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Abstract. Strain localization is among the most challenging mechanical phenomena for computational Earth sciences. Ac-

curately capturing it is difficult because strain localization initiates spontaneously, is self-accelerating, and its characteristic

length and time scales are typically significantly smaller than the spatial and temporal resolutions of the model. This results in

an undesirable dependence of the model behavior on numerical parameters and a large computational cost. Strain localization

is most commonly associated with brittle failure, but ductile processes such as thermal runaway can also result in rapid ductile5

localization. Here, we present a numerical model to investigate thermal runaway, and further propose strategies to overcome

the challenges associated with resolving rapid localization: (i) adaptive time stepping; (ii) adaptive rescaling; and (iii) two types

of regularization. We demonstrate the effect of these strategies in one- and two-dimensional models. We rely on the accelerated

pseudo-transient method to solve the governing equations and use graphics processing units to accelerate two-dimensional

computations. Our adaptive time stepping strategy allows us to accurately capture spontaneous and rapid stress release during10

thermal runaway while reducing time steps by more than ten orders of magnitude. Adaptive rescaling further reduces rounding

errors and the number of required iterations by two orders of magnitude. Viscosity regularization and gradient regularization

enable us to mitigate resolution dependencies but may differently impact the physical response of the model.

1 Introduction

Strain localization is a critical component of deformation that can be observed on any scale and in almost any material (Poirier,15

1980; Desrues et al., 2007; Antolovich and Armstrong, 2014; Weidner and Biermann, 2021). In Geodynamics, accurately

modeling strain localization remains inherently challenging due to the large differences in involved scales. A model has to

cover the km-scale geological setting which evolves on time scales of kyr as well as the mm-scale localized shear zone which

may operate on time scales of seconds. Furthermore, the self-feeding character of strain localization usually results in a lack of

a finite length and time scale (De Borst et al., 1993; Iordache and Willam, 1998; Gerolymatou et al., 2024). As a consequence,20

the model behavior becomes dependent on numerical parameters such as spatial and temporal resolution and fails to accurately
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capture strain localization. A plate-scale model is likely to overestimate the width of a shear zone, whereas a grain-scale model

might underestimate it. Another challenge in resolving spontaneous localization is the broad spectrum of values that must be

covered with sufficient numerical accuracy.

In the Earth’s lithosphere, strain localization predominantly occurs via brittle failure. However, with increasing depth and25

lithostatic pressure, the brittle strength of rocks increases linearly (Drucker and Prager, 1952; Byerlee, 1978), while increasing

temperatures promote ductile deformation. If brittle failure were the only mechanism to localize deformation, this would

suggest that highly localized deformation should be limited to less than about 100 km depth. However, the occurrence of deep

earthquakes, reaching depths of about 660 km (Turner, 1922; Wadati, 1928; Leith and Sharpe, 1936), demonstrates that strong

strain localization and rapid slip can also occur under conditions that favor ductile deformation.30

One mechanism proposed to facilitate ductile localization is thermal runaway (Gruntfest, 1963; Ogawa, 1987). This process,

illustrated in Fig. 1a, describes a feedback cycle that includes deformation, shear heating (or viscous dissipation), temperature-

dependent rheology, and localization. Once deformation begins to localize within a weak inclusion embedded in a stronger

matrix (Fig. 2a,b), shear heating causes the temperature in the inclusion to rise more rapidly, thereby locally reducing the

viscosity and further enhancing localization. This feedback loop can result in catastrophic strength reduction, a surge in tem-35

perature, rapid stress release, and highly localized slip (e.g., Kameyama et al., 1999; Kelemen and Hirth, 2007; Thielmann

et al., 2015). Thermal diffusion can stop this feedback loop if sufficient heat is transferred from the shear zone to the surround-

ing host rock, which prevents further increase in the viscosity contrast between the units (Braeck et al., 2009; Thielmann, 2018;

Spang et al., 2024).

In Spang et al. (2024), we captured the dynamics of thermal runaway using a one-dimensional thermomechanical simple40

shear model, which predicts the temporal evolution of stress and temperature within an evolving shear zone (Fig. 1b). The

model evolves through five distinct stages: (i) elastic loading, during which deviatoric stress increases linearly while temper-

ature remains constant; (ii) steady-state viscous creep, dominated by low-temperature plasticity (LTP), where stress remains

nearly constant and temperature increases steadily; (iii) thermal runaway, in which deformation localizes into a narrowing slip

zone dominated by dislocation creep, leading to a significant stress drop and an exponential increase in temperature; (iv) post-45

runaway loading, characterized by linear stress increase as heat diffuses from the shear zone into the surrounding host rock;

and (v) post-runaway creep, where stress gradually decreases as the system transitions into a stable sliding regime.

Similarly to brittle failure, the transient and nonlinear runaway phase presents several challenges that thermomechanical

models must overcome to achieve an accurate numerical solution: (i) spontaneous initiation; (ii) poor nonlinear solver conver-

gence; (iii) unstable solutions; and (iv) mesh-dependent results.50

In this study, we present and discuss the one- and two-dimensional (1D and 2D) models we used to capture spontaneous

ductile shear localization. We incorporate a visco-elastic, composite rheology and utilize the accelerated pseudo-transient

(APT) method to solve the governing system of equations. We then focus on the numerical challenges associated with rapid

localization and describe our strategies to overcome them: (i) adaptive time stepping; (ii) adaptive rescaling; (iii) viscosity

regularization; (iv) gradient regularization; and (v) monitoring viscosity convergence. Readers interested in the application of55

these models are referred to Spang et al. (2024) and Spang et al. (2025a) for the 1D and 2D cases, respectively.
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Figure 1. Illustration of thermal runaway. (a) Feedback cycle of processes that combine to make thermal runaway. (b) Temporal evolution

of deviatoric stress (purple) and maximum temperature (orange). Arrows indicate different stages of the model evolution. LTP and Dis are

short for low-temperature plasticity and dislocation creep respectively, and indicate the dominant deformation mechanism of the stages.

2 Methods

2.1 Model setup

We use models with simple shear boundary conditions and central weak inclusions to initialize localization of deformation. In

1D, the weak zone is introduced by multiplying the flow law prefactors Adif and Adis (see Sect. 3.2) by a weakening factor ω60

which follows a Gaussian distribution with a minimum of 1 and a maximum of 2 (Fig. 2a). The full-width-half-maximum of

the distribution is 200 m, and the extent of the entire model is 10 km.

The vertical and horizontal extents of the 2D model are 10 km and 60 km, respectively. The weak inclusion is an ellipse with

semi-major axes of 375 m and 125 m, respectively. Within this anomaly, Adif and Adis are multiplied by 2, and σb is divided

by 2. The different implementations of the weak inclusion are discussed in Sect. 5. The lateral boundary conditions in the 2D65

model are periodic (Fig. 2b).

2.2 Governing equations

To capture rapid ductile shear localization, we consider a system of coupled thermomechanical equations. In Sect. 2.2.1, we

present the general set of equations which are valid for any number of spatial dimensions, whereas Sect. 2.2.2 outlines how the

equations can be simplified for the 1D case.70

2.2.1 The general case

We consider the conservation of momentum, mass, and energy:
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(a) (b)
1D 2D

Figure 2. Model setups with simple shear boundary conditions. (a) 1D model. Note that the model only has a single cell in the horizontal

direction. The red line indicates the distribution of the weakening factor ω. (b) 2D model. The red ellipse indicates the weak inclusion where

the weakening factor ω is applied. Lateral boundaries are periodic. Both setups are not drawn to scale. Adapted from Spang et al. (2024) and

Spang et al. (2025a).
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where τij is the Cauchy stress deviator, xi denotes the Cartesian coordinates, P is pressure (positive in compression), ρ is

density, t is time, vi is the velocity vector, Cp is specific heat capacity, T is temperature, λ is thermal conductivity, and ε̇vi
ij

is the viscous component of the deviatoric strain rate. For simplicity, we neglect the inertial terms, body forces (i.e. gravity),

thermal expansion, as well as adiabatic and radiogenic heating. The conservation equations are augmented by constitutive
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1
Kb

∂P

∂t
=− ∂vi

∂xi
, (4)

ε̇ij = ε̇elij + ε̇vi
ij =

1
2G

∂τij
∂t

+
1
2η

τij , (5)

where Kb is the bulk modulus, ε̇vi
ij is the deviatoric strain rate and ε̇elij is its elastic component, G is the shear modulus, and η

is the effective viscosity. The deviatoric strain rate is defined as:

ε̇ij =
1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
− 1

3
∂vk

∂xk
δij , (6)85

where δij is the Kronecker-Delta.
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2.2.2 The 1D case

In the 1D configuration, the system of governing equations (1) - (6) is simplified. The spatial dimensions are reduced to the

vertical y-direction. With simple shear boundary conditions, no gravity, and no thermal expansion, the divergence of velocity

is inherently zero. The conservation of mass (Eq. (2)) simplifies to:90

∂ρ

∂t
= 0 , (7)

and Eq. (4) simplifies to:

∂P

∂t
= 0. (8)

This renders the model incompressible, with density and pressure constant in time. Furthermore, the velocity vector is

reduced to its horizontal component, which simplifies Eq. (6) to:95

ε̇xy =
1
2
∂vx

∂y
, (9)

with the other components of the strain rate and stress tensor equal to zero. This simplifies the conservation of momentum

(Eq. (1)) to:

∂τxy

∂y
= 0 . (10)

3 Implementation100

The governing equations are discretized on a staggered grid (e.g., Gerya and Yuen, 2003) and solved using a conservative

finite-difference scheme in an iterative manner using the APT method (Frankel, 1950; Räss et al., 2022; Alkhimenkov and

Podladchikov, 2024). The code is implemented in the Julia programming language and employs the GEOPARAMS.JL package

(Kaus et al., 2023) for parameter nondimensionalization. The 2D implementation further leverages the PARALLELSTENCIL.JL

package (Omlin and Räss, 2024) to automatically generate parallel kernels on both central processing unit (CPU) and graphics105

processing unit (GPU) devices.

3.1 Accelerated pseudo-transient method

In the APT approach, the conservation equations are solved at each physical time step by introducing a pseudo-time derivative

for each equation and iteratively updating the primary variables v, P , and T until the residuals drop below a given numerical

tolerance. Applying this procedure to Eq. (1)-(3) yields:110
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where ∂/∂ψ denotes the pseudo-time derivative. During each pseudo-time iteration, each primary variable is incremented

proportionally to the sum of the current residual and the previous increment (Duretz et al., 2019):115

∆γ =
[
∂γ

∂ψ
+
(

1− 1
ζγ

)
∆prev

γ

]
∆ψγ , (14)

where γ represents one of the primary variables v, P , or T , ∆γ is the current increment of the respective variable, ∆prev
γ is the

increment from the previous iteration, ζγ is the damping parameter (> 1). ∆ψγ is the size of the pseudo-time step given by:

∆ψvi
=

∆xi

fvη
, (15)

∆ψP =
fP η

max(nci)
, (16)120

∆ψT = min
(

min(∆xi)2

2ndimκ
,
∆t
2

)
, (17)

where ∆xi is the grid spacing, fv and fP are factors, nci is the number of cells in each dimension, ndim is the number of

dimensions, κ= λ/(ρCp) and ∆t is the physical time step.

The left hand side terms in Eq. (11) - (13) are equivalent to the residuals of the conservation equations. Once all of them

are smaller than a given numerical tolerance of 10−6 after normalization, the solution is converged and is equivalent to a fully125

implicit, backward Euler solution with converged nonlinearities.

3.2 Rheology

Viscous deformation is a combination of diffusion creep, dislocation creep, and low-temperature plasticity. We follow the

approach of Maxwell (Maxwell, 1867; Jóźwiak et al., 2015) and consider all viscous mechanisms in series, which implies that

deformation is dominated by the weakest one and that strain rate components are added:130

ε̇vi
II = ε̇dif

II + ε̇dis
II + ε̇LTP

II , (18)

where the superscripts dif , dis and LTP denote diffusion creep, dislocation creep, and low-temperature plasticity, respectively.

The subscript II denotes the square root of the second invariant of an arbitrary second-order tensor C:
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CII =

√
1
2
CijCij . (19)

As a consequence of the Maxwell approach in Eq. (18), the effective viscosity η can be expressed as:135

η =
(

1
ηdif

+
1
ηdis

+
1

ηLTP

)−1

, (20)

where

ηdif =
1
2
(Adif)−1 dm exp

(
Edif

RT

)
, (21)

ηdis =
1
2
(Adis)−

1
n (ε̇dis

II )
1
n−1 exp

(
Edis

nRT

)
, (22)

ηLTP =
τLTP

2 ε̇LTP
II

. (23)140

A is a prefactor, E is the activation enthalpy, d is grain size, m is the grain size exponent of diffusion creep, R is the universal

gas constant, and n is the powerlaw exponent of dislocation creep. The LTP-stress τLTP is given by:

τLTP =
RT

ELTP
σres sinh−1

[
ε̇LTP
II

ALTP
exp

(
ELTP

RT

)]
+σb , (24)

σres = σL +
σK√
d
, (25)

where σb, σL and σK are material constants (Hansen et al., 2019). Given the nonlinear nature of dislocation creep and low-145

temperature plasticity, the strain rate partitioning (Eq. (18)) can not be solved analytically, but requires an iterative approach. It

can be updated and solved alongside the conservation equations (11) - (13). To stabilize the rheology solver, we use a relaxation

approach for the viscosity updates of each mechanism during the pseudo-transient (PT) iterations:

ηit
i = exp

[
(1− ηrel) log(ηit−1

i ) + ηrel log(ηt
i)
]
, (26)

where the superscript it denotes the iteration count, ηrel < 1 is the relaxation factor (Duretz et al., 2019), and ηt
i is the target150

viscosity (i.e. the new viscosity without relaxation). We discuss our strategy for solving the strain rate partitioning in Appendix

A and Fig. A1.

3.3 Density

The density in the model is a function of the reference density ρ0 = 3300 kg m−3, the pressure P , the Poisson’s ratio ν = 0.25,

and the bulk modulus Kb:155
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ρ= ρ0 exp
(
P

Kb

)
, (27)

Kb =
2G(1 + ν)
3(1− 2ν)

. (28)

3.4 Spatial discretization

We employ an irregularly spaced grid in which the vertical cell size is smallest in the center of the model. In the 1D models,

the central quarter of the grid consists of uniformly sized cells, while spacing increases linearly towards the model boundaries.160

The outermost cells are approximately 125 times larger than those at the center, allowing for maximum resolution in the region

where thermal runaway is expected to occur. This is common practice when investigating thermal runaway (e.g., Thielmann

et al., 2015). Material properties and most field variables are defined at cell centers, whereas velocity and and heat flux are

located at cell edges (Fig. A2a).

In 2D, the grid refinement is limited to a factor of 2 to avoid convergence issues arising from large cell aspect ratios. Material165

properties, temperature, pressure, viscous dissipation, and normal stress components are defined at cell centers. Velocity and

heat flux are defined on cell edges, while shear stress components are located at cell corners (Fig. A2b). Unless stated otherwise,

the material parameters used in all models are listed in Table 1.

3.5 Regularization

To stabilize the model during thermal runaway and mitigate mesh dependency, we test two regularization strategies: (i) viscosity170

regularization and (ii) gradient regularization. Both approaches aim to limit maximum strain rates and prevent viscosities from

dropping below a critical threshold. We note that alternative regularization strategies have also been proposed in the literature

(e.g., Duretz et al., 2023; Goudarzi et al., 2023; Gerolymatou et al., 2024).

3.5.1 Viscosity regularization

Viscosity regularization imposes a direct lower bound on viscosity, effectively stopping the self-softening behavior of thermal175

runaway once this threshold is reached. To implement this, we modify equation (20) as follows:

η =
(

1
ηdif

+
1
ηdis

+
1

ηLTP

)−1

+ ηreg , (29)

where ηreg is the regularization viscosity. This approach has been previously applied to regularize brittle plasticity (Duretz et al.,

2020; Jacquey and Cacace, 2020; Kiss et al., 2023; Alkhimenkov et al., 2024) and rate-and-state friction models (Pranger et al.,

2022; Goudarzi et al., 2023). Our rheological model is illustrated in Fig. A1.180
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Table 1. Material parameters for the reference model. Bracketed superscripts denote the sources of the flow law parameters which are given

at the bottom of the table.

Parameter Unit Value

T0 [◦C] 600

P0 [GPa] 10

ε̇bg [s−1] 5× 10−13

ρ0 [kgm−3] 3300

d [µm] 100

ηreg [Pa · s] 1015

G [GPa] 80

m 3 [1]

Adif [µmm MPa−1 s−1] 1.5× 109 [1]

Edif [kJmol−1] 375 [1]

n 3.5 [1]

Adis [MPa−n s−1] 1.1× 105 [1]

Edis [kJmol−1] 530 [1]

ALTP [s−1] 5× 1020 [2]

ELTP [kJmol−1] 550 [2]

σL [GPa] 3.1 [2]

σK [GPaµm0.5] 3.2 [2]

σb [GPa] 1.8 [2]

Cp [Jkg−1 K−1] 1000

λ [Js−1 m−1 K−1] 3

ν 0.25
1Hirth and Kohlstedt (2003), 2Hansen et al. (2019).

3.5.2 Gradient regularization

In gradient regularization, the viscous dissipation is distributed over a broader area, which limits localized temperature increase,

viscosity reduction, and strain localization. This is achieved by introducing a diffusion term to the shear heating component of

the conservation of energy (Eq. (3)):

ρCp
∂T

∂t
=

∂

∂xi

(
λ
∂T

∂xi

)
+ τij

(
ε̇vi

ij +λ2
reg

∂2ε̇vi
ij

∂x2
i

)
, (30)185

where λreg is a regularizing diffusion length scale. This approach has also been employed in the regularization of rate-and-state

friction models (Sleep, 1997; Pranger et al., 2022) and tested in the context of brittle faulting (De Borst and Mühlhaus, 1992;

Duretz et al., 2023).
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4 Challenges

To illustrate the challenges associated with rapid strain localization and the strategies we employ to address them, we use 1D190

models for conciseness. As similar challenges arise in 2D models, all mitigation strategies discussed here are also implemented

in our 2D simulations, which are discussed in Sect. 5. The primary challenges include: (i) selecting appropriate time steps to

accurately capture the runaway phase; (ii) avoiding round-off errors caused by abrupt shifts in the model’s characteristic time

scales; (iii) maintaining solver stability during runaway; and (iv) minimizing resolution dependence.

4.1 Adaptive time stepping195

Outside the runaway phase, time steps ranging from tens to thousands of years are sufficient. However, resolving the thermal

runaway phase requires time steps on the order of milliseconds. While large time steps may adequately capture the long-term

stress evolution, they fail to resolve the transient dynamics leading up to runaway (Fig. 3a). In particular, they significantly

underestimate temperature increase and slip velocity.

As the spontaneous onset of runaway cannot be predicted a priori, an adaptive time-stepping scheme is critical. Identifying200

suitable time steps is a well-known challenge in scientific computing, with numerous solutions proposed in the literature (Ropp

et al., 2004). Given that stress and temperature exhibit the most rapid changes during runaway, we constrain time steps by

limiting the maximum allowable increment in these two quantities (∆τ , ∆T ). Similar strategies are employed in earthquake

modeling studies (Herrendörfer et al., 2018; Dal Zilio et al., 2022; Pranger et al., 2022).

We evaluate three methods for implementing adaptive time stepping. In all cases, we define threshold values of ∆τmax =205

50MPa and ∆Tmax = 5K.

Figure 3. Effects of adaptive time stepping. (a) Temporal stress evolution as a function of fixed time steps of different size in comparison

to linear-predictive (Sect. 4.1.1) and restarting-adaptive (Sect. 4.1.3) time stepping. (b) Temporal evolution of stress and time step, using the

restarting-adaptive method. ηreg = 109 Pa·s.
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4.1.1 Linear-predictive

For the linear-predictive scheme, we assume that the rates of change of stress τ and temperature T do not increase significantly

in the subsequent time step. Based on this assumption, the new time step can be determined by scaling the previous time step

according to the changes in τ and T during it:210

∆tnt = ∆tnt−1 min
(

∆Tmax

∆T nt−1
,

∆τmax

∆τnt−1

)
, (31)

where ∆tnt is the upcoming time step, ∆tnt−1 is the previous time step, ∆T nt−1 is the maximum temperature change during

the previous step, and ∆τnt−1 is the stress change (which is spatially uniform in the 1D domain).

If the actual rates of change in τ and T increase, the resulting ∆τ and/or ∆T may exceed their respective thresholds

∆τmax and ∆Tmax. This causes the subsequent time step to be shorter. However, due to the highly nonlinear nature of thermal215

runaway, this predictive scheme may be inadequate, failing to decrease the time step fast enough once localization and stress

release begin (Fig. 3a).

4.1.2 Iteration-adaptive

In the iteration-adaptive scheme, we also use Eq. (31) to predict the new time step. However, instead of applying it only once

at the beginning of a physical time step, we dynamically adjust the time step during every iteration of the APT solver. This220

approach enables rapid reduction of the time step by several orders of magnitude within a single physical time step, while

still adhering to the constraints set by ∆τmax and ∆Tmax. However, as the elastic component of the strain rate is time step-

dependent (Eq. (5)), adapting the time step during PT iterations can lead to unstable behavior where the residuals oscillate and

fail to converge.

4.1.3 Restarting-adaptive225

In the restarting-adaptive scheme, we rely on Eq. (31) to evaluate the appropriate time step during PT iterations. However,

unlike the iteration-adaptive approach, the time step is not reduced within the PT iterations. Instead, if Eq. (31) indicates that

the current time step is too large, the entire physical time step is restarted with a reduced (by a factor of 2) step size. To facilitate

this, all relevant fields – stress, temperature, pressure, density, viscosity, and velocity – are saved at the start of each new time

step. If a restart is triggered, these values are restored, and the time step is recalculated.230

Multiple restarts per time step are possible and often necessary during the onset of thermal runaway. This strategy is effective

in ensuring solver stability while rapidly adapting the time step. Its primary drawback is that some redundant computations oc-

cur during restarts. However, the redundancy is generally small compared to the overall computations (and iterations) required

to solve each time step.

To avoid excessive time step increases, we also cap time step growth to 25% of the previous value when ∆t is predicted235

to increase. Figure 3b illustrates the performance of this method. The time step initially remains on the order of hundreds of
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years during the steady-state creep phase, drops by approximately two orders of magnitude as stress begins to relax, and then

decreases by another ten orders of magnitude during the onset of thermal runaway. In the elastic reloading phase, ∆t quickly

recovers to hundreds of years as both stress and temperature evolve more slowly.

4.2 Adaptive rescaling240

Numerical solvers commonly use internal scaling to center quantities around 1 which minimizes round-off errors due to nu-

merical precision. To do so, a set of characteristic scales is created, and all dimensional quantities are divided by an appropriate

combination of these scales. As an example, a geodynamic model focused on plate-scale deformation might use a characteristic

time scale of tc = 1012 s and a characteristic stress of τc = 108 Pa which combine to a characteristic viscosity of 1020 Pa · s.
This means a time step of 100 years would internally be:245

∆tND =
∆t
tc
≈ 0.003156. (32)

This becomes problematic once adaptive time stepping reduces the dimensional time step to one second, as this is equivalent

to 10−12 after scaling. To prevent round-off errors in this case, we decrease tc by one order of magnitude every time the

nondimensional time step drops below a certain value (e.g., 10−9). Changing the characteristic time scale does not only impact

the nondimensional time step but all quantities which carry units of seconds such as strain rates, velocities, and viscosities. All250

of these have to be rescaled together. This is convenient for viscosities as they also decrease significantly during runaway. It

is also beneficial for velocities and strain rates as they increase during runaway and decreasing tc increases the characteristic

velocity and strain rate.

In Fig. 4, we demonstrate how rescaling facilitates convergence and reduces the number of iterations by orders of magnitude

for a model that takes time steps as low as 25µs. Without rescaling, the model requires about 2×109 iterations in total to solve,255

the majority of them during thermal runaway. Rescaling properties with time scales in their units as soon as the nondimensional

time step ∆tND falls below 10−14 reduces the number of iterations by one order of magnitude. Rescaling at ∆tND < 10−12

lowers the total number of iterations by another order of magnitude, and only half of them are used during the runaway. Further

reduction of the critical ∆tND has only negligible effects (Fig. 4).

4.3 Regularization260

During thermal runaway, the viscosity within the shear zone decreases dramatically due to the temperature increase. Large

contrasts in material properties are generally challenging for numerical solvers (e.g., Gerya, 2019), especially for iterative

approaches which rely on local conditioning. Even if the solver converges, shear zones often thin to the width of one grid cell.

In this case, the mechanical behavior of the model is governed by the numerical resolution instead of the material parameters

(De Borst et al., 1993; Iordache and Willam, 1998; Jacquey et al., 2021). To alleviate this issue, we test two regularization265

methods: a viscosity regularization (see Sect. 3.5.1) and a gradient regularization (see Sect. 3.5.2). To quantify the impact of
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Figure 4. Effects of adaptive rescaling. Sum of iterations for full model (blue) and during runaway (orange) as a function of the minimum

allowed ∆tND before rescaling is used to increase it. The dashed black line shows the number of iterations without any rescaling. Note that

the models with ∆tND,min = 10−15 and no rescaling have many non-converged time steps. All models have identical results in terms of

stress, temperature and velocity. ηreg = 106 Pa·s.

these regularizations, we run 60 simulations in total in which we vary between five different numerical resolutions, with six

different viscosity regularization values ηreg, and six different gradient regularization values λreg.

4.3.1 Viscosity regularization

Applying viscosity regularization renders primary model diagnostic parameters – maximum velocity vmax, maximum tempera-270

ture Tmax and shear zone width dsz – resolution independent (Fig. 5a,b,c). Instead, these quantities exhibit a strong, exponential

dependence on the regularization viscosity ηreg. For ηreg ≥ 1012 Pa·s, these quantities remain nearly identical across all tested

grid resolutions, ranging from 63 to 1023 cells (corresponding to minimum cell sizes between 2 m and 0.125 m). At ηreg = 1012

Pa·s, the shear zone localizes to a single grid cell in the coarsest model (63 cells; blue curve in Fig. 5). For lower values of ηreg,

results from this low-resolution model begin to diverge from those of finer grids. As ηreg is further reduced, this divergence275

propagates to higher-resolution models, following the same pattern.

Once a model localizes deformation to a single grid cell, both dsz and Tmax plateau and cease to vary with decreasing ηreg

(Fig. 5b,c). In contrast, vmax continues to increase as ηreg decreases, but it also slowly diverges from models that are still

resolved.

The total number of PT iterations niter, normalized by grid resolution, decreases with increasing ηreg, reflecting the fact that280

a more strongly regularized runaway is numerically easier to solve (Fig. 5d). Higher-resolution models exhibit slightly more

efficient convergence compared to lower-resolution counterparts.

The temporal evolution of deviatoric stress remains largely unaffected by variations in ηreg. For ηreg ≤ 1015 Pa·s, the models

consistently exhibit rapid and complete stress relaxation. In contrast, ηreg = 1018 Pa·s leads to slower and incomplete relaxation
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(inset in Fig. 5a). This trend is observed across all resolutions. Similar effects of viscosity regularization have been reported by285

Spang et al. (2024).

Figure 5. Effect of viscosity regularization. Colors correspond to resolution and all axes are logarithmic. (a) Maximum velocity. (b) Maximum

temperature. (c) Shear zone width (full-width-half-maximum of strain rate peak, see inset). Dashed lines indicate size of one cell for each

resolution. (d) Total number of iterations divided by number of cells. Inset in (a) shows stress evolution for 255 cells and the two largest

regularization viscosities. All models with lower ηreg are indistinguishable from the example with ηreg = 1015 Pa·s.

4.3.2 Gradient regularization

As in the viscosity regularization case, applying gradient regularization renders primary model diagnostic parameters – max-

imum velocity vmax, maximum temperature Tmax and shear zone width dsz – resolution independent (Fig. 6a,b,c). Instead,

these quantities exhibit a strong, exponential dependence on the regularization diffusion length scale λreg. While minor dis-290

crepancies persist between different resolutions, they are negligible compared to the variations induced by changes in λreg.
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One exception is the coarsest model (63 grid cells) with λreg = 1 m, which slightly overestimates both vmax and Tmax. In this

case, the shear zone has localized to a single grid cell (Fig. 6c).

Across the tested range of λreg (1 – 32 m), vmax spans from 10−7 and 107 ms−1, Tmax ranges between 800 and 4000 ◦C,

and dsz varies from approximately 3 to 100 m. Somewhat counterintuitively, larger values of λreg – which prevent extreme295

localization resulting in a more attenuated runaway – require more PT iterations resulting in larger solution time (Fig. 6d).

Moreover, the number of iterations per grid cell increases with numerical resolution. Models with 511 grid cells and λreg > 8

m, as well as 1023-cell models with λreg > 2 m did not complete in one day and are not shown in Fig. 6. We discuss the reasons

for this in Sect. 4.3.3.

For λreg ≤ 8 m, stresses relax rapidly and nearly completely. In contrast, for λreg > 8 m, residual stresses of several hundred300

MPa remain at the end of the thermal runaway phase (inset in Fig. 6a).

4.3.3 Comparison

Both regularization strategies – viscosity and gradient regularization – achieve the same overarching goal: they effectively

attenuate thermal runaway, ensure numerical stability, and provide control over the degree of strain localization. By doing so,

they eliminate the dependence of diagnostic parameters on spatial resolution, making quantities such as vmax, Tmax, and dsz305

primarily functions of ηreg or λreg instead. This control breaks down when the shear zone narrows to a single grid cell. At that

point, regularization can no longer constrain the degree of localization, and resolution-dependent artifacts reappear.

A direct, quantitative comparison between the two methods is not straightforward, as there is no known equivalence between

specific values of ηreg and λreg. Nevertheless, a qualitative comparison of Fig. 5 and 6 reveals distinct differences. Gradient

regularization allows significantly larger vmax – spanning orders of magnitude beyond values observed with viscosity regular-310

ization. However, Tmax is approximately two orders of magnitude lower when gradient regularization is employed. Although

both approaches produce similar shear zone widths when considering largest regularization values, the viscosity-regularized

models generate up to an order of magnitude narrower shear zones for the smallest considered regularization values. These

differences stem from the fundamentally different ways the two methods constrain localization.

Viscosity regularization allows for the full release of stored elastic energy within the shear zone during stress relaxation,315

leading to extreme peak temperatures of up to 105 ◦C. However, by introducing a lower bound on viscosity, it limits the extent

to which this heating can impact the rheology and weaken the material. As deformation is tightly coupled to rheology, this

constraint also limits maximum slip velocities. In contrast, gradient regularization distributes the released energy across a

broader region, leading to lower peak temperatures and wider shear zones. Because this method does not impose an explicit

lower viscosity bound, extreme deformation rates can still occur.320

The computational cost of the two methods also differs significantly, as illustrated by the normalized number of PT itera-

tions in Fig. 5d and 6d. At low resolutions and with less pronounced regularization (low ηreg and λreg), both methods perform

similarly. However, as ηreg or λreg increase, viscosity regularization becomes more efficient, requiring fewer PT iterations.

Conversely, gradient regularization becomes increasingly expensive. Larger values of λreg allow for faster diffusion of dissi-

pative work, effectively reducing the maximum allowed physical time steps.325
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Figure 6. Effect of gradient regularization. Colors correspond to resolution and all axes are logarithmic. High λreg models with 511 cells and

most models with 1023 cells were excluded as they took more than one day to complete. (a) Maximum velocity. (b) Maximum temperature.

(c) Shear zone width (see inset in Fig. 5c for explanation). Dashed lines indicate size of one cell for each resolution. (d) Total number of

iterations divided by number of cells. Inset in (a) shows stress evolution for 255 cells and three values of λreg. All models with lower λreg

are indistinguishable from the example with λreg = 8 m.

Resolution scaling further differentiates the two methods. For viscosity regularization, the number of iterations per cell

remains nearly constant with increasing resolution. In contrast, this ratio grows with resolution when gradient regularization

is employed, making the latter increasingly impractical for high-resolution simulations. The scaling of diffusive processes is a

known challenge in computational geodynamics (e.g., Räss et al., 2022).

4.4 Converging viscosity330

During the elastic loading phase, the model typically converges within a few (< 100) PT iterations. While such fast convergence

is computationally efficient, it introduces challenges when using the viscosity relaxation method (Eq. (26)). In this approach,
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the viscosity is incrementally updated in each iteration using a relaxation factor, commonly ηrel = 0.01, meaning that only 1%

of the computed viscosity update is applied per iteration. Although this under-relaxation stabilizes the solver, it can hinder

convergence of the viscosity field for a low PT iteration count.335

Figure 7b shows that after 100 iterations, the viscosity update has only progressed about halfway towards its target value.

Converging viscosity relaxation (i.e., reaching the updated steady-state value) typically requires around 500 iterations for

ηrel = 0.01. Failing to accurately resolve viscosity relaxation may become problematic near the onset of LTP creep, where

ηLTP drops rapidly as stress approaches the yield threshold τLTP.

The behavior of LTP is similar to perfect plasticity due to brittle deformation. It remains inactive below a critical stress, but340

accommodates all deformation that would otherwise increase stress beyond this threshold. If ηLTP and the associated strain rate

partitioning are not updated fast enough, stresses can significantly exceed τLTP, requiring corrective adjustments in subsequent

time steps (Fig. 7a). This not only leads to an incorrect stress evolution, but can also trigger spurious slip events that would not

occur under properly updated stress conditions.

To mitigate this issue, we monitor the convergence between the viscosity η and the target viscosity ηt (Eq. 26). Only when345

the residuals of the conservation equations (Sect. 3.1), the residual of viscosity, and the residual of strain rate partitioning

(Appendix A) are converged, we accept the solution. This ensures that both rheological and mechanical responses are correctly

captured during the elastic-to-LTP transition (Fig. 7a).

The stress overshoot for insufficient viscosity convergence is more prominent when the steady-state stresses of diffusion and

dislocation creep are large. For the model in Fig. 7a, we increased Edif and Edis to 435 and 670 kJ mol−1, respectively, which350

is equivalent to considering the pressure dependence of the rheology (Hirth and Kohlstedt, 2003) and 10 GPa of background

pressure (Table 1).

5 The 2D implementation

All of the previously mentioned features are also implemented in the 2D version of the model. We consider a configuration

with a homogeneous host rock containing a weak inclusion to perturb the stress field and initiate localization (Fig. 2b). In355

Fig. 8, we show the temporal evolution of such a 2D simulation, using the same parameters as the 1D reference model and a

regularization viscosity of ηreg = 1012 Pa·s.

The 2D model undergoes the same stages as in 1D. An initial, homogeneous elastic loading stage is followed by the onset

of LTP at the tips of the inclusion. Subsequently, a shear zone forms and starts to develop horizontally across the domain

(Fig. 8a, b), before deformation becomes more localized near the anomaly tips (Fig. 8c). Thermal runaway initiates here and360

then propagates horizontally across the domain (Fig. 8d-f), creating a rupture front marked by a sharp stress gradient (Fig. 8,

left column) and a peak in horizontal velocity (Fig. 8, central column). The simulation is stopped once the stress is fully

released. Here, we focus on the numerical behavior of the 2D model; for a detailed discussion of the physical implications,

refer to Spang et al. (2025a).
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Figure 7. Effects of viscosity relaxation. (a) Zoom on transition from elastic loading to LTP in temporal evolution of stress (τ ) for different

numerical tolerances regarding viscosity relaxation. The stress peak disappears if the tolerance is reduced to ∼ 10−5. (b) Viscosity conver-

gence towards a new value during the PT iterations according to Eq. 26 for different ηrel. This evolution is independent of the start and target

values. Dashed lines correspond to the tolerances in (a). As all low-tolerance lines overlap, we did not display 10−6 to 10−4. The y-axis is

logarithmic.

Figure 8. Thermal runaway in 2D. (a-f) Temporal evolution of deviatoric stress (left) and horizontal velocity (center) fields. (g) Temporal

evolution of average deviatoric stress and maximum temperature. Black crosses along stress curve indicate the six snapshots shown in (a-f).

Physically, the key difference from the 1D setup is that thermal runaway occurs in two distinct regions, each propagating365

through previously intact host rock. In contrast, the 1D model localizes and releases all the energy at a single location within

the inclusion. Numerically, the major distinction is the limited resolution in 2D. While the 1D setup allows for significant
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grid refinement, the 2D model is limited to a maximum refinement factor (ratio of largest to smallest cell height) of 2. Higher

refinement increases cell aspect ratios, which degrades solver convergence.

To remove the impact of grid refinement, we ran a 1D model using the same limited refinement as in 2D and compared results370

(Fig. 9). Both models exhibit very similar trends in deviatoric stress, maximum temperature, maximum velocity, and minimum

viscosity. As long as the thermal runaway fronts remain more than 10 km away from the domain boundaries (Fig. 8a-f), the

2D and 1D models show nearly identical vmax and Tmax (Fig. 9b,c). Once the rupture fronts meet due to periodic boundaries,

vmax increases by a factor of ∼ 3 and Tmax by ∼ 250 ◦C.

The most notable difference is the duration of the LTP-dominated phase, which lasts over 10 kyr in the 1D model but only375

∼ 200 years in 2D. This discrepancy stems from differences in how the anomaly is defined. In 1D, only the flow laws of

diffusion and dislocation creep are weakened. In 2D, the LTP back stress σb is also reduced. Reducing σb in 1D prevents

stresses in the entire model from reaching values above 1 GPa, while omitting this weakening in 2D hampers localization

significantly.

Adaptive time stepping remains critical in 2D. During elastic loading, time steps are typically on the order of decades; they380

shrink to months at the onset of thermal runaway, to hours during rupture propagation, and to seconds at peak velocities. Setting

a lower time step bound can dampen thermal runaway, or, if set too high, cause solver failure. For most of the simulations,

the predictive time stepping strategy (Sect. 4.1.1) suffices. However, when rupture fronts meet across the periodic boundaries,

restarting time steps (Sect. 4.1.3) is required to maintain stability.

Regularization plays a similar role in 2D as in 1D. It enforces a lower bound on viscosity and upper bounds on strain rate and385

velocity. Due to the more limited spatial resolution in 2D, the shear zone thickness is often constrained by grid size unless a

high regularization viscosity (≈ 1016 Pa·s) is used. If a higher spatial resolution can be achieved through improved refinement

or significant increase in grid cells, regularization viscosity will again become the controlling factor. This equally applies to

adaptive rescaling (Sect. 4.2), which becomes essential when smaller time steps and higher velocities exacerbate round-off

errors.390

Finally, monitoring the convergence of the relaxed viscosity (Sect. 4.4) has minimal impact in 2D. Even before reaching the

LTP threshold, the number of iterations per time step increases to∼ 5000 to solve the conservation equations, ensuring that the

relaxation-based updates are well-converged.

6 Conclusions

Resolving strain localization owing to thermal runaway represents a numerical challenge due to its spontaneous onset, rapid395

self-acceleration, extreme localization, and strong gradients in temperature and viscosity. We address these by implementing

adaptive time stepping based on changes in stress and temperature and allowing time steps to be restarted if necessary. We

achieve a time step reduction by more than ten orders of magnitude without destabilizing the solver. To maintain numerical

precision during such extreme changes, we rescale time-dependent properties using an adaptive internal time scale.
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Figure 9. Comparison between 1D (blue) and 2D (orange) simulations. Note the different x-axes. Dashed lines indicate the portion of the

2D model influenced by periodic boundary conditions. (a) Mean deviatoric stress. (b) Maximum temperature. (c) Maximum velocity. (d)

Minimum viscosity.

To handle the self-localizing nature of thermal runaway and prevent solver failure from excessive viscosity reduction, we400

introduce regularization. Viscosity and gradient regularization both limit maximum velocity and temperature and impose a

minimum shear zone width, without altering the overall stress evolution. Viscosity regularization more strongly constrains

velocity, whereas gradient regularization better controls temperature increase and shear zone width.

We also show that the commonly used viscosity relaxation method in pseudo-transient schemes can result in incorrect stress

evolutions near the LTP threshold. Only accepting solutions with a sufficiently converged viscosity ensures accurate stress405

evolution.

Extending the model to two spatial dimensions preserves the key physical behavior observed in 1D. Although 2D simulations

are more limited in spatial resolution due to grid aspect ratio constraints, adaptive time stepping, regularization, and rescaling
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remain essential. Since 2D models naturally require more iterations per time step, monitoring viscosity convergence is less

critical.410

Code and data availability. The current version of DEDLoc (Deep Earthquake Ductile Localization) is available from the project website

https://github.com/ArneSpang/DEDLoc under MIT licence. The exact version of the model used to produce the results of the current study

is archived on Zenodo under https://doi.org/10.5281/zenodo.15481112 (Spang et al., 2025b), as are input data and scripts to run the models

for all simulations presented here.

Video supplement. A video of the 2D model is available on Zenodo under https://doi.org/10.5281/zenodo.15481112 (Spang et al., 2025b).415

Appendix A: Strain rate partitioning

The solver consists of 6 repeating steps:

1. Compute full strain rate from velocity field

2. Partition strain rate among elasticity, diffusion creep, dislocation creep, low-temperature plasticity, and the regularization

3. Compute the viscosity of each individual mechanism420

4. Compute effective viscosity

5. Compute stress

6. Update velocity, pressure, and temperature

Step 2 is especially challenging, so we present our strategy here. Figure A1 illustrates our rheological model including

viscosity regularization. The main challenges are the partition of stress between the regularization branch (orange in Fig. A1)425

and the viscous branch (blue in Fig. A1), as well as the partition of the viscous strain rate between the different mechanisms.

Stress is equal in sequential components and partitioned in parallel components, strain rate vice-versa (Maxwell, 1867; Jóźwiak

et al., 2015). For clarity, we have neglected the subscript II in the following equations.

First, we partition the strain rate between the elastic and viscous / regularization components. The elastic strain rate can be

expressed as follows:430

ε̇el =
τ − τold

2G∆t
, (A1)

where τ refers to the current stress and old refers to the stress at the end of the previous physical time step. This allows us to

compute the viscous strain rate:
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ε̇vi = ε̇− ε̇el. (A2)

ε̇vi is identical in the viscous branch and the regularization branch, and since ηreg is known, we can express the stress carried435

by the regularization as follows:

τreg = 2ε̇viηreg. (A3)

As stress is partitioned between the viscous and regularization branch, we can compute the viscous stress by:

τvi = τ − τreg. (A4)

Viscous stress is identical in all viscous components, but viscous strain rate is partitioned between them. As diffusion creep440

viscosity is independent of the partitioning, the diffusion creep component can be computed by:

ε̇dif =
τvi

2ηdif
. (A5)

ε̇dif can be subtracted from the viscous strain rate to find the nonlinear part which partitions into dislocation creep and

low-temperature plasticity.

ε̇nl = ε̇vi− ε̇dif = ε̇dis + ε̇LTP. (A6)445

If neither dislocation creep nor LTP are currently active (i.e. taking a significant strain rate partition), ε̇nl can become negative.

In this case, we overwrite it with a very small positive value as a negative value or zero would cause issues in the viscosity

calculation.

As ηdis and ηLTP both depend on the strain rate partitioning, we can not solve for either strain rate component analogously

to Eq. (A5). But, since ε̇dis and ε̇LTP are inversely proportional to ηdis and ηLTP respectively, we can guess their ratio from the450

viscosities of the previous iteration.

ε̇dis

ε̇LTP
≈ ηprev

LTP

ηprev
dis

= rη (A7)

This yields:

ε̇dis,g = ε̇nl
rη

1 + rη
, (A8)

ε̇LTP,g = ε̇nl
1

1 + rη
, (A9)455
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where ε̇dis,g and ε̇LTP,g are guesses for the strain rate of dislocation creep and low-temperature plasticity respectively. ηdis and

ηLTP are computed with these guesses according to Eq. (22) and (23), and after stress has been updated, the true partitioning

for both mechanisms can be computed analogously to Eq. (A5):

ε̇dis =
τvi

2ηdis
, (A10)

ε̇LTP =
τvi

2ηLTP
. (A11)460

During the pseudo-time iterations, ε̇dis,g and ε̇LTP,g converge towards ε̇dis and ε̇LTP respectively. We track this convergence

and use it as an additional requirement for a solution to be accepted. If gradient regularization is used, the orange component

in Fig. A1 is missing, and τvi = τ .

Figure A1. Illustration of our rheological model including the viscous regularization. Green shaded region shows elastic component, blue

shows viscous component, and orange shows regularization component. Individual deformation mechanisms are labeled with their respective

stresses and strain rates.
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(a) (b)

x

y

Figure A2. Illustration of staggered numerical grid, indicating where different parameters are computed. (a) 1D. (b) 2D. Hollow circles are

ghost nodes outside the physical domain which are necessary to employ boundary conditions. Modified from Spang et al. (2025a).
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