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Abstract. The intensification of summer temperature and heat extremes is well documented and attributed to
::::::
Rising

:::::::
summer

::::::::::
temperatures

::::
and

:::::
more

:::::::
frequent

::::
heat

::::::::
extremes

:::
are

:::::::::::::::
well-documented

:::::::::
outcomes

::
of

:
anthropogenic climate change. There is,

however, still a vivid debate about the influence of
:::::::
However,

::::
the

:::::
extent

::
to
::::::

which
:
atmospheric circulation changes on heat

extremes. Over the northern hemispheric
::::::::
contribute

::
to

:::::
these

:::::
trends

:::::::
remains

::::::::
contested.

::::::::
Regional

:::::::::
differences

::::::
across

::
the

::::::::
northern

mid-latitudes , considerable regional differences in summer temperatures have been observed. These differences have been5

linked to atmospheric circulation changes using statistical methods, but it remains challengingto evaluate such methods on

multi-decadal time scales. Here, we evaluate different decomposition methods and systematically investigate circulation-induced

summer temperature trends. For the evaluation of
::::::
suggest

:::
that

:::::::::
circulation

:::::
plays

:
a
:::::
role,

::
yet

:::::::
robustly

::::::::::
quantifying

:::
its

::::::::::
contribution

:::
over

::::::::
multiple

::::::
decades

::
is

::::
very

::::::::::
challenging.

:::
We

::::::
address

::::
this

::
by

::::::::::::
systematically

::::::
testing statistical and machine learning decomposition

methods we use
::::
with climate model simulationswithout external forcing but with atmospheric circulation nudged towards the10

circulation of a freely running forced simulation . We train the decomposition methods on the free-running forced simulation

and compare its
:
.
::::::::::
Specifically,

:::
we

:::
use

::::::::
unforced

:::::::::
simulations

::::
with

:::::::::
circulation

:::::::
nudged

::
to

:::::
match

::
a

:::::
forced

:::::::::
simulation

::::
that

:::::::
includes

:::::::::::
anthropogenic

:::::::::
emissions

:::
and

::::::::
land-use

::::::
change.

::::
We

::::
apply

:::::::::::::
decomposition

:::::::
methods

::
to

:::
the

::::::
forced

::::::::::
simulations

:::
and

::::::::
compare

::::
their

:::::::
estimates

:::
of

:
circulation-induced trends to the trends simulated in the nudged circulation simulation. Most decomposition

methods show skill in estimating the sign
::::
with

::::
those

::::::
found

::
in

::::::
nudged

:::::::::
circulation

:::::::::::
simulations.

:::
Our

::::::::
analysis

::::::
reveals

:::
that

:::::
most15

:::::::
methods

:::::::::
accurately

::::::
identify

::::
the

:::::::
direction

:
of circulation-induced trends but all methods underestimate the magnitudeof these

trends. The application of tested decomposition methods confirms
:::::::
changes,

::::::::
although

::::
they

::::::::::
consistently

::::::::::::
underestimate

:::::
their

:::::::::
magnitude.

::::::
Despite

::::
this

::::::::
limitation,

:::
the

::::::
results

::::::::::
demonstrate

:
that circulation changes have contributed substantially to an increase

in summer heat over several
:::::
made

:
a
:::::::::
substantial

::::::::::
contribution

:::
to

:::::::
summer

::::::::::
temperature

:::::
trends

::::::
across

:::
the

:::::::
northern

::::::::::::
mid-latitudes.

::
In

:::::::
Europe,

:
a
:::::::
hotspot

::::::
region,

:::
we

::::::::
estimate

:::
that

:::
up

::
to

::::
half

::
of

:::
the

::::::::
observed

::::::::
summer

:::::::
warming

::::::::
between

::::
1979

::::
and

:::::
2023

:::
can

:::
be20

::::::::
attributed

::
to

:::::::::
circulation

::::::
trends.

::::::::::
Furthermore,

:::::::::
circulation

::::::
trends

::::
have

::::::::::
contributed

::
to

::::::
warmer

:::::::
summer

:::::::::::
temperatures

::::
over

:::::::
Western
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:::::
North

::::::::
America,

::::::
Central

:::::::
Siberia,

:::::::::
Mongolia,

:::::::
Central

::::::
China,

::::
and

::::::::::
northeastern

::::::::
Canada.

::::
Yet,

:::::::::
circulation

:::::::
changes

:::::
have

::::::
cooled

::::::
summer

:::::::::::
temperatures

:::::
over

::::::
Eastern

::::
and

::::::
Central

:::::
North

::::::::
America,

:::::::
Eastern

::::::
China,

::::
and

::::::
Central

:::::
Asia.

:::::::
Overall,

:::
our

:::::::
results,

:::::
based

::
on

:::::::
multiple

::::::::
methods,

:::::::
confirm

::
a

:::::::::::
circumglobal mid-latitude regions, including Europe

:::::
pattern

::
of

::::::::::::
considerable,

:::
yet

::::::::::
contrasting,

:::::::::::
contributions

::
of

:::::::::
circulation

:::::::
changes

::
to

:::::::
summer

::::::::::
temperature

:::::
trends.25

1 Introduction

The intensity of heat waves
:::::::::
heatwaves increases globally, causing considerable

::::::::
significant

:
ecological and societal impacts.

It is well understood that in a warming climateheat waves over
:
,
:::::::::
heatwaves

::::::
lasting

::
a
:
few days or warm summer seasons

intensify,
:

and this effect can be robustly attributed
::
to

::::::::::::
anthropogenic

:::::::
activities

:
(Seneviratne et al., 2021). The main reason for

this intensification is of
:
a
:
thermodynamic nature: heat extremes occurring in a warmer atmosphere are also warmer. However,30

heat waves are not only determined by
::::
direct

:
thermodynamic changes in a warming climate: Various effects can lead to regional

trends in summer heat,
:
including changes in atmospheric circulation (Teng et al., 2022; Rousi et al., 2022; Vautard et al., 2023;

Singh et al., 2023), or changes in soil moisture
::::::::
feedbacks

:::
due

::
to
::::::::::::::

land-atmosphere
::::::::::
interactions

:
(Seneviratne et al., 2006). As

a result, regional trends in summer average temperatures or summer heat extremes differ strongly across the world and even

across the northern hemispheric mid-latitude land area. An improved understanding in particular of effects due to atmospheric35

circulation changes and quantifying to which extent these changes are due to forced or internal variability is crucial for our

understanding of past summer temperature trends (Merrifield et al., 2017), extreme events (Terray, 2021) and constraints on

projected future temperatures.

In the mid-latitudes, large-scale circulation is a crucial driver for heat extremes (Rousi et al., 2022; Röthlisberger and

Papritz, 2023) and there is great interest in understanding to what extent atmospheric circulation contributed to individual40

events (Cattiaux et al., 2010; Sippel et al., 2024; Zeder and Fischer, 2023), trends in heat extremes (Rousi et al., 2022; Singh

et al., 2023) or seasonal temperatures (Teng et al., 2022). Forced changes in the summer jet strength and structure alongside

with
::
jet

::::::
stream

:::::::
position

:::
and

:::::::
strength

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dong et al., 2022; Rousi et al., 2022; Woollings et al., 2023; Shaw and Miyawaki, 2024)

:
, changes in storm track intensity are one reason for forced circulation driven changes, yet model simulated trends are very

diverse, not consistent across models and thus uncertain (Shepherd, 2014), nat. var however stays main factor here. Over45

mid-latitude Europe and parts of Eurasia, observed summer circulation has changed towards more anticyclonic conditions

(Horton et al., 2015) with the increased occurrence of double jet stream states (Rousi et al., 2022)
:::::::::::::::::::::::::::::::::::::::::
(Coumou et al., 2015; Chemke and Coumou, 2024)

:::
and

:::
the

:::::::
resulting

:::::::
changes

::
in

:::::::
weather

:::::
pattern

::::::::::
frequencies

::::::::::::::::::::::::::::::::::::::::::::::::::
(Horton et al., 2015; Hanna et al., 2018; Fabiano et al., 2021)

::
are

:::::
likely

::
to

:::::
affect

::::
local

:::::::
climate

:::::::::
conditions

:::::::::::::::::::
(Pfleiderer et al., 2019).

:::::
Over

:::
the

:::::::::::
observational

:::::::
record,

::::
these

::::::
forced

::::::::
changes,

::::::::
however,

:::
are

::::
small

:::::::::
compared

::
to

:::::::
internal

:::::::
climate

:::::::::
variability

:::::::::::::::::
(Eyring et al., 2021).

::::::::::
Estimating

:::
the

::::::::::
contribution

:::
of

::::::::::
atmospheric

::::::::::
circulation50

::::::
changes

::
to
:::::
local

::::::::::
temperature

:::::
trends

:::
and

::::::::::
quantifying

:::
the

:::::
extent

::
to

::::::
which

::::
these

:::::::
changes

:::
are

:::
due

::
to

::::::
forced

::
or

::::::
internal

:::::::::
variability

::
is

:::::
crucial

:::
for

:::
our

::::::::::::
understanding

::
of

::::
past

::::::
summer

::::::::::
temperature

::::::
trends

::::::::::::::::::::::::::::::::::::::::::::::::::
(Merrifield et al., 2017; Teng et al., 2022; Vautard et al., 2023)

:::
and

:::::::
extreme

:::::
events

::::::::::::
(Terray, 2021).
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In some regions, the observed trends are falling out of
::::::
outside the range of model-simulated expected trends (e.g., Western

Europe, (Teng et al., 2022; Rousi et al., 2022; Vautard et al., 2023; Kornhuber et al., 2024)), but it is unclear if this only55

affects a few regions or whether this is a global phenomenon. Potentially, this may indicate
:::::::
indicates

:
that model-simulated

low-frequency variability in large-scale atmospheric circulation is too weak, or that a forced circulation change in circulation

is missing in the models, notwithstanding the broad uncertainty across models (Shepherd, 2014). The missing low-frequency

hypothesis is also difficult
:::::::::
challenging

:
to assess because the available observations are rather

:::::::
relatively

:
short. Understanding

past circulation changes and their contribution to temperature trends may provide an opportunity to constrain future changes in60

summer temperature trends, as circulation presents a very large
::::::::::::
acknowledging

:::
that

::::::
future

:::::::::
circulation

:::::::
changes

::::::
remain

:
a
:::::
huge

:::::
source

::
of

:
uncertainty (Topál and Ding, 2023; Fereday et al., 2018).

However, it is not straightforward to identify circulation-induced contributions to temperature trends (Deser et al., 2016)

. To empirically study circulation contributions to temperature trends one can either use i)
:::::::::
Identifying

:::
the

::::::::::
contribution

:::
of

::::::::::
atmospheric

:::::::::
circulation

::
to

::::::::::
temperature

:::::
trends

::
is
:::
not

:::::::::::::
straightforward

::::::::::::::::
(Deser et al., 2016)

:
.
::::
Two

::::
main

::::::::::
approaches

:::
are

:::::::::
commonly65

::::
used.

::::
The

::::
first

:::::::
applies statistical or machine learning methods that decompose the

::
to

::::::::::
decompose observed or simulated

temperature trend in its thermodynamically induced and its circulation induced
:::::
trends

::::
into

:::::::::::::
thermodynamic

:::
and

:::::::::::::::
circulation-driven

components, often framed as "dynamical adjustment " (Deser et al., 2016; Smoliak et al., 2015; Sippel et al., 2019)or ii) create

::::::
referred

:::
to

::
as

:::::::::
dynamical

::::::::::
adjustment

:::::::::::::::::::::::::::::::::::::::::::::::::
(Deser et al., 2016; Smoliak et al., 2015; Sippel et al., 2019).

::::
The

:::::::
second

::::
uses

:
nudged

circulation simulationswhere the circulation component is fixed
:
,
::
in

:::::
which

:::
the

:::::::::
circulation

::
is

::::::::
prescribed

:
and the thermodynamic70

component is removed (see e.g., (Wehrli et al., 2018)). Although nudged
::::::::::::::::
(Wehrli et al., 2018).

::::
Both

:::::::
options

::::
have

::::
their

:::::::::
limitations:

::::::
Nudged

:
circulation experiments are limited by the

::::::::::::
representation

::
of

:::::::
physical

::::::::::
mechanisms

::
in
:::
the

:
climate model used, assessing

how well
:
.
:::
On

:::
the

:::::
other

:::::
hand,

:::::
most

:
statistical decomposition methods are suited to estimate circulation-induced trends is

challenging. Most of these methods are designed to capture the relationship between daily circulation patterns and daily

temperaturesand they
:
.
::::
They

:
do indeed capture day-to-day variability very well, and good .

:::::
Good

:
skill is obtained on monthly or75

inter-annual time scales as well (Smoliak et al., 2015; Sippel et al., 2019)(Cariou et al. , 2025).
:::::::::::::::::::::::::::::::::::::::::::::::::
(Smoliak et al., 2015; Sippel et al., 2019; Cariou et al., 2025)

:
. Whether they can adequately capture a long-term trend ishowever more difficult

:
,
::::::::
however,

::::
more

::::::::::
challenging

:
to test, because

processes determining long-term trends may be distinctly different from those that determine short-term circulation variability;

:
, and much fewer verification samples are available. Moreover, benchmarks for circulation-induced long-term trends have not

been available so far
::
to

::::
date, and to our knowledge,

:
no systematic comparison of dynamical adjustment methods has been80

performed
:::::::::
conducted.

In this study, we provide a robust overview of circulation induced JJA temperature trends over the northern hemispheric

::::::
present

:
a
:::::::::::::
comprehensive

:::::::::
assessment

:::
of

::::::::::::::::
circulation-induced

:::::::
summer

::::::::::
temperature

::::::
trends

:::::
across

:::
the

::::::::
northern

:
mid-latitudes by

making use of
::::
using

::::
both

:
statistical decomposition methods and nudged circulation experiments. We address two specific

research questions: First, we evaluate whether
::::
focus

::
on

::::
two

:::
key

:::::::::
questions.

:::::
First,

:::
can

:
statistical-empirical methods are able to85

correctly estimate circulation-induced
::::::
reliably

:::::::
estimate

::::::::::::::
circulation-driven

:
long-term trends

:::::
when

:::::
tested against a climate model

benchmark. The climate model benchmark experiment is specificially designed as
:
?
::
To

:::::::
address

::::
this,

:::
we

:::
use

:
a set of CESM2

nudged circulation simulations , which allows comparison of
:::::::::
specifically

::::::::
designed

::
to

:::::::
provide

::
a
::::::::
reference

:::
for

::::::::::
comparing

3



circulation-induced trend components against statistical decompoistion
:::::
trends

::::
with

:::::
those

:::::::
derived

::::
from

:::::::::
statistical methods.

Second, we identify circulation-induced JJA
:::::::
summer

:
temperature trends across the northern hemispheric mid-latitudes in90

observations using four different statistical methodsand
:
,
::
as

:::::
well

::
as

::
in
:

CESM2 simulations that are nudged to the ERA5

circulation
:::
but

:::::
driven

:
without anthropogenic forcing.

2 Data & Methods

::::
This

::::
study

::
is
::::::
mainly

:::::
based

:::
on

::::::::::
simulations

::
of

:::
the

::::
fully

:::::::
coupled

::::::::::
Community

:::::
Earth

::::::
System

:::::::
Climate

::::::
Model,

:::::::
Version

:
2
:::::::::
(CESM2)

:::::::::::::::::::::
(Danabasoglu et al., 2020)

:
,
::::::::
including

::::::::::
simulations

::::
from

:::
the

::::::::
CESM2

::::
large

::::::::
ensemble

::::::::::::::::::
(Rodgers et al., 2021)

:
.
::
In

:::::::
section

:::
3.2

:::
we95

::::
apply

:::::::::::::
decomposition

:::::::
methods

::
to

:::
the

::::::::
European

::::::
Centre

::
for

:::::::::::::
Medium-Range

:::::::
Weather

::::::::
Forecasts

:::::::::
(ECMWF)

::::::::::
Reanalysis

::
v5

:::::::
(ERA5)

::::::::::::::::::
(Hersbach et al., 2020)

:
.

2.1 CESM2 nudged circulation simulations driven with CESM2 horizontal winds

To derive a benchmark for the evaluation of the
::::::::
evaluating

:::
the

:
decomposition methods, we use nudged circulation experiments

that have been conducted with the fully coupled Community Earth System Climate Model, Version 2
::::::
CESM2

:
(Danabasoglu100

et al., 2020). First, three standard historical and future anthropogenic forcing experiments are simulated,
:
following historical

greenhouse gas emissions, aerosol emissions
:
, and land use changes in the period 1850-2014

::::
from

::::
1850

::
to

:::::
2014, and anthropogenic

forcings following the SSP3-70 scenario from then onwards (’hist+SSP370’). These simulations follow the protocol of the

CESM2 large ensemble (Rodgers et al., 2021).

In a second step, for each of these simulations
:
, a nudged circulation simulation is created for piControl forcing (e.g.,

:
no105

anthropogenic greenhouse gas and aerosol emissions
:
, as well as no land use change). Each of these simulations starts with

the same initial conditions as their
::
its corresponding hist+ssp370 simulation; .

:
6-hourly global meridional and horizontal

winds throughout the atmosphere (
::
at

:
all vertical levels) and globally are nudged

::
are

:::::::
nudged

:::::::
globally

:
to their corresponding

hist+ssp370 simulation. The nudging is achieved via a regular relaxation procedure described in the CAM6 handbook
::::::::
(camdoc)

, and is similar to Topál and Ding 2023. These simulations will be henceforth referred to
::::::::
henceforth

:::
be

::::::
referred

::
to

::
as

:
‘piControl-110

nudged’, as they lack the direct anthropogenic forcingbut
:
.
::::
Still,

:
through the nudging of atmospheric circulation

:
,
:::
any

::::::::
potential

anthropogenic forcing on atmospheric circulation are present alongside with the identical
::::::::
horizontal

:::::
wind

:::::
fields

::
is
:::::::
present

::::::::
alongside

:::
the internal circulation variability of the atmosphere .

::::
from

:::
the

:::::::::::
hist+ssp370

:::::::::
simulation.

:::::::
Because

:::::::::::::::
land–atmosphere

:::::::
coupling

:::::::::
influences

::::::::::
near-surface

:::::::::
circulation

:::::::::
differently

::::::
under

::::::
varying

:::::::
climate

::::::::
forcings,

:
it
::
is
::::::::::::
recommended

::
to
::::::

apply
:::::::
nudging

::::
only

::
at

:::::
higher

::::::::
altitudes,

::::::::
allowing

::::::
surface

::::::
winds

::
to

::::::
evolve

:::::
freely

:::::::::::::::::::::::::::::::::::
(Wehrli et al., 2018; Merrifield et al., 2019)

:
.
::::::::
Although

:::::
these115

:::::
effects

::::
may

::::::::
influence

:::::::::
individual

:::::
events,

:::
the

::::::
spatial

:::::::
patterns

::
of

::::::::
long-term

:::::::::
circulation

::::::
trends

::::::
remain

:::::
robust

:::::::::
regardless

::
of

:::::::
whether

::::::::::
near-surface

:::::
winds

:::
are

::::::
nudged

::::::::::::::::
(Singh et al., 2025)

:
.

Conceptual illustration of causal relationships influencing local temperatures in a freely running climate simulation (left) and

in a piControl-nudged simulation (right). The arrow width indicates assumed importance of links. The blue rectangle highlights

the processes studied here.120
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2.1.1 Conceptual Interpretation of CESM2 nudged circulation simulations as a benchmark for dynamical

adjustment

In a free-running, fully coupled climate simulation, local or
:::
and

:
regional temperatures are affected both by thermodynamic

forcing (sketched here as GMSTinfluence) as well as
::::::
shaped

::
by

:::::
both

:::::::::::::
thermodynamic

:::::::
forcing,

::::
here

::::::::::
represented

:::
by

::::::
global

::::
mean

:::::::
surface

::::::::::
temperature

::::::::
(GMST)

::
as

::
a

:::::
proxy

:::
for

:::
the

::::::::::
large-scale

:::::::::::::
thermodynamic

::::::::::
background

::::::::::
conditions,

:::
and

:
atmospheric125

circulation variability(e.g.;
:
,
::
as

:::::
well

::
as

:::::
their

::::::::::
interactions

:::::
(e.g.,

:
Deser et al. 2016, Fig. 1), and interactions between both.

Statistical dynamical adjustment methods aim to separate those
:::
seek

::
to

:::::::
separate

:::::
these influences, but the skill of those methods

is inherently difficult to evaluate in
::::
their

::::
skill

::
is

::::::::::
challenging

::
to

::::::::
evaluate

::::::
within a coupled system. Hence, the goal of our

::
To

:::::::
address

::::
this,

:::
we

::::
use

:
‘piControl-nudged’ simulations is to derive benchmark simulations, in which only circulation is

variable,
:
as

:::::::::::
benchmarks

::
in

::::::
which

:::::::::
circulation

:::::
varies

:
while thermodynamic forcing is fixed to

::
at pre-industrial values. This130

will allow to
:::::
levels.

::::
This

:::::
design

::::::
allows

::
us

:::
to

:::::
isolate

::::
and evaluate the circulation contribution independently from the trends in

thermodynamic forcing. The conceptual interpretation of the ‘piControl-nudged’ simulations is sketched in
::
of

:::::::::::::
thermodynamic

:::::
trends.

::::::::::::
Conceptually

:
(Fig. 1: Circulation variability is ‘inherited’ from its parent simulation , which we expect to determine

:
),
:::::::::
circulation

:::::::::
variability

::
is

:::::::::
“inherited”

:::::
from

:::
the

:::::
parent

:::::::::
simulation

:::
and

::
is
::::::::
expected

::
to

::::::::
dominate

:
local and regional temperatures

to the largest extent. The inherited circulation variability may contain both internal variability from the parent simulation,135

but also potential
::::::::::
temperature

:::::::::
responses.

::::
This

::::::::
inherited

:::::::::
variability

:::::::
includes

:::::
both

:::::::
internal

::::::::::
fluctuations

:::
and

::::::::
possible

:
forced

circulation changes. Moreover, we expect that some internal variability may remain in the ‘piControl-nudged’ simulations, for

example due to ocean variability that may affect GMST
:::::
Some

:::::::
internal

:::::::::
variability

::::::::
unrelated

::
to

::::::::::
atmospheric

::::::::::
circulation

::::
may

:::
also

:::::::
remain,

::::
such

::
as

:::::::::::
ocean-driven

::::::
GMST

::::::::::
fluctuations

:
(arrow b in Fig. 1).

::::
Note

::::
that

:::
the

::::::::::::
decomposition

::::
into

:::::::::::::::
“thermodynamic”

:::
and

::::::::::::::::::
“circulation-induced”

:::::::
changes

::
is

:
a
::::::::::::
simplification

:::
that

:::::::::
overlooks

::::::::
important

::::::::::
mechanisms

:::
for

:::::
local

:::::::::::
temperatures.

::
In

:::::::
Section140

:::
3.3,

:::
we

::::::
discuss

:::
the

::::::::::
implications

:::
of

:::
this

::::::::::::
simplification

::
in

::::
more

::::::
detail.

forcing

(hist-ssp370)

internal

variability

circulationGMST

local temperature

free running hist-ssp370
internal

variability

circulation GMST

local temperature

piControl-nudged

nudging

b

a

Figure 1.
:::::::::
Conceptual

::::::::
illustration

::
of

:::::
causal

:::::::::
relationships

:::::::::
influencing

::::
local

::::::::::
temperatures

::
in

:
a
:::::
freely

::::::
running

:::::
climate

::::::::
simulation

:::::
(left)

:::
and

:
in
::

a

:::::::::::::
piControl-nudged

::::::::
simulation

:::::
(right).

:::
The

:::::
arrow

:::::
width

::::::
indicates

:::
the

:::::::
assumed

::::::::
importance

::
of

::::
links.

::::
The

:::
blue

:::::::
rectangle

::::::::
highlights

::
the

::::::::
processes

:::::
studied

::::
here.
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2.1.2 Illustration of CESM2 nudged circulation simulations

As expected, day-to-day variability in the nudged circulation run is closely related to it’s
:
its

:
freely running counterpart from

which the wind fields originatedfrom. As shown in figure ??
:::::
Figure

:::
??,

:
in the early period

:::
(left

:::::::
column

::
of

:::
fig.

:::
??), geopotential

height at 500 hPa and surface air temperature are nearly identical in the hist+ssp370 and the piControl-nudged run. In a warmer145

climate, the day-to-day variability is still
::::::
remains

:
highly correlated, but geopotential height and surface air temperatures are

relatively uniformly shifted to higher values. However, interpreting

:::::::::
Interpreting

:
the GMST signal in the ‘piControl-nudged ’ runs is somewhat challenging. Despite the absence of

::::
runs

::
is

:::
not

:::::::::::::
straightforward.

::::
Even

:::::::
without external forcing, small trends in GMST can be found

:::::
GMST

::::::
trends

::::::
emerge over 40-year periods

in piControl simulations (compare figure
:::
(Fig.

:
2b,c). These trends may be partly forced by atmospheric circulation (all three150

‘piControl-nudged’ simulations show weaker trends relative to the CESM2 large ensemble, Fig. 2). But some variations in

GMST trends remain between the simulations. These variations in GMST may be driven by internal variability in the ocean

dynamics.
::::
likely

::::::
reflect

:::
the

::::::::
combined

::::::::
influence

::
of

::::::::::
atmospheric

:::::::::
circulation

::::
and

::::::
internal

::::::
ocean

::::::::
variability

::::
(see

::::
Fig.

::
1).

:

A comparison of
::::::::
1979-2023

:
GMST trends in the piControl-nudged simulations with their corresponding freely running

forced simulations indicates that both of these processes are relevant (figure 2): The run 1300
::
b).

::::
Run

::
1 is the simulation with

:::
the155

highest GMST trend in the freely running as well as
::::::::::
configuration

:::::
(0.25

:::::::::
K/decade)

:::
and

::::
near

::::
zero

::::
trend

:
in the piControl-nudged

simulation while 1500 has lowest GMST trends in both simulations
:::::::::::
configuration.

:::::
Runs

::
2
:::
and

::
3
:::::
have

:::::
lower

::::::
GMST

::::::
trends

:::
than

::::
Run

::
1
::
in

:::
the

::::::
freely

::::::
running

::::::::
scenario,

::::
and

::::
both

:::::
show

:
a
:::::::
cooling

:::::
trend

::
in

:::
the

:::::::::::::::
piControl-nudged

:::::::
scenario. The differences

between freely running simulations and their corresponding piControl-nudged simulations are not constant, indicating that

there is indeed an influence of
:::
low

::::::::
frequency

:
internal variability that is not controlled by atmospheric circulation. (Finally,160

while the GMST trends in the forced scenario are well within the distribution of the CESM2 large ensemble, GMST trends of

piControl-nudged runs are low compared to a distribution obtained from freely running piControl simulations. This indicates

that circulation changes as simulated in CESM2 (these 3 runs) have a negative contribution to GMST trends in the 1979-2023

period, but this is note the case in later periods.)

a: Global mean surface temperature in hist+ssp370 runs (orange) and in piControl-nudged runs (green). b: GMT trend over165

the period 1979-2023 (gray bar in a). c: GMT trend over the period 2025-2075 (blue bar in a). The cooler histogram depicts

500 44-year trends from piControl, the warmer historgram depicts 100(?) trends from the CESM2 large ensemble.

As a result, local temperature trends in piControl-nudged simulation are influenced by changes in atmospheric circulation

as simulated in the corresponding freely running forced simulation and GMST changes that might be partially influenced by

these circulation changes and partially by remaining internal variability in the nudged simulation (see figure 1). Therefore,170

we do not expect that the circulation component estimated from the freely running forced simulation matches
:
to

::::::
match the

trend found in the piControl-nudged simulation exactly. However, we
::
In

::
the

:::::
ridge

:::::::::
regression

:::
and

:::::
DEA,

:::
we

:::
can

:::::::
account

:::
for

:::
the

:::::
effect

::
of

::::
these

:::::::
GMST

:::::
trends

::
in

:::
the

:::::::::::::::
piControl-nudged

::::::::::
simulations.

:::
In

:::::::
general,

:::
we assume that the effect

::::::
impact of GMST on

local temperatures is rather
:::::::
relatively

:
homogeneous around the northern hemispheric mid-latitudes , and thus

:
of

:::
the

::::::::
northern

::::::::::
hemisphere.

::::
Thus

:
we expect that the spatial pattern relative to the mid-latitudinal mean is well captured.175
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Figure 2.
:

a:
:::::
Global

:::::
mean

::::::
surface

:::::::::
temperature

::
in

:::::::::
hist+ssp370

:::
runs

:::::::
(orange)

:::
and

::
in
::::::::::::::
piControl-nudged

:::
runs

::::::
(green).

::
b:
:::::

GMT
::::
trend

::::
over

:::
the

:::::
period

::::::::
1979-2023

::::
(gray

:::
bar

::
in

::
a).

::
c:

::::
GMT

:::::
trend

:::
over

:::
the

:::::
period

::::::::
2025-2075

:::::
(blue

::
bar

::
in
:::
a).

:::
The

:::::
cooler

::::::::
histogram

::::::
displays

:::
500

:::::
trends

::
of

:::
the

::::
same

:::::
length

::::
from

:::::::
piControl,

:::::
while

::
the

::::::
warmer

::::::::
histogram

::::::
displays

::::
100

::::
trends

::::
from

:::
the

::::::
CESM2

::::
large

::::::::
ensemble.

2.2 CESM2 nudged circulation simulations driven with ERA5 winds

To evaluate the use of the decomposition methods on observed circulation patterns, we created an additional benchmark

simulation by nudging CESM2 to the horizontal wind fields from the reanalysis data ERA5
::::::::::::::::::
(Hersbach et al., 2020). This

method relies on the same relaxation procedure and anthropogenic forcing as described before, with some modifications to the

setup. Here
:
, not only the piControl, but also the ’hist+SSP370’ simulations are nudged to ERA5 data

::::::::
horizontal

:::::
wind

:::::
fields180

between 1940 and 2024. In order to
::
To account for forcing-induced variability at the boundary later, the atmosphere is only

nudged above 700 hPa(Wehrli et al., 2018).
:
,
::::::
similar

::
to

::::::::::::::::
(Wehrli et al., 2018)

:
.

The model is also run in an AMIP setup with a prescribed ocean
:::::::::::
configuration

::::
with

:::::::::
prescribed

:::::
ocean

:::::::::
conditions

:
from the

Met Office Hadley Centre’’s sea ice and sea surface temperature data set (HadISST, Rayner et al. (2003)). To create the sea

surface temperature data for the
::::::
dataset

:::::::::
(HadISST;

:::::::::::::::
Rayner et al. 2003

:
).
::::

For
:::
the piControl simulation, we removed the forced185

component from HadISST with a
:::
was

:::::::
removed

:::::
from

::::::::
HadISST

:::::
using low-frequency pattern filtering (Wills et al., 2020). The

piControl sea ice data is produced
:::
Sea

:::
ice

::::::::::::
concentration

:::::
(SIC)

::::
was

::::
then

:::::::::
estimated with a random forest model based on

the relationship between sea surface temperatures and sea ice. Somewhere I would mention that the potential downside this

method is that CESM2 forced by winds that don’t follow the models own climatology. This introduces a model bias .
::::::
trained

::
on

:::
the

::::::::
SST–SIC

::::::::::
relationship

::
in

::::::::
HadISST.

:::
To

::::::
capture

:::::::
seasonal

:::::::::
hysteresis,

:::::::
separate

:::::::
models

::::
were

::::::
trained

:::
for

:::
the

:::::::
freezing

::::::
season190

:::::::::
(Sept–Jan)

:::
and

:::
the

:::::::
melting

::::::
season

::::::::::
(Feb–Aug),

::::
and

:::::::
applied

::
to

::::::::
piControl

:::::
SSTs

:::
to

:::::::
generate

::::::::::::
corresponding

::::
SIC

::::::
values.

:::::
This

:::::::
approach

::::::::::
reproduces

::::
daily

::::::::::
temperature

:::::::::
anomalies

::
in

:::
the

:::::::
northern

::::::::::
hemisphere

:::::
well.

::::::::
However,

:::::::
nudging

::
to

::::::::
observed

:::::
winds

::::
and

::::
SSTs

::::
also

:::::::::
introduces

:
a
::::::::::
temperature

::::
bias

::
by

:::::::::
displacing

:::
the

::::::
model

::::
from

::
its

::::
own

:::::::::::
climatology.
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2.3 Dynamical adjustment methods

We test four methods designed to disentangle the dynamic effect from the thermodynamic effect: (1) ridge regression, (2)195

:::::::::
constructed

:
circulation analogues, (3) direct effect analysis (DEA), and

:
a
::::::
neural

:::::::
network UNET (4).

::::
Note

:::
that

:::
we

:::::
apply

:::
the

:::::::
methods

::::::
exactly

::
as
::::
they

:::::
were

:::::::
designed

::::
and

::::
used

::
in

::::
other

:::::::::::
publications,

:::
and

::::::::
therefore

:::::::
different

:::::::
proxies

::
for

:::::::::::
atmospheric

:::::::::
circulation

::
are

::::
used

:::
by

:::::::
different

::::::::
methods.

:::
We

::
do

:::
not

::::::
expect

:::
that

:::
the

::::::
choice

::
of

:::::::
variable

::
to

::::::::
represent

::::::::::
atmospheric

:::::::::
circulation

::::::::::
significantly

::::::
affects

:::
the

::::::
results.

::
In

::::::
Figure

:::
??,

::
we

:::::
show

::
a

::::::::
sensitivity

:::::::
analysis

:::
for

:::
the

::::
ridge

::::::::::
regression.

::
In

::::::
Section

::::
3.3,

::
we

:::::::
discuss

:::::::::
differences

:::::::
between

:::
the

:::::::
methods

::::
and

::::
how

::::
they

:::::
might

:::::
affect

:::
the

::::::::::::
decomposition

::
in

:::::
more

:::::
detail.

:
200

2.3.1 Ridge regression

For each grid-cell
:::
grid

::::
cell, we train a linear regression model to predict daily mean temperatures in JJA (Y )using as covariates

::::::
summer

::::::::::::::::
(June-July-August,

::::::::
hereafter

:::::::
referred

::
to
:::

as
::::
JJA),

:::
Y ,

:::::
using

:
GMST (yearly averaged) and the streamfunction (Φ ) at

500hPa in grid-cells in a rectangle of 40x40 degree around that grid-cell
:
at
::::
500

:::
hPa

::
in
:::
all

::::
grid

::::
cells

::
G

::::::
within

:
a
:::::::::::::
40× 40-degree

:::::::::
rectangular

::::
area

:::::::
centered

:::
on

:::
that

::::
grid

::::
cell:205

Y = γ0 + γ1GMST +

G+1∑
j=2

γjΦj + ϵ,

::::::::::::::::::::::::::::::

(1)

:::::
where

:::
the

::::::::::::
streamfunction

::::
(Φ)

:
is
::::::
related

::
to
:::::::::
horizontal

::::::::
eastward

:::
(U )

:::
and

:::::::::
northward

::::
(V )

::::
wind

::::::
speeds

::
as

:::::::
u= ∂Φ

∂y :::
and

:::::::
v = ∂Φ

∂x .

Y = γ0 + γ1GMST +

grid−cells∑
j

(γjΦj)+ ϵ

Ridge regression is a linear method designed to deal with a high dimensionality of
:::::::::
regularized

:::::
linear

:::::::
method

:::
that

::::
can

::::
deal

::::
with

::::::::::::::
high-dimensional

:
predictors (in our case,

:
many correlated spatial locations with stream function

::::::::::::
streamfunction values,210

Φj). Ridge regression mitigates overfitting by introducing a penalty for model complexity(λ), achieved through the shrinkage

of regression coefficients. Shrinkage is determined by the sum of squared regression coefficients (known as L2 regularization)

and a ridge regression parameter (λ), which controls the degree of shrinkage:

:
.
:::
The

::::::::
shrinkage

:::::
term

:
is
::::::
added

::
to

:::
the

::::::
residual

::::
sum

::
of
:::::::
squares

::::::
(RSS)

:::
for

:::
the

::::::::::::
minimization:

γ̂ = argmin
γ

{RSS+λ

p∑
i=1

β∥γ∥2
::::

2
i}. (2)215

As a result, ridge regression solves a joint minimization problem, producing small but nonzero regression coefficients that

are relatively evenly distributed among correlated predictors. The tuning
:::::::::::
regularization

:
parameter λ , which dictates the extent

of shrinkage ,
:::
and is selected via cross-validation

:
or

::::::::::
knowledge

:::::
about

:::
the

::::
noise

::::::::
variance. Notably, the intercept of the linear

model as well as the GMST covariate remain are excluded from the shrinkage.
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The streamfunction is related to horizontal eastward (U) and northward (V) wind speeds in the following way:220

u=
∂Φ

∂y
,v =

∂Φ

∂x

2.3.2
:::::::::::
Constructed

:::::::::::
atmospheric

:::::::::
circulation

:::::::::
analogues

:::::::::
technique

2.3.3 Atmospheric circulation analogue technique

The atmospheric circulation analogue technique, introduced in Deser et al. (2016), is a linear dynamical adjustment method
:
.

:
It
::
is
:
designed to provide empirically derived estimates of climate trends induced by "dynamics"

:::::::::
“dynamics”

:
or atmospheric225

circulation patterns. The method has been used for a variety of applications, including trend assessments, variability analysis,

performance weighting, and extreme event attribution (Deser et al., 2016; Lehner et al., 2017; Merrifield et al., 2017; Guo et al., 2019; Merrifield et al., 2020; Terray, 2021)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Deser et al., 2016; Lehner et al., 2017; Merrifield et al., 2017; Guo et al., 2019; Terray, 2021).

The method is based on the reconstruction of monthly mean atmospheric circulation fields, which we represent using

::::::::::
construction

::
of

:
a
:::::
target

:::::::
monthly

:::::
mean

:
sea level pressure (SLP) following Deser et al. (2016). Here, SLP analogues are selected230

from pools of
:::
field

:::::
(e.g.,

:::::::
January

:::::
1980)

:::::
using

:::::::::
analogues.

::
In

:::
the

:::::::
January

:::::
1980

::::::::
example,

::::::::
analogues

:::
are

:::::
SLP

::::
fields

:::::
from

:::::
other

:::::::
Januaries

::::::::
between

::::
1850

:::
and

:::::
2014

:::
that

::::::::
resemble

:::
the

:::::
target

::::
SLP

::::::
pattern.

::::
The

::::::
method

::
is

::::::
applied

::
to
:::::
every

::::::
month

::
in

:::
the

:::::
record

::::
and

:::::::
proceeds

::
as

:::::::
follows.

:::::
First,

:::
the

::::::::
Euclidean

:::::::
distance

:::::::
between

:::
all

::::
SLP

::::
fields

:::::
from

:::
the

:::::
period

::
of

::::::::::
1850-2014

:::
and

:::
the

:::::
target

::::
SLP

::::
field

:
is
:::::::::
computed.

:::::::::
Euclidean

:::::::
distance

:
is
:::::::::
calculated

::
at

::::
each

:::
grid

:::::
point

:::
and

::::::::
averaged

::::
over

:::
the

:::::::
Northern

::::::::::
hemisphere

::::::
domain

::::::
(20–90

::::

◦N,

:::::
0–360

::::

◦E).
:::
The

:
Na = 80 possible choices sub-selected from the period 1850-2014

:::::
closest

::::
SLP

:::::
fields

::
to

:::
the

:::::
target

:::
are

:::::::::
considered235

::::::::
analogues. From the 80 choices,

::::::::
analogue

:::::::
choices,

:::
the

:::::
target

:::::
month

::
is
::::::::::::
reconstructed

::::
using

:::::::::
randomly

:::::::
selected

::::::
subsets

::
of

:
Ns =

50 SLP analoguesare selected to construct the target month, and the process
::::::::
analogues.

::::
The

::::::
process

:::
of

:::::::
choosing

:::
50

:::
out

::
of

:::
80

::::::::
analogues

:::
and

::::::::::::
reconstructing

:::
the

:::::
target

::::
SLP

:
is repeated Nr = 100 times to obtain an average best estimate result.

Once the Euclidean distances are determined and 50 of the 80 possible SLP analogues are selected, we optimally reconstruct

a
::::
The target SLP field Xh through a

::
is

:::::::::::
reconstructed

:::::::
through multivariate linear regression. The weight assigned to each SLP240

analogue, β, is computed through a singular value decomposition of a column vector matrix Xc containing the 50 selected

analogues and can also be estimated using a Moore-Penrose pseudoinverse:

β = [(XT
c Xc)

−1XT
c ]Xh (3)

:::::
where

:
β weights are then applied to

::::::
applied

::
to

:::
the

::::::::::::
corresponding

:
monthly mean temperature fields,

::::
i.e.,

:::::
those

:
from the

same months
:::::
month

:
as the SLP analogues to construct

:::::::
analogue.

::::
The

::::::::
weighted

:::::
linear

:::::::::::
combination

::
of

:::::
these

::::
fields

:::::::
defines the245

dynamic component
:
of

::::::::::
temperature

:::
for

:::
the

:::::
target

:::::
month. Before weightingthe temperature fields, we remove

:
, a quadratic trend

from the temperature record as a proxy for anthropogenic warming at each point in space
::
is

:::::::
removed

:::::
from

::
the

::::
full

::::::::::
temperature

:::::
record

::
at

::::
each

::::
grid

:::::
point

::
to

:::::::::::
approximate

:::
the

::::::::::::
anthropogenic

::::::::
warming

:::::
signal

:
(Deser et al., 2016; Lehner et al., 2017). This is

to approximate the unforced relationship between SLP and temperature one would expect to find in a preindustrial control

simulation. After repeating the dynamical adjustment protocol
:::
The

::::::::
dynamic

:::::::::
component

::
of

::::::::::
temperature

::
is
::::
also

:::::::::
computed

:::
Nr250
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:
=
:
100 times , we average the results to define

::
for

:::::
each

::::::
month.

:::::::
Results

:::
are

::::::::
averaged,

::::
and

::::
once

:::::
every

:::::::
month,

:::
the

::::::
record

::
is

::::::::::
dynamically

:::::::
adjusted

::
as

:::::::::
described;

:::
we

:::::
obtain

:
a dynamic monthly mean temperature timeseries.

::::
Note

::::
that

:::
the

:::::::::::::
Moore–Penrose

::::::::::::
pseudoinverse

::::::::
implicitly

:::::::
deploys

::
a
::::::
“hard”

::::::::::::
regularization

::::
(i.e.,

::::
kills

::::::::
directions

:::::
with

:::::::
singular

::::
value

:::::::
exactly

:::::
zero).

::
In

::::::::
contrast,

:::
the

::::::::
previous

::::
ridge

::::::::::
(Tikhonov)

::::::::::::
regularization

:::::::
imposes

:::
an

::::::
explicit

::::::
“soft”

:::::::::::
regularization

:::::
(i.e.,

:::::
damps

:::::::
unstable

:::::::::
directions

::::
even

::
if

:::::::
singular

:::::
values

:::
are

::::
just

:::::
small,

:::
not

:::::
zero).

:
255

We use the term “analogue"
:
” to refer to a month with an SLP field close , in terms of Euclidean distance, to the SLP target.

Here, Euclidean distance is computed at each grid point and averaged over the Northern hemisphere domain (20–90 ◦N, 0–360
◦E). This selection metric , therefore,

:::
The

:::::::::
Euclidean

:::::::
distance

:::::::
selection

::::::
metric does not require an analogue to match the target

month spatially over the whole domain. This
:::
step

:
is necessary because, with less

:::::
fewer

:
than 200 possible options

:::::::
available

::::::::
analogues, it is extremely unlikely that a “perfect " match will exist for a particular

:::::::::
improbable

::
to

::::
find

:
a
::::::
perfect

::::::
match

::
for

::::
any260

target month. Van Den Dool (1994) estimated that around
::::::::::::::::::
Van Den Dool (1994)

::::::::
estimated

:::
that

::
it
::::::
would

::::
take

::
on

::::
the

::::
order

:::
of

1030 years would be required to find two similar (within observational uncertainty) Northern Hemisphere circulation patterns

. Therefore
::::::
similar

:::::
within

::::::::::::
observational

::::::::::
uncertainty.

:::
As

::
a

:::::
result, the method must make the best use of

:::::
relies

::
on

:
imperfect

analogues, which may
:::
can

:
introduce spurious features or affect

::::
bias the amplitude of

::
the

:
estimated dynamic temperature

trends.265

Two analogue pool selection strategies are employed. The first is an in-sample selection referred to as the “leave-one-

out" approach(cite lehnerNewEstimateTime2017);
:
”
::::::::
approach,

::::::
where analogues are selected from the CESM piC-nudged run

::::::::::
free-running

::::
runs

:
being dynamically adjusted

:
, excluding the target month

:
, during the 1850-2014 period . The second is an

out-of-sample approach;
:::::::::::::::::::::::::::::::
(Deser et al., 2016; Lehner et al., 2017)

:
.
::::::::::::
Leave-one-out

:::::::
selection

::
is

::::
used

::
to

:::::::
estimate

::::::::::::::::
circulation-induced

:::::
trends

:::
for

::::::::::
comparison

::::
with

:::
the

:::::::::::::::
piControl-nudged

::::::::::
simulations.

::
In

:::
the

::::::
second

:::::::::
approach, analogues are selected from the entire270

1850-2014 periods
:::::
period of each of the other CESM piC-nudged runs and averaged. For example, run 1300 is dynamically

adjusted using analogues from run 1400, then dynamically adjusted using analogues from run 1500, and the two dynamic

components are averaged. For
::::::::::
free-running

::::
runs

:::
and

:::::
used

::
to

::::::::::
dynamically

:::::
adjust

:
ERA5, analogues are selected from all three

CESM piC-nudged runs; dynamic components computed using
:
.
:::
The

::::::::
resulting

::::
three

:::::::::
dynamical

::::::::::
components

::
of

:::::
ERA5

:::::::::
computed

::::
using

:::::::::
analogues

::::
from

:::
the

:::::::::::
free-running runs 1300, 1400, and 1500 analogues are shown in Supplementary Figure X.

:::::
Figure

:::
F1275

:::
and

:::
are

:::::::
averaged

:::
to

::::::
produce

:::
the

::::::::::::::::
circulation-induced

:::::
trend

::::::::
estimates

::
in

::::::
Figure

::
4.

2.3.3 DEA

Direct Effect Analysis (DEA) is a recently developed causal approach that aims at disentangling an outcome variable Y ∈ Rd

::
Y into a direct effect component, Ydir, which represents the part of Y directly caused by some causal factor Z ∈ R

:
Z, and an

orthogonal component, Yperp::::
Yorth, which corresponds to the part of Y unaffected by Z. Both Z and Y may be influenced by280

other variables X ∈ Rp
::
X , which act as confounders, and it is thus necessary to control for these covariates to get a correct

estimate of
:::
the direct effect of Z on Y . This learned representation of Y can be seen as the result of encouraging conditional

independence between Z and Y while controlling for X (Durand et al., 2025a)1
::::::::::::::::::
(Durand et al., 2025b).

1Submitted.
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In this context, the outcome Y is
::
Y

:::::::::
represents

:
the temperature field(

:
,
:::::
which

::
is
:

a random vector where each dimension

corresponds to a grid cell), and it is caused by Z, the GMST (monthly averaged)
::::
with

:::
one

:::::::::
dimension

:::
per

::::
grid

::::
cell.

:::
The

::::::::
predictor285

::
Z

:
is
::::

the
:::::::
monthly

:::::
mean

::::::
GMST, used as a proxy for thermodynamical changes in temperature . We consider as covariates X

:::::::::::::
thermodynamic

::::::::::
temperature

:::::::
changes.

:::
As

::::::::
covariates

:::
X ,

:::
we

::::::
include

:
the leading Empirical Orthogonal Functions (EOFs) of the

atmospheric circulation (Z500), denoted as {pj}Jj=1:::::::
{pj}Jj=1 :::::

where
::
J

::
is

:::::::
selected

::::::
through

::::::
5-fold

:::::::::::::
cross-validation

::
to

:::::::::
maximize

::
the

:::
R2

:::::
score.

Similar to the ridge regression approach described above, we assume the following linear model:290

Y = γb0 +b01GMST+
∑

J
j=1

J+1
j=2
:::

bjpj + ϵ. (4)

and get the optimal regression parameter matrix using a least squares algorithm. We obtain a matrix B ∈ Rd×(J+1)
::
B

:
whose

columns bi encode how GMST and each EOF influence temperature across grid cells. We emphasize that this is a multivariate

regression problem, where Y is a random vector—not a single variable—representing temperature values across multiple

grid cells. Each dimension of Y corresponds to one spatial location. The number J of EOFs is selected through 5-fold295

cross-validation to maximize the R2 score.

To isolate the dynamical component Yperp ::::
Yorth:of Y , we remove the part aligned with the GMST-related direction, as

captured by b0::
b1. This is achieved using the linear transformation Yperp =P⊤Y , where P= I− b0b

⊤
0

∥b0∥2:::::::::::
Yorth =P⊤Y ,

::::::
where

::::::::::::
P= I− b1b

⊤
1

∥b1∥2 . This transformation ensures that Yperp ::::
Yorth:remains unaffected by any interventions on GMST, and thus

represents the dynamical component of Y .300

2.3.4 UNET

The UNET
:::
final

:::::::
method

::::
used

::
in

:::
this

:::::
paper

:
is a convolutional neural networkdesigned by Ronneberger et al. (2015) ,

::
a
::::::
UNET

:::::::
structure,

::::::::
recently

::::::::
proposed

:::
by

:::::::::::::::::
Cariou et al. (2025)

:
to
::::

link
:::::::::::

temperature
:::::::::
variations

::
to

:::::::::::
atmospheric

::::::::::
circulation.

::::
The

::::::
UNET

:::::::::
architecture

::::
was

:::::::
initially

:::::::::
introduced

::
by

::::::::::::::::::::::
Ronneberger et al. (2015) for biomedical image segmentation. It consists of two main

parts: the encoder , which captures the global features of the input
::::::::::
components:

:::
an

:::::::
encoder

::::
and

:
a
::::::::
decoder.

::::
The

:::::::
encoder305

::::::
extracts

::::::
global

:::::::
features

::::
from

:::
the

:::::
input

:::
(in

::::
this

::::
case,

:::::::::
circulation

::::::
maps)

:
by progressively reducing its

:::::
spatial

:
resolution while

increasing the depth of the feature maps via
:::::
feature

:::::
depth

:::::::
through convolution and max-pooling layers, and the decoder , which

:
.
:::
The

:::::::
decoder

::::
then

:
reconstructs the image using transposed convolutions. These two partsare symmetrical and connected by

::::::::
Symmetry

:::::::
between

:::
the

::::
two

:::::
parts,

::::::::
combined

::::
with

:
skip connections, enabling

:::::
allows

:
the network to preserve the

:::
and

:::::::::
effectively

::::
reuse

:
encoded information.310

We use this architecture
:::
(see

:::
??)

:
to estimate the relationship between daily standardized sea-level pressure (SLP) maps

(input) and the corresponding temperature anomalies (output). Temperature anomalies are obtained by removing an estimate

of the daily non-stationary normal (Rigal et al. (2019)) from the raw temperature. The anomalous temperature of a given

day (d)and a given year (y) can be written as Ta(d,y) = T (d,y)− (f(d)+ g(y)×h(d)). The second term corresponds to

the non-stationary normal where f(d) the mean seasonal cycle, g(y) the yearly forced response and h(d) the distortion of315

the annual cycle. The UNET is trained
:::
part

::
of

:::::
daily

::::::::::
temperature

::::::::
variations

::::
(T ′,

:::
the

:::::::
output)

:::::
which

::::
can

::
be

:::::::::
explained

:::
by

:::
the

11



:::::::::
large-scale

:::::::::
circulation,

::::::::
described

:::
by

:::
the

:::
sea

::::
level

:::::::
pressure

:::::
(SLP,

:::
the

::::::
input).

:::::
Thus,

:::
we

:::
can

:::::
write

:::
the

:::::
UNET

::::::
model

::
as

:

T ′ = F (SLP ).
::::::::::::

(5)

:::
We

:::::
follow

:::
the

:::::::::::
methodology

:::::::::
described

::
in

::::::::::::::::
Cariou et al. (2025).

:::::
Still,

::
we

::::::
extend

:::
the

:::::::
analysis

::
to

::
a
:::::
larger

::::::
spatial

::::::
domain

::::
and

::::
train

::
the

::::::
UNET

:
on daily data from 1850 to 2100 from 8 CESM2 transient simulations .

:
(80% of the data are randomly selected320

for training
:
, and the remaining 20% are used for the validation. SLP maps are standardized by removing at each grid point

the mean and standard deviation computed over all days from the 8 concatenated simulations. The parameters chosen for

training are a batch size of 300,
:::::::::
validation).

:::::
Since

:::
the

::::::
UNET

::
is

::::::
trained

::
on

::::::::
transient

::::
runs

::::::::
(historical

:::
and

:::::
SSP),

:::
we

::::
must

::::::::
consider

::::::
climate

::::::
change

::
in

:::
the

::::::::::
relationship

::
5.
::::

The
::::
SLP

::
is
:::
not

:::::::::
detrended,

::::::::
assuming

::::
that

::
in

:::
the

:::::::
CESM2

::::::
model,

:::
the

::::::
forced

:::::::::
responses

::
in

::
the

::::
SLP

::
is
:::::
small

::::::::
compared

::
to
:::
the

:::::
daily

:::::::::
variability.

::::
This

::::::::::
assumption

:
is
:::::::::
supported

::
by

:::::::
Figures

:
2
::::
and

::
3,

:::::
which

:::::
show

:::
that

:::
the

:::::
three325

::::::::::::::
piControl-nudged

::::::::::
experiments

:::
do

:::
not

::::::
exhibit

:::::::::
significant

::::::::
common

:::::
trends.

:::::::::
However,

:::
the

:::::
forced

::::::::
response

::
is

:::::::::
substantial

::
in

:::::
terms

::
of

::::::::::
temperature.

:::::
Thus,

:
the Adam optimizer with a learning rate of 0.001. The Mean Squared Error (MSE) is used for training

and validation loss. The number of epochs is set to 100, but the process stops if the validation loss does not improve after 10

epochs. Then, the trained UNET is tested on the SLP maps of the
::::::::
detrending

::
is
:::::
made

::::::::
following

:::::::::::::::
Rigal et al. (2019)

:
:
::::::::::
temperature

::::::::
anomalies

::::
(T’)

:::
are

::::::::
obtained

::
by

:::::::::
removing

::
an

:::::::
estimate

:::
of

:::
the

::::
daily

:::::::::::::
non-stationary

::::::
normal

:::::::::
containing

::::
both

:::
the

:::::
mean

::::::::
seasonal330

:::::
cycle,

:::::
which

::
is
:::
not

:::::::::::::::::::
circulation-explained,

:::
and

:::
the

:::::::
climate

::::::
change

::::::
signal.

::::
The

::::::
trained

::::::
model

::
is

::::
then

:::::
tested

:::
on

:
three CESM2

piC-nudged runsstandardized with
:
,
::::
with

::::
SLP

::::
maps

:::::::::::
standardized

:::::
using the same values as for training

::
in

:::
the

::::::
training

:::::::
process.

For ERA5, we use the UNET
:::
that

:::
was

:
previously trained on CESM2 and we retrain it on ERA5 data from 1940 to 1978.

::::
This

::::::
process

::
is

::::::
known

::
as

:
a
:::::::::
fine-tuning

:::::::
method.

:
SLP maps are standardized with mean and stantard

:::::::
standard deviation calculated on

this training period
:
, and the non-stationary normal is computed thanks to an estimate of g(y)

::
the

::::::
forced

:::::::
response

:
obtained with335

Qasmi and Ribes (2022) method. Then we test it over the 1979-2023 period.

3 Results and Discussion

In the following, we
:::
We evaluate each statistical method’

:
’s estimate of circulation-induced mid-latitude JJA temperature trends.

To obtain those estimates, each statistical method is applied to obtain a circulation-induced temperature estimate from the

::::::::
Estimated

:::::
trends

::̂
y

:::
are

::::::
derived

::::
from

:
CESM2 free-running hist+ssp370 climate change simulations , and subsequently evaluated340

against the piControl-nudged CESM2 simulations , which is used as a benchmark. The skill of each method is assessed by

calculating
:::
and

:::::::::
compared

::::::
against

:::::
trends

:::
in

:::::::
CESM2

::::::::::::::
piControl-nudged

::::::::::
simulations

::
y,
::::::
which

:::::
serve

::
as

:::
the

::::::::::
benchmark.

:::::::
Method

::::::::::
performance

::
is

:::::::
assessed

:::::
using

:
four skill metrics: (i) the fraction of correctly identified

::::
trend

:
signs, (ii) Pearson correlation ,

that is a (pattern correlation across the mid-latitudes
:
), (iii) the coefficient of determination (R2 score, that is the proportion of

variance of circulation-induced trends captured by the statistical predictions),
::::::::::::::::::::::::::::
R2 = 1−

∑
(y− ŷ)2/

∑
(y− ȳ)2),

:::
and

:
(iv) the345

regression slope between the predicted and benchmark trend estimates.

::
(i)

::::
This

::::::
metric

:::::::
provides

::
a
::::::
general

:::::
sense

:::
of

:::::::
whether

:::
the

::::::
method

::::
can

:::::::
correctly

:::::::
capture

:::
the

::::
sign

::
of

:::
the

::::::
trend,

:::::
which

::::
may

:::
be

:::::::
sufficient

::
in
:::::::
specific

::::::::::::
contexts—for

:::::::
example,

::
in

:::::::
climate

::::::
change

::::::::
detection.

:::
(ii)

:::::::
Pearson

:::::::::
correlation

::::::
reflects

::::
how

::::
well

:::
the

:::::::
method
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:::::::
captures

:::
the

:::::
spatial

::::::
pattern

::
of

:::
the

:::::
trend.

:::::
Some

::::::::
methods

::::
may

::::::::::::
systematically

::::
over-

::
or

::::::::::::
underestimate

:::
the

:::::::::
magnitude

::
of

::::::
trends,

:::
yet

:::
still

:::::::::
accurately

::::::::
reproduce

::::
their

::::::
spatial

::::::::::
distribution.

:::
(iii)

::::
The

:::::::::
coefficient

::
of

:::::::::::
determination

:::::
(R2)

:
is
::
a
::::::
widely

::::
used

:::::
metric

:::
for

::::::
spatial350

:::::::::::
comparisons,

::
as

::
it

:::::::
accounts

:::
for

:::
the

:::::::
variance

::
at
:::::
each

:::::::
location

:::
and

::::::::
indicates

::::
how

:::::
much

::
of

:::
the

::::::::
observed

::::::::
variability

::
is
:::::::::
explained

::
by

:::
the

:::::::::
prediction.

::::
Yet,

::
it

::
is,

::
in

:::::::
contrast

::
to

:::::::
Pearson

::::::::::
correlation,

:::::::
sensitive

::
to

:::
any

::::
bias

::
in

:::
the

:::::::::
estimated

::::::
average

::::::::::::::
(Kvålseth, 1985)

:
;

:::
and

::::::
hence,

:
a
::::::::
statistical

:::::::
method

::::
may

::::
show

::
a

::::
good

::::::
spatial

::::::::
Pearson’s

:::::::::
correlation

::
in
:::
its

::::::::
estimates

:::
but

:
a
::::
poor

:::::::::
R-squared

:::::
score.

::::
(iv)

:::
The

:::::::::
regression

:::::
slope

:::::::
indicates

:::::::
whether

:::
the

:::::::
method

::::
tends

::
to

:::::::::::
overestimate

::
or

::::::::::::
underestimate

:::
the

:::::::::
magnitude

::
of

::::::
trends.

3.1 Evaluation of circulation-induced trends in the historical period (1979-2023) in CESM2 nudged-circulation355

simulations

Over the period 1979-2023,
:
JJA temperature trends in the piControl-nudged simulations range from -0.35 to 0.35 K per decade

(figure 3 a,d,g). These trends are heterogeneous throughout the northern hemispheric mid-latitudes with large regional patches

of trends of the same sign
::::::::
organized

::
in
:::::

large
::::::::

regional
:::::::
clusters

::
of

:::::::::
alternating

:::::
signs. Furthermore, the trend patterns differ

considerably between the three piControl-nudged runs,
:

indicating that in CESM2circulation induced ,
:::::::::::::::::

circulation-induced360

trends are dominated by internal variability
:::
and

:::
that

::
in

:::::::
CESM2,

::::::
forced

:::::::::
circulation

:::::::
changes

:::
are

:::::
minor. Overall, JJA temperature

trends are slightly higher in the ‘1300’ run
::
run

::
1,

:
which is likely due to the positive GMT trends in the piControl-nudged runs

during this period (see figure
:::::
Figure 2).

::::
Note

:::
that

:::::
most

::
of

::::
these

::::::
trends

::
are

:::
not

::::::::::
statistically

:::::::::
significant

:::
(see

:::::
figure

::::
??).

:::::
Since

::::
these

::::::
trends

:::::
mostly

::::::
reflect

::::::
internal

:::::::
climate

:::::::::
variability,

:
it
::
is

::::::::
expected

::::
that,

::::
from

::
a

::::::::
statistical

::::
point

::
of
:::::

view,
:::
the

::::::::::::::::
circulation-induced

::::::::::
temperature

:::::::
changes

::
at
::::
one

:::::::
location

:::
are365

:::
not

:::::::::::
differentiable

:::::
from

:::::
noise.

::::
The

:::::::
spatially

:::::::::
consistent

:::::
trend

:::::::
patterns

:::::::
indicate

::::
that,

::::::::
although

:::::::
lacking

::::::::
statistical

:::::::::::
significance,

::::
these

:::::
trends

:::::::
contain

:::::::
valuable

::::::::::
information

:::
and

:::
are

::::::
worth

:::::::::
evaluating.
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:
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Figure 3. Trend in JJA temperatures over the period 1979-2023 in piControl-nudged (a,f,k) and predicted trends from different decomposition

methods. For the run 1300
:::
runs

:
1
:
(a-e), 1400

:
2 (f-j)

:
, and 1500

:
3
:
(k-o). Estimates from the ridge regression (b, g, l), the analogues (c, h, m),

DEA (d, i, n),
:
and UNET (e, j, o). Areas where the predicted trend differs in sign from the piControl-nudged run are highlighted by black

hatching.Besides the estimated trend maps from decomposition methods, small kernel density estimates of estimated trends (y-axis) versus

simulated piControl-nudged trends (x-axis) are shown with x- and y-axis ranging from -0.5 K/dec to 0.5 K/dec.
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Table 1. Evaluation metrics comparing trends in piControl-nudged simulations to estimates of circulation induced trends from statistical

decomposition methods for land grid-cells between 30N-60N and the period 1979-2023. First block: percentage of correctly predicted

sign
::::
signs. Second block: Pearson correlation coefficient. Third block: Coefficient of determination.

:::::
Fourth

:::::
block:

::::::::
regression

::::
slope

:::
(as

:::::
shown

:
in
:::::
figure

:::
??).

:::
See

::::
table

:::
??

::
for

:::
the

::::
same

::::::::
evaluation

:::
over

:::
the

:::::
period

:::::::::
2025-2075.

ridge analogues DEA UNET

run

correct sign

all runs 75% 65% 76% 84%

1300 76
::
75% 77% 73% 86%

1400 74% 56% 82% 84%

1500 76
::
77% 63% 73

::
74% 83%

Pearson correlation
::
(r)

all runs 0.74
:::
0.75 0.52 0.64 0.86

1300 0.79 0.57 0.61 0.91

1400 0.65
::::
0.67 0.36 0.74 0.83

1500 0.75 0.41 0.58 0.89

:::::::::
coefficient

::
of

:::::::::::
determination

::
(R2

:
)

all runs 0.53 0.07 0.10
:::
0.08 0.66

1300 0.56
::::
0.54 0.18

::::
-0.19 0.50

1400 0.39
::::
-0.28 0.25

::::
0.22 0.67

1500 0.47
::::
0.48

::::
-0.07

::::
-0.08 0.73

regression slope

all runs 0.65
:::
0.66 0.43 0.73

:::
0.74 0.51

1300 0.59 0.47 0.70
::::
0.71 0.47

1400 0.51
::::
0.54 0.26 0.96

::::
0.97 0.57

1500 0.54
::::
0.55 0.36 0.65

::::
0.68 0.58

Next, we discuss the performance of each statistical method. Using the ridge regression trained on a forced simulation to

predict the trends based on the streamfunction of the forced simulation and the GMT of the piControl-nudged run, we get a

similar trend pattern as in the piControl-nudged run (figure 3 b,e,h). Over the mid-latitudinal land area, half of the variability370

in local temperature trends in the piControl-nudged run is explained by the ridge regression model (compare R2 score in table
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1). For three quarters
:::::::::::
three-quarters

:
of the grid-cells

:
, the sign of the predicted trend is correct,

:
and grid-cells for which the sign

of the trend is not predicted
::::::::
indicated correctly are mostly grid-cells with small trends in the piControl-nudged simulation (and

the prediction).

The analog method also shows
:::::::
analogue

:::::::
method

::::::
reveals a positive correlation between predicted and simulated mid-latitude375

land trendsand
:
,
::::
with a similar percentage of correctly predicted signs of trends for the 1300 run

:::::::
identified

:::::
signs

::
in

::::
Run

:
1
:
and

slightly lower performance for the two other runs. Note that in the analogues method we estimate the trend contribution coming

from circulation and cannot account for contributions of GMST changes in the piControl-nudged simulation. It is therefore

expected that the results are worse for the 1400
:::
skill

:::
in

::::
Runs

::
2 and 1500 runs where a considerable negative trend in GMST

was simulated
::
3.

::::::::::
Importantly,

:::
the

::::::::
analogue

:::::::
method

::::
only

:::::::
captures

:::
the

:::::::::::::::
circulation-driven

::::::::::
component

::
of

:::
the

:::::
trend

:::
and

:::::
does

:::
not380

::::::
account

:::
for

::::::
GMST

:::::::::::
contributions

:
in the piControl-nudged runs.

::::::::::
simulations.

:::::::::::
Consequently,

:::::::::::
performance

::
is

:::::
lower

::
in

::::
runs

:
2
::::
and

::
3,

:::::
where

:::::::::
substantial

:::::::
negative

::::::
GMST

::::::
trends

::::
were

:::::::::
simulated.

::
It
::
is

::::::::
important

:::
to

::::
note,

::::::::
however,

:::
that

:::
an

:::::
offset

::::::
largely

:::::::::
influences

::
the

:::::::::
relatively

::::
poor

:::
R2

:::::
score

::
in

:::
the

:::::
mean

:::::::::
circulation

:::::
trend

:::::::::::::
(overestimated

:::::::::
warming),

:::::
while

:::
the

::::::
spatial

::::::
pattern

:::::
itself

:::::
shows

::
a

:::::
rather

::::
good

:::::::::::
resemblance

:::
and

:::::::
Pearson

:::::::::
correlation

::::::::
compared

::
to
:::
the

::::::::::
benchmark

:::::::::
simulation

::::::
(figure

::
3).

:

The DEA method performs well in estimating the sign of circulation induced trends (
::::::::::::::::
circulation-induced

:::::
trends

::::
with

:
76%385

correct; see table
:::::::
accuracy

::::
(see

:::::
Table 1). Despite the relatively good

:::::
strong

:
correlation between the trend maps (

:
r
::
= 0.64)

:
, the

coefficient of determination is close to zero. Estimates of circulation induced
:::::::::::::::
circulation-induced

:
trends from DEA cover the

full range of simulated piControl-nudged trends
:
, including very high and very low trends. This is reflected by a relatively high

regression slope between predicted and simulated trends (figure ?? and last block in table 1).

The UNET is performing
::
the

:
best of all tested methods here. With UNET, 84% of trends

::::
trend

:
signs are predicted correctly,390

:
; it has the highest Pearson correlation coefficient (0.86) and the highest coefficient of determination (0.66). As compared

::
In

:::::::::
comparison

:
to the DEA and the ridge regression, UNET has a tendency

::::
tends

:
to predict lower circulation induced

::::::::::::::::
circulation-induced

trends and rarely exceeding
:::::::
exceeds magnitudes of 0.2 K per decade. As shown in figure ??d ,

:
this leads to a systematic

underestimation of the magnitude of stronger trends; and a systematic overestimation of negative trends
::::
trend

::::::::::
magnitude

::::::::
compared

::
to

:::
the

:::::::::::::::
piControl-nudged

:::::::::
simulation.395

For the period
:::
The

:::::::::
evaluation

::::
over

::
a
:::::::
different

::::::
period

:
(2025-2075the results are similar with all methods showing skill in

projecting the sign of the trend and ... (do we need to go into detail here?))
::::::

yields
::::::
similar

::::
skill

:::::::
metrics

::::
and

::::::::
confirms

:::
the

:::::::::::::
above-discussed

::::::
results

:::
(see

::::::
Figure

:::
??

:::
and

:::::
Table

::::
??).

Overall, UNET is the most accurate method when it comes to explain
:::
for

:::::::::
explaining the variance in mid-latitude boreal

summer temperature trends. The ridge regression and UNET have the tendency to decompose the
:::
tend

::
to

:::::::::
decompose

:
temperature400

trends into a regionally smoothed pattern of circulation-induced temperature trendsand have
:
,
::::
with

:
a lower likelihood of

predicting a strong trend of
:::
the wrong sign. DEA and the analogue method project strong trends of

::
the

:
wrong sign in

some regions. DEA appears to be more useful when it comes to estimate
::::::
helpful

::
in

:::::::::
estimating

:
the potential magnitude

of circulation-induced trendswhile UNET is rather conservativeand estimates generally to weaktrends,
:::::::
whereas

:::::::
UNET

::
is

:::::::
relatively

::::::::::::
conservative,

:::::::::
estimating

:::::
trends

::::
that

:::
are

::::::::
generally

::::
too

:::::
weak. The analogue method also shows skill in predicting405

the sign of trendbut appears generally ,
:::
but

:::::::
appears

:::::::
typically

:
less trustworthy when it comes to circulation-induced trends.
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3.2 Indentification
:::::::::::
Identification

:
of the circulation-induced boreal summer temperature trend (1979-2023) in

observations
::::::::
reanalysis

All decomposition methods applied to

::::::
Across

::::
both the ERA5 reanalysis as well as

::
and

:
the CESM2 simulations nudged to ERA5 windssuggest similar circulation410

induced ,
:::

all
::::::::::::
decomposition

::::::::
methods

:::::
reveal

::::::
similar

::::::::::::::::
circulation-induced

:
trend patterns for the period 1979-2023:

::::::::::
1979–2023.

Over Eurasia, a wave-like trend pattern for the circulation induced trends is apparent with strong positive trends
:::::::
structure

:::::::
emerges:

::::::
strong

::::::::
warming over Central and Eastern Europe (around 30E

::::
30°E), cooling trends over Kazakhstan and western

Siberia (between 60E and 90E
::::::::
60°–90°E), and warming trends

::::
again

:
over Mongolia, eastern Siberia

:
, and Central China

(between 90E and 120E), and extending towards the Kamchatka peninsula
::::::::::
90°–120°E),

::::::::
extending

:::::::
toward

:::
the

::::::::::
Kamchatka415

::::::::
Peninsula (Fig. 4). Over North America

:::::
Across

:::::
North

::::::::
America,

:::
we

:::::::
observe

:
a dipole pattern with positive trends over

::
in the

western part and negative trends over the center
::
in

:::
the

::::::
central and eastern parts;

:
, with positive trends

::::
again

:
in the outermost

north-eastern partsagain
::::::::::
northeastern

:::::
parts. All decomposition methods as well as the CESM2 simulations nudged to ERA5

winds (figure 4j) agree on this broad trend pattern with only little regional deviations. The trend pattern identified with the

statistical method is thus in good agreement with the pattern found in Teng et al. (2022).420

From
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:::::
ERA5

:::::
trend

:::::::::
1979-2023
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Figure 4.
:::
JJA

:::::
mean

:::::::::
temperature

:::::
trends

:::
in

:::::
ERA5

::::
over

:::
the

::::::
period

:::::::::
1979-2023

::
(a)

::::::::::
decomposed

:::
in

:::
the

:::::::::::::::
circulation-induced

::::
(left)

::::
and

:::::::::::
thermodynamic

::::::
(right)

:::::::::
contribution

:::
for

:::
the

::::
ridge

::::::::
regression

:::::
(d,e),

::::
DEA

:::::
(f,g),

::::::::
analogues

::::
(h,i),

:::::
UNET

::::
(j,k)

::::
and

:::::::
estimates

::::
from

:::::::
CESM2

::::::::
simulation

:::
with

::::::::
horizontal

:::::
winds

::::::
nudged

:
to
:::::
ERA5

:::::
winds

::::
(b,c).

:::::
Based

::
on

:
our evaluation of decomposition methods against dedicated nudged experiments in the CESM2 setup,

:
we would

suggest to give
:::::
giving

:
more weight to the results from UNET when it comes to

::::::::
regarding the sign of circulation induced

::::::::::::::::
circulation-induced trends. For example, this would imply that the positive circulation induced trends over northern North

America in the ridge regression are probably wrong (compare low skill of ridge regression in this region, figure 3).425

Moreover, there remains ambiguity on the magnitude of the above described
:::::::::::::
above-described

:
trend pattern. The ridge

regression, DEA
:
, and UNET suggest a circulation induced

::::::::::::::::
circulation-induced trend of up to 0.3 K/dec over eastern Europewhile

the
:
.
:::
At

:::
the

:::::
same

:::::
time,

:::
the

:
piControl simulations from CESM2that where ,

::::::
which

:::::
were

:
nudged to ERA5 windsstronger

circulation induced
:
,
:::::
show

:::::::
stronger

::::::::::::::::
circulation-induced

:
trends of up to 0.6 K/dec. In other regions, the nudged simulations

and DEA have stronger trends
::::::
exhibit

:::::::
stronger

::::::
trends,

:
followed by the ridge regression and analoguesand UNET suggest

:
,430

::::
while

::::::
UNET

::::::::
suggests somewhat weaker trends. From the evaluation of the decomposition methods

:
, we know that all methods

except DEA have indeed a tendency of somewhat underestimating
:
to
::::::::::::

underestimate
:

the magnitude of circulation induced

trends
:::::::::::::::
circulation-induced

::::::
trends

:::::::::
somewhat,

:
suggesting that the circulation induced

:::::::::::::::
circulation-induced

:
trend over eastern

Europe could be around 0.5 K/dec as suggested
::::::::
indicated by the nudged simulationsand DEA.
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In summary, our study confirms the highly variable mid-latitude boreal summer trend pattern found in Teng et al. (2022)435

::::::::::::::::::::::::::::::::::::::::::::::::
Singh et al. (2023); Teng et al. (2022); Vautard et al. (2023) with five independent methods (four statistical methods and a nudged

circulation simulation driven by ERA5 horizontal wind fields). The trend pattern contains substantial
::::::::
highlights

::::::
several regional

warming hotspots in all of which a positive circulation contribution to warming has played a key role Teng et al. (2022). It is

important to note that while the
:::::
where

::::::::::
circulation

:::
has

:::::
made

::
a
:::::
major

:::::::
positive

:::::::::::
contribution

:::::::::::::::
(Teng et al., 2022)

:
.
:::::
While

:
total

boreal summer temperature trends are positive all over
:::::
across the NH mid-latitudes, circulation has contributed with cooling440

temperatures in large regions, in particular
:::::
driven

:::::::
cooling

::
in

:::::
large

::::::::::
areas—most

:::::::
notably Central and Eastern North America,

Central Eurasia, andto a minor extent
:
,
::
to

::
a

:::::
lesser

::::::
extent, coastal eastern China. Moderately

:
In

:::::
these

:::::::
regions,

:::
the

::::::::::
moderately

positive total trends in those regions are therefore due to a compensation of the
:::::
reflect

::
a
::::::::::::
compensation

:::::::
between

:
circulation-

induced cooling by a positive thermodynamic contribution
:::
and

:::::::::::::
thermodynamic

:::::::
warming.

ERA5 trend 1979-2023circulation inducedthermodynamicJJA mean temperature trends in ERA5 over the period 1979-2023445

(a) decomposed in the dynamic (left) and thermodynamic (right) contribution for the ridge regression (b,c), DEA (d,e),

analogues (f,g) and CESM2 simulation with horizontal winds nudged to ERA5 winds (h,i).

3.3 Implications and limitations of statistical methods to isolate circulation effects on the time scales of climate trends

Many previous studies aimed to identify
::::::
studies

::::
have

::::::
sought

::
to

:::::
isolate

:
circulation-induced components in time series of climate

variables, a methodology which is sometimes framed as ‘dynamical adjustment ’ (Smoliak et al.
::::::
climate

::::
time

:::::
series, 2015;450

Deser et al., 2016; Guo et al 2019; Cariou et al., 2025; Singh et al., 2023; Safioti et al., 2017; Lehner; ...). The main idea
::::
often

::::::
referred

::
to

::
as

:::::::::
dynamical

:::::::::
adjustment

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Smoliak et al., 2015; Deser et al., 2016; Guo et al., 2019; Cariou et al., 2025; Singh et al., 2023; Saffioti et al., 2017; Lehner et al., 2017)

:
.
:::
The

::::
core

::::::::::
assumption is that circulation variability

:
,
::::::::
primarily

:::::
driven

:::
by

::::::
internal

:::::::::
processes,

:
dominates temperature variability

in many regionsof the world and is related to internal variability; thermodynamic contributions are obtained as a residual

(e.g., Deser et al. , 2016). The identification and separation of climate time series into ,
:::::
while

::::::::::::::
thermodynamic

:::::::::::
contributions455

:::
can

::
be

:::::::
derived

::
as

:::
the

:::::::
residual

:::::::::::::::::::
(e.g. Deser et al., 2016)

:
.
::::
This

:::::::::
separation

::
of

:
dynamic and thermodynamic is a powerful tool for

attribution (e.g., Shepherd 2014)
::::::::::
components

:::::::
provides

:
a
::::::::
powerful

:::::::::
framework

:::
for

:::::::
climate

::::::::
attribution

::::::::::::::::::
(e.g. Shepherd, 2014).

However, while different statistical methods to obtain the
:::
for

::::::::
obtaining circulation-induced components in climate time series

are routinely evaluated on short time scales, the estimation of circulation-induced
::::::
decadal trends has remained a challenge for

the climate community and will likely remain one
:::::::
continue

::
to

::
do

:::
so. This is because of five main reasons.460

First, statistical methods have been found to perform very well on short time scales of day-to-day, month-to-month
:
, or inter-

annual variability (Cariou et al. , 2025; Smoliak et al., 2015; Sippel et al., 2019).
:::::::::::::::::::::::::::::::::::::::::::::::::
(Cariou et al., 2025; Smoliak et al., 2015; Sippel et al., 2019)

:
. Yet, the difference in the performance on long (that is, trend) time scales versus short time scales has not been quantified so far,

although .
:::::::::::
Nevertheless,

:
dynamical adjustment has been widely applied on the time scales of trends. A reduced performance

on long time scales is expected, and indeed found in this study, because shorter time scales are dominated to the largest extent465

by circulation-induced variability, whereas on longer time scales other processes are becoming more dominant, such as land-

atmosphere interactions (e.g. Merrifield et al., 2017)
:::::::::::::::::::::::
(e.g. Merrifield et al., 2017) or long-term warming, both of which may

not be straightforward to account for.
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Second,
:::
and

::::::
partly

::::::
related

::
to
::::

the
:::::::
previous

::::::
point,

:
designing a method comparison for the identification of circulation-

induced time series is challenging. This is because it is not immediately apparent what are the components the
::::::::::
components470

::
are

::::
that

:::
the

:
signal is decomposed to; and

::::
into,

:::
and

::::::
which

:
relevant mechanisms can be attributed to these components. In

this study, we decompose a trend in local temperatures into a "circulation induced"
:::::::::::::::::
“circulation-induced”

:
component and a

thermodynamic component without specifying to which of these component
::::::::::
components

:
changes in other important factors,

such as soil-moisture
:::
soil

::::::::
moisture or aerosol concentrations, are attributed to

:::
(see

:::::
figure

::
5

:::
for

:::
the

:::::::
example

::
of

::::::::::::::
land-atmosphere

:::::::::
feedbacks). The different statistical methods evaluated here were initially developed for similar but slightly different research475

questions: The analogue method, for instance, was designed to separate the "thermodynamic signal" from "
::::::::::::::
“thermodynamic

::::::
signal”

::::
from

::
“circulation-induced variability".

:
.”
:
Yet, it has been shown that summer land-atmosphere interactions remain

largely in the residual, thermodynamic component due to the way that the methodis set up (Merrifield, 2017)
:::::::
method’s

:::::
setup

:::::::::::::::::::
(Merrifield et al., 2017). On the other hand, machine learning methods such as the UNETs may partly implicitly identify land-

atmosphere interactions as part of circulation variability, if circulation carries an imprint of land-atmosphere variability.
::
In480

::::
table

:
2
:::
we

:::::::::
summarize

::::
our

:::::::
thoughts

:::
on

::
the

:::::::::
treatment

::
of

::::::::::::::
land-atmosphere

::::::::
feedbacks

::
in

:::
the

:::::::
different

::::::::::
approaches.

:

Third, it is not straightforward to design

anthropogenic

forcing

internal

variability

circulationGMST

land-atmosphere

interaction

local temperature

Figure 5.
::::::::
Conceptual

:::::::::
illustration

:
of
:::::
causal

::::::::::
relationships

::::::::
influencing

::::
local

::::::::::
temperatures

::
in

:
a
:::::
forced

:::::
climate

::
as

::
in

:::::
figure

:
1
:::
but

:::
with

::
an

::::::::
additional

::::
driver

::
of
:::::

local
:::::::::
temperature.

:::
In

:::
this

::::
study

:::
we

::::
aim

::
at

::::::::::
decomposing

:::
the

:::::::
influence

:::
on

::::
local

:::::::::
temperature

::::
into

::::::::::::
thermodynamic

::::::
(GMST)

::::
and

::::::::
circulation

::::::
induced

::::::::::
contributions

::
(in

:::::
blue).

:::::::::::::
Land-atmosphere

:::::::::
interactions

:
is
::
a
::::
driver

:::
we

::
do

:::
not

:::::::
explicitly

:::::
model

::
(in

:::::::
orange).

:::::
Third,

::::::::
designing

:
a benchmark for the circulation-induced component in time series of climate variables

::
of

::::::
climate

:::::
time

:::::
series, such as summer temperatures. Here, we have used a pi-control

:
,
::
is

:
a
::::::::::
challenging

::::
task.

::
In

::::
this

:::::
study,

:::
we

:::
use

::
a

::::::::
piControl

nudged-circulation approachas a benchmark, where a climate model was
::
is nudged to the horizontal winds of a forced ,485

transient simulation. We thus obtain
:::
This

:::::
setup

:::::::
provides circulation-induced changes in an

::::::
within

::
an

::::::::
otherwise unforced climate

simulation. However, there may be factors of residual climate variability (such as ocean variability) or feedbacks between

circulation and other factors,
:
such as land-atmosphere coupling

:
, that could still affect thermodynamical processes on climate

over land . However, based on the similarity between the pi-control
:::
(see

::::
table

:::
2).

:::::::::::
Additionally,

:::::::
summer

:::::::::::
temperatures

:::
in

:::
the
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nudged circulation simulations and the statistical methods , the climate model based benchmarkis valid for our purpose
::::
might

:::
be490

::::::
affected

:::
by

:::::::
nudging

::
in

:::::
other

:::::::
seasons.

:::
For

::::::::
example,

:::::::::
circulation

:::::::
changes

:::
can

::::::::
influence

:::
soil

::::::::
moisture

::
in

:::
late

::::::
spring

:::::
which

::::::
would

:::
then

:::::
have

::
an

::::::
impact

:::
on

:::::::
summer

:::::::::::
temperatures.

:::::::::
Statistical

::::::::::::
decomposition

::::::::
methods

::
do

:::
not

::::
use

:::
this

:::::::::::
information.

::::::::::::
Consequently,

::
we

::::
have

::
to
::::::
admit

:::
that

:::
the

::::::
nudged

::::::::::
simulations

:::
are

:::
not

:
a
::::::
perfect

::::::::::
benchmark.

::::::
Further

:::::::
analysis

::
is

:::::::
required

::
to

:::::::::
understand

::::
how

:::::
these

:::::::::
limitations

:::::
affect

:::
our

::::::::
estimates

::
of

::::::::::::::::
circulation-induced

:::::
trends

::::
and

:::::::
whether

:
a
::::::::::
better-suited

::::::::::
benchmark

:::
test

:::::
could

::
be

::::::::
designed.

Fourth, besides combining multiple lines of evidence, our study highlights the need of benchmarking efforts for statistical and495

machine learning approaches: without the evaluation against nudged circulation simulations one would conclude that different

decomposition methods project similar trend patterns with some estimates showing a stronger version of the trend pattern than

others. Evaluating which magnitude of the trend pattern is the most likely /plausible is challenging from the statistical analysis

alone. Concluding that all
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Table 2.
:::::::::
Expectations

:::
on

:::::
how

:::::::::::::
land-atmosphere

::::::::::
interactions

:::::
might

::::::::
influence

:::
the

::::::::::::
decomposition

::::
into

:::::::::::::::::
“circulation-induced”

::::
and

:::::::::::::
“thermodynamic”

::::::::::
contributions.

::::::
method

::::
what

::
is

::::::::
variability

::
in
::::::::::::::
land-atmosphere

::::::::::
interactions

::::::::
attributed

:::
to?

:

::::
ridge

::
In

:::::::
multiple

::::::
linear

:::::::::
regression,

::::::::::
attribution

:::::::
depends

:::
on

:::
the

::::::::::
collinearity

:::
of

:::::::::
covariates

:::::
(e.g.,

:::::::::
circulation)

::::
with

:::
the

:::::::::::
second-order

:::::
effect

:::::::::::::::
(land–atmosphere

::::::::::
interaction),

::::::::::
determining

:::::::
whether

:
it
::
is
::::::::

assigned
::
to
:::::::

GMST
::
or

::::::::::
circulation

:::::::
changes.

:::::
This

::::::::::
partitioning

::::
may

:::::
vary

::
by

:::::::
region.

::
If

::::
there

::
is

:::
no

::::::
strong

::::::::::
collinearity

:::::::
between

:::
the

:::::::::
prevailing

::::::::::
atmospheric

::::::::::
circulation

::
at

:::
the

:::::
daily

::::
time

::::
scale

::::
and

::::::::::::::
land-atmosphere

::::::::::
interactions,

::::::
which

::::::::
typically

::::::
change

::
at
::::::

longer
::::
time

::::::
scales

:::::::::::::::::::
(Merrifield et al., 2017),

:::
we

::::::
expect

:::
the

::::::
effects

:::
due

::
to

::::::::::::::
land-atmosphere

::::::::::
interactions

::
to

::::::
remain

::
in

:::
the

:::::::::
residuals.

::::::::
analogues

:
It
:::

is
:::::::::
presumed

::::
that

::::::::::
circulation

:::::::::
analogues

:::::
occur

:::::
over

::
a
::::::

range
::
of

:::::
land

:::::::
surface

::::::
states.

:::
The

:::::::::::::::::
circulation-induced

:::::::::
component

:::
of

:::::::::::
temperature

::
is

:::::::
defined

::
as

:::
an

:::::::
average

::::::
across

::::
this

:::::
range,

::::::
which

::::::
leaves

:::
the

::::::::
influence

:::
of

:::
the

::::
land

:::::::
surface

:::
on

:::
the

::::::::::
atmosphere

:::::::::::::
predominantly

::
in

:::
the

:::::::
residual

:::::::::::::
thermodynamic

::::::::::
component

::::::::::::::::::::
(Merrifield et al., 2017).

::::
The

:::::
land

::::::
surface

::::
can

:::::
induce

::
a
:::::::::::

temperature
::::::::
anomaly

::::
and

:::::::::
associated

:::::::::
circulation

:::::::
pattern

:::::
(e.g.,

::
a
:::::::
thermal

:::::
low),

:::
and

:::
the

::::::::
analogue

:::::::
method

:::::
could

::::::::
interpret

::::
this

:::::::
situation

:::
as

::::::::::::::::
circulation-induced

::::::
rather

::::
than

:::::::::::::
thermodynamic.

::::::::
Nudging

::
all

:::::::
vertical

:::::
levels

::
of

:::
the

::::::::::
atmosphere

:::::::::
suppresses

::::::::
influence

::::
from

:::
the

:::
land

:::::::
surface

::
to

:::
the

:::::::::::
atmosphere,

::
so

::::::::::::::
land-atmosphere

::::::::::
interactions

:::
are

:::::
likely

::
to
:::::::

remain
::
in

:::
the

:::::::::::::
thermodynamic

:::::::::
component

::
of

:::
the

:::::::::::::::
piControl-nudged

::::
runs

::::
used

:::
as

:
a
:::::::::
benchmark

:::
in

:::
this

:::::
study

:::::::::::::::::::
(Merrifield et al., 2019).

:

::::
DEA

:::::::
Because

:::
the

:::::::::
approach

::::::::
removes

::::
the

:::::
total

::::::
effect

:::
of

:::::::
GMST

:::::::
without

::::::::::::
conditioning

:::
on

::::::::::::::
land–atmosphere

::::::::::
interactions,

::
it

::::
may

:::
also

::::::::
eliminate

:::
the

:::::::::
mediating

:::::
effect

::
of

::::::
GMST

::::::::
operating

::::::
through

::::
this

:::::::
pathway

::::
(but

:::
this

::::::
effect

:
is
::::::

likely
:::::
small

:::
and

::::::::
confined

::
to

:::::
trends

::::
that

:::
are

:::::::
colinear

::::
with

:::::::
GMST),

::::::::
whereas

:::
the

:::::::::
mediating

:::::
effect

:::
of

::::::::::
atmospheric

::::::::::
circulation

::
is

::::::::
expected

::
to

:::
be

:::::::
retained,

:::::
given

::::
that

::::
the

:::::
linear

::::::
model

::::
has

::::::::
sufficient

:::::::::
expressive

::::::::
capacity

::
to

:::::::
capture

:::::
these

:::::::
complex

:::::::::::
relationships.

:

::::::
UNET

:::
The

:::::
SLP

::
is

::::
used

:::
as

::
a
::::::::
predictor

:::
of

:::
the

::::::::::
circulation.

:::::::::
However,

:::
this

::::::::
variable

::::
may

:::::::
contain

::::::
surface

::::::::
imprints

::::::
which

::::::
might

:::::
affect

::::
the

:::::::::::::::::::
“circulation-induced”

::::::::::
component.

::::::::::
Therefore,

:::::::::::::
land-atmosphere

::::::::::
interactions

::::
may

::
be

::::::
partly

::::::::
predicted

::
by

:::
the

::::::
UNET

::::::::::
architecture.

::::::
nudged

::::::::::
simulations

:::::::
Nudging

::::
is

:::::::::
expected

::::
to

:::::::::
separate

:::::
the

::::::::::::::::
land-atmosphere

:::::::::::
interactions

::::::
into

:::
a

::::::::::::::::::::::
thermodynamically-driven,

:::
and

::
a
:::::::::::::::
circulation-driven

::::::::::
component

::::
(i.e.,

:::::::::::
atmospheric

:::::::
imprints

::
of

:::::::::::::
land-atmosphere

::::::::::
interactions

:::
are

::::::::
expected

::
to

::
be

::::::::
captured

::::::
through

:::::::::
nudging).22



::::::::
Regarding

::::::::::::::
land-atmosphere

:::::::::::
interactions,

:::
we

::::::::
conclude

:::
that

:::
the

:::::
effect

:::
on

:::
our

::::::::
estimates

:::
of

::::::::::::::::
circulation-induced

:::::
trends

::::::
varies500

:::::::
between

::::::::
methods.

::::
This

::::::::
increases

:::
our

:::::::::
confidence

::
in

:::
the

:::::::
signals

::
all

::::::::
methods

::::
agree

:::
on

:::::
(e.g.,

::::::::::::::::
circulation-induced

::::::::
warming

::::
over

:::::::
Europe).

::
At

:::
the

:::::
same

::::
time,

:::::
there

:
is
:::
no

:::::::::
systematic

::::
(and

:::::::::
consistent)

::::::::
difference

::
in

::::
how

::::::::
statistical decomposition methods might be

underestimating the magnitude of the trend pattern would be impossible
::::::
affected

:::
by

:::::::::::::
land-atmosphere

::::::::::
interactions

::
in

::::::::::
comparison

::
to

:::
how

::::::::::::::
land-atmosphere

::::::::::
interactions

:::::
might

::::::::
influence

::
the

:::::::
nudged

::::::::::
simulations.

::::::::
Therefore,

:::
the

:::::
effect

::
of

::::::::::::::
land-atmosphere

::::::::::
interactions

:::::
cannot

:::::::
explain

:::
the

:::::::::
systematic

::::::::::::::
underestimation

:::
of

:::
the

:::::::::
magnitude

::
of
:::::::::::::::::

circulation-induced
:::::
trends

:::
in

::::::::
statistical

:::::::::::::
decomposition505

:::::::
methods

:::
(as

::::::::
compared

::
to

:::
the

::::::
nudged

:::::::::::
simulations).

Fifth
:::::
Fourth, we present an evaluation of decomposition methods based on one set of nudged simulations from one earth

:::::
Earth

system model (CESM2). Although the well documented
::::::
Despite

:::
the

::::::::::::::
well-documented

:
performance of CESM2

:
, this is a flaw

:
,

as the strength of the links between atmospheric circulation patterns, GMST
:
, and local temperatures might be misrepresented

in the model. A followup
::::::::
follow-up study using multiple ESMs to create a benchmarking dataset would be crucial to further510

constrain our estimates of circulation induced temperature trends .
::::::::::::::::
circulation-induced

::::::::::
temperature

:::::
trends

:::::::
further.

:::
The

:::
use

:::
of

::::
such

:
a
:::::::::::
multi-model

::::::::
ensemble

::::::
would

::::::
require

:::::::
adapting

::::
the

:::::::
different

::::::::::::
reconstruction

::::::::
methods

:::::::
slightly.

::
In

:::::::::
particular,

:::
the

::::::
UNET

:::::
would

::::
need

:::
to

::
be

::::::::::
pre-trained

::
on

::
a
:::::::::
collection

::
of

:::::::::::
multi-model

::::
data,

:::::
rather

:::::
than

:::
just

::::::::
CESM2.

::::::::::
Preliminary

::::
tests

:::::::::
conducted

:::
on

:::::::
Western

::::::
Europe

:::::::
suggest

:::
that

::::
this

::::
does

:::
not

:::::::
degrade

:::
the

:::::::
quality

::
of

:::
the

:::::::::::::
reconstruction,

::::::::
especially

:::::
when

:::
the

::::::::::
fine-tuning

::::
step

::
is

::::::
applied

::
to

::::
early

::::::
ERA5

::::
data.

:
515

Overall, our study shows that statistical methods are well-suited to
::::::
Finally,

::
in

:::::::
addition

:::
to

:::::::::
combining

::::::::
multiple

::::
lines

:::
of

::::::::
evidence,

:::
our

:::::
study

::::::::::
emphasizes

::::
the

:::::::::
importance

:::
of

::::::::::::
benchmarking

::::::
efforts

:::
for

:::::::::
statistical

:::
and

::::::::
machine

:::::::
learning

:::::::::::
approaches.

::::::
Without

:::::::::
evaluating

:::
the

::::::
results

::::::
against

::::::
nudged

:::::::::
circulation

::::::::::
simulations,

:::
one

:::::
would

::::::::
conclude

:::
that

::::::::
different

::::::::::::
decomposition

:::::::
methods

::::::
project

::::::
similar

::::
trend

::::::::
patterns,

::::
with

:::::
some

::::::::
estimates

:::::::::
exhibiting

:
a
::::::::
stronger

::::::
version

::
of

:::
the

:::::
trend

::::::
pattern

::::
than

::::::
others.

::::::::::
Evaluating

:::::
which

:::::::::
magnitude

::
of

:::
the

:::::
trend

::::::
pattern

:
is
:::
the

:::::
most

:::::::::::::
likely/plausible

:
is
::::::::::
challenging

:::::
from

:::
the

::::::::
statistical

:::::::
analysis

:::::
alone.

::::::::::
Concluding520

:::
that

:::
all

::::::::::::
decomposition

:::::::
methods

::::::
applied

:::
to

::::::::::
observations

:::::
might

:::
be

:::::::::::::
underestimating

:::
the

:::::::::
magnitude

::
of

:::
the

:::::
trend

::::::
pattern

:::::
would

:::
be

:::::::::
impossible.

:

::::::
Overall,

::::
our

::::
study

:::::::::::
demonstrates

::::
that

::::::::
statistical

:::::::
methods

:::
can

:::::::::
effectively identify and separate circulation-induced temperature

trends from residual , thermodynamical trends. It is important to note, however, that the performance of those methods on time

scales of climatic trends decreases relative to the higher performance found on short time scales. It is therefore crucial to525

account for this kind of uncertainty in potential subsequent studies that would use those
:::::::::::::
thermodynamic

::::::
trends.

::::::::
However,

::::
their

::::::::::
performance

:::::::
declines

:::
on

:::::::
climatic

:::::::::
timescales

::::::::
compared

::
to

::::::
shorter

::::::::::
timescales.

::::
This

:::::::::
uncertainty

::::::
should

:::
be

:::::::
carefully

::::::::::
considered

::
in

:::::
future

::::::
studies

:::
that

::::
use

::::
such estimates for attribution of to derive constraints on future

::
or

::
to

::::::::
constrain projections.

4 Conclusions and Outlook

In summary, our analysis targeted two specific research objectives and revealed two distinct findings: First, we evaluated530

whether statistical-empirical methods are able to correctly
:::
can

:::::::::
accurately estimate circulation-induced long-term trends in the

NH mid-latitudes in
:::::
during

:
boreal summer (and a residual that is dominated by thermodynamic trends) against a specifically
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designed climate model benchmark of nudged circulation experiments. Four different statistical methods were testedand we

showed ,
::::
and

:::
we

:::::::::::
demonstrated that each of these methods is able to identify in general

:::
can

::::::::
generally

::::::
identify

:
the large-scale

pattern of circulation variability and changes, even though the methods
:::
they

:
are typically trained and validated on short time535

scales (daily to seasonal). However,
::
the

:
methods showed differences in their skill in which they reproduced

:::::
ability

::
to

:::::::::
reproduce

the spatial trend pattern from the nudged circulation benchmark, and in the extent to which they partly underestimated the

magnitude of circulation trends: With three quarters .
::::
With

::::::::::::
three-quarters of correctly estimated signs of trends and coefficients

of determination above 50%, the ridge regression and the UNET methods are performing sufficiently well for the purpose. The

UNET has overall the
::
the

::::::
overall

:
highest scores in most tested skill metrics. However, the UNET method tends to produce540

underdispersive results, that is
:
, the magnitude of particularly large (or weak)

:::::
strong circulation trends is often underestimated

(or overestimated
:::::::::
irrespective

::
of

:::
the

::::
sign). DEA and circulation analogues have similar skill in predicting the sign of circulation-

induced trends, but
:
.
::::
Still,

:
due to the low coefficient of determinationwe would restrain

:
,
:::
we

:::::
would

::::::
refrain

:
from interpreting

the magnitude of regional trends estimated from these methods. Overall, identifying circulation-induced trends on climate time

scales in the context of dynamical adjustment studies is skillful, but
:::::::
possible.

:::::
Still, it does imply larger uncertainties than for545

the application on shorter time scales, which needs to be considered in future applications of the techniques.

Our second objective was to identify circulation-induced boreal summer temperature trends across the northern hemispheric

mid-latitudes in observations using four different
::::
using

::::
four

:
statistical methods and CESM2 simulations that are nudged

to the
::::::
nudged

:::
to ERA5 circulation without anthropogenic forcing. Large-scale boreal summer circulation trends and their

effects on temperature have been a topic of intense discussion (Teng et al. , 2022; Chemke and Coumou 2022; Rousi et550

al 2022; Vautard et al., 2023). Our analysis of circulation-induced trends in
::::::::::
temperature

:::::::
impacts

::::
have

:::::
been

::::::
widely

:::::::
debated

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Teng et al., 2022; Chemke and Coumou, 2024; Rousi et al., 2022; Vautard et al., 2023).

:::::::::
Analyzing

:
ERA5 over the period 1979-2023

confirms the positive circulation contribution to summer heat
:::
for

::::::::::
1979–2023,

:::
we

::::
find

:::::::
positive

:::::::::
circulation

:::::::::::
contributions

:::
to

::::::
summer

::::::::
warming

:
over Europe, Western

::::::
western

:
North America, and over Mongolia. Following a wave structure,

:::::::::
Mongolia.

::
In

:::::::
contrast,

:
a
:::::::::
wave-like

::::::
pattern

::
of

:
circulation-induced cooling has been identified

::::::
appears over Central Eurasia (Western

::::
west555

Siberia and Kazakhstan) and Central and
::
to Eastern North America.

We anticipate that the methods presented and evaluated in our present study will be applied in a variety of use cases in the

future:

Dynamical adjustment of historical climate change; -> improved understanding and interpretation of which changes the

distribution of climate variables like temperature are driven by dynamical vs. thermodynamical changes. AKA similar to560

Deser et al (2016; 2023) ... ; Attribution of
::::::
Beyond

::::::::::::
strengthening

:::::::::
confidence

::
in
:::::::::::::::::

circulation-induced
::::::::::
temperature

::::::::
changes,

:::
our

:::::::::
evaluation

:::
also

:::::::::
highlights

:::::::::
systematic

:::::::::
limitations

:::
of

::::::::
statistical

::::::::::::
decomposition

::::::::
methods.

:::::::::
Improving

::::::::::::
understanding

::
of

:::::
their

::::::::::
performance

::::
will

:::::::
enhance

:::
our

:::::
ability

::
to
:::::::
attribute

:::::::
regional

:::::::
climate

::::::
trends.

:::::::
Isolating

:
individual components of historical changes

::::::
change is likely to identify a stronger signal, especially when it comes to the attribution of

::::
yield

::
a
:::::::
stronger

:::::::::
attribution

::::::
signal,

:::::::::
particularly

:::
for

:
regional climate change; and to allow focussing

:
.
::::::::
Focusing

:
on dynamical and thermodynamical changes565

separately (e.g., Shepherd. ..).
::::::::::::
thermodynamic

:::::::
changes

:::::::::
separately

::
is
::::::::::::
advantageous,

::
as

:::::
there

:::
are

:::::::::
significant

:::::::::
differences

:::
in

:::
the

::::::::::
uncertainties

::
of

::::::
forced

:::::::
changes

::
in

::::
these

:::::::::::
components

::::::::::::::
(Shepherd, 2014).

:
While several attribution studies of circulation changes
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have been published (Chemke and Coumou 2024);
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Coumou et al., 2015; Chemke and Coumou, 2024; Dong et al., 2022)

:
, uncertainties

remain large
:
, especially when it comes to the attribution of the

::::::::
attributing

:::
the

:
downstream impacts of atmospheric circulation

changes, such as whether circulation-induced temperature changes are due to forced or unforced variability. observations-based570

constraints on future projections separately for dynamical and thermodynamical components . -> likely relatively
:
.
:::::
Being

::::
able

::
to

::::
more

::::::::
robustly

:::::::::
decompose

::
a
:::::
trend

:::
into

::
a
::::::::::::::::
circulation-induced

::::
and

:
a
::::::::::::::

thermodynamic
:::::::::
component

::::::
should

::::
also

::::
help

::::::::
attribute

::::::::::::::::
circulation-induced

::::::::::
temperature

:::::
trends

:::::
more

:::::::::
effectively.

::::::
Finally,

:::::::::
separating

:::::::::
dynamical

:::
and

:::::::::::::
thermodynamic

:::::::::::
components

:::::
offers

:
a
:::::::
pathway

:::
to

::::::::
constrain

::::::::
near-term

::::::
climate

::::::::::
projections

::::
using

::::::::::::::::
observation-based

::::::::::
constraints.

:::
The

::::::::::::::
thermodynamic

::::::::
constraint

:::::::
should

::
be

:
straightforward to identifythermodynamical575

constraints (because largely forced). large uncertainty for the dynamical components, but could be the basis for internal

variability storylines (Liné et al 2024): If historical ,
:::
as

::
it

::
is

::::::
mainly

::::::
forced.

::::::
There

:::
are

::::::::
different

::::::::::
possibilities

:::
to

::::::::
constrain

:::::
based

::
on

:::
the

:::::::::
dynamical

::::::::::
component.

:::::
With

:::
the

:::::::::
assumption

::::
that circulation-induced temperature change is

:::::
trends

::::
over

:::
the

::::
past

::::::
decades

:::::
were

::::::::
primarily due to internal variability, likely reversal in the circulation-induced warming hotspots in the next 1-2

decades(e.g. Europe), while thermodynamical warming would continue
:::::
climate

::::::::::
variability,

:::
one

::::::
would

:::::
expect

::
a
:::::::
reversal

::
of

:::
the580

:::::::
observed

:::::
trend

::::::
pattern

::::
over

:::
the

::::::
coming

:::::::
decades. If circulation-induced temperature change is forced, both circulation-induced

and thermodynamical
::::::::::::
thermodynamic

:
trends would continueinto the future. .. .

::::
Due

::
to

:::
the

::::::::::
considerable

:::::::::
uncertainty

::
in
:::
the

::::::
forced

::::::::::::::::
circulation-induced

:::::::
changes,

:
a
::::::::
storyline

::::::::
approach

:::::
would

:::
be

::::::::::
appropriate,

::::::::
explicitly

::::::
treating

::::::::
different

::::::::::
assumptions

:::::
about

::::::
forced

::::::::::
atmospheric

:::::::::
circulation

:::::::
changes

:::
and

:::::::::
evaluating

:::
the

:::::::
potential

:::::::::
outcomes

::
of

::::
these

::::::::
scenarios

:::::::::::::::::::::::::::::
(Shepherd, 2019; Liné et al., 2024).

:

. The code required to reproduce this study is available on https://github.com/peterpeterp/circ_contribution_to_JJA_trends.git.585
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Appendix A: Nudged circulation plots
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