline against which to evaluate the

proposed MPF and LMPFs methods. Interestingly, neither the MPF nor LMPFs exhibit this performance degradation with

increasing ensemble size.

4.6 Sensitivity to large model error530

In all previous experiments, a linear parameterization of small-scale effects was used. This results in a relatively small model

error. To evaluate a large model error scenario, we neglect the linear term of the parameterization f∗ (table 2) and only use the

external forcing f(Xn) = 26 in the surrogate model. As said before, the NoDA-RMSE for the parametrized surrogate model

is 6.78 and the spread is 6.55. For this large model error environment, the RMSE is 6.86 and the spread reaches 9.01.

Both Kalman and particle filters are tested for the linear and logarithmic observation operators, using ℓ= 3 for the local535

filters and Np = 20 particles. Again, we use the localization radius that is optimal for the LETKF, and the hyperparameters γ,

ξ and inflation are tuned for these cases. The results are displayed in fig. 9. In these large model error conditions, the ETKF

achieved an RMSE>NoDA-RMSE.

Figure 9. RMSE and spread for the large model error experiments using linear and fully observed cases and logarithm and partial observations

with 20 particles and a localization radius of 3.

In the linear case, shown in fig. 9a, the Gaussian-mixture particle filters have a similar performance in terms of RMSE.

Nevertheless, the spread of the global MPF is strongly underestimated. Localized particle filters show higher spreads.540
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In the logarithmic scenario, the LETKF converged to an RMSE>NoDA-RMSE. In contrast, the MPF and its localized

variants handle model error more effectively and perform better in this challenging case (fig. 9b). However, all three filters

exhibit rather high RMSE values. Among the tested methods, LMPF-α achieves the best performance in this setup.

5 Conclusions

In this work, two localization schemes for the mapping particle filter were proposed. Both schemes are based on the hypothesis545

that distant observations do not impact the analysis, but their approaches differ. LMPF-α first calculates a global kernel co-

variance matrix and inverts it. Then, it performs local transformations at each pseudo-time step to obtain a global intermediate

state vector in each step. Therefore, convergence is achieved globally. On the other hand, LMPF-β applies the global algorithm

in small regions, retaining the center value of each local analysis to obtain a smooth solution. Kernel covariance matrices are

calculated in each small domain. Hence, each local analysis achieves convergence independently.550

Both frameworks were tested in different setups and compared with the ETKF, LETKF, and the global MPF. In general,

there is a clear positive impact when taking the prior probability density as a Gaussian mixture compared to a Gaussian prior

density.

For both linear and non-linear operators, LMPF’s improve estimation compared to their global version when a Gaussian

prior is used and provide slightly better estimations when Gaussian mixtures are used. Furthermore, LMPF’s provide better555

estimates compared to the ETKF and competitive performances against the LETKF.

In the linear case, LMPF’s show very good estimations in terms of RMSE. In the squared case, Gaussian-mixture filters

show very good estimations. Both Gaussian and non-Gaussian filters show poor spread representation, especially in partially

observed scenarios. In the logarithmic case, Gaussian-mixture LMPF’s provide competitive solutions against the LETKF.

Again, the partially observed scenario degrades the performance of particle filters while Kalman filters are less affected. LMPFs560

present a very good performance in the logarithmic operator case under weak model error similar to LETKF.

When the number of particles varies, Gaussian-mixture MPF and LMPF-α show better estimates at low particle numbers.

For the experiments with large model error the MPF and LMPF exhibit robust performances and successfully converge while

ensemble based Kalman filters did not deal well with large model errors in the logarithmic experiment. However, it is im-

portant to highlight that all these experiments required brute-force optimization of two hyperparameters in Gaussian mixtures565

experiments which is computationally expensive.

The implementation of the particle filter for data assimilation in one-scale Lorenz model experiments represents an essential

first step in validating our newly developed methodology. Working with simplified models provides a crucial foundation before

advancing to more complex atmospheric forecast models, a direction which has already been explored by Hu et al (2024),

suggesting that applying the proposed LMPF methodologies in large atmospheric models would also be feasible.570
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Appendix A

The optimal hyperparameters for some of the the experiments are presented, where Kalman filters report the inflation factor,

Gaussian-prior particle filters show the γ parameter, and Gaussian-mixture filters display the γ and ξ parameters.

Table A1. Optimal parameters for the linear case.

FO PO

20 50 20 50

ETKF 1.8 1.6 1.5 1.4

LETKF 1.49 1.46 1.32 1.3

MPF-Gauss 2000 250 750 150

LMPF-α-Gauss 175 200 60 70

LMPF-β-Gauss 83 83 40 40

MPF-GM 34.0/1.0 24.0/0.6 19.0/0.75 10.0/0.75

LMPF-α-GM 1.9/1.5 1.6/1.0 1.9/1.0 1.25/1.0

LMPF-β-GM 10.0/0.4 1.5/2.6 2.3/2.0 1.5/1.75

Table A2. Optimal parameters for the log case.

FO PO

20 50 20 50

ETKF 2.8 1.4 - 1.3

LETKF 1.5 1.3 1.3 1.2

MPF-Gauss 250 115 500 100

A-Gauss 40 50 10 15

B-Gauss 20 25 10 12.5

MPF-GM 15.0/0.9 7.6/1.7 5.6/0.7 2.2/0.5

A-GM 2.0/0.7 1.3/0.5 0.4/0.2 0.25/0.2

B-GM 2.5/1.5 1.6/1.1 0.5/0.3 0.3/0.25
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