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Abstract.  30 

Effective air quality management requires a comprehensive understanding of how meteorological variability and emission 

changes shape multiannual changes in regional PM2.5 pollution. During the cold seasons of 2015-2017, persistent PM2.5 

pollution occurred in the Pearl River Delta (PRD), South China, despite rapid emission reductions. This study systematically 

investigated the interconnections between climate variability, meteorology, PM2.5 levels, source contributions and budgets 

during these periods, aiming to uncover the detailed impacts of meteorological and emission changes on PM2.5 pollution. We 35 

found that drastic meteorological changes, closely linked to a transition from strong El Niño (2015) to weak/moderate La Niña 

(2017), were the main drivers of the three-year PM2.5 changes. Strengthened northerly winds and reduced humidity enhanced 

cross-regional PM2.5 transport into the PRD while concurrently suppressing local PM2.5 production and accumulation. 

WRF/CMAQ simulations indicate that transport (non-local) contributions to PM2.5 in the PRD increased from 70% in 2015 to 

74% in 2016 and 78% in 2017. While the transport of secondary inorganic PM2.5 components overall intensified, their 40 

responses to meteorological and emission changes varied: Variations in sulfate were more sensitive to emission reductions 

outside the PRD, whereas those for nitrate were primarily driven by meteorological shifts. Simulated PM2.5 mass budgets 

further support the increasing dominance of transport, especially via advections. Our findings underscore the potentially crucial 

role of meteorological variability in driving multiannual PM2.5 pollution changes in the PRD and other regions strongly 

impacted by cross-regional transport, emphasizing the necessity for regionally coordinated emission control strategies to 45 

effectively mitigate PM2.5 pollution.  

 

Graphic Abstract 
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1 Introduction 

Ambient fine particulate matter, or PM2.5, is a major air pollutant impacting global air quality (Cheng et al., 2016; Fowler et 

al., 2020). It can be directly emitted from anthropogenic and natural sources or chemically produced from its precursors such 

as SO2, NOx (NO+NO2), NH3 and volatile organic compounds (VOCs) (Hallquist et al., 2009; Zhang et al., 2015; Wang et al., 

2023a; Ye et al., 2023). In addition, cross-regional transport often plays a significant role in regional PM2.5 pollution (Qu et 55 

al., 2024). Exposure to PM2.5 poses serious health risks, contributing to pulmonary and cardiovascular diseases as well as 

excess mortality (Feng et al., 2016a; Pozzer et al., 2022). Apte et al. (2018) estimated that global ambient PM2.5 pollution 

reduces human life expectancy by approximately one year. To alleviate the detrimental health effects of PM2.5, World Health 

Organization (2021) recommends a guideline annual mean concentration limit of 5 µg m-3. However, over 90% of the global 

population currently experiences PM2.5 levels exceeding this guideline, underscoring the urgency of PM2.5 control (Pai et al., 60 

2022). To develop effective mitigation strategies over PM2.5 pollution, it is essential to comprehensively understand its 

multiannual changes in the past and the detailed influences of both meteorological and emission changes. 

 

China has faced severe PM2.5 pollution in the cold seasons (autumn and winter) for decades (Wang et al., 2015). Notably, 

several extreme PM2.5 pollution episodes occurred in January 2013 in North China, with hourly PM2.5 concentrations even 65 

exceeding 1000 µg m-3 (Wang et al., 2014; Yang et al., 2015), drawing widespread public concern. In response, the Air 

Pollution Prevention and Control Action Plan was implemented from 2013 to 2017, aiming to alleviate PM2.5 pollution across 

the country (Lu et al., 2020a). The implementation of the Action Plan proved effective, which led to a rapid reduction in SO2, 

NOx and primary PM2.5 emissions by 70%, 27% and 33%, respectively (Ministry of Ecology and Environment of the People’s 

Republic of China, 2014, 2021a; Zheng et al., 2018). Consequently, PM2.5 concentrations declined significantly during 2013-70 

2017 in many densely populated regions of China, including the North China Plain (~ 40%), the YangzteYangtze River Delta 

(~34%) and the Pearl River Delta (~28%) (Lu et al., 2020a; Wang et al., 2020a; Zhang et al., 2022). Attribution studies suggest 

that emission reductions contributed to over 70% of the observed PM2.5 declines during this period (Cheng et al., 2019a; Ding 

et al., 2019; Zhang et al., 2019; Chen et al., 2020a; Dong et al., 2020; Zhang et al., 2020; Bae et al., 2021; Jiang et al., 2022). 

 75 

On the other hand, changes in meteorological conditions can also significantly influence the severity of PM2.5 pollution (Jacob 

and Winner, 2009; Chen et al., 2020b). Over multiple years, meteorological changes can serve as a considerable driver for the 

variability in PM2.5 pollution, and in some cases, may even surpass the effect of emission changes (Jiang et al., 2022). A typical 

example is the unexpected severer PM2.5 pollution in North China during the COVID-19 lockdown period than in previous 

years, despite substantial reductions in anthropogenic emissions (Le et al., 2020). This was mainly attributed to unfavorable 80 

meteorological conditions, including elevated humidity and enhanced atmospheric stagnation. However, detailed mechanisms 

by which meteorological changes contribute to multiannual changes in PM2.5 pollution remain insufficiently explained in many 

studies. These year-to-year meteorological variations within a region are likely determined by larger-scale annual/decadal 
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climate variations. As summarized in Table 1, studies have acknowledged the connections between typical annual/decadal 

climate variations, such as El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation 85 

(PDO), and cold-season PM2.5 pollution in both North and South China (Mao, 2019; Sherman et al., 2019). These climate 

variations create disparities in the intensity and pattern of PM2.5 transport, as well as the conditions for local chemical 

production, accumulation and deposition of PM2.5, thereby resulting in the fluctuating contributions of cross-regional transport 

and local emissions to PM2.5 levels (Wang, et al., 2020b; Yin et al., 2021). By integrating analyses of annual/decadal climate 

variations with meteorological conditions in the target region, a more comprehensive understanding of the role of 90 

meteorological changes in driving multiannual PM2.5 changes can be achieved. 

 

Table 1. Summary of effects of annual/decadal climate variations on cold-season PM2.5 pollution in China. 

Annual/ 

decadal 

climate 

variations 

Region 

Effect on 

PM2.5 

pollution* 

Explanations Reference 

ENSO: El 

Niño 

North 

China 
+ Southerly wind anomalies lead to: (1) Enhanced PM2.5 

transport from the south; (2) Accumulation of local 

pollutants (also due to anomalous descending air 

motion); (3) Enhanced production of secondary PM2.5 

(due to higher humidity) 

Chang et al., 2016; Sun et al., 2018; He 

et al., 2019; An et al., 2022; Xie et al., 

2022a; Zhao et al., 2022; Wang et al., 

2023b 

 South 

China 
- Southerly wind anomalies lead to: (1) Enhanced water 

vapor transport, increased precipitation (also due to 

anomalous ascending motion) and increasing wet 

deposition of PM2.5; (2) Weakened PM2.5 transport 

from the north 

Chang et al., 2016; Feng et al., 2016b; 

Sun et al., 2018; Zhao et al., 2018; 

Cheng et al., 2019b; He et al., 2019; 

Yim et al., 2019; An et al., 2022; Xie et 

al., 2022a; Wang et al., 2022; Wang et 

al., 2023b 

  + Southerly wind anomalies lead to: Enhanced PM2.5 

transport from South and Southeast Asia 

Zhao et al., 2018 

ENSO: La 

Niña 

North 

China 
- Northerly wind anomalies lead to: (1) Enhanced PM2.5 

transport to the south; (2) Weakened production of 

secondary PM2.5 (due to lower humidity) 

Sun et al., 2018; He et al., 2019; Xie et 

al., 2022a 

 South 

China 
+ Northerly wind anomalies lead to: (1) Enhanced PM2.5 

transport from the north; (2) Reduced wet deposition 

of PM2.5 (due to less precipitation) 

Sun et al., 2018; Zhao et al., 2018; He et 

al., 2019; Yim et al., 2019; Wang et al., 

2022; Xie et al., 2022a 

AO: 

positive 

phase ** 

North 

China 
+ Reduced influence of cold air from the north lead to: 

Stagnation (lower boundary layer height), enhanced 

PM2.5 accumulation and production of secondary 

PM2.5 (due to higher humidity) 

Yin et al., 2015; Gu et al., 2017; Lu et 

al., 2020b; Lu et al., 2021 

 South 

China 

Uncertain / Lu et al., 2020b; Lu et al., 2021 

PDO: 

positive 

phase ** 

East 

China 
+ Enhanced descending air motion lead to: Lower 

boundary layer height and enhanced PM2.5 

accumulation 

Zhao et al., 2016 

*  “+” indicates that the factor leads to severer PM2.5 pollution, increased PM2.5 pollution/haze days or reduced visibility, and “-” indicates 

that the factor leads to less severe PM2.5 pollution, reduced PM2.5 pollution/haze days or increased visibility. 95 
** The effects of negative phase of AO and PDO are opposite to these of their positive phase, thus are not listed. 
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This study focuses on PM2.5 pollution in the Pearl River Delta (PRD), a densely populated metropolitan region in South China. 

Due to effective local emission reduction, PM2.5 levels in the PRD have declined rapidly since the mid-2000s (Lin et al., 2018; 

Yan et al., 2020), with the annual mean PM2.5 concentration dropping to 31 µg m-3 in 2018 (Zhai et al., 2019). Although this 100 

is lower than those in other major regions of China (e.g., 55 µg m-3 in the North China Plain and 40 µg m-3 in the Yangtze 

River Delta in 2018; Zhai et al., 2019), further efforts are still required to meet the World Health Organization (2021) guideline 

of 5 µg m-3. However, continued PM2.5 pollution mitigation in the PRD faces growing challenges. One of them is the dominance 

of secondary components in PM2.5, particularly, secondary inorganic components including particulate sulfate (pSO4), nitrate 

(pNO3) and ammonium (pNH4) (collectively denoted as SNA) which accounts for over 40% in PM2.5 (Huang et al., 2018; Yan 105 

et al., 2020; Chow et al., 2022). Besides, PM2.5 pollution in the PRD is markedly influenced by cross-regional transport, with 

contributions generally exceeding 60% (Qu et al., 2024). It has even stronger influences on SNA components, with the 

contributions exceeding 60% for pSO4 and 80% for pNO3 in winter (Ying et al., 2014; Li et al., 2019). The substantial impact 

of cross-regional transport is linked to the PRD’s location downwind of the prevailing northerly winds and intensive pollutant 

emissions widely distributed across East China. While emission reduction may continue to drive long-term PM2.5 declines, 110 

meteorology may play a crucial role in year-to-year changes in PM2.5 pollution here, given its strong influence on secondary 

PM2.5 production and cross-regional transport (Chen et al., 2020b). 

 

During the cold seasons of 2015-2017, PM2.5 concentrations in the PRD unexpectedly persisted, or even showed a slight 

increase, despite rapid emission reductions in both the PRD and its upwind regions of East China (details in Sect. 3). Zhai et 115 

al. (2019) attributed these changes primarily to meteorological variations. Based on the environmental meteorology indices 

quantified by Gong et al. (2021), meteorological conditions in the PRD underwent drastic shifts over the three years, transiting 

from extremely unfavorable for PM2.5 pollution in 2015 to highly favorable in 2017. These shifts were likely linked to rapid 

changes in climate state, particularly the transition from a strong El Niño in 2015 to a weak/moderate La Niña in 2017 (details 

in Sect. 3). However, it remains unclear how meteorological changes influenced PM2.5-related processes and contributed to 120 

worsened PM2.5 pollution in the PRD, as well as how they interacted with emission reduction within and outside of the PRD. 

To address this, we analyzed meteorological changes in the three cold seasons and their potential effects on PM2.5 pollution in 

the PRD, as presented in Sect. 3. Furthermore, we applied the WRF/CMAQ chemical transport model to simulate PM2.5 

pollution during representative months of each year, aiming to thoroughly assess the variations in the regional source 

contributions (local vs. transport (non-local)) and processes (e.g., cross-regional transport, emission process, chemical 125 

production and dry deposition) of PM2.5 in the PRD and identify the respective roles of meteorological and emission changes 

in shaping three-year variations in PM2.5 pollution. Detailed results are discussed in Sect. 4. This study aims to reveal the 

combined effects of drastic meteorological shifts and rapid emission reduction on PM2.5 changes over these three years, 

providing valuable insights into the extent to which meteorology and emissions can drive multiannual PM2.5 variations, and 

supporting future air quality improvement in the region. 130 
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2 Method 

2.1 Datasets 

To examine the state of climate variations and meteorological conditions during the 2015-2017 cold seasons and investigate 

their potential connections with persistent PM2.5 pollution in the PRD, this study applied several datasets, as outlined below: 

 Climatic indices: Three climatic indices were utilized for this study, including the Niño-3.4 sea surface temperature 135 

(SST) index (3-monthly; Rayner et al., 2003), the AO index (3-monthly; Thompson and Wallace, 1998) and the PDO 

index (Zhang et al., 1997). These indices are provided by the U.S. National Oceanic and Atmospheric Administration 

(NOAA) Climate Prediction Center (last access: 18 January 2021), aiming to represent the monthly state of ENSO, 

AO and PDO, respectively. A Niño-3.4 SST index above 0.5°C indicates an El Niño state, while the value below -

0.5°C indicates a La Niña state. The intensity of El Niño or La Niña can be further determined by the magnitude of 140 

the index, as shown in Fig. 3b. For the AO and PDO indices, positive (negative) values correspond to positive 

(negative) phases. 

 Meteorological variables: To compare meteorological conditions influencing PM2.5 pollution in the PRD across the 

three cold seasons, observations at five World Meteorological Organization (WMO) sites in the PRD (locations shown 

in Fig. 1; last access: 5 February 2021) and the ERA-Interim reanalysis product (last access: 21 January 2021; Dee et 145 

al., 2011; Berrisford et al., 2011) were used here. The selected meteorological variables for comparison include near-

ground air temperature, relative humidity and wind speed from the WMO observations, as well as wind speeds at 10 

m (in both x- and y-directions) and precipitation from ERA-Interim.  

 PM2.5 concentrations: To thoroughly understand three-year changes in PM2.5 pollution in the PRD, this study used 

PM2.5 monitoring data in the nine cities of the PRD (including Guangzhou, Shenzhen, Jiangmen, Zhuhai, Foshan, 150 

Dongguan, Zhaoqing, Huizhou and Zhongshan; Fig. 1), released by the China National Environmental Monitoring 

Centre (downloaded from https://quotsoft.net/air/; last access: 18 December 2018). 
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Figure 1. Locations of meteorological (WMO) sites and air quality sites within the PRD. Meteorological (WMO) sites (marked in black 

crosses, indexes denoted in blue): a. Guangzhou; b. Baiyun Airport; c. Shenzhen; d. Gaoyao (Zhaoqing); e. Shangchuan Island. Air quality 

sites within the Guangdong-Hong Kong-Macao regional air quality monitoring network (urban, regional and super sites are indicated by 

red, yellow and cyan dots, respectively): 1. Luhu; 2. Tianhu; 3. Zhudong; 4. Modiesha; 5. Wanqingsha; 6. Liyuan; 7. Tangjia; 8. 

Huijingcheng; 9. Jinjuju; 10. Donghu; 11. Duanfen; 12. Heshan Supersite; 13. Chengzhongzizhan; 14. Xiapu; 15. Xijiao; 16. Jinguowan; 160 
17. Nanchengyuanling; 18. Zimaling. The location of PKU-SZ is denoted as a pink triangle. The orange line indicates the boundary of the 

PRD region. 

In this study, a cold season is defined as the period from October to January of the next year, which are the months when PM2.5 

generally reaches its highest levels of the year in the PRD (Jiang et al., 2018). The cold season spinning spanning from October 

of the year i to January of the year i+1 is referred to as “the i cold season” in the discussions. A PM2.5 polluted day is identified 165 

when the daily-mean PM2.5 concentration exceeds 35 µg m-3, the Grade-I PM2.5 threshold of the Chinese National Ambient 

Air Quality Standard, in at least six out of nine cities in the PRD (including Guangzhou, Shenzhen, Jiangmen, Zhuhai, Foshan, 

Dongguan, Zhaoqing, Huizhou and Zhongshan). 
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2.2 Model Setups 

The CMAQ model (version 5.0.2, available at https://doi.org/10.5281/zenodo.1079898, last access: 13 July 2023; US EPA 170 

Office of Research and Development, 2014), a widely used regional chemical transport model, was applied to investigate 

multiannual changes in PM2.5 pollution in the PRD and their driving factors. Two nested one-way simulation domains were 

set for this study, as displayed in Fig. 2a. The second simulation domain (hereafter marked as “d02”) encompasses most of 

East China, enabling the analysis of both local processes and cross-regional transport contributing to PM2.5 pollution in the 

PRD. Thus the simulation results from d02 were used for further analyses. Meteorological fields were derived from the results 175 

of the Weather Research and Forecasting (WRF) model (version 3.2, available at https://doi.org/10.5065/D68S4MVH, last 

access: 13 July 2023; Skamarock et al., 2008). Chemical initial and boundary conditions for the outer domain were extracted 

from the outputs of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4; downloaded from 

https://www.acom.ucar.edu/wrf-chem/mozart.shtml, last access: 4 December 2019). SAPRC07 (Carter, 2010) and AERO6 

were separately set as the mechanisms of gas-phase chemistry and aerosol process. Additional details on the model setup are 180 

available in Qu et al. (2021a) and Qu et al. (2023), where the same WRF/CMAQ modeling system has been applied. 

 

A series of emission inventories were utilized in this study. Anthropogenic emissions for the simulations were derived from 

multiple sources, including the local inventory for the PRD (provided by the Guangdong Environmental Monitoring Centre), 

the MEIC inventory for mainland China (version 1.3, with province-level SO2 and NOx emissions adjusted based on official 185 

emission statistics from Ministry of Ecology and Environment of the People’s Republic of China (2017, 2021a, 2021b); Li et 

al., 2017a, Zheng et al., 2018), the MIX inventory for Asian areas outside of China (version 1.1; Li et al., 2017b), and East 

Asian shipping emissions quantified by the SEIM model (Liu et al., 2016). Specifically, anthropogenic emission inventories 

corresponding to the years 2015-2017 were applied in the simulations to capture rapid emission reductions in East China (Fig. 

S1) and their influence on PM2.5 pollution during the study period. Biomass burning emissions were derived from the Fire 190 

INventory from NCAR (FINN, version 1.5; Wiedinmyer et al., 2011). Biogenic emissions were estimated using the Model of 

Emissions of Gases and Aerosols from Nature (MEGAN, version 2.10; Guenther et al., 2012).  

 

We selected October and December of 2015-2017 as representative months in autumn and winter for the simulations, with ten 

days before each month as the spin-up period. Given that this study focuses on the causes of PM2.5 pollution in the PRD, we 195 

restricted our analysis and comparisons to the simulation results on the PM2.5 polluted days of six selected months (Table S1).  
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Figure 2. (a) The two-nested simulation domains, denoted as d01 and d02. The black boxes are the simulation domains for WRF, while 200 
the nested areas indicate the simulation domains for CMAQ. The black boxes indicate the WRF simulation domains, which are slightly 

larger than the corresponding CMAQ domains, as represented by nested areas. Both WRF and CMAQ are applied to d01 and d02. (b) 

PM2.5 source contributions to be identified in this study. 

To ensure the validity of the simulation results, we evaluated the model’s performance using multiple observational datasets. 

First, meteorological variables derived from the WRF output, including air temperature, absolute humidity, wind speed and 205 

direction, were compared against measurements at 226 WMO sites within the d02 (locations shown in Fig. S2a). The modeled 

concentrations of PM2.5 and some of its precursors (O3, NO2, SO2) were validated against observations at 18 sites within the 

Guangdong-Hong Kong-Macao regional air quality monitoring network (locations shown in Fig. 1). The model’s performance 

in simulating PM2.5 levels in the upwind regions of the PRD was also assessed based on PM2.5 observations in 15 representative 
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cities of East China (locations shown in Fig. S2b), sourced from the China National Environmental Monitoring Centre. 210 

Additionally, daily concentrations of pSO4, pNO3, pNH4, organic carbon (OC) and elemental carbon (EC), measured through 

filter sampling (once every two days) on the campus of Shenzhen Graduate School, Peking University (hereafter the site name 

is abbreviated as “PKU-SZ”; location marked in pink triangle in Fig. 1) were utilized to evaluate the model’s capacity in 

simulating cold-season PM2.5 components and their interannual changes (details of the measurement can be found in Su et al. 

(2020)). The statistical metrics used in model validation are summarized in Table S2. By comparing these metrics with 215 

benchmarks recommended by Emery et al. (2001), Emery et al. (2017), Huang et al. (2021) and Zhai et al. (2024), it can be 

determined whether the simulation results were acceptable for subsequent analysis. 

2.3 Identification of regional source contributions to PM2.5 

The factor separation method (FSM) was employed to quantify various regional source contributions to PM2.5 and its SNA 

components (pSO4, pNO3 and pNH4) concentrations in the PRD. This approach enables a detailed assessment of how much 220 

local and external emissions contribute to PM2.5 pollution while also identifying their interactive effects, thus it has been 

applied in many previous studies (Chen et al., 2014; Uranishi et al., 2018; Qu et al., 2021b; Sun et al., 2022; Xu et al., 2023). 

As illustrated in Fig. 2b, this study identified four types of regional source contributions: 

 Local contribution (𝐹𝑙𝑜𝑐𝑎𝑙): Contribution of PM2.5 and precursors emissions originating from all anthropogenic and 

biogenic emission sectors within the PRD (referred to as “local emissions”);  225 

 Direct transport contribution (𝐹𝑑𝑖𝑟𝑒𝑐𝑡): Contribution of PM2.5 transport, either directly emitted or produced from 

emissions originating from all anthropogenic and biogenic sectors outside of the PRD but within the d02 (referred to 

as “outer emissions”), into the region; 

 Indirect transport contribution (𝐹𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡): Contribution of the process by which PM2.5 precursors contributed by outer 

emissions are transported into the PRD and then react with other locally emitted precursors to produce secondary 230 

PM2.5; 

 Background contribution (𝐹𝑏𝑔): Contribution from sources outside the d02, of whichestimated as the contributions 

are estimated as these of chemical boundary conditions used in the d02 simulations. 

 

The contributions from non-local sources, including direct transport, indirect transport, and background contributions, are 235 

collectively referred to as “transport contributions” in the discussions. Specifically, outer emissions contribute to PM2.5 

pollution in the PRD through both direct and indirect effects of cross-regional transport (referred to as direct and indirect 

transport). PM2.5 is transported into the targeted region as PM2.5 itself in the process of direct transport, but in the form of PM2.5 

precursors in the process of indirect transport. The contributions of indirect transport represent the interactive effects between 

local and outer emissions. Currently, these contributions can only be identified by the FSM approach, whereas other source 240 

apportionment methods (e.g., top-down or bottom-up Brute Force Method and the tagging method; Clappier et al., 2017) 
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typically classify or separate them into either local or external contributions, highlighting the advantage of this method for our 

study.  

 

To identify the regional source contributions to PM2.5, four simulation cases with local and/or outer emissions open or zeroed 245 

out are established, which include (the simulated pollutant concentration in each case is denoted in the bracket): 

 Base case (𝑓0): Pollutant emissions across the entire d02, encompassing both the PRD and outside regions, are 

considered in simulations;  

 PRD-zero case (𝑓𝑃𝑅𝐷−𝑧𝑒𝑟𝑜): Pollutant emissions within the PRD (local emissions) are zeroed out; 

 PRDout-zero case (𝑓𝑃𝑅𝐷𝑜𝑢𝑡−𝑧𝑒𝑟𝑜): Pollutant emissions in regions outside of the PRD (outer emissions) are zeroed out; 250 

 All-zero case (𝑓𝑎𝑙𝑙−𝑧𝑒𝑟𝑜): All pollutant emissions within the d02 are zeroed out. 

 

The simulated population-weighted pollutant concentration is used for further source apportionment calculation and analysis. 

As it better indicates the effect of air pollutants on human health, this metric is widely used in air quality assessment studies 

(e.g., Li et al., 2017c). The population-weighted concentration (𝑓𝑝𝑜𝑝−𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑) is calculated as follows: 255 

 
𝑓𝑝𝑜𝑝−𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =

∑ 𝑓𝑖𝑝𝑖𝐴𝑖
𝑁
𝑖=1

∑ 𝑝𝑖𝐴𝑖
𝑁
𝑖=1

 (1) 

where 𝑓𝑖 is the simulated pollutant concentration in the grid cell i; 𝑝𝑖  is the population density within the grid cell i; 𝐴𝑖 indicates 

the area of the administrative PRD region within the grid cell i; N is the total number of grid cells within the simulation domain. 

Gridded population density data for the year 2015 were obtained from the GPWv4 dataset (last access: 14 September 2017; 

Doxsey-Whitfield et al., 2015) and applied in the above calculation. 

 260 

The simulated pollutant concentrations in the four cases can be viewed as the sum of different contributions, that is, all four 

contributions in the base case, direct transport and background contributions in the PRD-zero case, local and background 

contributions in the PRDout-zero case, as well as only background contribution in the all-zero case. Therefore, four types of 

contributions to PM2.5 concentrations can be quantified using the following equations: 

 𝐹𝑏𝑔 = 𝑓𝑎𝑙𝑙−𝑧𝑒𝑟𝑜 (12) 

 𝐹𝑙𝑜𝑐𝑎𝑙 = 𝑓𝑃𝑅𝐷𝑜𝑢𝑡−𝑧𝑒𝑟𝑜 − 𝐹𝑏𝑔 

= 𝑓𝑃𝑅𝐷𝑜𝑢𝑡−𝑧𝑒𝑟𝑜 − 𝑓𝑎𝑙𝑙−𝑧𝑒𝑟𝑜 
(23) 

 𝐹𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑓𝑃𝑅𝐷−𝑧𝑒𝑟𝑜 − 𝐹𝑏𝑔 

= 𝑓𝑃𝑅𝐷−𝑧𝑒𝑟𝑜 − 𝑓𝑎𝑙𝑙−𝑧𝑒𝑟𝑜 
(34) 

 𝐹𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑓0 − (𝐹𝑏𝑔 + 𝐹𝑙𝑜𝑐𝑎𝑙 + 𝐹𝑑𝑖𝑟𝑒𝑐𝑡) 

= 𝑓0 − 𝑓𝑃𝑅𝐷𝑜𝑢𝑡−𝑧𝑒𝑟𝑜 − 𝑓𝑃𝑅𝐷−𝑧𝑒𝑟𝑜 + 𝑓𝑎𝑙𝑙−𝑧𝑒𝑟𝑜  
(45) 
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2.4 Attribution of PM2.5 changes to meteorology, local and outer emissions 265 

Three base scenarios and four sensitivity scenarios were designed for the d02 simulations in this study, as listed in Table 2. 

Three base scenarios, named Base15, Base16 and Base17, aim to separately reproduce PM2.5 pollution in the PRD during the 

cold seasons of 2015-2017, incorporating the corresponding meteorological fields, local and outer emissions for each year. 

Four sensitivity scenarios (L16O15M15, L16O16M15, L16O16M17 and L16O17M17, with “L”, “O” and “M” representing 

local emissions, outer emissions, and meteorology, respectively, and the numbers after these letters indicating the years these 270 

factors follow) were setup with selected inputs fixed at 2016 levels while others remained at 2015 or 2017 levels. The impact 

of meteorological, local or outside emission changes during the cold seasons of 2015-2016 or 2016-2017 is identified based 

on the simulation results from the above seven scenarios. The contribution of a specific factor x (meteorology, local and outer 

emission, separately denoted as Meteo, Emis_L and Emis_O) to PM2.5 change during the period of y (15/16, from 2015 to 

2016; 16/17, from 2016 to 2017), 𝑆𝑥,𝑦, can be estimated as the difference in simulated PM2.5 concentrations between two 275 

scenarios where only that factor differs. For instance, to assess the impact of local emission reduction on changes in PM2.5 or 

its components during the cold seasons of 2015-2016 (𝑆𝐸𝑚𝑖𝑠_𝐿,15/16), the simulated pollutant concentrations from the scenarios 

Base15 and L16O15M15 (marked as 𝐶𝐵𝑎𝑠𝑒15 and 𝐶𝐿16𝑂15𝑀15, respectively) will be used, as local emissions are the only input 

differing between these scenarios (Table 2). 𝑆𝐸𝑚𝑖𝑠_𝐿,15/16 is estimated as: 

 𝑆𝐸𝑚𝑖𝑠_𝐿,15/16 = 𝐶𝐿16𝑂15𝑀15 − 𝐶𝐵𝑎𝑠𝑒15 (56) 

Similarly, when the simulated concentration of PM2.5 or its components in the scenario i is denoted as 𝐶𝑖 , other contributions 280 

can be calculated as follows: 

 𝑆𝐸𝑚𝑖𝑠_𝑂,15/16 = 𝐶𝐿16𝑂16𝑀15 − 𝐶𝐿16𝑂15𝑀15 (67) 

 𝑆𝑀𝑒𝑡𝑒𝑜,15/16 = 𝐶𝐵𝑎𝑠𝑒16 − 𝐶𝐿16𝑂16𝑀15 (78) 

 𝑆𝑀𝑒𝑡𝑒𝑜,16/17 = 𝐶𝐿16𝑂16𝑀17 − 𝐶𝐵𝑎𝑠𝑒16 (89) 

 𝑆𝐸𝑚𝑖𝑠_𝑂,16/17 = 𝐶𝐿16𝑂17𝑀17 − 𝐶𝐿16𝑂16𝑀17 (910) 

 𝑆𝐸𝑚𝑖𝑠_𝐿,16/17 = 𝐶𝐵𝑎𝑠𝑒17 − 𝐶𝐿16𝑂17𝑀17 (1011) 

 

Similar methods have been widely applied to attribute multiannual PM2.5 changes to meteorological and emission changes 

(Jiang et al., 2022). Here, by separately identifying the contributions of local and outer emissions, their varied influence on 

PM2.5 pollution changes in the PRD can be revealed. It should be noted that following the same calculations outlined in Eqs. 285 

56-1011, we can also attribute changes in regional source contributions of PM2.5 and its components, as described in the last 

section, to meteorological, local and outer emission changes. 

Table 2. Simulation scenarios and detailed setups. 

Scenario Year for local emissions Year for outer emissions Year for meteorology Simulation period 

Base2015 2015 2015 2015 Oct./Dec. 2015 

Base2016 2016 2016 2016 Oct./Dec. 2016 

Base2017 2017 2017 2017 Oct./Dec. 2017 

L16O15M15 2016 2015 2015 Oct./Dec. 2015 
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L16O16M15 2016 2016 2015 Oct./Dec. 2015 

L16O16M17 2016 2016 2017 Oct./Dec. 2017 

L16O17M17 2016 2017 2017 Oct./Dec. 2017 

2.5 Budget analysis 

We implemented the budget calculation tool developed by Qu et al. (2023) to quantify the mass budget of PM2.5 within the 290 

atmospheric boundary layer (ABL) of the PRD, which describes the contributions of various PM2.5-related processes to hourly 

variations in total PM2.5 mass. PM2.5-related processes considered in the budget include: 

 Horizontal transport, classified as the process crossing the north, south, west and east borders of the PRD (displayed 

in Fig. S3);  

 Vertical exchange through the top of ABL, driven by the temporal variations in ABL height and advective transport 295 

(perpendicular to both the ABL top and its slope); these two processes are denoted as ABLex-H and ABLex-A, 

respectively, in the discussions;   

 Cloud process, including wet deposition, aqueous reactions, in- and below-cloud mixing (Liu et al., 2011); 

 Emission (process); 

 Aerosol process, such as gas-particle partitioning, nucleation and coagulation (Liu et al., 2011); and 300 

 Dry deposition.  

 

The budget calculations were performed based on multiple gridded hourly simulation results, including meteorological 

variables from WRF, PM2.5 concentrations from CMAQ and PM2.5 processes contributions derived from CMAQ’s Integrated 

Process Rate (IPR) module. By comparing PM2.5 mass budgets in the three base scenarios and the L16O16M15, L16O16M17 305 

sensitivity scenarios, we aim to understand on the regional scale, how meteorological and emission changes influence PM2.5-

related processes and, ultimately, the severity of PM2.5 pollution in the PRD. More details on the methodology of budget 

calculation are available in Qu et al. (2023). 

3 Results: Changes in PM2.5 pollution and meteorological conditions during the 2015-2017 cold seasons 

A comprehensive understanding of the three-year PM2.5 changes across different PRD cities is necessary before further 310 

analysis. Among the three cold seasons, the 2015 cold season featured with the lowest cold-season mean PM2.5 concentrations 

in nearly all cities, ranging from 30 µg m-3 in Huizhou to 43 µg m-3 in Foshan (Fig. S4). This was due to a higher proportion 

of clean days with extremely low PM2.5 concentrations (< 15 µg m-3) in this year (~44% in the PRD, compared to ~32% in the 

other years; Fig. S5). In Jiangmen, Foshan and Zhaoqing, PM2.5 concentrations increased in the 2016 cold season and remained 

stable or slightly declined in the 2017 cold season. For the other cities, PM2.5 levels exhibited a continuous rise, reaching 38-315 

51 µg m-3 in 2017. Based on the definition of PM2.5 polluted days in Sect. 2.1 (daily PM2.5 > 35 µg m-3 in at least six out of 
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nine PRD cities), the number of polluted days increased from 47 in the 2015 cold season to 66 in both the 2016 and 2017 cold 

seasons. The comparison of PM2.5 concentrations on these polluted days (Fig. 3a) reveals that PM2.5 pollution in 2015 was not 

necessarily less severe than in 2016, especially in populated coastal cities such as Shenzhen and Zhuhai. In 2017, the highest 

polluted-day PM2.5 concentrations of the three cold seasons were observed in nearly all cities. These results suggest that despite 320 

rapid emission reductions driven by mitigation measures, PM2.5 pollution in the PRD did not consistently alleviate but instead 

persisted, highlighting the potentially critical role of meteorology in shaping the three-year changes in PM2.5 pollution. 

 

 

Figure 3. Comparison of (a) polluted-day daily-mean PM2.5 concentrations in the nine cities of the PRD, (b) Niño-3.4 index, (c) AO index, 325 
and (d) PDO index during the cold seasons of 2015-2017. 

 

Simultaneously, the climate state underwent significant changes during the cold seasons of 2015-2017, particularly with 

respect to ENSO, the most prominent annual/decadal fluctuation in the global climate system (Timmermann et al., 2018). As 

indicated by the Niño-3.4 index (Fig. 3b), a very strong El Niño occurred in the 2015 cold season, while a weak-to-moderate 330 

La Niña developed in the 2017 cold season. The 2016 cold season represents a transitional phase influenced by weak La Niña 

or neutral conditions. Persisted Persistent PM2.5 pollution in the PRD coincided with the El Niño-to-La Niña transition across 

the three cold seasons, aligning with the general effects of ENSO summarized in Table 1. Although PM2.5 pollution in the PRD 

is less sensitive to the AO and PDO phases (Mao, 2019), these oscillations can affect PM2.5 accumulation in North China as 

well as its southward transport. As shown in Fig. 3c-d, AO and PDO were predominantly in the positive phases during the 335 
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2015 cold season and in the negative phases during the 2017 cold season. Based on previous studies (Table 1), the changes in 

the AO and PDO states potentially restrained PM2.5 accumulation in North China and enhanced PM2.5 transport to the PRD. 

 

The transition in climate state led to marked changes in meteorological conditions across the three cold seasons, which, in turn, 

affected PM2.5-related processes in the PRD. While northerly winds prevailed in all three cold seasons due to the East Asian 340 

winter monsoon (Fig. 4a), distinct wind anomalies were found around the PRD. During the 2015 cold season, a southerly wind 

anomaly induced by the strong El Niño was observed (Fig. 4b), which facilitates the transport of water vapor from the oceans. 

This contributed to notably higher precipitation in South China compared to other years (Fig. 4f). The increased precipitation 

and enhanced wet deposition of PM2.5 explain why PM2.5 pollution in the PRD was overall less severe during the 2015 cold 

season. RH within the PRD was also higher in 2015 (Table 3), especially on the polluted days. It created favorable conditions 345 

for the local production of secondary PM2.5, particularly inorganic components such as nitrate (Chen et al., 2020b; Ding et al., 

2021; Yang et al., 2022; Zhai et al., 2023). Simultaneously, the southerly wind anomaly reduced the speed of prevailing 

northerly winds (Table 3), potentially enhancing the accumulation of locally-emitted or produced PM2.5 within the PRD. In 

contrast, during the 2017 cold season, the northerly wind anomaly (Fig. 4d) strengthened the transport of PM2.5 and its 

precursors from more polluted North and Central China to the PRD. This enhanced PM2.5 transport was likely driven by the 350 

combined effects of La Niña along with the negative phases of AO and PDO. As a result, PM2.5 pollution in the PRD even 

intensified in 2017, despite notable emission reductions both locally and in upwind regions. These linkages between climate 

transitions, regional meteorological anomalies and PM2.5 pollution changes in the PRD during the cold seasons of 2015-2017 

are generally consistent with previous findings (Zhai et al., 2016; Chang et al., 2016; Wang et al., 2019; Xie et al., 2022a). 

 355 

From the above analyses, we conclude that changes in meteorological conditions, which likely resulted from drastic shifts in 

climate state (El Niño-to-La Niña transition), tended to suppress local PM2.5 production and accumulation but enhance PM2.5 

transport to the PRD during the 2015-2017 cold seasons. Through the WRF/CMAQ simulations, more quantified evidence of 

meteorological influence on regional source contributions and processes of PM2.5 in the PRD will be provided, while also 

considering the effects of emission changes. Relative results are presented in the following section. 360 
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Figure 4. Mean wind field (a), precipitation (e) in East China during the three cold seasons and the difference between wind field (b-d), 

precipitation (f-h) in each cold season (2015: b,f; 2016: c,g; 2017: d,h) with the corresponding mean results. Data source: ECWMF ERA-

Interim re-analysis. 365 
 

Table 3. Comparisons between meteorological variables in the 2015-2017 cold seasons at five WMO sites within the PRD. The lowest 

temperatures, wind speeds and the highest relative humidity among the three cold seasons at each site are marked in bold. 

Averaged 

over 
Sites 

Air temperature (°C) Relative humidity (%) Wind speed (m/s) 

2015 2016 2017 2015 2016 2017 2015 2016 2017 

All days in 

the cold 

season 

Guangzhou 19.0 19.9 18.9 75.2 70.4 66.1 2.8 2.8 3.1 

Baiyun Airport 11.8 12.5 11.4 77.6 79.2 74.6 2.8 3.0 3.1 

Shenzhen 20.6 21.3 20.4 72.3 71.9 65.4 3.2 3.3 3.5 

Gaoyao 19.1 19.8 18.6 78.3 80.0 75.9 1.8 2.1 2.2 

Shangchuan 

Island 
20.5 21.2 19.8 80.7 77.1 72.6 5.9 5.7 6.5 

PM2.5 

polluted 

days in the 

cold season 

Guangzhou 20.1 21.0 19.6 73.7 67.8 61.2 2.3 2.8 2.7 

Baiyun Airport 12.8 13.3 12.0 77.5 79.1 70.4 2.4 2.9 2.8 

Shenzhen 21.5 22.3 20.7 72.0 69.9 61.8 2.7 3.1 3.1 

Gaoyao 19.8 20.7 19.2 78.0 78.0 71.9 1.5 2.1 2.0 

Shangchuan 

Island 
21.3 21.9 20.1 80.5 75.6 69.9 4.8 5.2 5.1 
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4 Results: Regional source contributions and budgets of PM2.5 across the three cold seasons 

4.1 Evaluation of model performance 370 

Before analysis, a comprehensive evaluation was conducted to validate the simulation results from the WRF/CMAQ model, 

of which the details are outlined as follows: 

 

(1) Meteorological variables: A series of statistical metrics were quantified to assess the model’s performance in simulating 

air temperature, absolute humidity, wind speed and direction, based on meteorological measurements at WMO sites. As 375 

summarized in Table S3, most of these metrics over the six months meet the benchmarks recommended by Emery et al. (2001), 

suggesting a satisfying performance in meteorological simulations. More detailed discussions can be found in Text S1 of the 

Supplement Information.  

 

(2) PM2.5 and precursors (O3, NO2, SO2) concentrations in the PRD: As shown in Fig. 5, the model well captured PM2.5 380 

concentrations and their temporal variations in the PRD during the study period. Across the six representative months, 

normalized mean bias (NMB) remained within ±30%, and correlation coefficient (R) consistently exceeded 0.6, overall 

meeting the performance benchmarks recommended for PM2.5 simulations by Emery et al. (2017). Comparisons between 

modeled and observed maximum daily 8-hour average (MDA8) O3 concentrations, daily mean NO2 and SO2 concentrations 

(Fig. S6) further indicate the model’s acceptable performance in simulating these species with low bias and high correlation 385 

(Zhai et al., 2024). However, some discrepancies remain, notably the overestimation of MDA8 O3 in winter and the 

underestimation of SO2 in December 2017, underscoring areas for further improvement in simulation accuracy. 

 

(3) PM2.5 concentrations in the upwind regions of the PRD: Figure S7 displayed the comparison between observed and 

modeled PM2.5 concentrations in the representative upwind cities. It indicates that the model reproduced the levels of PM2.5 in 390 

the upwind regions of the PRD, with acceptable overestimations ranging from 5% to 33% across different months. High 

correlation coefficients (0.68-0.82) suggest that the spatiotemporal variations of PM2.5 were well captured by the model. This 

satisfying performance in simulating PM2.5 pollution in the upwind regions reinforces the confidence in the model’s capacity 

to precisely describe the contribution of cross-regional transport to PM2.5 pollution in the PRD. 

 395 
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Figure 5. Comparisons between daily PM2.5 concentrations from observations and model results in the PRD. “obs” and “mod” separately 

represent the mean observed and modeled PM2.5 concentrations over the month. NMB, normalized mean bias; R, correlation coefficient. 

“(*)” indicates that the p value is less than 0.05 for the comparisons. 400 
 

(4) Concentrations of PM2.5 components at the PKU-SZ site: Based on the analysis results of filter-sampled PM2.5 at the 

PKU-SZ site, we evaluated the model’s capacity in simulating different PM2.5 components (Fig. 6). The results indicate that 

PM2.5 concentrations at this site were slightly underestimated by 4.7%, while their fluctuations during the three cold seasons 
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were well reproduced. Both observations and model results confirm the dominance of SNA components (pSO4, pNO3 and 405 

pNH4) in PM2.5. However, the significant underestimation of OC (by 46.1%) led to lower simulated proportions of organic 

components (OC and EC) in PM2.5 compared to observations, despite the overestimation of EC (by 47.6%). This limitation is 

one of the reasons that relative analyses in this study (Sect 4.2-4.3) focus on SNA components, which exhibit comparatively 

lower uncertainties in the simulations.  

 410 

Further comparisons reveal that pSO4 and pNH4 were underestimated by 21.0% and 6.7%, respectively, aligning with the 

benchmarks recommended by Emery et al. (2017) and Huang et al. (2021). In contrast, pNO3 was overestimated by 70.8%, 

slightly exceeding the benchmark values (70%, 60%) from the same studies. The overestimation of pNO3 is a well-recognized 

challenge in chemical transport models (Miao et al., 2020; Xie et al., 2022b; Norman et al., 2025), potentially arising from 

biases in the gas (HNO3)-particle (pNO3) partition, pSO4 underestimation or the absence of chemical reactions such as pNO3 415 

photolysis. In addition, observational uncertainties, particularly the evaporation loss of pNO3 during filter-sampling (Chow et 

al., 2005; Liu et al., 2015), may also contribute to the above discrepancy. However, when restricting the comparisons to days 

with observed daily pNO3 concentrations above 3 µg m-3, the model’s overestimation decreased to 35.6%, indicating more 

reliable performance during polluted conditions. Thus, the model results for pNO3 remain suitable for further analysis focusing 

on PM2.5 polluted days. 420 

 

Overall, the model demonstrated acceptable performance in simulating meteorological variables and pollutant concentrations 

with low biases and high correlations. While some disparities remain in the simulation of PM2.5 components, statistic metrics 

from relative evaluations generally meet recommended benchmarks, supporting the model’s reliability for further analysis. 

 425 
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Figure 6. Comparisons between PM2.5 compositions from observations and model results at the PKU-SZ site: (a) proportions of various 

components, including particulate sulfate (pSO4), nitrate (pNO3), ammonium (pNH4), organic carbon (OC), elemental carbon (EC) and 

others, in PM2.5; (b) daily concentrations of PM2.5 and its various components. NMB, normalized mean bias; R, correlation coefficient. 

“(*)” indicates that the p value is less than 0.05 for the comparisons. 430 

4.2 Changes in the regional source contributions to PM2.5 

Figure 7 illustrated regional source contributions to population-weighted mean PM2.5 concentrations in the PRD on the polluted 

days of the three cold seasons. The figure presents results from three base scenarios and four sensitivity scenarios, aiming to 

demonstrate the effect of changes in meteorology, local and outer emissions on the PM2.5 regional source contributions. For 

the 2016 cold season, the results are derived from the simulation of the Base2016 scenario. For the other two cold seasons, the 435 

differing inputs relative to the Base2016 scenario are specified in the left column. 
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An overview of the results from various scenarios reveals the significant impact of cross-regional transport on PM2.5 pollution 

in the PRD. Transport contribution or the contribution from non-local sources, including direct transport, indirect transport 

and background contributions, accounted for 70-80% of PM2.5 within the region. Among these, direct transport contributions 440 

are the largest, accounting for nearly half of PM2.5. Indirect transport and background contributions were comparable, each 

accounting for 9-14% in PM2.5. In contrast, local emissions contributed to 20-30% of PM2.5. The above regional source 

contributions to PM2.5 overall align with previous PM2.5 source apportionment studies in the PRD (Qu et al., 2024). 

 

 445 

Figure 7. Comparisons of regional source contributions to population-weighted PM2.5 concentrations on the PM2.5 polluted days in the 

PRD. The scenario corresponding to each result is noted in red. 

 

Comparisons of PM2.5 regional source contributions across the three cold seasons reveal how meteorological and emission 

changes led to differing causes of PM2.5 pollution in the PRD. The first row of Fig. 7 isolates the effects of meteorological 450 

changes by applying meteorological fields for each year while keeping both local and outer emissions fixed at the 2016 levels. 

The results show clear shifts in source contributions: Local contributions to PM2.5 declined from 30% in 2015 to 26% in 2016 

and further to 24% in 2017, while transport contributions increased—particularly direct transport, of which the contributions 

rose from 46% in 2015 to 53% in 2016 and 55% in 2017). These changes align with the findings in Sect. 3 that meteorological 

changes suppressed local PM2.5 production and accumulation while enhancing cross-regional PM2.5 transport. When reductions 455 

in outer emissions are incorporated into the simulations, decreases in the amount of PM2.5 transported into the PRD and thus 

direct transport contributions to PM2.5 are expected. However, results from the second row of Fig. 7, which reflect the combined 

effects of meteorological and outer emission changes, show that changes in local and transport contributions to PM2.5 remain 

in the same direction but are less pronounced. This suggests that while outer emission reductions had a mitigating effect, they 
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were insufficient to offset the meteorology-driven enhancement of PM2.5 transport. Finally, when local emission reductions 460 

are also included, comparisons among the three base scenarios (the third row in Fig. 7) show more pronounced changes in 

source contributions to PM2.5. Specifically, transport contributions rose continuously from 70% in 2015 to 84% in 2016 and 

88% in 2017. These results indicate that the increases in direct transport contributions and declines in local contributions were 

primarily driven by meteorological and local emission changes, whereas the effect of outer emission reductions on PM2.5 

pollution in the PRD was relatively limited. 465 

 

We also identified the regional source contributions of SNA components in PM2.5, of which the results from the three base 

scenarios are presented in Fig. 8. Direct transport is also the dominant contributor to all three components, accounting for 61-

68% of pSO4, 43-46% of pNO3 and 57-62% of pNH4. Additionally, indirect transport played a significant role in pNO3, 

contributing 44-51%, highlighting the importance of transported precursors in pNO3 production. Background contribution to 470 

pSO4 was also notable, accounting for ~20%. For pNH4, background contributions (8-9%) and indirect transport (16-25%) 

were both considerable, potentially indicating the effects of pSO4 and pNO3 transport in the form of (NH4)2SO4 and NH4NO3. 

The substantial influence of cross-regional transport on SNA, particularly pNO3, is consistent with previous PRD-based studies 

(Ying et al., 2014; Li et al., 2019). In contrast, local contributions were relatively low, accounting for only 13-17% of pSO4, 

6-10% of pNO3 as well as 10-16% of pNH4. Comparisons of SNA regional source contributions across the three cold seasons 475 

suggest an overall increase in transport contributions and a decrease in local contributions. Figures S8-10 illustrate the 

comparisons between regional source contributions for each SNA components across all scenarios. Similar to PM2.5, these 

changes were primarily driven by meteorological and local emission changes. However, for pSO4, the effect of reduced outer 

emissions outweighed meteorological influences, even leading to an overall increase in local contributions over the three cold 

seasons assuming local emissions remained unchanged (through comparisons between the results from the scenarios 480 

L16O15M15, Base2016 and L16O17M17, or the second row in Fig. S8). 
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Figure 8. Comparisons of regional source contributions to population-weighted mean particulate sulfate (pSO4), nitrate (pNO3) and 

ammonium (pNH4) concentrations on the PM2.5 polluted days in the PRD. The scenarios corresponding to the results in 2015-2017 cold 485 
seasons are Base2015, Base2016 and Base2017, respectively. 

4.3 Influence of meteorological and emission changes on PM2.5 and SNA in the PRD  

The analysis in the last section demonstrates how meteorological and emission variations led to changes in the regional source 

contributions of PM2.5 and SNA in the PRD. Here, we further quantify the contributions of meteorological, local and outer 

emission changes to the variations in PM2.5 and SNA concentrations in the PRD over the three cold seasons, as illustrated in 490 

Fig. 9.  

 

Simulated population-weighted mean PM2.5 concentrations in the PRD declined from 49.4 µg m-3 in 2015 to 37.6 µg m-3 in 

2016, before rising to 45.6 µg m-3 in 2017 (Fig. 9a). As expected, reductions in local and outer emissions lowered local and 

direct transport contributions to PM2.5, respectively, leading to overall decreases in PM2.5 concentrations during both 2015-495 

2016 (by 1.2 and 4.1 µg m-3, respectively) and 2016-2017 (by 1.7 and 1.0 µg m-3, respectively). However, these effects were 

less pronounced compared to the impact of drastic meteorological changes. During the 2015-2016 cold seasons, meteorological 

changes contributed to a 6.1 µg m-3 decrease in PM2.5, amplifying the effect of emission reduction. This was primarily due to 

reduced local contributions to PM2.5, reflecting less favorable conditions for local PM2.5 production and accumulation. In 

contrast, during the 2016-2017 cold seasons, meteorological changes resulted in a notable 10.7 µg m-3 increase in PM2.5, 500 

significantly counteracting the effects of emission reduction. The main change in PM2.5 source contributions due to 

meteorological changes was a rise in direct transport contributions, aligning with stronger cross-regional PM2.5 transport under 

more favorable wind conditions associated with the La Niña event in 2017. Our findings highlight the substantial role that 
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meteorological variability can play in driving multiannual PM2.5 pollution changes, underscoring the need to account for 

meteorological influences when establishing air quality management targets. 505 

 

 

Figure 9. Contributions of local emissions (Emis_L), outer emissions (Emis_O) and meteorology (Meteo) to the changes in the 

concentrations (noted in bold; increases noted in red, and decreases noted in blue) and regional source contributions of PM2.5 (a), sulfate 

(b), nitrate (c) and ammonium (d) in the PRD during the cold seasons of 2015-2017. The values represent population-weighted mean 510 
concentrations on PM2.5 polluted days during Oct. and Dec. of each year (unit: µg m-3). The symbol “x” denotes that the specific source 

contribution is not expected to change, as the corresponding input remained unchanged in the simulations. 
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The three-year variations in SNA and their responses to meteorological and emissions changes exhibited distinct characteristics 

compared to PM2.5 (Fig. 9b-d): 515 

 pSO4: Its concentrations showed a consistent decline throughout the study period, dropping from 9.6 µg m-3 in 2015 

to 7.3 µg m-3 in 2016 and 6.3 µg m-3 in 2017. This was mainly driven by reduction in outer emissions, which 

significantly lowered the amount of pSO4 transported into the PRD. Unlike PM2.5, which was strongly affected by 

meteorological changes, pSO4 exhibited a relatively limited response to them. This may be attributed to the high 

proportion of pSO4 originating from cross-regional transport (80-90%) compared to local contribution (10-20%). The 520 

transport patterns remained generally consistent (Fig. 4a), resulting in insignificant changes in pSO4 contributed by 

transport. Although locally produced pSO4 can be influenced by local meteorological conditions, its small 

contribution makes the responses of the overall pSO4 level to local meteorological changes less notable.  

 pNO3: pNO3 concentrations followed a similar change pattern as PM2.5, decreasing from 8.2 µg m-3 to 5.3 µg m-3 

during the first two cold seasons but rising to 6.6 µg m-3 in 2017. Also, these changes were largely driven by varying 525 

meteorological conditions, which influenced all major pNO3 source contributions, resulting in their declines during 

2015-2016 and increases during 2016-2017. More analyses of the meteorological influences on pNO3 will be 

presented in the next section. While reductions in outer emissions lowered direct and indirect transport contributions 

to pNO3, an unexpected effect was observed with local emissions reductions, which led to slightly higher indirect 

transport contributions and, thereby, increased pNO3 concentrations by ~0.1 µg m-3. Previous research (Qu et al., 530 

2021b) suggests that indirect transport of pNO3 in the PRD is closely linked to N2O5 hydrolysis that involves locally 

emitted NOx, NH3 and transported O3 as reactants. The slight increase in pNO3 may therefore be attributed to the 

enhancement of this reaction due to lower local NOx emissions and NO levels, or increased NH4NO3 formation 

replacing (NH4)2SO4 due to reduced local SO2 emissions. 

 pNH4: The changes in pNH4 concentrations and their responses to meteorological and emission changes fell between 535 

those of pSO4 and pNO3. Specifically, under the effect of meteorological changes, variations in pNH4 amount 

(∆n(pNH4)) can be largely explained by changes in pSO4 and pNO3 amounts (∆n(pSO4) , ∆n(pNO3)), nearly 

following the relationship: 

 ∆n(pNH4) − 2 × ∆n(pSO4) − ∆n(pNO3) = 0 (11) 

It suggests that pNH4 variation was predominantly determined by changes in pSO4 and pNO3 in an NH3-rich 

environment, indicated by AdjGR (the ratio between free NH3 (NH3+pNO3) and total nitrate (pNO3+HNO3); Pinder 540 

et al., 2008) values exceeding 1 (Table S4). pNH4 concentrations declined from 5.8 µg m-3 in 2015 to 4.1 µg m-3 in 

2016 but remained stable at 4.0 µg m-3 in 2017. The influences of meteorological and emission changes on pNH4 

were comparable (-0.7 µg m-3 vs. -0.9 µg m-3 during 2015-2016; +0.4 µg m-3 vs. -0.5 µg m-3 during 2016-2017). 

However, while both factors contributed to pNH4 reductions in the first two cold seasons, the effects of emission 

reductions counteracted meteorological influence in 2017, leading to a negligible net change. 545 
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4.4 Analyses of PM2.5 mass budget  

While comparison of PM2.5 regional source contributions offers an overview of the meteorological and emission influence on 

the three-year PM2.5 changes in the PRD, further evidence is required to understand the changes in specific PM2.5-related 

processes. This can be achieved through a detailed analysis of PM2.5 mass budget over the three cold seasons. To ensure the 

validity of this budget analysis, within a unit time, the sum of quantified contributions from individual processes (denoted as 550 

𝑠𝑖 to represent the contribution of the process i to the pollutant mass) should equal the total mass variation of the targeted 

pollutant (denoted as m), or mathematically expressed as: 

 𝜕𝑚

𝜕𝑡
−∑𝑠𝑖 = 0 (12) 

Figure S11 displays comparisons of the hourly net contributions of all PM2.5-related processes to PM2.5 mass (∑𝑠𝑖) against the 

mass changes directly calculated from model output (
𝜕𝑚

𝜕𝑡
) across five scenarios (Base2015, Base2016, Base2017, L16O16M15 

and L16O16M17). The scatter plots show slopes close to 1 and correlation coefficients exceeding 0.9, confirming the accuracy 555 

of quantified budget results. Thus, they can be confidently used for further investigation. 

 

Figure 10 displays the mean diurnal variations of PM2.5 mass budgets in the PRD across the three cold seasons, based on the 

results of the three base scenarios. The total mass of PM2.5, represented by black triangles in Fig. 10, features with similar 

diurnal variations: a rapid increase in the morning (6:00-14:00 local time), a sharp decline in the afternoon (14:00-18:00) and 560 

relatively stable levels at night (18:00-6:00 of the following day). These variations were primarily driven by vertical exchange, 

especially ABLex-H. It indicates that ABL development after sunrise led to pollutant transport into the ABL, while after 

noontime, pollutants were detrained above the ABL top along with the collapse of ABL (Jin et al., 2022). Horizontal transport 

also notably influenced PM2.5 mass variations throughout the day. Results indicate that PM2.5 was transported into the PRD 

through its north and east borders (contributing positively to the mass budgets) and exported out of the region through the 565 

south and west borders (contributing negatively), which is consistent with the prevailing wind patterns in the PRD during cold 

seasons (Fig. 4a). Other local processes, including cloud process, emission, aerosol process and dry deposition, had relatively 

limited impacts on PM2.5 mass budget. While the emission process contributed to mass increases and dry deposition led to 

mass reductions, the effects of aerosol process exhibited distinct characteristics: It increased PM2.5 mass at night but reduced 

it during the day, mainly indicating the day-night difference in the gas-particle partitioning of volatile PM2.5 components such 570 

as pNO3. PM2.5 mass budget for the three cold seasons but with emissions fixed at 2016 levels are displayed in Fig. S12 (based 

on the L16O16M15, Base2016 and L16O16M17 scenarios), which indicate similar patterns of variations for PM2.5 budget. 

 

Table 4 lists the detailed values of budget items in PM2.5 mass budget for the morning, afternoon and night in the five scenarios. 

To assess the influence of meteorological and emission changes on PM2.5-related processes, their contributions during the 575 
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periods of 2015-2016 and 2016-2017 are also quantified using the same methodology described in Sect. 2.4, expect that the 

contributions of local and outer emissions are combined in the following discussions.  

 

Figure 10. Mean diurnal variations of PM2.5 mass budget on the polluted days of 2015-2017 cold seasons within the ABL of the PRD. 

Backgrounds in yellow and dark blue indicate daytime and nighttime periods, respectively. 580 
 

Comparisons indicate that transport, as the dominant process in PM2.5 mass budget, exhibited more significant variations than 

other processes such as emission and aerosol process. Overall, at different times of the day, both the total PM2.5 flux transported 

into and out of the PRD (hereafter referred to as PM2.5 influx and outflux, respectively) increased across the three cold seasons 

when emissions were fixed at the 2016 level. For instance, the morning PM2.5 influxes rose from 225.4 t h-1 in 2015 and 228.5 585 

t h-1 in 2016 to 298.4 t h-1 in 2017, while the afternoon PM2.5 outfluxes increased from -292.3 t h-1 in 2015 to -302.2 and -314.2 

t h-1 in 2016 and 2017, respectively. This further underscores the role of meteorological changes in driving the three-year 

variations in PM2.5 pollution, as they enhanced PM2.5 transport while simultaneously weakening PM2.5 accumulation. Changes 

in emissions had contrasting effects, resulting in higher PM2.5 fluxes in the 2015 cold season and lower fluxes in the 2017 cold 

season. This introduces complexity in the variations of transport contributions to PM2.5 mass in the three cold seasons. While 590 

emission reduction led to lower fluxes from various transport processes, meteorological changes induced more intricate 

variations in specific fluxes. Contributions from advection processes, including horizontal transport and ABLex-A, generally 

followed similar increasing trends as for total transport influxes and outfluxes. However, the morning influxes and afternoon 

outfluxes of ABLex-H did not show a continuous decrease over the three years., but Instead, their values were relatively higher 

in both the 2015 and 2017 cold seasons (151.7 and 132.8 t h-1 for morning influxes, and -264.9 and -220.5 t h-1 for afternoon 595 

outfluxes) compared with those in 2016 (112.0 and -212.6 t h-1). In 2017, this was driven by an increase in PM2.5 transported 

from upwind regions and subsequently exchanged into or out of the ABL, aligning with the meteorological effects in this year. 

In contrast, the elevated contributions of ABLex-H in 2015 were likely due to locally accumulated PM2.5 being entrained back 

into the region and detrained into the residual layer.  

 600 
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The contributions of other processes to PM2.5 exhibit diversified variations, indicating complex responses of these processes 

to meteorological and emission changes. Overall, meteorological changes played a more important role in driving these 

variations. They resulted in a reduction in the contribution of aerosol process (stronger negative contributions during the 

daytime and weaker positive contributions at night), which is likely associated with the enhanced partitioning of pNO3 into 

gas-phase HNO3. As listed in Table S4, ε(pNO3), the proportion of pNO3 in the sum of pNO3 and gas-phase HNO3, decreased 605 

significantly across the three cold seasons (from 70.6% in 2015 to 67.7% in 2016 and 61.7% in 2017; Table S4), suggesting a 

greater tendency for pNO3 to shift into the gas phase. It can be primarily attributed to meteorological changes over the three 

years, namely, higher temperature in 2016 and reduced RH in 2017 (Table 3). Additionally, we found a notable decrease in 

dry deposition fluxes in the 2017 cold season under meteorological changes. This can be explained by the relatively higher 

wind speeds that year (Table 3), which are unfavorable for PM2.5 dry deposition (Wu et al., 2018). As for emission reduction, 610 

its effects were mainly reflected in decreased contributions from the emission process, along with reduced dry deposition 

fluxes of PM2.5.  

 

To summarize, PM2.5 mass budget indicates an overall increase in PM2.5 transport fluxes over the three years, consistent with 

the effects of meteorological changes. This increase is more notable for advection processes, including horizontal transport 615 

and ABLex-A. In contrast, local accumulation may have contributed to the elevated vertical exchange (ABLex-H) fluxes of 

PM2.5 in the 2015 cold season. While emission reduction was linked to lower contributions from the emission process and dry 

deposition, meteorological changes introduced more complex variations in other processes, particularly aerosol process and 

dry deposition. Specifically, higher temperature and lower RH likely enhanced the partitioning of pNO3 into gas-phase HNO3, 

resulting in reduced contributions of aerosol process across the three cold seasons; In addition, reduced dry deposition of PM2.5 620 

can be attributed to increasing wind speeds. Overall, PM2.5 mass budgets provide further evidence over the impacts of 

meteorological and emission changes on multi-year PM2.5 pollution trends, but it also reveals the complex responses of 

different PM2.5-related processes to these changes. 

 

5 Conclusions 625 

The drastic changes in meteorological conditions in the PRD, coupled with rapid emission reductions in East China during the 

2015-2017 cold seasons, provided a unique opportunity to comprehensively assess their combined impacts on regional PM2.5 

pollution. Despite significant emission reductions, observations in the PRD indicate that PM2.5 pollution persisted during the 

study period, highlighting the dominant role of meteorological variations in driving three-year PM2.5 changes. This was closely 

linked to large-scale climate fluctuations, particularly the transition from a strong El Niño in 2015 to a weak/moderate La Niña 630 

in 2017, which intensified northerly winds, reduced precipitation and lowered humidity near the PRD. As a result, cross-

regional PM2.5 transport from more polluted North and Central China to the PRD was enhanced, whereas local PM2.5 
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production and accumulation were weakened. Overall, our findings align with previous studies on the effects of ENSO on 

PM2.5 pollution in South China (Table 1).  
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Table 4. The items in PM2.5 mass budgets from various scenarios (unit: t/ h-1). The differences with the corresponding values in the previous rows are also shown 635 
in the brackets. “Emis” and “Meteo” separately indicate the contributions of emission and meteorological changes on the budget items. 

Period Scenarios 

Transport Horizontal Transport Vertical Exchange 
Cloud 

Process 
Emission 

Aerosol 

Process 

Dry 

Deposition Influx Outflux North South West East 
ABLex-

H 

ABLex-

A 

Morning 

(6:00-

14:00) 

Base2015 262.0 -119.0 45.6 -75.0 -44.0 40.3 151.7 24.4 3.4 33.0 -3.3 -29.1 

L16O16M15 

(Emis,15/16) 

225.4 

(-36.6) 

-103.5 

(+15.5) 

39.7 

(-5.9) 

-64.7 

(+10.3) 

-38.8 

(+5.2) 

34.8 

(-5.5) 

129.8 

(-21.9) 

21.1 

(-3.3) 

3.8 

(+0.4) 

29.9 

(-3.1) 

-10.8 

(-7.5) 

-27.9 

(+1.2) 

Base2016 

(Meteo,15/16) 

228.5 

(+3.1) 

-120.7 

(-17.2) 

49.0 

(+9.3) 

-63.4 

(+1.3) 

-57.3 

(-18.5) 

37.9 

(+3.1) 

112.0 

(-17.8) 

29.6 

(+8.5) 

4.8 

(+1.0) 

29.9 

(+0.0) 

-22.2 

(-11.4) 

-31.7 

(-3.8) 

L16O16M17 

(Meteo,16/17) 

298.4 

(+69.9) 

-123.5 

(-2.8) 

66.0 

(+17.0) 

-71.1 

(-7.7) 

-52.4 

(+4.9) 

49.8 

(+11.9) 

132.8 

(+20.8) 

49.8 

(+20.2) 

0.0 

(-4.8) 

28.1 

(-1.8) 

-28.6 

(-6.4) 

-20.4 

(+11.3) 

Base2017 

(Emis,16/17) 

282.8 

(-15.6) 

-118.4 

(+5.1) 

61.7 

(-4.3) 

-67.6 

(+3.5) 

-50.8 

(+1.6) 

47.7 

(-2.1) 

127.3 

(-5.5) 

46.1 

(-3.7) 

0.0 

(+0.0) 

24.7 

(-3.4) 

-27.2 

(+1.4) 

-18.8 

(+1.6) 

After-

noon 

(14:00-

18:00) 

Base2015 91.1 -343.3 38.6 -49.8 -28.6 32.2 -264.9 20.3 4.2 34.6 2.8 -12.5 

L16O16M15 

(Emis,15/16) 

77.1 

(-14.0) 

-292.3 

(+51.0) 

33.0 

(-5.6) 

-42.2 

(+7.6) 

-25.7 

(+2.9) 

27.0 

(-5.2) 

-224.4 

(+40.5) 

17.1 

(-3.2) 

4.7 

(+0.5) 

30.1 

(-4.5) 

1.2 

(-1.6) 

-11.8 

(+0.7) 

Base2016 

(Meteo,15/16) 

104.8 

(+27.7) 

-302.3 

(-10.0) 

37.9 

(+4.9) 

-45.6 

(-3.4) 

-44.1 

(-18.4) 

28.0 

(+1.0) 

-212.6 

(+11.8) 

38.9 

(+21.8) 

5.1 

(+0.4) 

29.8 

(-0.3) 

-16.4 

(-17.6) 

-13.8 

(-2.0) 

L16O16M17 

(Meteo,16/17) 

126.6 

(+21.8) 

-314.2 

(-11.9) 

48.4 

(+10.5) 

-48.6 

(-3.0) 

-35.1 

(+9.0) 

35.8 

(+7.8) 

-230.5 

(-17.9) 

42.4 

(+3.5) 

0.0 

(-5.1) 

29.1 

(-0.7) 

-16.0 

(+0.4) 

-8.3 

(+5.5) 

Base2017 

(Emis,16/17) 

119.4 

(-7.2) 

-299.2 

(+14.3) 

46.1 

(-2.3) 

-45.6 

(+3.0) 

-33.8 

(+1.3) 

33.5 

(-2.3) 

-220.5 

(+10.0) 

39.8 

(-2.6) 

0.0 

(+0.0) 

24.9 

(-4.2) 

-14.8 

(+1.2) 

-7.7 

(+0.6) 

Night 

(18:00-

6:00) 

Base2015 68.7 -67.5 36.1 -25.2 -31.6 32.6 -8.4 -2.3 0.6 20.7 20.1 -7.8 

L16O16M15 

(Emis,15/16) 

59.6 

(-9.1) 

-58.6 

(+8.9) 

31.1 

(-5.0) 

-22.9 

(+2.3) 

-28.5 

(+3.1) 

28.5 

(-4.1) 

-7.2 

(+1.2) 

0.0 

(+2.3) 

0.5 

(-0.1) 

19.4 

(-1.3) 

19.0 

(-1.1) 

-7.5 

(+0.3) 

Base2016 

(Meteo,15/16) 

93.5 

(+33.9) 

-78.2 

(-19.6) 

48.0 

(+16.9) 

-34.1 

(-11.2) 

-40.2 

(-11.7) 

34.2 

(+5.7) 

-3.9 

(+3.3) 

11.3 

(+11.3) 

-2.0 

(-2.5) 

19.3 

(-0.1) 

11.4 

(-7.6) 

-7.6 

(-0.1) 

L16O16M17 

(Meteo,16/17) 

119.5 

(+26.0) 

-72.4 

(+5.8) 

58.0 

(+10.0) 

-35.9 

(-1.8) 

-31.7 

(+8.5) 

44.6 

(+10.4) 

-4.8 

(-0.9) 

16.9 

(+5.6) 

-0.1 

(+1.9) 

16.6 

(-2.7) 

9.8 

(-1.6) 

-3.9 

(+3.7) 

Base2017 

(Emis,16/17) 

112.1 

(-7.4) 

-69.1 

(+3.3) 

54.7 

(-3.3) 

-33.7 

(+2.2) 

-31.0 

(+0.7) 

42.7 

(-1.9) 

-4.4 

(+0.4) 

14.7 

(-2.2) 

-0.1 

(+0.0) 

15.3 

(-1.3) 

10.4 

(+0.6) 

-3.7 

(+0.2) 
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The WRF/CMAQ model was utilized to simulate regional source contributions and budgets of PM2.5 across the three cold 

seasons, aiming to provide quantitative evidence to support the above conclusions. We found that transport (non-local) 640 

contributions to PM2.5 increased from 70% in 2015 to 74% in 2016 and 78% in 2017, with the most evident rise occurring in 

the contributions of direct transport, the primary contributor to PM2.5 in the PRD. Simultaneously, contributions from local 

emissions declined continuously. Although the composition of regional source contributions to SNA components varied, the 

transport and local contributions generally followed similar changes as those of PM2.5 in the three cold seasons. Sensitivity 

simulations further revealed the effects of meteorological and emission changes on the three-year PM2.5 variations. While 645 

emission reductions in the PRD and its upwind regions led to declining PM2.5 separately related to local and direct transport 

contributions, meteorological changes were the dominant driver of the three-year fluctuations in PM2.5 pollution — It facilitated 

a PM2.5 decline from 2015 to 2016 (-4.1 µg m-3, on regional average) by reducing local contributions but drove a PM2.5 increase 

from 2016 to 2017 (+10.7 µg m-3) mainly by enhancing direct transport. The effects of meteorological and emission changes 

on SNA components varied. Emission reduction, particularly outside the PRD, led to consistent decreases in pSO4 650 

concentrations in the three cold seasons, while whereas the influence of meteorological changes was overall limited due to the 

high transport (and low local) contribution to pSO4. TIn contrast, the three-year changes in pNO3 concentrations were largely 

controlled by meteorological variations, likely associated with the varied partitioning between particle-phase pNO3 and gas-

phase HNO3 under changes in local temperature and humidity. Meanwhile, pNH4 variations were closely linked to those of 

both pSO4 and pNO3. Analyses of PM2.5 mass budget within the ABL of the PRD further confirmed the increasing contributions 655 

of transport, especially advective processes, under changing meteorological conditions. At the same time, contributions from 

the emission process and aerosol process declined. While these results reinforce our overall conclusions, they also underscore 

more complex responses of specific PM2.5-related processes to meteorological and emission changes.  

 

The identification of regional source contributions to PM2.5 highlights the substantial influence of cross-regional transport on 660 

PM2.5 pollution in the PRD. This study also suggests the critical role of transport processes, including horizontal transport and 

vertical exchange, in PM2.5 mass budget. During the 2015-2017 cold seasons, drastic meteorological changes notably enhanced 

transport contributions to PM2.5 concentrations and mass budget, resulting in persistent PM2.5 pollution in the PRD despite 

rapid emission reductions. In regions where PM2.5 pollution is strongly affected by cross-regional transport, meteorological 

variability can drive multiannual changes in PM2.5 pollution by modulating PM2.5 transport, potentially masking the benefits 665 

of emission control measures. For instance, although emission reduction results in the decrease of PM2.5 concentrations in the 

PRD from 48.3 µg m-3 (the L16O16M17 scenario) to 45.6 µg m-3 (the Base2017 scenario) in the 2017 cold seasons, unfavorable 

meteorological conditions still ensured higher PM2.5 levels than those in 2016 (37.6 µg m-3, the Base2016 scenario) (Fig. 7, 

9a). Thus, the meteorological impact should be considered when assessing air quality improvement efforts. Also, to mitigate 

PM2.5 pollution and protect public health in these regions, while continued local emission reductions remain essential in the 670 

long term, a broader, regionally coordinated mitigation strategy is crucial to address transported PM2.5, particularly under 

meteorological conditions that favor pollutant transport. 
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While this study provides valuable insights, certain limitations remain. Specifically, it is required to further improve the 

simulation of PM2.5 components, especially pNO3, OC and EC, by incorporating more precise emission inventories, refined 675 

PM2.5 speciation in emissions and enhanced OC chemistry modules in the model. Achieving better simulation performance 

will enable more robust quantification of meteorological and emission impacts on PM2.5 and its components, particularly OC. 

Nevertheless, this study offers a systematic analysis of climate states, meteorological conditions, PM2.5 pollution, and its 

regional source contributions and budgets in the PRD across the three cold seasons, revealing their intricate interconnections. 

We elucidated the dominant role of meteorology in shaping the three-year PM2.5 variations in the PRD, and explained how 680 

climate variability influenced meteorology, how meteorology affected PM2.5-related processes, as well as how these effects 

were reflected in the regional source contributions and budgets of PM2.5. Extending similar analyses to other regions will be 

essential for deepening out understanding of meteorology-driven PM2.5 variations and optimizing emission reduction strategies 

for sustained air quality improvements. Although meteorological variability can drive multi-annual changes in regional PM2.5 

pollution, sustained emission reductions remain the most fundamental and effective means to achieve long-term air quality 685 

improvement. 
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