Two optimized methods for the quantification of anthropogenic and biogenic markers in aerosol samples using liquid chromatography mass spectrometry and gas chromatography mass spectrometry

Diana L. Pereira¹, Aline Gratien¹, Chiara Giorio², Emmanuelle Mebold³, Thomas Bertin⁴, Cécile Gaimoz⁴, Jean-François Doussin⁴, and Paola Formenti¹

¹Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, Paris, F-75013, France,

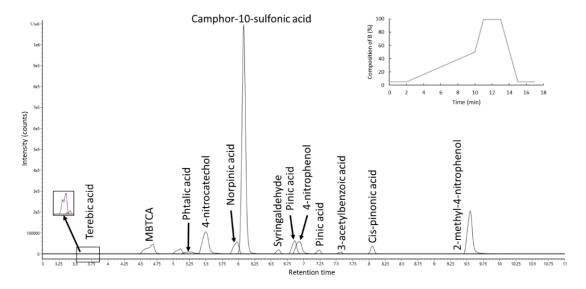
²Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom

³Univ Paris Est Créteil, CNRS, OSU-EFLUVE, Créteil, F-94010, France

⁴Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, Créteil, F-94010, France

Corresponding authors: diana.pereira@lisa.ipsl.fr, aline.gratien@lisa.ipsl.fr

Supplementary material:


15 Figures S1 to S10

5

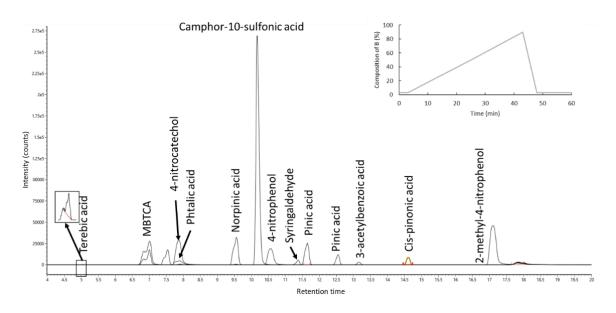
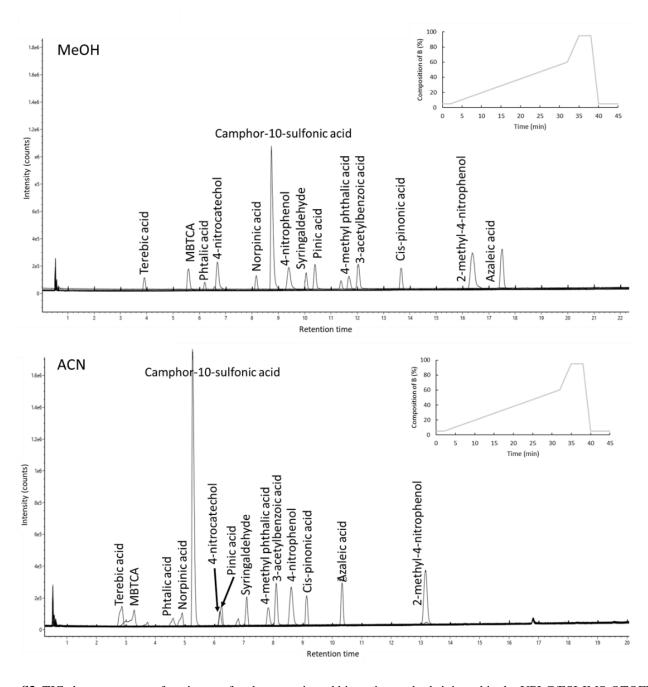
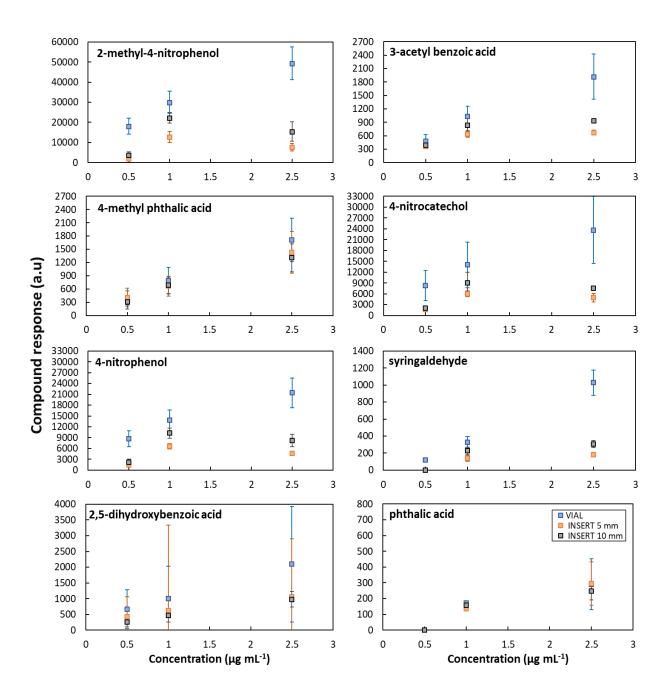
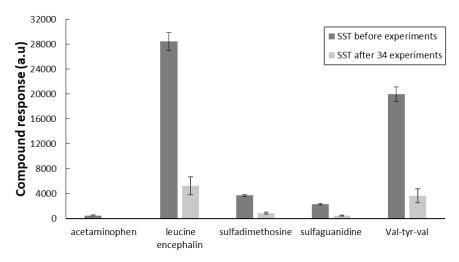

10

Table S1 and S2


Compound name	CAS#	Molecular	Weight	Company	Purity	Detection
		formula			(%)	technique
		Solvents				
Methanol ULC/MS-CC/SFC	67-56-1	CHO ₃ OH	32	Biosolve	99.99	UPLC
Acetonitrile ULC/MS-CC/SFC	75-05-8	C_2H_3N	41	Biosolve	99.99	UPLC
Formic acid ULC/MS-CC/SFC	64-18-6	$\mathrm{CH_2O_2}$	46	Biosolve	99	UPLC
Water	-	H_2O	18	Millipore	Milli-Q	UPLC/GC
Acetonitrile HPLC	75-05-8	C_2H_3N	41	VWR chemical	99.95	GC
	(Cleaning materia	ı			
Neodisher LaboClean FLA	-	КОН	-	Dr. Weigert	-	-
Neodisher N	-	H ₃ PO ₄ /C ₆ H ₈ O	-	Dr. Weigert	-	-
	Internal Standa	ards and derivat	isation reag	ent		
(1S)-(+)-camphor-10-sulfonic acid	5872-08-2	C ₁₀ H ₁₆ O ₄ S	232	Sigma Aldrich	98	UPLC
Heptanoic acid	111-14-8	C ₇ H ₁₄ O ₂	130	Sigma Aldrich	99	GC
N,O-	25561-30-2	C ₈ H ₁₈ F ₃ NOSi		-		GC
Bis(trimethylsilyl)trifluoroacetamide		2	257	Sigma Aldrich	99	
, , , , , , , , , , , , , , , , , , , ,	Targe	et organic compo	ounds			
Cis-pinonic acid	61826-55-9	C ₁₀ H ₁₆ O ₃	184	Sigma Aldrich	98	UPLC/GC
•	28664-02-0	C9H14O4	104	TRC (LGC	0.5	UPLC/GC
Pinic acid			186	Standards)	95	
Norpinic acid	3211-59-4	$C_8H_{12}O_4$	172	Sigma Aldrich	>95	UPLC
Terebic acid	79-91-4	$C_7H_{10}O_4$	158	Sigma Aldrich	>95	UPLC
3-methyl-1,2,3-butanetricarboxylic acid	114701-91-6	$C_8H_{12}O_6$	204	TRC (LGC Standards)	98	UPLC
(1S,2S,3R,5S)-(+)- Pinanediol	18680-27-8	$C_{10}H_{18}O_2$	170	Sigma Aldrich	99	GC
1R-(+)-Nopinone	38651-65-9	$C_9H_{14}O$	138	Sigma Aldrich	98	GC
α-methylglyceric acid	21620-60-0	$C_4H_8O_4$	120	Wonderchem	95	GC
2-methylerythritol	58698-37-6	$C_5H_{12}O_4$	136	Sigma Aldrich	90	GC
4-nitrocathecol	3316-09-4	C ₆ H ₅ NO	155	Sigma Aldrich	97	UPLC/GC
syringaldehyde	134-96-3	C9H10O4	182	Sigma Aldrich	97	UPLC
4-methyl phthalic acid	4316-23-8	C9H8O4	180	Sigma Aldrich	99	UPLC
Phthalic acid	88-99-3	$C_8H_6O_4$	166	Sigma Aldrich	99.5	UPLC/GC
2,3-dihydroxy-4-oxopentanoic acid	37520-06-2	C ₅ H ₈ O ₅	148	TRC (LGC Standards)	98	GC
2,5-dihydroxy benzoic acid	490-79-9	C7H6O4	154	Sigma Aldrich	98	UPLC
Succinic acid	14493-42-6	$C_4H_6O_4$	118	Sigma Aldrich	99	GC
Glycolic acid	79-14-1	C ₂ H ₄ O ₃	76	Sigma Aldrich	99	GC
3-acetyl-benzoic acid	586-42-5	C ₉ H ₈ O ₃	164	Sigma Aldrich	98	UPLC
Salicylic acid	69-72-7	$C_7H_6O_3$	138	Sigma Aldrich	99	UPLC
o-toluic acid	118-90-1	$C_8H_8O_2$	136	Acros organic	99	GC
4-nitrophenol	100-02-7	C ₆ H ₅ NO ₃	139	Sigma Aldrich	100	UPLC
2-methyl-4-nitrophenol	99-53-6	C7H7NO3	153	Sigma Aldrich	97	UPLC/GC
2-hydroxy-3methylbenzaldehyde	824-42-0	$C_8H_8O_2$	136	Sigma Aldrich	97	GC
Azelaic acid	123-99-9	C9H16O4	188	Fluka Chemika	99	UPLC
		Gases				
Helium	7440-59-7	He	4	Air Liquide	99.9	GC


Figure S1. Overlap TIC chromatograms of individual compounds injected in the UPLC/ESI-IMS-QTOFMS using a 17 min elution method with methanol as organic solvent.


Figure S2. Overlap TIC chromatograms of individual compounds injected in the UPLC/ESI-IMS-QTOFMS using a 60 min elution method with methanol as organic solvent.

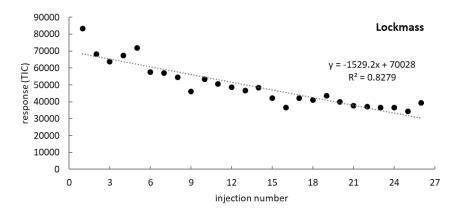

Figure S3. TIC chromatograms of a mixture of anthropogenic and biogenic standards injected in the UPLC/ESI-IMS-QTOFMS using a 45 min elution method with methanol (MeOH, top panel) and acetonitrile (ACN, bottom panel) as organic solvent.

Figure S4. Comparison of the variability of compound responses in arbitrary units for samples injected in UPLC/ESI-IMS-QTOFMS from vials without inserts (vials) and vials with inserts (inserts), both of them without filter extraction. The needle position was tested at 5 and 10 mm from the insert bottom.

Figure S5. Response in arbitrary units for a control solution at the beginning of the experiments and after injecting a sequence of 34 injections (approx. 25 h).

Figure S6. LockMass (Leucine-Enkephalin solution) evaluation of the summed response in arbitrary units for individual infusions of 45 min in a sequence of 25 injections (transition time approx. 19 h).

Table S2. Compound response in arbitrary units at different values of cone gas flow (50, 100, 150 L h⁻¹) used for the identification of anthropogenic compounds.

Component name	Response at 50 L h ⁻¹	Response at 100 L h ⁻¹	Response at 150 L h ⁻¹
4-nitrocatechol	30433	32143	34787
Syringaldehyde	1395	1452	1645
4-methylphthalic acid	4010	3875	3856
Phthalic acid	1193	1118	1142
2,5-dihydroxybenzoic acid	3742	3818	3765
3-acetylbenzoic acid	3234	3181	3260
2-methyl-4-nitrophenol	49818	53639	55575
4-Nitrophenol	24418	24791	26406

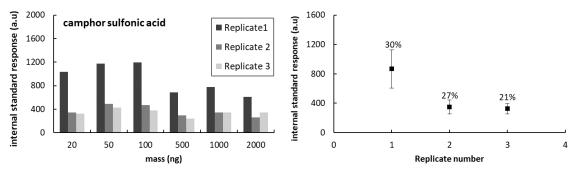
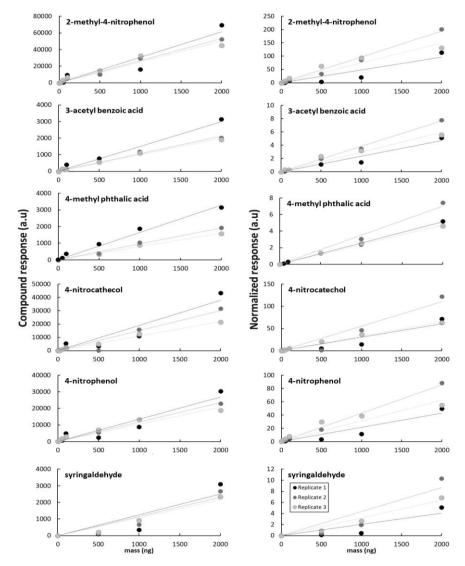
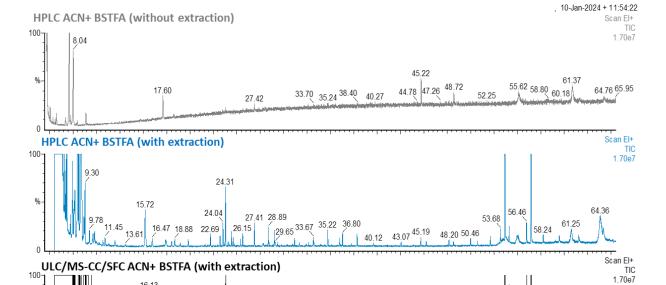




Figure S7. Analysis of the replicates variability of internal standard response in arbitrary units. Transition time between replicates is 14 hours approximately. In the right, the squares show the mean response value with their standard deviation and the percentage shows the variability calculated considering measurements from the left.

Figure S8. Calibration curves observed for the compound direct response (left) and response normalized to the internal standard camphor sulfonic acid (right).

27.41

29.53

31.66

30.50

24.98

26.15

25.50

24.07

22.75

18.73

20.50

10.42

10.50

60

12.0213.06

15.50

Figure S9. Chromatograms comparison of the influence of different solvent levels used for filter extraction in the presence of the derivatization reagent BSTFA with and without heating.

38.35 40.13

40.50

36.80

35.50

52.59

55.50

50.47

50.50

45.76 48.20

45.50

59.97 62.05

60.50

65.50

Figure S10. Heptanoic acid repeatability evaluation by GC-MS from a solution directly injected (left) and after extraction on filter (right).