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Abstract. Strain localization is among the most challenging mechanical phenomena for computational Earth sciences. Ac-
curately capturing it is difficult because strain localization initiates spontaneously, is self-accelerating, and its characteristic
length and time scales are typically significantly smaller than the spatial and temporal resolutions of the model. This results

in an undesirable dependence of the model behavior on numerical parameters and comes at a large computational cost. Strain

5 localization is most commonly associated with brittle failure, but processes such as thermal runaway can also result in rapid
ductile localization. Here, we present a numerical model to investigate thermal runaway, and propose strategies to overcome
the challenges associated with resolving rapid localization: (i) adaptive time stepping; (ii) adaptive rescaling; (iii) viscosity reg-
ularization; and (iv) gradient regularization. We demonstrate the effect of these strategies in one- and two-dimensional models.
We rely on the accelerated pseudo-transient method to solve the governing equations and use graphics processing units to

10 accelerate two-dimensional computations. Our adaptive time stepping strategy allows us to accurately capture spontaneous and
rapid stress release during thermal runaway while reducing time steps by more than ten orders of magnitude. Adaptive rescaling
further reduces rounding errors and the number of required iterations by two orders of magnitude. Viscosity regularization and
gradient regularization enable us to mitigate resolution dependencies but may differently impact the physical response of the
model. Viscosity regularization results in lower slip velocities, whereas gradient regularization results in lower temperatures

15 and broader shear zones.

1 Introduction

Strain localization is a mechanism that focuses distributed deformation into a narrow zone (shear band or shear zone) which
allows relatively stiff blocks to move past each other without significant internal deformation. It is a critical component of solid
deformation that can be observed on any scale and in almost any material (Poirier, 1980; De Borst et al., 1993; Desrues et al.,

20 2007; Antolovich and Armstrong, 2014; Weidner and Biermann, 2021). Strain localization governs tectonic processes such as
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subduction (e.g., Auzemery et al., 2020) and orogenesis (e.g., Roy et al., 2016), as well as hazards like landslides (e.g., Darve
and Laouafa, 2000) and earthquakes (e.g., Barras and Brantut, 2025).

In Geodynamics, modeling strain localization accurately and reproducibly remains inherently challenging due to the large
differences in involved scales. A model has to cover the km-scale geological setting which evolves on time scales of kyr as well
as the mm-scale localized shear zone which may operate on time scales of seconds. Furthermore, the self-feeding character
of strain localization usually results in a lack of a finite length and time scale (De Borst et al., 1993; Iordache and Willam,
1998; Gerolymatou et al., 2024). As a consequence, the model behavior becomes dependent on numerical parameters such as
spatial and temporal resolution and fails to accurately capture strain localization. A plate-scale model (~ 10° m) is likely to
overestimate the width of a shear zone due to its coarse spatial resolution. A grain-scale model (~ 10~2 m) might underestimate
shear zone width if its domain is too small to cover the relevant geological context. Another challenge in resolving spontaneous
localization is the broad spectrum of values that must be covered with sufficient numerical accuracy.

In the Earth’s lithosphere, strain localization predominantly occurs via brittle failure where the stress in a rock unit exceeds
its strength, and it breaks into separate blocks that slide on a fault. With increasing depth and lithostatic pressure, the brittle
strength of rocks increases linearly (Drucker and Prager, 1952; Byerlee, 1978), while increasing temperatures promote ductile
deformation. If brittle failure were the only mechanism to localize deformation, this would suggest that highly localized defor-
mation should be limited to less than about 100 km depth. However, the occurrence of deep earthquakes, reaching depths of
about 660 km (Turner, 1922; Wadati, 1928; Leith and Sharpe, 1936), demonstrates that strong strain localization and rapid slip
can also occur under conditions that favor ductile deformation.

In ductile localization, there is no complete loss of cohesion (i.e., breaking). Instead, an area of the material weakens to
the point where it can accommodate most or all of the large scale deformation (Poirier, 1980; Burg, 1999; Katz et al., 2006).
One mechanism proposed to facilitate ductile localization is thermal runaway (Gruntfest, 1963; Ogawa, 1987). This process,
illustrated in Fig. 1a, describes a feedback cycle that includes deformation, shear heating (or viscous dissipation), temperature-
dependent rheology, and localization. Once deformation begins to localize within a weak inclusion embedded in a stronger
matrix (Fig. 2), shear heating causes the temperature in the inclusion to rise more rapidly, thereby locally reducing the viscosity
and further enhancing localization. This feedback loop can result in catastrophic strength reduction, a surge in temperature,
rapid stress release, and highly localized slip (e.g., Kameyama et al., 1999; Kelemen and Hirth, 2007; Thielmann et al., 2015).
Thermal diffusion can stop this feedback loop if sufficient heat is transferred from the shear zone to the surrounding host rock,
which prevents further increase in the viscosity contrast between the units (Braeck et al., 2009; Thielmann, 2018; Spang et al.,
2024).

In Spang et al. (2024), we captured the dynamics of thermal runaway using a one-dimensional, visco-elastic thermome-
chanical simple shear model, which predicts the temporal evolution of stress and temperature within an evolving shear zone
(Fig. 1b). The model evolves through five distinct stages: (i) elastic loading, during which deviatoric stress increases linearly
while temperature remains constant; (ii) steady-state viscous creep, dominated by low-temperature plasticity (LTP), where
stress remains nearly constant and temperature increases steadily; (iii) thermal runaway, in which deformation localizes into a

narrowing slip zone dominated by dislocation creep, leading to a significant stress drop and an exponential increase in tempera-
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ture; (iv) post-runaway loading, characterized by linear stress increase as heat diffuses from the shear zone into the surrounding
host rock; and (v) post-runaway creep, where temperature is large enough for dislocation creep to gradually relax stress as the

system transitions into a stable sliding regime.
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Figure 1. Illustration of thermal runaway. (a) Feedback cycle of processes that combine to make thermal runaway. (b) Temporal evolution
of deviatoric stress (purple) and maximum temperature (orange). Arrows indicate different stages of the model evolution. LTP and Dis are

short for low-temperature plasticity and dislocation creep respectively, and indicate the dominant deformation mechanism of the stages.

The transient and nonlinear runaway phase presents several challenges that thermomechanical models must overcome to
achieve an accurate numerical solution: (i) spontaneous initiation; (ii) poor nonlinear solver convergence; and (iii) mesh-
dependent results. Modeling brittle failure/localization suffers from similar issues (e.g., Spiegelman et al., 2016; Duretz et al.,
2020).

In this study, we present and discuss the one- and two-dimensional (1D and 2D) models we used to capture spontaneous
ductile shear localization. We incorporate a visco-elastic, composite rheology and utilize the accelerated pseudo-transient
(APT) method (Frankel, 1950; Riss et al., 2022; Alkhimenkov and Podladchikov, 2024) to solve the governing system of
equations. We then focus on the numerical challenges associated with rapid localization and describe our strategies to overcome
them: (i) adaptive time stepping; (ii) adaptive rescaling; (iii) viscosity regularization; (iv) gradient regularization; and (v)
enforcing viscosity convergence. Readers interested in the application of these models are referred to Spang et al. (2024) and

Spang et al. (2025a) for the 1D and 2D cases, respectively.

2 Methods
2.1 Governing equations

To capture rapid ductile shear localization, we consider a system of coupled thermomechanical equations governing the con-

servation of momentum, mass, and energy:
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where 7;; is the Cauchy stress deviator, x; denotes the Cartesian coordinates, P is pressure (positive in compression), p is
density, ¢ is time, v; is the velocity vector, C,, is specific heat capacity, T is temperature, k is thermal conductivity, and é;’; is
the viscous component of the deviatoric strain rate. For simplicity, we neglect the inertial terms and body forces (i.e. gravity)
from Eq. (1) as well as adiabatic and radiogenic heating from Eq. (3). The last term of Eq. (3) describes energy from viscous
dissipation and it is entirely partitioned into shear heating. These simplifications are discussed in Sect. 6.

The conservation equations are augmented by a constitutive relation for bulk compressibility:
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where K3, is the bulk modulus. For simplicity, we neglect thermal expansion from Eq. (4). Combining equations (2) and (4),

and integrating the changes in pressure and density yields the equation of state for density:

P—P,
P = Pref €XP (Kbef> s )

where per and P, are the reference density and pressure at atmospheric conditions respectively (Gerya, 2019, p. 26).

The deviatoric strain rate is defined as:

.1 ov;  Ovj 1 Ovy,
S =5 (axj *axi) T 302,00 ©

where €;; is the deviatoric strain rate and J;; is the Kronecker delta. All subsequent references to stress or strain rate refer to

the deviatoric parts of the two tensors.
2.2 Rheology

We use Maxwell visco-elasticity (Maxwell, 1867), where the strain rate is the sum of its elastic and viscous components:
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where 62 is the elastic strain rate component, G is the shear modulus, and 7 is the effective shear viscosity. Whereas the elastic

deformation is governed by the shear modulus, viscous deformation is a combination of diffusion creep, dislocation creep, and
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low-temperature plasticity. Following the approach of Maxwell, we consider all viscous mechanisms in series, which implies

that deformation is dominated by the weakest one and that strain rate components are added (J6zwiak et al., 2015):
e =ell Her e ®)

where the superscripts dif, dis and LTP denote diffusion creep, dislocation creep, and low-temperature plasticity, respectively.

The subscript IT denotes the square root of the second invariant of an arbitrary second-order tensor C":

Cii = %a<%. ©)

As a consequence of the Maxwell approach in Eq. (8), the effective viscosity 7 can be expressed as:
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A is a prefactor, F is the activation enthalpy, d is grain size, m is the grain size exponent of diffusion creep, R is the universal

gas constant, and n is the powerlaw exponent of dislocation creep. The LTP-stress 7y rp is given by:
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Vd
where oy,, o1, and ok are material constants (Hansen et al., 2019). Diffusion creep dominates deformation at low stress/high
temperature and dislocation creep at medium stress/temperature. LTP is dominant at large stress/low temperature, and it behaves
similarly to perfect plasticity due to brittle deformation. It remains inactive below a critical stress, but accommodates all

deformation that would otherwise increase stress beyond this threshold.
2.3 Model setup

We use models with simple shear boundary conditions and central weak inclusions to initialize localization of deformation.

Heat flux is zero across all domain boundaries. In 1D, the weak zone is introduced by multiplying the flow law prefactors Ag;¢
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and Ag;s (see Sect. 2.2) by a weakening factor w which follows a Gaussian distribution with a minimum of 1 and a maximum
of 2 (Fig. 2a). The full-width-half-maximum of the distribution is 200 m, and the extent of the entire model is 10 km.

The vertical and horizontal extents of the 2D model are 10 km and 60 km, respectively. The weak inclusion is an ellipse with
semi-major axes of 375 m and 125 m, respectively. Within this anomaly, Ag; and Ag;s are multiplied by 2, and oy, is divided
by 2. The different implementations of the weak inclusion are discussed in Sect. 5.2. The lateral boundary conditions in the 2D

model are periodic (Fig. 2b). Unless stated otherwise, the material parameters used in all models are listed in Table 1.

(a) 1D (b) 2D

IBNIANEAN
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Figure 2. Model setups with simple shear boundary conditions. (a) 1D model. Note that the model only has a single cell in the horizontal
direction. The red line indicates the distribution of the weakening factor w. (b) 2D model. The red ellipse indicates the weak inclusion where
the weakening factor w is applied. Lateral boundaries are periodic. Both setups are not drawn to scale. Vertical extent is 10 km for both

models and horizontal extent is 60 km for the 2D model. Adapted from Spang et al. (2024) and Spang et al. (2025a).

2.4 The 1D case

In the 1D configuration, the spatial dimensions are reduced to the vertical y-direction, and equations (1) - (6) are simplified.
With simple shear boundary conditions, no gravity, and no thermal expansion, the divergence of velocity is inherently zero.

The conservation of mass (Eq. (2)) simplifies to:

dp
5—07 (16)

and Eq. (4) simplifies to:

or

=5 =0 a7

This renders the model incompressible, with density and pressure constant in time. Furthermore, the velocity vector is

reduced to its horizontal component, which simplifies Eq. (6) to:



Table 1. Material parameters for the reference model. Bracketed superscripts denote the sources of the parameters which are given at the

bottom of the table.

1 Ov,

135 £y = ——2
2 Oy

Parameter | Unit Value Explanation

To [°C] 600 Background temperature
P [GPa] 10 Background pressure
Ebg [s™1] 5% 10713 Background strain rate
£0 [kg m™?] 3300 Reference density

d [pum] 100 Grain size

Nreg [Pa - s] 10%° Regularization viscosity
G [GPa] 80 Shear modulus

K [GPa] 1333 ™ Bulk modulus

m 3 [ Grain size exponent
Aait [pm™MPa~'s™'] | 1.5 x 10° 1 | Prefactor

FEair [kJ mol™ ] 375 1 Activation enthalpy

n 350 Stress exponent

Agis [MPa~"s™ 1] 1.1 x 10> M | Prefactor

FEais [kJ molfl] 530 [ Activation energy
Avrrp (s 5x10%° | Prefactor

FEyrp [kJ mol™ 1] 550 2] Activation energy

oL [GPa] 3.1 Lattice friction

oK [GPapum®3] 3.2 Material constant

op [GPa] 1.8 2 Back stress

Cp [Jkg 'K~ 1000 Heat capacity

k [Js i m 1K™ 3 Thermal conductivity
Hi, kJ kg™ 300 B Latent heat

"Hirth and Kohlstedt (2003), 2 Hansen et al. (2019), 3 Schmeling et al. (2019).
4 Computed from G and v = 0.25.

(18)

with the other components of the strain rate and stress tensor equal to zero. This simplifies the conservation of momentum

(Eq. (1)) to:

OTxy
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3 Implementation

The governing equations are discretized on a staggered grid (e.g., Gerya and Yuen, 2003) using the small strain approximation.
They are solved with a conservative finite-difference scheme in an iterative manner using the APT method (Frankel, 1950;
Rass et al., 2022; Alkhimenkov and Podladchikov, 2024). The code is implemented in the Julia programming language and
employs the GEOPARAMS.JL package (Kaus et al., 2023) for parameter nondimensionalization. The 2D implementation further
leverages the PARALLELSTENCIL.JL package (Omlin and Riss, 2024) to automatically generate parallel kernels on both central

processing unit (CPU) and graphics processing unit (GPU) devices.
3.1 Spatial discretization

For both the 1D and 2D models, we employ a variable grid, with the smallest vertical cell size in the center of the domain. In the
1D models, the central quarter of the grid consists of uniformly sized cells, while spacing increases linearly towards the model
boundaries. The outermost cells are approximately 125 times larger than those at the center, allowing for maximum resolution
in the region where thermal runaway is expected to occur. This is common practice when investigating thermal runaway (e.g.,
Thielmann et al., 2015). Material properties and most field variables are defined at cell centers, whereas velocity and heat flux
are located at cell edges (Fig. A2a).

In 2D, the grid refinement is limited to a factor of 2 to avoid convergence issues arising from large cell aspect ratios. In the
horizontal direction, all cells are the same size. We use 1536 and 256 cells in the horizontal and vertical direction respectively,
yielding resolutions of about 39 m (horizontal) and 26 - 52 m (vertical). We use a staggered grid approach where material
properties, temperature, pressure, viscous dissipation, and normal stress components are defined at cell centers. Velocity and

heat flux are defined on cell edges, while shear stress components are located at cell corners (Fig. A2b).
3.2 Accelerated pseudo-transient method

In the APT approach, the conservation equations are solved at each physical time step by introducing a pseudo-time derivative
for each equation and iteratively updating the primary variables v, P, and T until the residuals drop below a given numerical

tolerance. Applying this procedure to Eq. (1)-(3) yields:
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where 9/0v denotes the pseudo-time derivative. During each pseudo-time iteration, each primary variable is incremented

proportionally to the sum of the current residual and the previous increment (Duretz et al., 2019):
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where ~y represents one of the primary variables v, P, or T', A, is the current increment of the respective variable, ALY is the

increment from the previous iteration, ¢, is the damping parameter (> 1). A, is the size of the pseudo-time step given by:

Agy, =25 24)
Jom
Agp— PN 25)
max(nc;)
At = min (min(AIi)2’ At) ’ (26)
2ndim,‘€ 2

where Axz; is the grid spacing, f, and fp are factors, nc; is the number of cells in each dimension, 714y, is the number of
dimensions, x = k/(pCp) and At is the physical time step.

The left hand side terms in Eq. (20) - (22) are equivalent to the residuals of the conservation equations. Once all of them
are smaller than a given numerical tolerance of 10~ after normalization, the solution is converged and is equivalent to a fully

implicit, backward Euler solution with converged nonlinearities.
3.3 Viscosity update

Given the nonlinear nature of dislocation creep and low-temperature plasticity, the strain rate partitioning (Eq. (8)) cannot be
solved analytically but requires a numerical approach. It can be updated and solved alongside the conservation equations (20)
- (22). To stabilize the rheology solver, we use a relaxation approach for the viscosity updates of each mechanism during the

pseudo-transient (PT) iterations:

77? = exp [(1 — nrel) log(n;til) + Tlrel log(mt)} ’ (27)

where the superscript it denotes the iteration count, 7] < 1 is the relaxation factor (Duretz et al., 2019), and 7! is the target
viscosity (i.e. the new viscosity without relaxation). We discuss our strategy for solving the strain rate partitioning in Appendix

A and Fig. Al.
3.4 Regularization

To stabilize the model during thermal runaway and mitigate mesh dependency, we test three regularization strategies: (i)
viscosity regularization, (ii) gradient regularization, and (iii) inclusion of latent heat of melting. All approaches aim to limit
maximum strain rates and prevent viscosities from dropping below a critical threshold. We note that alternative regularization
strategies for brittle failure have been proposed in the literature (e.g., Duretz et al., 2023; Goudarzi et al., 2023; Gerolymatou

et al., 2024). We discuss the strategies’ relation to physical mechanisms in Sect. 4.3.5.
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3.4.1 Viscosity regularization

Viscosity regularization imposes a direct lower bound on viscosity, effectively stopping the self-softening behavior of thermal

runaway once this threshold is reached. To implement this, we modify equation (10) as follows:

11 1\

n= ( + + ) + Mreg 5 28)
Taif  Tldis  TILTP

where 7)., 1S the regularization viscosity. This approach has been previously applied to regularize brittle plasticity (Duretz et al.,

2020; Jacquey and Cacace, 2020; Kiss et al., 2023; Alkhimenkov et al., 2024) and rate-and-state friction models (Pranger et al.,

2022; Goudarzi et al., 2023). Our rheological model is illustrated in Fig. Al.
3.4.2 Gradient regularization

In gradient regularization, the viscous dissipation is distributed over a broader area, which limits localized temperature increase,
viscosity reduction, and strain localization. This is achieved by introducing a diffusion term to the shear heating component of

the conservation of energy (Eq. (3)):

or o (, 0T i g 0%
T (k 5‘;@-) M (% TAres g2 | (29)

where ¢ is a regularizing diffusion length scale. With increasing A.cg, the dissipation is smoothed over a larger area and
thermal runaway will be damped. This approach has also been employed in the regularization of rate-and-state friction models
(Sleep, 1997; Pranger et al., 2022) and tested in the context of brittle faulting (De Borst and Miihlhaus, 1992; Duretz et al.,
2023).

3.4.3 Inclusion of latent heat of melting

Melting is an endothermic process and as such, it can act as an energy sink at large temperatures. This could potentially
offset the viscous dissipation term and limit temperature growth, consequently stopping the self-softening behavior of thermal
runaway like viscosity regularization. To introduce this process into the governing equations, we add a term to Eq. 3 to account

for the energy consumed by melting:
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where Hi, is latent heat and F' is the melt fraction (Schmeling et al., 2019). Melt fraction is a function of pressure and
temperature and is computed after a parameterization for anhydrous melting of peridotite (Katz et al., 2003). Similarly to the

viscosity, the melt fraction has to be updated incrementally during the PT iterations:

10
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where F'* and F'*~1 are the melt fraction in the current and previous iteration, respectively, ' is the target melt fraction
according to the melting model, and Fie = 10~* is a relaxation factor.

A complete description of melting would also involve changes to the conservation of mass as well as a feedback on rheology.
As we are interested in the potential of melting as a regularization, we neglect these components, since the weakening effect of

partial melt on rheology would increase runaway intensity.

4 Numerical challenges and solution strategies

We use 1D models to illustrate the numerical challenges associated with rapid strain localization and the strategies we employ
to address them. Similar problems arise in 2D models, which are discussed in Sect. 5. The primary challenges include: (i)
selecting appropriate time steps to accurately capture the runaway phase; (ii) avoiding round-off errors caused by abrupt shifts
in the model’s characteristic time scales; (iii) maintaining solver stability during runaway; and (iv) minimizing resolution

dependence.
4.1 Adaptive time stepping

The basic model behavior is described in Fig. 1b and the introduction. Outside the runaway phase, time steps ranging from
tens to thousands of years are sufficient. However, resolving the thermal runaway phase requires time steps on the order of
milliseconds. While large time steps may adequately capture the long-term stress evolution, they fail to resolve the transient
dynamics leading up to runaway (Fig. 3). In particular, they significantly underestimate temperature increase and slip velocity
(Fig. 3b,d).

As the spontaneous onset of runaway cannot be predicted a priori, an adaptive time-stepping scheme is critical. Identifying
suitable time steps is a well-known challenge in scientific computing, and a number of studies propose different methods (e.g.,
Bursi and Shing, 1996; Rylander and Bondeson, 2002; Ropp et al., 2004; Soderlind and Wang, 2006). As thermal runaway
is driven by the conversion of elastic energy to thermal energy (e.g. Ogawa, 1987; Spang et al., 2024), the most indicative
parameters for the onset and intensity of runaway are stress and temperature. Therefore, we constrain time steps by limiting the
maximum allowable change in these two quantities (A7, AT'). Similar strategies are employed in earthquake modeling studies
(Herrendorfer et al., 2018; Dal Zilio et al., 2022; Pranger et al., 2022). We evaluate three methods for implementing adaptive
time stepping. In all cases, we define threshold values of A7y, = 50MPa and ATy . = 5K.

11
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Figure 3. Model results for different time stepping schemes. (a) Temporal stress evolution as a function of fixed time steps of different size
in comparison to linear-predictive (Sect. 4.1.1) and restarting-adaptive (Sect. 4.1.3) time stepping. (b) Maximum temperature. (c) Minimum

viscosity. (d) Maximum velocity. Inset shows temporal evolution of stress and time step, using the restarting-adaptive method. 7;cg = 10°
Pa:s.

4.1.1 Linear-predictive

For the linear-predictive scheme, we assume that the rates of change of stress 7 and temperature 7' do not increase significantly

in the subsequent time step. Based on this assumption, the new time step can be determined by scaling the previous time step

according to the changes in 7 and 1"

ALt = A1 min< Almax  ATmax 1.25) ,

ATnt—1> Apnt—1° (32)

where At™ is the upcoming time step, At ~! is the previous time step, AT™ ! is the maximum temperature change during

250 the previous step, and A7™ ! is the stress change (which is spatially uniform in the 1D domain). To avoid excessive time

12
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step increases, we added the factor of 1.25 in Eq. (32). It limits the time step growth to 25% of the previous value when At is
predicted to increase.

If the actual rates of change in 7 and T increase, the resulting A7 and/or AT may exceed their respective thresholds
ATpax and ATy, ... This causes the subsequent time step to be shorter. However, due to the highly nonlinear nature of thermal
runaway, this predictive scheme may be inadequate, failing to decrease the time step fast enough once localization and stress

release begin (Fig. 3a).
4.1.2 TIteration-adaptive

In the iteration-adaptive scheme, we also use Eq. (32) to predict the new time step. However, instead of applying it only once
at the beginning of a physical time step, we dynamically adjust the time step during every iteration of the APT solver. This
approach enables rapid reduction of the time step by several orders of magnitude within a single physical time step, while
still adhering to the constraints set by A7y, ., and ATy, ... However, as the elastic component of the strain rate is time step-
dependent (Eq. (7)), adapting the time step during PT iterations can lead to unstable behavior where the residuals oscillate and

fail to converge. As this method is unstable, we did not plot it in Fig. 3a.
4.1.3 Restarting-adaptive

In the restarting-adaptive scheme, we rely on Eq. (32) to evaluate the appropriate time step during PT iterations. However,
unlike the iteration-adaptive approach, the time step is not reduced within the PT iterations. Instead, if Eq. (32) indicates that
the current time step is too large, the entire physical time step is restarted with a reduced (by a factor of 2) step size. To facilitate
this, all relevant fields — stress, temperature, pressure, density, viscosity, and velocity — are saved at the start of each new time
step. If a restart is triggered, these values are restored, and the time step is recalculated.

Multiple restarts per time step are possible and often necessary during the onset of thermal runaway. This strategy is effective
in ensuring solver stability while rapidly adapting the time step. Its primary drawback is that some redundant computations oc-
cur during restarts. However, the redundancy is generally small compared to the overall computations (and iterations) required
to solve each time step.

The inset in Fig. 3d illustrates the performance of this method. The time step initially remains on the order of hundreds of
years during the steady-state creep phase, drops by approximately two orders of magnitude as stress begins to relax, and then
decreases by another ten orders of magnitude during the onset of thermal runaway. In the elastic reloading phase, At quickly

recovers to hundreds of years as both stress and temperature evolve more slowly.
4.2 Adaptive rescaling

Numerical solvers commonly use internal scaling to center quantities around 1 which minimizes round-off errors due to nu-
merical precision. To do so, a set of scales is created, and all dimensional quantities are divided by an appropriate combination

of these scales. As an example, a geodynamic model focused on plate-scale deformation might use a time scale of s, = 10'2s
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and a stress scale of 7, = 10® Pa which combine to a viscosity scale of 7;. = 10?° Pa - s. This means a time step of 100 years
is scaled to Atnp = tA—f ~ 0.003156, where Atnp is the nondimensional time step used inside the solver.

This becomes problematic once adaptive time stepping reduces the dimensional time step to one second, as this is equivalent
to 10~ '2 after scaling. Considering the numerical precision of 10~!%, such a low value is prone to round-off errors. To mitigate
this, we decrease t. by one order of magnitude every time the nondimensional time step drops below 10, Changing the time
scale does not only impact the nondimensional time step but all quantities which carry units of seconds such as strain rates,
velocities, and viscosities. All of these have to be rescaled together. This is convenient for viscosities as they also decrease
significantly during runaway. It is also beneficial for velocities and strain rates as they increase during runaway and decreasing
tsc increases the velocity and strain rate scales.

In Fig. 4, we demonstrate how rescaling facilitates convergence and reduces the number of iterations by two orders of
magnitude for a model that takes time steps as low as 25 us. Without rescaling, the model requires about 2 x 10 iterations in
total to solve, the majority of them during thermal runaway. Rescaling properties with time scales in their units as soon as the
nondimensional time step Atyp drops below 10~ reduces the number of iterations by one order of magnitude. Rescaling at
Atnp < 10712 reduces the total number of iterations by another order of magnitude, and only half of them are used during
the runaway. Further reduction of the critical A¢xp has only negligible effects (Fig. 4) despite the proximity of the values to

numerical precision.

10° (@ 1
= . e N o rescaling
=98t @ Full model .
& 10 @ During runaway

@ ) @ ) @ o @
7 L 4
10 (©) o () ©) (©) ©) (©)
107t 10712 10710 1078 107°

AtN D, min

Figure 4. Effect of adaptive rescaling. Sum of iterations for full model (blue) and during runaway (orange) as a function of the minimum
allowed At¢np before rescaling is used to increase it. The dashed black line shows the number of iterations without any rescaling. Note that
the models with AtND,min = 10~ and no rescaling have many non-converged time steps. All models have identical results in terms of

stress, temperature, and velocity. nyq = 10° Pa-s.
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4.3 Regularization

During thermal runaway, the viscosity within the shear zone decreases dramatically (more than 10 orders of magnitude) due
to the temperature increase. Large contrasts in material properties are challenging for numerical solvers (e.g., Gerya, 2019),
especially for iterative approaches which rely on local conditioning. Elasticity can reduce the stiffness contrast between high
and low viscosity areas, but this is not sufficient to guarantee convergence. Even if the solver converges, shear zones often
thin to the width of one grid cell. In this case, the mechanical behavior of the model is governed by the numerical resolution
instead of the physics of the problem (De Borst et al., 1993; Iordache and Willam, 1998; Jacquey et al., 2021). To alleviate
this issue and improve reproducibility, we test three regularization methods: viscosity regularization (see Sect. 3.4.1), gradient
regularization (see Sect. 3.4.2), and latent heat of melting (see Sect. 3.4.3). To quantify the impact of viscosity and gradient
regularization, we run 60 1D simulations in which we vary between five different numerical resolutions (63-1023 cells), with
six different viscosity regularization values 7,z (106-10'® Pa-s), and six different gradient regularization values Ayeg (1-32 m).
As latent heat proved to be unable to regularize the reference model, we did not include it in this parameter study. We use

maximum velocity vy,.x, maximum temperature Ty,,«, and shear zone width dg, as diagnostic parameters for the analysis.
4.3.1 Viscosity regularization

Applying viscosity regularization renders the diagnostic parameters resolution independent (Fig. 5a,b,c). Instead, these quanti-
ties exhibit a strong, exponential dependence on the regularization viscosity 7yeg. FOr 7)eg > 1012 Pa-s, these quantities remain
nearly identical across all tested grid resolutions, ranging from 63 to 1023 cells (corresponding to minimum cell sizes between
2 m and 0.125 m). At 7),c = 10'2 Pa-s, the shear zone localizes to a single grid cell in the coarsest model (63 cells; blue curve
in Fig. 5). For lower values of )¢, results from this low-resolution model begin to diverge from those of finer grids. As 7)¢g is
further reduced, finer-resolved models also localize to a single cell and their results start to diverge from models that can still
resolve the shear zone.

Once a model localizes deformation to a single grid cell, both ds, and T},,.x plateau and cease to vary with decreasing 7;cg
(Fig. 5b,c). In contrast, vyax continues to increase as 7)., decreases, but it also slowly diverges from models that are still
resolved.

The total number of PT iterations nj¢.,, normalized by grid resolution, decreases with increasing 7., reflecting the fact that
a more strongly regularized runaway is numerically easier to solve (Fig. 5d). Higher-resolution models exhibit slightly more
efficient convergence compared to lower-resolution counterparts.

The temporal evolution of stress remains largely unaffected by variations in 7eg. For npeg < 10'° Pa-s, the models con-
sistently exhibit rapid and complete stress relaxation. In contrast, 7 = 10'® Pa-s leads to slower and incomplete relaxation
(inset in Fig. 5a). This trend is observed across all resolutions. Similar effects of viscosity regularization have been reported by
Spang et al. (2024).
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Figure 5. Effect of viscosity regularization (left column) and gradient regularization (right column). Colors correspond to resolution (number
of cells and corresponding size of smallest cell) and all axes are logarithmic. (a,e) Maximum velocity. (b,f) Maximum temperature. (c,g) Shear
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4.3.2 Gradient regularization

As in the viscosity regularization case, applying gradient regularization renders the diagnostic parameters resolution indepen-
dent (Fig. Se.f,g). Instead, these quantities exhibit a strong, exponential dependence on the regularization diffusion length scale
Areg- While minor discrepancies persist between different resolutions, they are negligible compared to the variations induced
by changes in A.cg. One exception is the coarsest model (63 grid cells) with A,z =1 m, which slightly overestimates both
Umax and T, .. In this case, the shear zone has localized to a single grid cell (Fig. 5g).

Across the tested range of Ayeg (1 — 32 m), Umax spans from 107 and 10" ms ™!, Tax ranges between 800 and 4000 °C,
and d, varies from approximately 3 to 100 m. Somewhat counterintuitively, larger values of A..; — which prevent extreme
localization resulting in a more attenuated runaway — require more PT iterations resulting in larger solution time (Fig. Sh).
Moreover, the number of iterations per grid cell increases with numerical resolution. Models with 511 grid cells and Aeg > 8
m, as well as 1023-cell models with A,z > 2 m did not complete in one day and are not shown in Fig. 5. We discuss the reasons
for this in Sect. 4.3.4.

For A;eg < 8 m, stresses relax rapidly and nearly completely. In contrast, for A;eg > 8 m, residual stresses of several hundred

MPa remain at the end of the thermal runaway phase (inset in Fig. Se).
4.3.3 Inclusion of latent heat of melting

To test the potential of melting as a regularization, we repeat the reference model (Fig. 1b) with the changes described in
Sect. 3.4.3 and without the previously mentioned regularization methods. Once the shear zone reaches the solidus of about
1900 °C (at Py = 10 GPa), temperature increase slows down as thermal energy partitions into melting (Fig. 6a). After about
one millisecond, the shear zone is completely molten and temperature continues to increase with the same rate as below the
solidus since no additional energy can be partitioned into melting. Overall, the inclusion of latent heat has no significant impact

on the model evolution. Results are similar in our 2D models (Fig. 6b).
4.3.4 Comparison

Viscosity and gradient regularization achieve the same overarching goal: they effectively attenuate thermal runaway, ensure
numerical stability, and provide control over the degree of strain localization. By doing so, they eliminate the dependence of
diagnostic parameters on spatial resolution, making quantities such as Umax, Tmax, and dg, primarily functions of 7;cg O Areg
instead. This control breaks down when the shear zone narrows to a single grid cell. At that point, regularization can no longer
constrain the degree of localization, and resolution-dependent artifacts reappear.

A direct, quantitative comparison between the two methods is not straightforward, as there is no known correspondence
between specific values of 7;¢s and A,cs. Nevertheless, a qualitative comparison of the columns two columns in Fig. 5 reveals
distinct differences. Gradient regularization allows significantly larger v, — spanning orders of magnitude beyond values
observed with viscosity regularization. However, T1,,.x is approximately two orders of magnitude lower when gradient regu-

larization is employed. Although both approaches produce similar shear zone widths when considering largest regularization
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Figure 6. Effect of considering the latent heat of melting. Dashed orange line shows evolution of maximum temperature, and turquoise line
shows evolution of maximum melt fraction. Note that we plot time step instead of time due to the small size of the time steps (~ 1us) during

melting. (a) 1D. (b) 2D.

values, the viscosity-regularized models generate up to an order of magnitude narrower shear zones for the smallest considered
regularization values. These differences stem from the fundamentally different ways the two methods constrain localization.

Viscosity regularization allows for the full release of stored elastic energy within the shear zone during stress relaxation,
leading to extreme peak temperatures of up to 10° °C. However, by introducing a lower bound on viscosity, it limits the extent
to which this heating can impact the rheology and weaken the material. As deformation is tightly coupled to rheology, this
constraint also limits maximum slip velocities. In contrast, gradient regularization distributes the released energy across a
broader region, leading to lower peak temperatures and wider shear zones. Because this method does not impose an explicit
lower viscosity bound, extreme deformation rates can still occur.

The computational cost of the two methods also differs significantly, as illustrated by the normalized number of PT itera-
tions in Fig. 5d and 5h. At low resolutions and with less pronounced regularization (10w 7y and Areg), both methods perform
similarly. However, as 1,cs Or Ayg increase, viscosity regularization becomes more efficient, requiring fewer PT iterations.
Conversely, gradient regularization becomes increasingly expensive. Larger values of A.¢e allow for faster diffusion of dissi-
pative work, effectively reducing the maximum allowed physical time steps.

Resolution scaling further differentiates the two methods. For viscosity regularization, the number of iterations per cell
remains nearly constant with increasing resolution. In contrast, this ratio grows with resolution when gradient regularization is
employed, making the latter increasingly impractical for high-resolution simulations. The number of necessary iterations for
diffusive processes is known to grow quadratically with the number of cells (e.g., Réss et al., 2022).

Including the latent heat of melting only has a negligible effect on the model evolution as it provides no significant limitation
of weakening and localization. A melt fraction of 100% requires about 10° J m~3 while the shear heating term is about

102 J m~2 s~! when the model reaches the solidus. For melting to be effective in attenuating thermal runaway, the melt would
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need to be immediately transported out of the shear zone which would remove energy from the shear zone and continuously
bring new host rock in contact with the shear zone which can absorb energy by melting as well. This process is indeed observed

in pseudotachylytes in the form of injection veins (Rowe et al., 2012; Andersen et al., 2014).
4.3.5 Relation to physical mechanisms

Regularization techniques are synthetic additions to physics-based equations. Their intended benefits include numerical stabil-
ity, reproducibility, mitigation of mesh dependency, smoothening of discontinuities, and simplification of complexity. If they
are effective, they provide better control over the model behavior but come with the inherent cost of diverging from the physical
solution once they start to affect the model.

Nevertheless, regularization techniques can also be interpreted as a simplification of a physical process that is not part of
the model equations. The viscosity regularization could be imagined as a simplification of melting. By acting as a minimum
viscosity cut-off, it decouples the deformation in the model from the temperature and the flow laws describing solid-state
creep. Melting could have a similar effect, replacing the governing olivine flow laws with a different rheology, potentially
temperature- and strain rate-dependent. We note that the values we employ for 7., are significantly larger than the viscosity
of peridotite melt (Liebske et al., 2005; Xie et al., 2021).

Gradient regularization distributes the localized shear heating over a larger area. As temperature is mainly governed by shear
heating during runaway, this regularization is effectively a smoothing process for temperature. Therefore, it can be compared
to an advection scheme which has a similar effect.

Ideally, regularization is replaced by additional physical processes (e.g., melting and melt transport). This requires an ac-
curate description of the physical process by the governing equations, exhaustive experimental constrains on the associated
material parameters, and a numerical solver that can handle the additional non-linearity that is potentially introduced. Fur-
thermore, there is no guarantee that additional physical processes are sufficient to regularize a process enough for numerical
stability and reliability (Gerolymatou et al., 2024). Additional physical processes that could affect the evolution of our models

are grain size evolution and phase transformations. We discuss them in Sect. 6.2 and 6.3.
4.4 Viscosity convergence

During the elastic loading phase, the model typically converges within a few (< 100) PT iterations. While such fast convergence
is computationally efficient, it can introduce numerical errors when using the viscosity relaxation method (Eq. (27)). In this
approach, the viscosity is incrementally updated in each iteration using a relaxation factor, commonly 7,¢; = 0.01, meaning
that only 1% of the computed viscosity update is applied per iteration. Although this under-relaxation stabilizes the solver, it
can hinder convergence of the viscosity field for a low PT iteration count.

Figure 7b shows that after 100 iterations, the viscosity update has only progressed about halfway towards its target value.
Converging viscosity relaxation (i.e., reaching the updated steady-state value) typically requires around 500 iterations for
Mrel = 0.01. Failing to accurately resolve viscosity relaxation may become problematic near the onset of LTP creep, where

nLTp drops rapidly as stress approaches the yield threshold 71,1p.
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LTP accommodates all deformation that would otherwise increase stress beyond this threshold. If nrp and the associated
strain rate partitioning are not updated fast enough, stresses can significantly exceed 71 rp, requiring corrective adjustments in
subsequent time steps (Fig. 7a). This not only leads to an incorrect stress evolution, but can also trigger spurious slip events
that would not occur under properly updated stress conditions.

To mitigate this issue, we monitor the convergence between viscosity 1'* and target viscosity 7' (Eq. 27). When the rela-

tive difference ‘"itn_t"t‘ is smaller than the viscosity tolerance tol,,, viscosity is considered converged. Once the conservation
equations (Sect. 3.2), the viscosity, and the strain rate partitioning (Appendix A) are converged, we accept the solution. This
ensures that both rheological and mechanical responses are correctly captured during the elastic-to-LTP transition (Fig. 7a).
The stress overshoot for insufficient viscosity convergence is more prominent when the steady-state stresses of diffusion and
dislocation creep are large. For the model in Fig. 7a, we increased Fq;r and Eq;s to 435 and 670 kJ molfl, respectively, which

is equivalent to considering the pressure dependence of the rheology (Hirth and Kohlstedt, 2003) and 10 GPa of background

425 pressure (Table 1).
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Figure 7. Effects of viscosity relaxation. (a) Zoom on transition from elastic loading to LTP in temporal evolution of stress (7) for different
viscosity tolerances (tol,,). The stress peak disappears if tol,, is reduced to ~ 10~°. (b) Convergence of n'* towards n" during the PT iterations
according to Eq. 27 for different 7)..;. Dashed lines correspond to the tolerances in (a). As all low-tolerance lines overlap, we did not display

107% to 10™*. The y-axis is logarithmic.

5 The 2D implementation

All of the previously mentioned features are also implemented in the 2D version of the model. We consider a configuration
with a homogeneous host rock containing a weak inclusion to perturb the stress field and initiate localization (Fig. 2b). In

Fig. 8, we show the temporal evolution of such a 2D simulation, using the same parameters as the 1D reference model and a

430 regularization viscosity of 7,eg = 10'? Pa-s.
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The 2D model undergoes the same stages as in 1D. An initial, homogeneous elastic loading stage is followed by the onset
of LTP at the tips of the inclusion. Subsequently, a shear zone forms and starts to develop horizontally across the domain
(Fig. 8a, b), before deformation becomes more localized near the anomaly tips (Fig. 8c). Thermal runaway initiates here and
then propagates horizontally across the domain (Fig. 8d-f), creating a rupture front marked by a sharp stress gradient (Fig. 8,
left column) and a peak in horizontal velocity (Fig. 8, central column). The simulation is stopped once the stress is fully
released. Here, we focus on the numerical behavior of the 2D model; for a detailed discussion of the physical implications,

refer to Spang et al. (2025a).
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Figure 8. Thermal runaway in 2D. (a-f) Temporal evolution of stress (left) and horizontal velocity (center) fields. (g) Temporal evolution
of average stress and maximum temperature. Black crosses along stress curve indicate the six snapshots shown in (a-f). The model uses the

parameters given in Table 1, with the exception of 7,cg = 10'% Pa -s.

5.1 Role of solution strategies in 2D

Adaptive time stepping remains critical in 2D. During elastic loading, time steps are typically on the order of decades; they
shrink to months at the onset of thermal runaway, to hours during rupture propagation, and to seconds at peak velocities. Setting
a lower time step bound can dampen thermal runaway, or, if set too high, cause solver failure. For most of the simulations,
the predictive time stepping strategy (Sect. 4.1.1) suffices. However, when rupture fronts meet across the periodic boundaries,
restarting time steps (Sect. 4.1.3) is required to maintain stability.

Regularization plays a similar role in 2D as in 1D. It enforces a lower bound on viscosity and upper bounds on strain rate and
velocity. Due to the more limited spatial resolution in 2D, the shear zone thickness is often constrained by grid size unless a
high regularization viscosity (~ 10'® Pa-s) is used. If a higher spatial resolution can be achieved through improved refinement

or significant increase in grid cells, regularization viscosity will again become the controlling factor. This equally applies to
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adaptive rescaling (Sect. 4.2), which becomes essential when smaller time steps and higher velocities exacerbate round-off
errors. Given its superior performance at fine resolutions, the viscosity regularization is the preferred method in 2D.

Finally, monitoring the convergence of the relaxed viscosity (Sect. 4.4) has minimal impact in 2D. Even before reaching the
LTP threshold, the number of iterations per time step increases to ~ 5000 to solve the conservation equations, ensuring that the

relaxation-based updates are well-converged.
5.2 Comparison to 1D

To compare the 1D and 2D models, we ran a 1D model using the same limited refinement as in 2D and compared the results
(Fig. 9). Both models exhibit very similar trends in stress, maximum temperature, maximum velocity, and minimum viscosity.
As long as the thermal runaway fronts remain more than 10 km away from the domain boundaries (Fig. 8a-f), the 2D and
1D models show nearly identical vy,ax and Tinax (Fig. 9b,c). Once the rupture fronts meet due to periodic boundaries, v ax
increases by a factor of ~ 3 and T}y, by ~ 250 °C. This surplus is likely caused by the increased stress in front of the rupture
tips (yellow lobes in Fig. 8). When the tips connect, they can release more stress which is converted into heat, resulting in faster
slip.

The most notable difference is the duration of the LTP-dominated phase, which lasts over 10 kyr in the 1D model but only
~ 200 years in 2D. This discrepancy stems from differences in how the anomaly is defined. In 1D, only the flow laws of
diffusion and dislocation creep are weakened. In 2D, the LTP back stress oy, is also reduced. This difference was necessary as
reducing oy, in 1D prevents stresses in the entire model from reaching values above 1 GPa, while omitting this weakening in

2D hampers localization significantly.

6 Simplifications and design choices
6.1 Governing equations

As stated above, we neglect inertial terms from Eq. (1) for simplicity. To determine to which extent this assumption is justified,
we roughly estimate the inertial term p%”ti . In 2D, we assume the extreme case that a grid node accelerates to the maximum

velocity (5 mm s~ 1) in a single time step (~ 15 s). The resulting value for p%“ti is on the order of 1 kg s~

2

m~2, whereas the

aTij

o
larger. In this case, neglecting the inertial term remains justified. However, in 1D models with the lowest tested values of 7);¢g Or

term on the right hand side of the governing two-dimensional momentum equation is about seven orders of magnitude
Areg, the inertial term could reach much larger values due to the larger velocities. In this case, inertia could reduce acceleration.

Gravity is neglected from Eq. (1) because the orientation of the shear zone is arbitrary in reality. Thermal expansion is
neglected from Eq. (4) and adiabatic heating from Eq. (3) as they did not play a significant role in a previous 2D study on
thermal runaway (Spang et al., 2025a).
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Figure 9. Comparison between 1D (blue) and 2D (orange) simulations. Note the different x-axes. Dashed lines indicate the portion of the

2D model influenced by periodic boundary conditions. (a) Mean deviatoric stress. (b) Maximum temperature. (¢) Maximum velocity. (d)

Minimum viscosity. Both models use the parameters given in Table 1, with the exception of 7;eq = 10'2 Pa-s. 1D model uses the same

vertical grid spacing as the 2D model (Sect. 3.1).

6.2 Grain size evolution

Adding grain size evolution could have a significant impact on the rheology and energy balance of our models, depending

on how much energy from viscous dissipation is partitioned into it. The partition factor spans several orders of magnitude

480 in the literature with a maximum of 10% (e.g., Mulyukova and Bercovici, 2017; Ruh et al., 2024). Furthermore, it might be

strain-dependent, as experimental studies suggest that only about 10% of olivine grains recrystallize at a strain of 1 (Cross and

Skemer, 2019). Most of our models do not even reach a strain of 0.1.
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6.3 Phase transformation

Endothermic phase transformations are another potential sink for thermal energy during runaway. Intermediate-depth earth-
quakes are commonly associated with the antigorite-olivine transformation (Hacker et al., 2003), and Brantut et al. (2017)
estimate the enthalpy change of this reaction to be on the order of 2.5-10% J m~3. This is about one quarter of the energy
density required for full melting. Consequently, this process would not have a significant effect on the energy balance during
thermal runaway. Deep-focus earthquakes are associated with the olivine-ringwoodite transformation (Kirby et al., 1996), but

this reaction is exothermic (Gleason and Green II, 2009) and cannot act as an energy sink during runaway.
6.4 Model setup

We only show cases with a single perturbation. As the 2D setup uses periodic boundary conditions, it approximates a setup
with multiple perturbations on the same vertical coordinate. The results show that temperature and slip velocity peak when
two rupture fronts unite (Fig. 9b,c). A more realistic case could involve perturbations of different size, strength, and location.
Comparing the length of the LTP-dominated warm-up period with the runaway phase suggests that once runaway initiates in

one location, the rupture would quickly release stress from surrounding perturbations, resulting in a single dominant rupture.
6.5 1D results

Figure 5b illustrates that 1D models can reach temperatures that exceed any observed or constrained values for the Earth
when using viscosity regularization. Similarly, models using gradient regularization reach slip velocities that are significantly
faster than any observed solid deformation, including earthquake slip and seismic waves (Fig. 5e). These unrealistic values
are inherent to 1D models as they imply an infinite shear zone (e.g., Kameyama et al., 1999; Braeck et al., 2009). While such
models struggle to accurately describe peak runaway conditions, they are still useful in investigating how localization develops

in the first place (e.g., Ogawa, 1987; Thielmann et al., 2015; Spang et al., 2024).

7 Conclusions

Resolving strain localization owing to thermal runaway represents a numerical challenge due to its spontaneous onset, rapid
self-acceleration, extreme localization, and strong gradients in temperature and viscosity. We address these by implementing
adaptive time stepping based on changes in stress and temperature and allowing time steps to be restarted if necessary. We
achieve a time step reduction by more than ten orders of magnitude without destabilizing the solver. To maintain numerical
precision during such extreme changes, we rescale time-dependent properties using an adaptive internal time scale.

To handle the self-localizing nature of thermal runaway, prevent solver failure from excessive viscosity reduction, and
keep results reproducible, we introduce regularization. Viscosity and gradient regularization both limit maximum velocity and

temperature and impose a minimum shear zone width, without altering the overall stress evolution. Viscosity regularization
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more strongly constrains velocity, whereas gradient regularization better controls temperature increase and shear zone width.
Accounting for the latent heat of melting or phase transformations is not sufficient to regularize thermal runaway.

We also show that the commonly used viscosity relaxation method in pseudo-transient schemes can result in incorrect stress
evolutions near the LTP threshold. Only accepting solutions with a sufficiently converged viscosity ensures accurate stress
evolution.

Extending the model to two spatial dimensions preserves the key physical behavior observed in 1D. Although 2D simulations
are more limited in spatial resolution due to grid aspect ratio constraints, adaptive time stepping, regularization, and rescaling
remain essential. Since 2D models naturally require more iterations per time step, monitoring viscosity convergence is less

critical.

Code and data availability. The current version of DEDLoc (Deep Earthquake Ductile Localization) is available from the project website
https://github.com/ArneSpang/DEDLoc under MIT licence. The exact version of the model used to produce the results used in this paper is
archived on Zenodo under https://doi.org/10.5281/zenodo.15481111, as are input data and scripts to run the models for all the simulations

presented in this paper (Spang et al., 2025b).

Video supplement. A video of the 2D model is available on Zenodo under https://doi.org/10.5281/zenodo.15481111 (Spang et al., 2025b).

Appendix A: Strain rate partitioning

The solver consists of 6 repeating steps:
1. Compute full strain rate from velocity field
2. Partition strain rate among elasticity, diffusion creep, dislocation creep, low-temperature plasticity, and the regularization
3. Compute the viscosity of each individual mechanism
4. Compute effective viscosity
5. Compute stress
6. Update velocity, pressure, and temperature

Step 2 is especially challenging, so we present our strategy here. Figure Al illustrates our rheological model including
viscosity regularization. The main challenges are the partition of stress between the regularization branch (orange in Fig. A1)
and the viscous branch (blue in Fig. A1), as well as the partition of the viscous strain rate between the different mechanisms.
Stress is equal in sequential components and partitioned in parallel components, strain rate vice-versa (Maxwell, 1867; J6Zwiak

et al., 2015). For clarity, we have neglected the subscript 17 in the following equations.

25


https://github.com/ArneSpang/DEDLoc
https://doi.org/10.5281/zenodo.15481111
https://doi.org/10.5281/zenodo.15481111

540

545

550

555

560

First, we partition the strain rate between the elastic and viscous / regularization components. The elastic strain rate can be

expressed as follows:

— Told

2GAt (AD)

Eel =

where 7 refers to the current stress and old refers to the stress at the end of the previous physical time step. This allows us to

compute the viscous strain rate:

bn=¢—éa. (A2

€vi is identical in the viscous branch and the regularization branch, and since 7., is known, we can express the stress carried

by the regularization as follows:

Treg = Qévinreg . (A3)

As stress is partitioned between the viscous and regularization branch, we can compute the viscous stress by:

Tvi =T — Treg- (A4)

Viscous stress is identical in all viscous components, but viscous strain rate is partitioned between them. As diffusion creep

viscosity is independent of the partitioning, the diffusion creep component can be computed by:

Tvi
2nait

Edif = (AS5)

€dir can be subtracted from the viscous strain rate to find the nonlinear part which partitions into dislocation creep and

low-temperature plasticity.

Enl = Evi — £dif = Edis T ELTP- (A6)

If neither dislocation creep nor LTP are currently active (i.e. taking a significant strain rate partition), €, can become negative.
In this case, we overwrite it with a very small positive value as a negative value or zero would cause issues in the viscosity
calculation.

As nqis and nrp both depend on the strain rate partitioning, we can not solve for either strain rate component analogously
to Eq. (AS). But, since €4i5 and €p1p are inversely proportional to 7q;s and npp respectively, we can guess their ratio from the

viscosities of the previous iteration.
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ELTP MNais
This yields:
. . Ty
i —<&n 5 A8
Edis,g €nl 1+ Ty ( )
. . 1 (A9)
€ =&l
LTP,g 17 Ty

where €4i5 ¢ and €1,7p ¢ are guesses for the strain rate of dislocation creep and low-temperature plasticity respectively. 1745 and
nLTp are computed with these guesses according to Eq. (12) and (13), and after stress has been updated, the true partitioning

for both mechanisms can be computed analogously to Eq. (AS):

Tvi
Edis = ——, (A10)
27]dis
. Tvi
ELTP = . (A11)
2n1rp

During the pseudo-time iterations, €qis ¢ and £r7p ¢ converge towards €45 and p,rp respectively. We track this convergence
and use it as an additional requirement for a solution to be accepted. If gradient regularization is used, the orange component

in Fig. Al is missing, and 7y; = 7.
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Figure Al. Illustration of our rheological model including the viscous regularization. Green shaded region shows elastic component, blue
shows viscous component, and orange shows regularization component. Individual deformation mechanisms are labeled with their respective

stresses and strain rates.
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Figure A2. Illustration of staggered numerical grid, indicating where different parameters are computed. (a) 1D. (b) 2D. Hollow circles are

ghost nodes outside the physical domain which are necessary to employ boundary conditions. Modified from Spang et al. (2025a).
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