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Abstract. The-intensification ammer-temperature-and-hea mesis-we ¢ and-attributed-to-Rising summer

temperatures and more frequent heat extremes are well-documented outcomes of anthropogenic climate change. There-is;
however—stilh-a-—vivid-debate-about-the-influence-of-However, the extent to which atmospheric circulation changes on-heat

e*tremes—@veﬁheﬂeﬁhem—heﬂmspheﬁc—contrlbute to these trends remains contested. Regional differences across the northern

mid-latitudes

summer-temperature-trends—For-the-evaluation-of-suggest that circulation plays a role, yet robustly quantifying its contribution
over multiple decades is very challenging. We address this by systematically testing statistical and machine learning decomposition

methods we-ase-with climate model simulationswi

and-eompare-its- Specifically, we use unforced simulations with circulation nudged to match a forced simulation that includes
anthropogenic emissions and land-use change. We apply decomposition methods to the forced simulations and compare their
estimates of circulation-induced trends i i i i i i tt
methods show-skill-in-estimating the-sign-with those found in nudged circulation simulations. Our analysis reveals that most
meof circulation-induced trends-but-al-methods-underestimate-the-magnitudeot-these

ms-changes, although they consistently underestimate their
magnitude. Despite this limitation, the results demonstrate that circulation changes have eontributed-substantially-to-an-inerease
in-summer heat over severalbmade a substantial contribution to summer temperature trends across the northern mid-latitudes.
In Burope. a hotspot region, we estimate that up to half of the observed summer warming between 1979 and 2023 can be
attributed to circulation trends. Furthermore, circulation trends have contributed to warmer summer temperatures over Western
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North America, Central Siberia, Mongolia, Central China, and northeastern Canada. Yet, circulation changes have cooled
summer temperatures over Eastern and Central North America, Eastern China, and Central Asia. Overall, our results, based
on multiple methods, confirm a circumglobal mid-latitude regions:including-Europepattern of considerable, yet contrasting,
contributions of circulation changes to summer temperature trends.

1 Introduction

The intensity of heat-waves-heatwaves increases globally, causing eonsiderable-significant ecological and societal impacts.
It is well understood that in a warming climateheat-waves-over-, heatwaves lasting a few days or warm summer seasons
intensify, and this effect can be robustly attributed to anthropogenic activities (Seneviratne et al., 2021). The main reason for
this intensification is of a thermodynamic nature: heat extremes occurring in a warmer atmosphere are also warmer. However,
heat waves are not only determined by direct thermodynamic changes in a warming climate: Various effects can lead to regional
trends in summer heat, including changes in atmospheric circulation (Teng et al., 2022; Rousi et al., 2022; Vautard et al., 2023;

Singh et al., 2023), or changes-in—setl-meistarefeedbacks due to land-atmosphere interactions (Seneviratne et al., 2006). As

a result, regional trends in summer average temperatures or summer heat extremes differ strongly across the world and even

across the northern hemispheric mid-latitude land area. An-

In the mid-latitudes, large-scale circulation is a crucial driver for heat extremes (Rousi et al., 2022; Rothlisberger and

Papritz, 2023) and there is great interest in understanding to what extent atmospheric circulation contributed to individual
events (Cattiaux et al., 2010; Sippel et al., 2024; Zeder and Fischer, 2023), trends in heat extremes (Rousi et al., 2022; Singh

et al., 2023) or seasonal temperatures (Teng et al., 2022). Forced changes in the-summerjet-strength-and-structure-alongside
writh-jet stream position and strength (Dong et al., 2022; Rousi et al., 2022; Woollings et al., 2023; Shaw and Miyawaki

and the resulting changes in weather pattern frequencies (Horton et al., 2015; Hanna et al., 2018; Fabiano et al., 2021) are likel
to affect local climate conditions (Pfleiderer et al., 2019). Over the observational record, these forced changes, however, are

small compared to internal climate variability (Eyring et al., 2021). Estimating the contribution of atmospheric circulation

changes to local temperature trends and quantifying the extent to which these changes are due to forced or internal variability is
crucial for our understanding of past summer temperature trends (Merrifield et al., 2017; Teng et al., 2022; Vautard et al., 2023
and extreme events (Terray, 2021).

Coumou et al., 2015; Chemke and Coum
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In some regions, the observed trends are falling eut-of-outside the range of model-simulated expected trends (e.g., Western
Europe, (Teng et al., 2022; Rousi et al., 2022; Vautard et al., 2023; Kornhuber et al., 2024));-but-itis-unelearif-this-only
s—a-few-regions-or-w his-is—a-global-phenomenon. Potentially, this may-indicate-indicates that model-simulated

low-frequency variability in large-scale atmospheric circulation is too weak, or that a forced eireulation-change in circulation

is missing in the models, notwithstanding the broad uncertainty across models (Shepherd, 2014). The missing low-frequency
hypothesis is also diffienlt-challenging to assess because the available observations are ratherrelatively short. Understanding
past circulation changes and their contribution to temperature trends may provide an opportunity to constrain future changes in

summer temperature trends, as-cireulation-presents-a—very-large-acknowledging that future circulation changes remain a huge
source of uncertainty (Topal and Ding, 2023; Fereday et al., 2018).

atmospheric circulation to temperature trends is not straightforward (Deser et al., 2016). Two main approaches are commonl
used. The first applies statistical or machine learning methods that-decompose—the-to decompose observed or simulated
temperature trend-n-its-thermodynamically-indueed-and-its-eirenlationindueed-trends into thermodynamic and circulation-driven

components, often
referred to as dynamical adjustment (Deser et al., 2016; Smoliak et al., 2015; Sippel et al., 2019). The second uses nudged
circulation simulationswhere-the-cireulation-componentisfixed-, in which the circulation is prescribed and the thermodynamic
component is removed (see-e-g-(Wehrh-et-al;-2018))-Althoughnudged-(Wehrli et al., 2018). Both options have their limitations:
Nudged circulation experiments are limited by the representation of physical mechanisms in the climate model used;-assessing
how—wel-. On the other hand, most statistical decomposition methods are suited-to-estimate-cireulation-induced-trends—is

challenging—Mest-ofthese-methods—are-designed to capture the relationship between daily circulation patterns and daily
temperaturesane-they-. They do indeed capture day-to-day variability very well;-and-geed-. Good skill is obtained on monthly or

inter-annual time scales as well (Smoliak-et-al5 2015 Sippelet-al; 2019 Carten-et-al52025)-(Smoliak et al., 2015; Sippel et al., 2019; C:

. Whether they can adequately capture a long-term trend ishewever-more-diffieult, however, more challenging to test, because
processes determining long-term trends may be distinctly different from those that determine short-term circulation variability;
,.and much fewer verification samples are available. Moreover, benchmarks for circulation-induced long-term trends have not
been available se—farto date, and to our knowledge, no systematic comparison of dynamical adjustment methods has been
performedconducted.

In this study, we
present a comprehensive assessment of circulation-induced summer temperature trends across the northern mid-latitudes by
making-use-of-using both statistical decomposition methods and nudged circulation experiments. We address—two-speeifie
research-questionsHirst-we-evaluate-whether-focus on two key questions. First, can statistical-empirical methods are-able-te
correcthy-estimateeireulation-indueedreliably estimate circulation-driven long-term trends when tested against a climate model

benchmark—Fhe mate-model-benchmark-experimentis-specifieially-designed-as-? To address this, we use a set of CESM2

nudged circulation simulations ;—which-alows—eemparisen—of-specifically designed to provide a reference for comparin
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circulation-induced

trends with those derived from statistical methods.
Second, we identify circulation-induced 3A-summer temperature trends across the northern hemispheric mid-latitudes in
observations using four different statistical methodsand—, as well as in CESM2 simulations that are nudged to the ERAS5

circulation but driven without anthropogenic forcing.

2 Data & Methods

This study is mainly based on simulations of the fully coupled Community Earth System Climate Model, Version 2 (CESM2)
(Danabasoglu et al., 2020). including simulations from the CESM2 large ensemble (Rodgers et al., 2021). In section 3.2 we
apply decomposition methods to the European Centre for Medium-Range Weather Forecasts (ECMWE) Reanalysis v3 (ERAS)
(Hersbach et al., 2020).

2.1 CESM2 nudged circulation simulations driven with CESM2 horizontal winds

To derive a benchmark for the-evaluation-of-the-evaluating the decomposition methods, we use nudged circulation experiments
that-have-been-conducted with the fully coupled Community-Earth-System-Climate-Model—Version2-CESM2 (Danabasoglu
et al., 2020). First, three standard historical and future anthropogenic forcing experiments are simulated, following historical
greenhouse gas emissions, aerosol emissions, and land use changes in-the-period-1+850-264+4from 1850 to 2014, and anthropogenic
forcings fellowing-the-SSP3-70-seenariofrom then onwards (Chist+SSP370’). These simulations follow the protocol of the
CESM2 large ensemble (Rodgers et al., 2021).

In a second step, for each of these simulations, a nudged circulation simulation is created for piControl forcing (e.g., no
anthropogenic greenhouse gas and aerosol emissions, as well as no land use change). Each of these simulations starts with
the same initial conditions as their-its corresponding hist+ssp370 simulation;-. 6-hourly global meridional and horizontal
winds throughout the atmosphere (at all vertical levels) and-globally-are-nudged-are nudged globally to their corresponding
hist+ssp370 simulation. The nudging is achieved via a regular relaxation procedure described in the CAM6 handbook (camdoc)
, and is similar to Topdl and Ding 2023. These simulations will be-heneeforth-referred-te-henceforth be referred to as ‘piControl-

nudged’, as they lack the-direct anthropogenic forcingbut-, Still, through the nudging of atmospheric circulation, any potential
anthropogenic forcing on atmospherie-cireulation-are-present-alongside-with-the-identical-horizontal wind fields is present
alongside the internal circulation variability of the atmosphere —from the hist+ssp370 simulation. Because land—atmosphere
coupling influences near-surface circulation differently under varying climate forcings, it is recommended to apply nudging
near-surface winds are nudged (Singh et al., 2025).
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2.1.1 Conceptual Interpretation of CESM2 nudged circulation simulations as a benchmark for dynamical

adjustment

In a free-running, fully coupled climate simulation, local er-and regional temperatures are affected-both-by-thermodynamie
foreing{(sketched-here-as-GMSTinfluenee)-as—well-as—shaped by both thermodynamic forcing, here represented by global

mean surface temperature (GMST) as a proxy for the large-scale thermodynamic background conditions, and atmospheric
circulation variabilityfe-g-:—, as well as their interactions (e.g., Deser et al. 2016, Fig. 1);-and-interactions—between—both.

Statistical dynamical adjustment methods aim-te-separate-these-seek to separate these influences, but the-skill-of-these-metheds
is-inherently—diffieult-to-evaluate—in-their skill is challenging to evaluate within a coupled system. Henece;—the-goal-of-our
To address this, we use ‘piControl-nudged’ simulations i i st tORS; i i ton—

variable;-as_benchmarks in which circulation varies while thermodynamic forcing is fixed to-at pre-industrial vatues—TFhis
will-alew-to-levels. This design allows us to isolate and evaluate the circulation contribution independently from-the-trends-in

3 )

ged-simulationsissketehed-in-of thermodynamic

trends. Conceptually (Fig. 1: i a i s < W ¥
, circulation variability is “inherited” from the parent simulation and is expected to dominate local and regional temperatures

but-alse—petential-temperature responses. This inherited variability includes both internal fluctuations and possible forced

3 )

circulation changes. Mereover-we-expeet-that some-internal-variability-may remainin-the"piControl-nudged simulationsfo

example-due-to-ocean—variability-that-may-affeet- GMST-Some internal variability unrelated to atmospheric circulation ma
also remain, such as ocean-driven GMST fluctuations (arrow b in Fig. 1). Note that the decomposition into “thermodynamic”

and “circulation-induced” changes is a simplification that overlooks important mechanisms for local temperatures. In Section

3.3, we discuss the implications of this simplification in more detail.

free running hist-ssp370 piControl-nudged

forcing internal internal

(hist-ssp370) variability variability

local temperature

local temperature

Figure 1. Conceptual illustration of causal relationships influencing local temperatures in a freely running climate simulation (left) and in a

iControl-nudged simulation (right). The arrow width indicates the assumed importance of links. The blue rectangle highlights the processes

studied here.
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2.1.2 TIllustration of CESM2 nudged circulation simulations

As expected, day-to-day variability in the nudged circulation run is closely related to it’s-its freely running counterpart from
which the wind fields originatedfrent. As shown in figure-2?Figure 2?, in the early period (left column of fig. ??), geopotential
height at 500 hPa and surface air temperature are nearly identical in the hist+ssp370 and the piControl-nudged run. In a warmer
climate, the-day-to-day variability is—stitH-remains highly correlated, but geopotential height and surface air temperatures are

relatively-uniformly shifted to higher values. Heweverinterpreting-
Interpreting the GMST signal in the “piControl-nudged - S-S

Tuns is not

straightforward. Even without external forcing, small trends-in-GMST-ecan-befound-GMST trends emerge over 40-year periods
tORS (Fig. 2b,c). These trends may-be-parttyforeed-by-atmespherieeireulation(al-three

A so—encemble—Fio me 1atiang 10

A comparison of 1979-2023 GMST trends in the piControl-nudged simulations with their corresponding freely running
forced simulations indicates that both of these processes are relevant (figure 2)-The+un1300-b). Run 1 is the simulation with the
highest GMST trend in the freely running as-wel-as-configuration (0.25 K/decade) and near zero trend in the piControl-nudged
stmulation—while1500-hastowest- GMSTrends—in-both-simulationsconfiguration, Runs 2 and 3 have lower GMST trends
between freely running simulations and their corresponding piControl-nudged simulations are not constant, indicating that

there is indeed an influence of low frequency internal variability that is not controlled by atmospheric circulation. (Finally;

we do not expect that-the circulation component estimated from the freely running forced simulation matehes-to match the

trend found in the piControl-nudged simulation exactly. Hewever;-we-In the ridge regression and DEA, we can account for the

effect of these GMST trends in the piControl-nudged simulations. In general, we assume that the effeetimpact of GMST on
local temperatures is ratherrelatively homogeneous around the northern-hemispherie-mid-latitudes ;-and-thus-of the northern

hemisphere. Thus we expect that the spatial pattern relative to the mid-latitudinal mean is well captured.
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Figure 2. a: Global mean surface temperature in hist+ssp370 runs (orange) and in piControl-nudged runs (green). b: GMT trend over the
eriod 1979-2023 (gray bar in a). c: GMT trend over the period 2025-2075 (blue bar in a). The cooler histogram displays 500 trends of the

same length from piControl, while the warmer histogram displays 100 trends from the CESM2 large ensemble.

2.2 CESM2 nudged circulation simulations driven with ERAS winds

To evaluate the use of the decomposition methods on observed circulation patterns, we created an additional benchmark
simulation by nudging CESM2 to the horizontal wind fields from the reanalysis data ERAS (Hersbach et al., 2020). This
method relies on the same relaxation procedure and anthropogenic forcing as described before, with some modifications to the
setup. Here, not only the piControl, but also the ’hist+SSP370’ simulations are nudged to ERAS5 data-horizontal wind fields
between 1940 and 2024. In-erderto-To account for forcing-induced variability at the boundary later, the atmosphere is only

nudged above 700 hPatWehtli-et-al520148)—, similar to (Wehrli et al., 2018).
The model is alse-run in an AMIP setup-with-a-preseribed-ecean—configuration with prescribed ocean conditions from the
Met Office Hadley Centre*’s sea ice and sea surface temperature dataset-(HadlSST,Rayneret-al(2003))—To-create-thesea

surface-temperature-datafor-the-dataset (HadISST; Rayner et al. 2003). For the piControl simulation, sweremeved-the forced
component fromHadlSST-with-a-was removed from HadISST using low-frequency pattern filtering (Wills et al., 2020). Fhe

piCentrol-sea—iee—data—is—produced-Sea ice concentration (SIC) was then estimated with a random forest model based-en

atio Pp—o W a—sttrtd peratu afa a B O W Wotta O a poteiititar Gow c

on the SST-SIC relationship in HadISST. To capture seasonal hysteresis, separate models were trained for the freezing season
Sept-Jan) and the melting season (Feb—Aug), and applied to piControl SSTs to generate corresponding SIC values. This
approach reproduces daily temperature anomalies in the northern hemisphere well. However, nudging to observed winds and
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2.3 Dynamical adjustment methods

We test four methods designed to disentangle the dynamic effect from the thermodynamic effect: (1) ridge regression, (2)

constructed circulation analogues, (3) direct effect analysis (DEA), and a neural network UNET (4).

Note that we apply the methods exactly as they were designed and used in other publications, and therefore different proxies
for atmospheric circulation are used by different methods. We do not expect that the choice of variable to represent atmospheric
circulation significantly affects the results. In Figure ??, we show a sensitivity analysis for the ridge regression. In Section 3.3,
we discuss differences between the methods and how they might affect the decomposition in more detail.

2.3.1 Ridge regression

For each grid-eeHgrid cell, we train a linear regression model to predict daily mean temperatures in HA-(¥yusing-ascovariates
summer (June July-August, hereafter referred to as JJA), Y, using GMST (yearly averaged) and the streamfunction (® )-at
eHat 500 hPa in all grid cells G within a 40 x 40-degree

rectangular area centered on that grid cell:

G+1
Y =70+ nGMST+> " 7;®; +e, (1)
j=2

where the streamfunction (®) is related to horizontal eastward (U) and northward (V) wind speeds as u = 22 and v = 22

grid—cells

Y =v%+nGMST+ > (%)) +e€

Ridge regression is a 1

~regularized linear method that can deal
with high-dimensional predictors (in our case, many correlated spatial locations with stream-funetion—streamfunction values,

®;). Ridge regression mitigates overfitting by introducing a penalty for model complexity(>), achieved through the shrinkage
of regression coefficients. Shrinkage is determined by the sum of squared regression coefficients (known as L2 regularization)

and a ridge regression parameter £\), which controls the degree of shrinkage:-

. The shrinkage term is added to the residual sum of squares (125.S) for the minimization:

P

'y—argmln{RSS+)\Z /3H’Y||2 i} @

=1

As a result, ridge regression solves a joint minimization problem, producing small but nonzero regression coefficients that
are relatively evenly distributed among correlated predictors. The tuning regularization parameter A -which-dictates the extent
of shrinkage ;-and is selected via cross-validation or knowledge about the noise variance. Notably, the intercept of the linear

model as well as the GMST covariate remain are-excluded from the shrinkage.
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2.3.2 Constructed atmospheric circulation analogues technique

2.3.3 Atmespherie-cireulation-analogue-teehnique

The atmospheric circulation analogue technique, introduced in Deser et al. (2016), is a linear dynamical adjustment method.

It is designed to provide empirically derived estimates of climate trends induced by “dynamies™‘dynamics” or atmospheric

circulation patterns. The method has been used for a variety of applications, including trend assessments, variability analysis,
performance weighting, and extreme event attribution ~ : — :

2016; Lehner et al., 2017; Merrifield et al., 2017; Guo et al., 2019; 2021).

The method is based on the i

construction of a target monthly mean sea level pressure (SLP) foHowing Deseret-al(20+6)-Here; SEP-anatogues-are-selected
from-pools-offield (.., January 1980) using analogues. In the January 1980 example, analogues are SLP fields from other
Januaries between 1850 and 2014 that resemble the target SLP pattern. The method is applied to every month in the record and
proceeds as follows. First, the Euclidean distance between all SLP fields from the period of 1850-2014 and the target SLP field
is computed. Euclidean distance is calculated at each grid point and averaged over the Northern hemisphere domain (20-90 °N,
0-360 °E). The N, = 80 possible choices sub-selected-from-the period1850-20 4closest SLP fields to the target are considered
analogues. From the 80 ehoiees;-analogue choices, the target month is reconstructed using randomly selected subsets of N, =

ess-analogues. The process of choosing 50 out of 80
analogues and reconstructing the target SLP is repeated NV, = 100 times to obtain an average best estimate result.

Deser et al. Terray,

2

P

a-The target SLP field X, through-a-is reconstructed through multivariate linear regression. The weight assigned to each SLP
analogue, /3, is computed through a singular value decomposition of a column vector matrix X, containing the 50 selected

analogues and can also be estimated using a Moore-Penrose pseudoinverse:
B =[(XXe) XXy, (3)

where 3 weights are then-applied-to-applied to the corresponding monthly mean temperature fields, i.e., those from the
same months-month as the SLP analogues-to-eonstruet-analogue. The weighted linear combination of these fields defines the
dynamic component (gwmgwb Before welghtlngfhe—tempef&&rrﬂjfe}d&—we—feme% a quadratic trend
e-is removed from the full temperature
record at each grid point to approximate the anthropogenic warming signal (Deser et al., 2016; Lehner et al., 2017). This is

to approximate the unforced relationship between SLP and temperature one would expect to find in a preindustrial control

simulation. Afterrepeating-the-dynamical-adjustment-proteeel-The dynamic component of temperature is also computed N,
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= 100 times ;—we-average-the-results—to-definefor each month. Results are averaged, and once every month, the record is
dynamically adjusted as described; we obtain a dynamic monthly mean temperature timeseries.

Note that the Moore—Penrose pseudoinverse implicitly deploys a “hard” regularization (i.e., kills directions with singular

value exactly zero). In contrast, the previous ridee (Tikhonov) regularization imposes an explicit “soft”

damps unstable directions even if singular values are just small, not zero).
We use the term “analogue™’ to refer to a month with an SLP field close -in-terms-of Euclidean-distanee-to the SLP target.

regularization (i.e.

e. Fuchidean distance omputed-at-each eridpointand-averaced-overthe Northern-hemisphere domain(20-90-°N . 0-360
“E)-Thisseleetion-metrie-therefore; The Euclidean distance selection metric does not require an analogue to match the target

month spatially over the whole domain. This step is necessary because, with less-fewer than 200 pessible-optionsavailable

analogues, it is extremely-unlikely-that-a—perfeet"—match-will-exist-for-a-partieular-improbable to find a perfect match for an
target month. Van-DPen-Dool-{1994)-estimated-that-around-Van Den Dool (1994) estimated that it would take on the order of

103 years would-be-required-to find two similar(within-ebservational-uneertainty)-Northern Hemisphere circulation patterns
—Thereforesimilar within observational uncertainty. As a result, the method must-make-the-best-use-of relies on imperfect

analogues, which may—can introduce spurious features or affeet-bias the amplitude of the estimated dynamic temperature

trends.

Two analogue pool selection strategies are employed. The first is an—in-sample-—selection—referred-te—as-the “leave-one-
out—approach(eite-lehnerNewEstimateTime2017);- approach, where analogues are selected from the CESM-piC-nudged-run
free-running runs being dynamically adjusted, excluding the target month, during the 1850-2014 period —TFhe-second-is-an
out-of-sample-approach;(Deser et al.

trends for comparison with the piControl-nudged simulations. In the second approach, analogues are selected from the entire
1850-2014 p%m of each of the : i i

2016; Lehner et al., 2017). Leave-one-out selection is used to estimate circulation-induced

3

eempeﬂeﬂfs—afeﬂverﬂged—l;effree -running runs and used to dynamically adjust ERAS5;-analogues-are-selected-from-all-three

inre-. The resulting three dynamical components of ERAS computed
using analogues from the free-running runs +300;1400;-and-1500-analogues-are shown in SupplementaryFigureX-Figure F1
and are averaged to produce the circulation-induced trend estimates in Figure 4.

2.3.3 DEA

Direct Effect Analysis (DEA) is a recently developed causal approach that aims at disentangling an outcome variable ¥--R<
Y into a direct effect component, Yj;,, which represents the part of Y directly caused by some causal factor Z-<JRZ, and an
orthogonal component, ¥5e5Yon, Which corresponds to the part of Y unaffected by Z. Both Z and Y may be influenced by
other variables X-€R&”X, which act as confounders, and it is thus necessary to control for these covariates to get a correct
estimate of the direct effect of Z on Y. This learned representation of Y can be seen as the result of encouraging conditional

independence between Z and Y while controlling for X Purand-et-al;2025a) (Durand et al., 2025b).

ISubmitted-

10
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In this context, the outcome H&r}mhe temperature field¢, which is a random vector where-each-dimension
with one dimension per grid cell. The predictor

Z is the monthly mean GMST, used as a proxy for
thermodynamic temperature changes. As covariates X, we include the leading Empirical Orthogonal Functions (EOFs) of the

atmospheric circulation (Z500), denoted as—{m—% +7_, where J is selected through 5-fold cross-validation to maximize

the B2 score.

Similar to the ridge regression approach described above, we assume the following linear model:
= /bo—‘rb()lGMST-i-Z],ljJrlejpj—‘1-6. @

and get the optimal regression parameter matrix using a least squares algorithm. We obtain a matrix BGR“—X(J—“'—l{BNWhose
columns b; encode how GMST and each EOF influence temperature across grid cells. We emphasize that this is a multivariate
regression problem, where Y is a random vector—not a single variable—representing temperature values across multiple
grid cells. Each dimension of Y corresponds to one spatial location. The-number—/—of EOFs—is—selected-through—-5-fold

To isolate the dynamical component ¥5e5—You, 0f Y, we remove the part aligned with the GMST-related direction, as
captured by bgbl This is achieved using the linear transformation Wﬂ&&%m
w This transformation ensures that ¥pem Yo, remains unaffected by any interventions on GMST, and thus

represents the dynamical component of Y.

2.34 UNET

The UNET-final method used in this paper is a convolutional neural networkdesigned-by-Ronnebergeret-al(2015)-, a UNET
structure, recently proposed by Cariou etal. (2025) to link temperature variations to atmospheric circulation. The UNET
architecture was initially introduced by Ronneberger et al. (2015) for biomedical image segmentation. It consists of two main
parts—the-eneoder—which-captures—the—globalfeatures—of-the—input-components: an encoder and a decoder. The encoder
extracts global features from the input (in this case, circulation maps) by progressively reducing its-spatial resolution while
increasing the-depth-of-the feature-maps-via-feature depth through convolution and max-pooling layers;-and-the-decoder-which
. The decoder then reconstructs the image using transposed convolutions. These-two-partsare-symmetrical-and-connected-by
Symmetry between the two parts, combined with skip connections, erabling-allows the network to preserve the-and effectively

reuse encoded information.

the-annual-eyele—The UNET-is—tratnedpart of daily temperature variations (77, the output) which can be explained by the
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large-scale circulation, described by the sea level pressure (SLP, the input). Thus, we can write the UNET model as

T F(SLP) ®

We follow the methodology described in Cariou et al. (2025). Still, we extend the analysis to a larger spatial domain and train
the UNET on daily data from 1850 to 2100 from 8 CESM2 transient simulations —(80% of the data are randomly selected

for training, and the remaining 20% are used for the

nd d-de h an
ahaara—aevia . G n P O O
B R

~validation). Since the UNET is trained on transient runs (historical and SSP), we must consider
climate change in the relationship 5. The SLP is not detrended, assuming that in the CESM2 model, the forced responses in
the SLP is small compared to the daily variability. This assumption is supported by Figures 2 and 3. which show that the three
piControl-nudged experiments do not exhibit significant common trends. However, the forced response is substantial in terms

epochs—Then;the-trained- UNETis-tested-on-the-SEP-maps-of-the-detrending is made following Rigal et al. (2019): temperature
anomalies (T’) are obtained by removing an estimate of the daily non-stationary normal containing both the mean seasonal

cycle, which is not circulation-explained, and the climate change signal. The trained model is then tested on three CESM?2

piC-nudged runsstandardized-with-, with SLP maps standardized using the same values as fer-training-in the training process.
For ERAS, we use the UNET that was previously trained on CESM2 and we-retrain it on ERA5 data from 1940 to 1978. This

rocess is known as a fine-tuning method. SLP maps are standardized with mean and stantard-standard deviation calculated on
this training period, and the non-stationary normal is computed thanks to an estimate of ¢{#)-the forced response obtained with
Qasmi and Ribes (2022) method. Then we test it over the 1979-2023 period.

3 Results and Discussion

In-the-following;-we We evaluate each statistical method”’s estimate of circulation-induced mid-latitude JJA temperature trends.

Estimated trends ¢ are derived from CESM2 free-running hist+ssp370 elimate-change-simulations—-and-subsequently-evaluated
against-thepiCentrol-nmadged-CESM2-simulations which-isused-as-a-benchmark—The-skill-ef each-method-is-assessed-by
eatentating-and compared against trends in CESM2 piControl-nudged simulations y, which serve as the benchmark. Method
performance is assessed using four skill metrics: (i) the fraction of correctly identified trend signs, (ii) Pearson correlation 5
thatis-a-(pattern correlation across the mid-latitudes), (iii) the coefficient of determination (R2-scorerthat-is-the propertion-of
variance-of eireulation-induced-trends-captured-by-the statistieal-predietions)y R2 = 1 — Y (y — 9)2/ >~ (y — 4)), and (iv) the
regression slope between the-predicted and benchmark trend estimates.

i) This metric provides a general sense of whether the method can correctly capture the sign of the trend, which may be

sufficient in specific contexts—for example, in climate change detection. (ii) Pearson correlation reflects how well the method

12
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captures the spatial pattern of the trend. Some methods may systematically over- or underestimate the magnitude of trends, yet

still accurately reproduce their spatial distribution. (iii) The coefficient of determination (R2) is a widely used metric for spatial

comparisons, as it accounts for the variance at each location and indicates how much of the observed variability is explained

by the prediction. Yet, it is, in contrast to Pearson correlation, sensitive to any bias in the estimated average (Kvalseth, 1985);

and hence, a statistical method may show a good spatial Pearson’s correlation in its estimates but a poor R-squared score. (i

The regression slope indicates whether the method tends to overestimate or underestimate the magnitude of trends.

3.1 Evaluation of circulation-induced trends in the historical period (1979-2023) in CESM2 nudged-circulation

simulations

Over the period 1979-2023, JJA temperature trends in the piControl-nudged simulations range from -0.35 to 0.35 K per decade
(figure 3 a,d,g). These trends are i benad i i i

of-trends—of-the—same—signorganized in large regional clusters of alternating signs. Furthermore, the trend patterns differ
considerably between the three piControl-nudged runs, indicating that in CESM2eireutation—indueed—, circulation-induced

A RRRIRARARAARAARARIA

trends are dominated by internal variability and that in CESM2, forced circulation changes are minor. Overall, JJA temperature
trends are slightly higher in the-4300>run—run 1, which is likely due to the positive GMT trends in the piControl-nudged runs
during this period (see figure-Figure 2).

Note that most of these trends are not statistically significant (see figure 22). Since these trends mostly reflect internal climate
variability, it is expected that, from a statistical point of view, the circulation-induced temperature changes at one location are
not differentiable from noise. The spatially consistent trend patterns indicate that, although lacking statistical significance,
these trends contain valuable information and are worth evaluating.
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Figure 3. Trend in JJA temperatures over the period 1979-2023 in piControl-nudged (a,f,k) and predicted trends from different decomposition
methods. For the-run+366-tuns | (a-e), +466-2 (f-j), and +566-3 (k-0). Estimates from the ridge regression (b, g, 1), the analogues (c, h, m)

DEA (d i, n), and UNET (e, j, 0). Areas where the predlcted trend differs in sign from the p1C0ntrol nudged run are hlghhghted by black




Table 1. Evaluation metrics comparing trends in piControl-nudged simulations to estimates of circulation induced trends from statistical
decomposition methods for land grid-cells between 30N-60N and the period 1979-2023. First block: percentage of correctly predicted
stgnsigns. Second block: Pearson correlation coefficient. Third block: Coefficient of determination. Fourth block: regression slope (as shown

in figure ??). See table ?? for the same evaluation over the period 2025-2075.

ridge analogues DEA UNET
run
correct sign
all runs 75% 65% 76 % 84%
1300 T675% 77% 73% 86%
1400 74% 56% 82% 84%
1500 7677% 63% 7374% 83%
Pearson correlation (r)
allruns  6:740.75 0.52 0.64 0.86
1300 0.79 0.57 0.61 0.91
1400 0:65-0.67 0.36 0.74 0.83
1500 0.75 0.41 0.58 0.89
coefficient of determination (R2)
all runs 0.53 0.07  6:160.08 0.66
1300 8:56-0.54 0.18 -0.19 0.50
1400 0.39 -028 025022 0.67
1500 047048 -0.07 -0.08 0.73
regression slope
allruns  0:650.66 043  0:730.74 0.51
1300 0.59 047 676071 0.47
1400 6:5+0.54 026 696097 0.57
1500 0:54-0.55 036 6:650.68 0.58

Next—we-diseuss-the-performance-of each-statistical-method—Using the ridge regression trained on a forced simulation to

predict the trends based on the streamfunction of the forced simulation and the GMT of the piControl-nudged run, we get a
370 similar trend pattern as in the piControl-nudged run (figure 3 b,e,h). Over the mid-latitudinal land area, half of the variability

in local temperature trends in the piControl-nudged run is explained by the ridge regression model (compare R2 score in table
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1). For three-quarters-three-quarters of the grid-cells, the sign of the predicted trend is correct, and grid-cells for which the sign
of the trend is not predieted-indicated correctly are mostly grid-cells with small trends in the piControl-nudged simulation (and
the prediction).

375 The analog-method-alse-shows-analogue method reveals a positive correlation between predicted and simulated mid-latitude

land trendsand-, with a similar percentage of correctly pfedietedﬁgﬂyefffeﬂd&fefme—l%{){)ﬂﬁldenuﬁed signs in Run 1 and
shghtly lower pexf

expected-that-the-results-are-worse-for-the1+400-skill in Runs 2 and +500-runs-where-a-considerable-negative-trend-in-GMST

380 was simulated3, Importantly, the analogue method only captures the circulation-driven component of the trend and does not
account for GMST contributions in the piControl-nudged runs-simulations. Consequently, performance is lower in runs 2 and
3. where substantial negative GMST trends were simulated, It is important to note, however, that an offset largely influences
the relatively poor R2 score in the mean circulation trend (overestimated warming). while the spatial pattern itself shows a
rather good resemblance and Pearson correlation compared to the benchmark simulation (figure 3).

385 The DEA method performs well in estimating the sign of eireulation-induced-trends~(circulation-induced trends with 76%
eorreet;see-table-accuracy (see Table 1). Despite the relatively geod-strong correlation between the trend maps (r = 0.64), the
coefficient of determination is close to zero. Estimates of eirenlation-indueed-circulation-induced trends from DEA cover the
full range of simulated piControl-nudged trends, including very high and very low trends. This is reflected by a relatively high
regression slope between predicted and simulated trends (figure ?? and last block in table 1).

390 The UNET is performing the best of all tested methods here. With UNET, 84% of trends-trend signs are predicted correctly;

; it has the highest Pearson correlation coefficient (0.86) and the highest coefficient of determination (0.66). As-compared-In
comparison to the DEA and theridge regression, UNET has-atendeney-tends to predict lower eirewlation-indueed-circulation-induced
trends and rarely e*eeedmgexceeds magnitudes of 0.2 K per decade. As shown in figure ??d-, this leads to a systematic
underestimation of the magn i ati strend magnitude

395 compared to the piControl-nudged simulation.

WM&MQOZS 2075%%%%%%%%@%

e?)) yields similar skill metrics and confirms the

above-discussed results (see Figure ?? and Table ??).
Overall, UNET is the most accurate method when-it-eomes—te-explain—for explaining the variance in mid-latitude boreal

400 summer temperature trends. The ridge regression and UNET have-the-tendeney-to-decompeose-the-tend to decompose temperature

trends into a regionally smoothed pattern of circulation-induced temperature trendsand-have—, with a lower likelihood of

predicting a strong trend of the wrong sign. DEA and the analogue method project strong trends of the wrong sign in
some regions. DEA appears to be more useful-when—it-comes—to—estimate-helpful in estimating the potential magmtude

405 relatively conservative, estimating trends that are generally too weak. The analogue method also shows skill in predicting
the sign of trendbut-appears-generally-, but appears typically less trustworthy when it comes to circulation-induced trends.

of circulation-induced trendswhile
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3.2 Indentifieation-Identification of the circulation-induced boreal summer temperature trend (1979-2023) in
observationsreanalysis

d L hods-anplied
Across both the ERAS reanalysis as-wel-as-and the CESM2 simulations nudged to ERAS windssuggest-similar-cireulation

indueed-, all decomposition methods reveal similar circulation-induced trend patterns for meﬁeﬂem%m

Over Eurasia, a wave-like

emerges: strong warming over Central and Eastern Europe (around 36E30°E), cooling trends-over Kazakhstan and western
Siberia (betweera—é@E—&nd#@EﬁQiAM%O"E) and warming trends-again over Mongolia, eastern Siberia, and Central China

0°-120°E), extending toward the Kamchatka
Peninsula (Fig. 4). OverNorth-AmericaAcross North America, we observe a dipole pattern with positive trends over-in the

ARAARIAARAAAAAAR R AANARARRREARA

western part and negative trends over-the-center-in the central and eastern parts;-, with positive trends again in the outermost
north-eastern—partsagainnortheastern parts. All decomposition methods as well as the CESM2 simulations nudged to ERAS
winds (figure 4j) agree on this broad trend pattern with only little regional deviations. The trend pattern identified with the
statistical method is thus-in good agreement with the pattern found in Teng et al. (2022).

From-
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Figure 4. JJA mean temperature trends in ERAS over the period 1979-2023 (a) decomposed in the circulation-induced (left) and
thermodynamic (right) contribution for the ridge regression (d,e), DEA (f,g), analogues (h,i), UNET (j,k) and estimates from CESM2
simulation with horizontal winds nudged to ERAS winds (b,c).

Based on our evaluation of decomposition methods against dedicated nudged experiments in the CESM2 setup, we would
suggest to-give-giving more weight to the results from UNET when-it-comes—to-regarding the sign of eireulation-induced
circulation-induced trends. For example, this would imply that the positive circulation induced trends over northern North
America in the ridge regression are probably wrong (compare low skill of ridge regression in this region, figure 3).

Moreover, there remains ambiguity on the magnitude of the above-deseribed-above-described trend pattern. The ridge
regression, DEA, and UNET suggest a eireulationinduced-circulation-induced trend of up to 0.3 K/dec over eastern Europewhile
the—. At the same time, the piControl simulations from CESM2that-where-, which were nudged to ERAS5 windsstronger
eireulation—indueed-, show stronger circulation-induced trends of up to 0.6 K/dec. In other regions, the nudged simulations
and DEA have-stronger-trendsexhibit stronger trends, followed by the ridge regression and analoguesand-UNET-suggest-,
while UNET suggests somewhat weaker trends. From the evaluation of the decomposition methods, we know that all methods
exeept-DEA-have indeed a tendency ef-somewhat-underestimating—to_underestimate the magnitude of eireulation—induced
trends—circulation-induced trends somewhat, suggesting that the eireulation-indueed-circulation-induced trend over eastern
Europe could be around 0.5 K/dec as suggested-indicated by the nudged simulationsand-DEA:.
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435 In summary, our study confirms the highly variable mid-latitude boreal summer trend pattern found in Fengetal+2022)-
Singh et al. (2023); Teng et al. (2022); Vautard et al. (2023) with five independent methods (four statistical methods and a nudged
circulation simulation driven by ERAS horizontal wind ﬁelds) The trend pattern eeﬂtafn%—%ub%aﬂﬁal—@gblmmsw\reglonal
warming hotspots in ttive-ei i i i

impertant-to—nete—that-while—the-where circulation has made a major positive contribution (Teng et al., 2022) While total
440 boreal summer temperature trends are positive al-over-across the NH mid-latitudes, circulation has eentributed-with-cooling

temperatiresin-large regions;in-partietdar-driven cooling in large areas—most notably Central and Eastern North America,
Central Eurasia, andto-a-minor-extent, to a lesser extent, coastal eastern China. Mederately-In these regions, the moderately
positive total trends in-these-regions-are-therefore-due-to-a-compensation-of-the-reflect a compensation between circulation-
induced cooling WWWW@W%M@W

445
3.3 Implications and limitations of statistical methods to isolate circulation effects on the time scales of climate trends
Many pfeﬂeu%—%métes—aﬁﬂed—te—tdeﬁﬁﬁy-studles have sought to isolate circulation-induced components in time-series-of-climate
450
455 , while thermodynamic contributions

can be derived as the residual (e.g. Deser et al., 2016). This separation of dynamic and thermodynamic is-a-pewerful-teelfor
attribution-{e-g-Shepherd-20+4)components provides a powerful framework for climate attribution (e.g. Shepherd, 2014).

However, while different statistical methods te-ebtain-the-for obtaining circulation-induced components in climate time series
are routinely evaluated on short time scales, the estimation of circulation-induced decadal trends has remained a challenge for

460 the climate community and will likely remain-orecontinue to do so. This is because of five main reasons.
First, statistical methods have been found to perform very well on short time scales of day-to-day, month-to-month, or inter-

~(Cariou et al., 2025; Smoliak et al., 2015; Sippel et al., 201
. Yet, the difference in the performance on long (that is, trend) time scales versus short time scales has not been quantified so far;

annual variability

although-. Nevertheless, dynamical adjustment has been widely applied on the time scales of trends. A reduced performance
465 on long time scales is expected, and indeed found in this study, because shorter time scales are dominated to the largest extent
by circulation-induced variability, whereas on longer time scales other processes are becoming more dominant, such as land-

atmosphere interactions {e-g—Merrifield-et-al-204H7H-(e.g. Merrifield et al., 2017) or long-term warming, both of which may

not be straightforward to account for.
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Second, and partly related to the previous point, designing a method comparison for the identification of circulation-
induced time series is challenging. This is because it is not immediately apparent what are-the-compenents-the components
are that the signal is decomposed to;-and-into, and which relevant mechanisms can be attributed to these components. In
this study, we decompose a trend in local temperatures into a “eireutation-indueed™ ‘circulation-induced” component and a
thermodynamic component without specifying to which of these eemponent-components changes in other important factors,
such as seil-meisture-soil moisture or aerosol concentrations, are attributed to(see figure 5 for the example of land-atmosphere
feedbacks). The different statistical methods evaluated here were initially developed for similar but slightly different research
questions: The analogue method, for instance, was designed to separate the “ te-si . ““thermodynamic
signal” from “circulation-induced variability*=.” Yet, it has been shown that summer land-atmosphere interactions remain
largely in the residual, thermodynamic component due to the way-that-the-methodis-set-up-(Merrifield; 2047)method’s setup
(Merrifield et al., 2017). On the other hand, machine learning methods such as the UNETs may partly implicitly identify land-

atmosphere interactions as part of circulation variability, if circulation carries an imprint of land-atmosphere variability. In

table 2 we summarize our thoughts on the treatment of land-atmosphere feedbacks in the different approaches.
Third-iti straichtf o desi

internal

anthropogenic

forcing variability

circulation

land-atmosphere

interaction

local temperature

Figure 5. Conceptual illustration of causal relationships influencing local temperatures in a forced climate as in figure 1 but with an additional

driver of local temperature. In this study we aim at decomposing the influence on local temperature into thermodynamic (GMST) and

circulation induced contributions (in blue). Land-atmosphere interactions is a driver we do not explicitly model (in orange).

Third, designing a benchmark for the circulation-induced component in-timeseries—of-climate—vartablesof climate time
series, such as summer temperatures—Here;-we-have-used-a-pi-control, is a challenging task. In this study, we use a piControl
nudged-circulation approachas—a-benchmark, where a climate model was-is nudged to the horizontal winds of a forced
transient simulation. We-thus-ebtain-This setup provides circulation-induced changes in-an-within an otherwise unforced climate
simulation. However, there may be factors of residual climate variability (such as ocean variability) or feedbacks between

circulation and other factors, such as land-atmosphere coupling, that could still affect thermodynamical processes on climate

over land —Hewever,-based-on-the-similarity-between-thepi-econtrol(see table 2). Additionally, summer temperatures in the
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490 nudged circulation simulations an

affected by nudging in other seasons. For example, circulation changes can influence soil moisture in late spring which would
then have an impact on summer temperatures. Statistical decomposition methods do not use this information. Consequently,
we have to admit that the nudged simulations are not a perfect benchmark. Further analysis is required to understand how these
limitations affect our estimates of circulation-induced trends and whether a better-suited benchmark test could be designed.

495
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Table 2. Expectations on how land-atmosphere interactions might influence the decomposition into ‘‘circulation-induced” and
“thermodynamic” contributions.

method
what is variability in land-atmosphere interactions attributed to?

ridge

In multiple linear regression, attribution depends on the collinearity of covariates (e.g.,

circulation) with the second-order effect (land—atmosphere interaction), determining whether
it is assigned to GMST or circulation changes. This partitioning may vary by region. If
there is no strong collinearity between the prevailing atmospheric circulation at the daily
time scale and land-atmosphere interactions, which typically change at longer time scales
(Merrifield et al., 2017), we expect the effects due to land-atmosphere interactions to remain

in the residuals.

analogues
It is presumed that circulation analogues occur over a range of land surface states.

The circulation-induced component of temperature is defined as an average across this
range, which leaves the influence of the land surface on the atmosphere predominantly
in_the residual thermodynamic component (Merrifield et al., 2017). The land surface can
induce a temperature anomaly and associated circulation pattern (e.g., a thermal low),
and the analogue method could interpret this situation as circulation-induced rather than
thermodynamic. Nudging all vertical levels of the atmosphere suppresses influence from the
land surface to the atmosphere, so land-atmosphere interactions are likely to remain in the
thermodynamic component of the piControl-nudged runs used as a benchmark in this study
(Merrifield et al.. 2019).

DEA
| Because the_approach removes_the total effect of GMST without_conditioning_on
land-atmosphere interactions, it may also eliminate the mediating effect of GMST operating
through this pathway (but this effect is likely small and confined to trends that are colinear
with GMST), whereas the mediating effect of atmospheric circulation is expected to be
retained, given that the linear model has sufficient expressive capacity to capture these

UNET
The SLP is used as a predictor of the circulation. However, this variable may contain

surface imprints which might affect the ‘“circulation-induced” component. Therefore,
land-atmosphere interactions may be partly predicted by the UNET architecture.

nudged simulations
Nudgin is expected to separate the land-atmosphere interactions into a

thermodynamically-driven, and a circulation-driven component (i.e., atmospheric imprints

of land-atmosphere interactions a%gex ected to be captured through nudging).




500 Regarding land-atmosphere interactions, we conclude that the effect on our estimates of circulation-induced trends varies

between methods. This increases our confidence in the signals all methods agree on (e.g., circulation-induced warming over

%rmmm%wwmmww%m decomposition methods might be

ibteaffected by land-atmosphere interactions in comparison
to how land-atmosphere interactions might influence the nudged simulations. Therefore, the effect of land-atmosphere interactions

505 cannot explain the systematic underestimation of the magnitude of circulation-induced trends in statistical decomposition
methods (as compared to the nudged simulations).

FifthFourth, we present an evaluation of decomposition methods based on one set of nudged simulations from one earth-Earth

system model (CESM?2). Although-the-well-decumented-Despite the well-documented performance of CESM2, this is a flaw,
as the strength of the links between atmospheric circulation patterns, GMST, and local temperatures might be misrepresented

510 in the model. A foHowup-follow-up study using multiple ESMs to create a benchmarking dataset would be crucial to further

constrain our estimates of eirenlation-induced-temperatare-trends—circulation-induced temperature trends further. The use of

such a multi-model ensemble would require adapting the different reconstruction methods slightly. In particular, the UNET

would need to be pre-trained on a collection of multi-model data, rather than just CESM2. Preliminary tests conducted on

Western Europe suggest that this does not degrade the quality of the reconstruction, especially when the fine-tuning step is
515 applied to early ERAS data.

Finally, in addition to combining multiple lines of
evidence, our study emphasizes the importance of benchmarking efforts for statistical and machine learning approaches.
Without evaluating the results against nudged circulation simulations, one would conclude that different decomposition methods
project similar trend patterns, with some estimates exhibiting a stronger version of the trend pattern than others. Evaluating

520  which magnitude of the trend pattern is the most likely/plausible is challenging from the statistical analysis alone. Concluding
that all decomposition methods applied to observations might be underestimating the magnitude of the trend pattern would be
impossible.

QWQQLWCMLMMMMMMQMWUW and separate circulation-induced temperature

trends from residual

525

thermodynamic trends. However, their

erformance declines on climatic timescales compared to shorter timescales. This uncertainty should be carefully considered
in future studies that use such estimates for attribution ef-to-derive-constraints-on-future-or to constrain projections.

4 Conclusions and Outlook

530 In summary, our analysis targeted two specific research objectives and revealed two distinct findings: First, we evaluated
whether statistical-empirical methods are-able-to-correetly-can accurately estimate circulation-induced long-term trends in the
NH mid-latitudes in-during boreal summer (and a residual thatis-dominated by thermodynamic trends) against a specifically
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designed climate model benchmark of nudged circulation experiments. Four different statistical methods were testedand-we
showed-, and we demonstrated that each of these methods is-able-to-identify-in-general-can generally identify the large-scale
535 pattern of circulation variability and changes, even though the-metheds-they are typically trained and validated on short time
scales (daily to seasonal). However, the methods showed differences in their skitkin-which-they-reprodueed-ability to reproduce
the spatial trend pattern from the nudged circulation benchmark;-and-in-the-extent-te—-which-theypartlyunderestimated-the
magnitude-of cireulation-trends:-With-three-quarters-. With three-quarters of correctly estimated signs of trends and coefficients

of determination above 50%, the ridge regression and the UNET methods are performing sufficiently well for the purpose. The
540 UNET has everal-the-the overall highest scores in most tested skill metrics. However, the UNET method tends to produce
underdispersive results, that is, the magnitude of particularly large-(or-weak)-strong circulation trends is often underestimated
(eroverestimatedirrespective of the sign). DEA and circulation analogues have similar skill in predicting the sign of circulation-
induced trends;but-. Still, due to the low coefficient of determinationwe-wotdd-restrain-, we would refrain from interpreting
the magnitude of regional trends estimated from these methods. Overall, identifying circulation-induced trends on climate time
545 scales in the context of dynamical adjustment studies is skillful-but-possible. Still, it does imply larger uncertainties than for

the application on shorter time scales, which needs to be considered in future applications of the techniques.

Our second objective was to identify circulation-induced boreal summer temperature trends across the northern hemispherie

mid-latitudes in-observations—usingfour—different-using four statistical methods and CESM2 simulations that-are-nudged
to-the-nudged to ERAS circulation without anthropogenic forcing. Large-scale boreal-summer circulation trends and their

550

a%%%%—\%umfdﬁﬂl—%@%)—&mﬂﬂa]yﬂ&eﬁe&enm&m%ﬁdﬂeeér&eﬂdmtem erature impacts have been widely debated
Teng et al., 2022; Chemke and Coumou, 2024; Rousi et al., 2022; Vautard et al., 2023). Analyzing ERAS everthe-period1979-2023
confirms-the-peositive-cireulation-contribution—to-summer-heat-for 1979-2023, we find positive circulation contributions to

summer warming over Europe, Westera-western North America, and ever-Mengolia—FHollowing-a-wavestrueture;Mongolia.
555 In contrast, a wave-like pattern of circulation-induced cooling has-been-identified-appears over Central Eurasia (Western-west

Siberia and Kazakhstan) and Central and-to Eastern North America.

560
D%W%M%H%HWMRQQWWWJWM%
@Wr%(mmmndlwdual components of historical ehanges
change is likely to identi ~yield a stronger attribution signal,

565 particularly for regional climate change:-and-te—allowfeeussing—. Focusing on dynamical and thermodynamical-changes
separatety te-g Shepherd—)—thermodynamic changes separately is advantageous, as there are significant differences in the
uncertainties of forced changes in these components (Shepherd, 2014). While several attribution studies of circulation changes
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have been published (Chemke-and-Coumen2024):(Coumou et al., 2015; Chemke and Coumou, 2024; Dong et al., 2022), uncertainties
remain large, especially when it comes to the-attribution-of-the-attributing the downstream impacts of atmospheric circulation

570 changes;such-as-whethercirenlation-induced temperature-changes-are-due-to-foreed-orunforeed-variability-observations-base

Oh A SR e cparatery ynami FatRermnod yH ical-componen B i y v NB\(/?}/I\]/g/gbAI:C\

to more robustly decompose a trend into a circulation-induced and a thermodynamic component should also help attribute
circulation-induced temperature trends more effectively.

Finally, separating dynamical and thermodynamic components offers a pathway to constrain near-term climate projections

575 using observation-based constraints. The thermodynamic constraint should be straightforward to identifythermodynamieat

variability-storylines—(Liné-et-al-2024)H-historieal, as it is mainly forced. There are different possibilities to constrain
based on the dynamical component. With the assumption that circulation-induced temperature-change-is-trends over the past
decades were primarily due to internal variabilitylikely-reversal-in-the-eireulation-induced-warming-hotspots-in-the-ne

580 deeadeste-g—Europe)-while thermodynamieal-warmin inteclimate variability, one would expect a reversal of the

observed trend pattern over the coming decades. If circulation-induced temperature change is forced, both circulation-induced

and thermodynamieal-thermodynamic trends would continueinte-the-fatare—. Due to the considerable uncertainty in the forced
circulation-induced changes, a storyline approach would be appropriate, explicitly treating different assumptions about forced
atmospheric circulation changes and evaluating the potential outcomes of these scenarios (Shepherd, 2019; Liné et al., 2024).

585 . The code required to reproduce this study is available on https://github.com/peterpeterp/circ_contribution_to_JJA_trends.git.
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Appendix A: Nudged circulation plots
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