



## 1    **Assessing raindrop evolution over northern Western Ghat 2    from stable isotope signature of rain and vapour**

3    Sheena Sunil Nimya<sup>1,2</sup>, Sundara Pandian Rajaveni<sup>1</sup>, Saikat Sengupta<sup>1\*</sup>, Sourendra Kumar  
4    Bhattacharya<sup>3</sup>

5    <sup>1</sup>Center for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences,  
6    Pune-411008, India

7    <sup>2</sup>Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, USA

8    <sup>3</sup> Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan

9    \*Correspondence to: Saikat Sengupta, email: saikat@tropmet.res.in

10

11    **Abstract.** Isotope exchange between vapor and rain critically influences rain isotope values, which are useful in  
12    modeling raindrop evolution. A one-dimensional Below Cloud Interaction Model (BCIM) has been used to  
13    quantify sub-cloud processes affecting raindrop evolution in extratropical regions. However, its applicability has  
14    not been tested in a tropical monsoon region, where both advection of moisture and raindrop evaporation are  
15    significant. Here, we evaluate the applicability of BCIM using simultaneous surface measurements of rain and  
16    vapor isotopes over Pune, a tropical rain-shadow region, during the 2019 Indian Summer Monsoon. Analysis of  
17    these data indicates strong isotope exchange and significant raindrop evaporation in the sub-cloud layer. A  
18    Rayleigh ascent in BCIM overestimates rain isotope values (by about 6 ‰ for  $\delta D$ ), although model and  
19    observed values are well correlated. Using radiosonde-based temperature and humidity profiles and constructing  
20    vapour isotope profiles from a combination of satellite (Tropospheric Emission Spectrometer) data and the  
21    LMDZ model outputs, simulations improve. Further tuning of vapour isotope inputs while preserving the shape  
22    of the profiles yields still better agreement. Sensitivity studies reveal that model outputs are strongly influenced  
23    by vapour isotope profiles, and moderately by drop size and relative humidity. We used BCIM to estimate  
24    raindrop evaporation, which shows that, on average, 23 % of rain mass evaporated over Pune. Our results  
25    emphasize the importance of rain evaporation over the Indian continent during the Monsoon season, in  
26    particular, over complex orography, and illustrate the use of water isotopes to constrain this key process.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53



54 **1. Introduction**

55

56 The Intergovernmental Panel on Climate Change (IPCC) has emphasised the importance of recycled moisture in  
57 the atmosphere (IPCC, 2014). Moisture recycling includes processes by which a fraction of the precipitated  
58 water returns to the atmosphere and adds to the existing vapour that may cause further precipitation over the  
59 same area (Gray, 2012). These processes are soil evaporation, transpiration from plants, intercepted or  
60 condensed water on leaves, and evaporation from falling raindrops (Brubaker et al., 1993; Trenberth, 1999). The  
61 moisture recycling increases with the ambient temperature but is lessened with increasing humidity (Pramindita  
62 et al., 2022; Zaitchik et al., 2006; Zhang et al., 2021). Some earlier studies have estimated that a high  
63 precipitation recycling ratio, the ratio of recycled precipitation to total precipitation, operates over India (on  
64 average 15 %) during the Indian Summer Monsoon (ISM; June-September); this happens despite the high  
65 humidity that prevails over the subcontinent (Kumar et al., 2021; Pathak et al., 2014). Among the recycled  
66 moisture sources, raindrop evaporation is difficult to estimate because (1) determination of the parameters  
67 needed for estimating rain evaporation from various satellite data is not sufficiently accurate, and (2) station-  
68 based meteorological observations using Micro rain radars are limited (Dai et al., 2019; Li and Srivastava, 2001;  
69 Xie et al., 2016).

70 Stable isotopologues (mainly  $^1\text{H}_2^{18}\text{O}$ ,  $^1\text{H}^2\text{H}^{16}\text{O}$ ,  $^1\text{H}_2^{16}\text{O}$ ) of liquid and solid precipitation samples can be  
71 used to assess the magnitude of raindrop evaporation (Crawford et al., 2017; Rahul et al., 2016; Salamalikis et  
72 al., 2016; Wang et al., 2021; Xiao et al., 2021). Falling raindrops exchange isotopes with the ambient vapour;  
73 this happens throughout the fall but occurs mostly in the unsaturated sub-cloud layer. The magnitude of this  
74 exchange, which alters the rain isotope ratios, can, in principle, be used to quantify the extent of raindrop  
75 evaporation. Using satellite-based observations of vapour isotopologues ( $^1\text{H}^2\text{H}^{16}\text{O}$  and  $^1\text{H}_2^{16}\text{O}$ ) and an isotope  
76 mass balance model, Worden et al. (2007) estimated that in the tropics, during the October to March interval,  
77 nearly 20 % of the mass of a raindrop evaporates. However, they also mentioned that the satellite data used for  
78 this estimate has limited temporal and spatial coverage. Therefore, these datasets may not be useful for  
79 estimating drop evaporation on a daily to monthly scale over some specific locations. In another approach,  
80 raindrop evaporation has been estimated from ground-based rain isotope observations and a set of empirical  
81 equations (Froehlich et al., 2008; Li et al., 2021; Wang et al., 2016; Zhu et al., 2021). However, such attempts  
82 are often inaccurate because they exclude many important cloud microphysical processes and associated  
83 isotopic fractionations. Normally, these processes are considered for simulating rain isotope values in various  
84 General Circulation Models (GCM; Risi et al., 2019; Yoshimura et al., 2008). The GCMs incorporate the  
85 isotope exchange scheme associated with evaporation (Stewart, 1975). Nevertheless, recent studies have shown  
86 that most of these GCMs over or underestimate raindrop evaporation in tropical India (Nimya et al., 2022;  
87 Sengupta et al., 2023). This is possibly due to the coarseness of grid sizes used in these GCMs, which are  
88 inadequate to capture the region-specific complexities of processes controlling the evaporation. This necessitates  
89 controlled isotope observations and region-specific models for a reasonable estimation of this parameter  
90 (Aemisegger et al., 2015).

91 Various modelling approaches were followed to estimate raindrop evaporation using paired  
92 observations of rain and vapour isotopes. For example, a bin resolved microphysical model was used to quantify  
93 drop evaporation during the Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign



94 (ATOMIC; Sarkar et al., 2023). Graf et al. (2019), based on surface rain and vapour isotope observations in  
95 Zurich, Switzerland, provided a rationale to evaluate various processes controlling the isotope values. They  
96 developed a simple one-dimensional model (Below Cloud Interaction Model, BCIM) which considers essential  
97 cloud microphysical processes during raindrop formation (vapour deposition, rimming etc.) as well as  
98 evaporative exchange processes below the cloud. That model, in principle, showcases the isotopic evolution of  
99 an ice/liquid drop that is released from a desired altitude and suffers the aforementioned processes enroute its  
100 fall to the ground. Although their model is capable of differentiating isotopic signals of different sub-cloud  
101 processes, it does not consider any moisture advection, updraft and downdraft. It is worthwhile to explore the  
102 efficacy of that model in a semi-tropical region during ISM when advected moisture fluxes play an important  
103 role (Das, 1986; Levine and Turner, 2012).

104 In the Western Ghat (WG) region, shallow convective (80 % of clouds occur below 4 km and 45 %  
105 below 2.5 km altitude) clouds predominate during the ISM (Konwar et al., 2014). Faster evaporation of smaller  
106 raindrops associated with intense rainfalls from these clouds provides significant positive energy feedback to  
107 form mesoscale convection (Konwar et al., 2014; Tao et al., 2012). Another study, based on drop size  
108 distributions, showed that raindrop evaporation prevails in the warm rain process (shallow clouds) in this region  
109 (Murali Krishna et al., 2021). However, these studies were limited to scanty observations. The question arises of  
110 whether one can determine the raindrop evaporation and its variation using an independent, accurate, and  
111 simpler method. Isotope ratios in rain and vapour provide such a method.

112 The current study investigates the applicability of the BCIM in a tropical Indian rain shadow region  
113 using paired observations of rain and vapour isotopes for a summer monsoon season. By a suitable choice of  
114 input parameters for the BCIM, we can estimate the raindrop evaporation in this tropical zone.

115

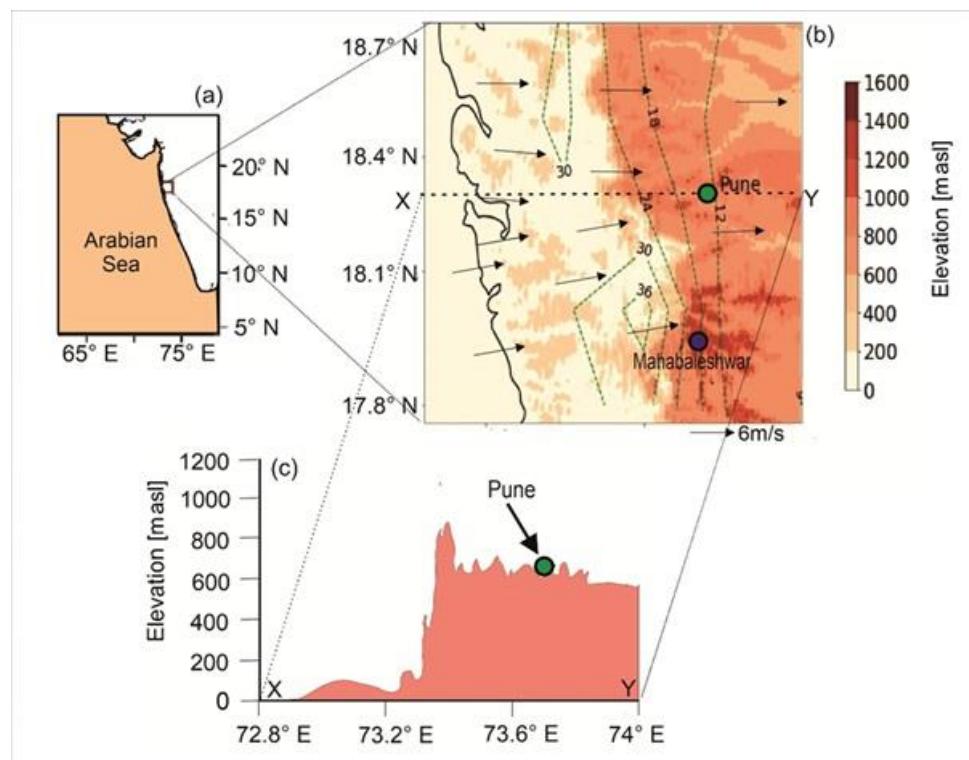
## 116 **2. Experimental Methodology**

### 117 **2.1 Study area**

118

119 Rainwater and vapour samples (mostly on rainy days but even for some non-rainy days) were collected from the  
120 near-surface premise of the Indian Institute of Tropical Meteorology (18.53° N, 73.85° E), Pune during the  
121 summer monsoon of 2019. This region receives >90 % rainfall during the ISM and is situated at the lee (rain  
122 shadow) side of the Mountain (Fig. 1). A brief discussion on sources and mechanisms of the ISM rainfall in  
123 western India is given below. Rainfall in Western India occurs from mid-tropospheric low-pressure systems in  
124 episodes, each of which usually lasts for 2–3 days; these systems are locked in place during these periods and  
125 fed by moisture derived from the Arabian Sea (Wang et al., 2006; Rao, 1976). The geographic location of the  
126 region, its altitude (from mean sea level), rainfall variation across the WG mountains, and the altitude  
127 topographic profile across Pune are shown in Fig. 1.

128 There is a sharp variation of rainfall across the mountain from the coastal zone (30 mm day<sup>-1</sup>) to the lee  
129 side (12 mm day<sup>-1</sup>) which is a characteristic of orography-induced rainfall (Fig. 1). The surface air temperature  
130 varies from 23.1° C to 18.4° C during the ISM (Pattanaik et al., 2019).


131

132

133



134



135

136 **Figure 1:** (a) The location of the study area in India. (b) Topographic map of the northern Western Ghats, India (prepared  
137 based on the GTOPO30 digital elevation model). The rainfall contours (long-term (1901-2017) mean June-September  
138 rainfall in mm/day) were constructed using gridded ( $0.25^{\circ} \times 0.25^{\circ}$ ) rainfall data (1901-2020) from the India Meteorological  
139 Department(IMD). (c) A topographic profile along the latitude  $18.53^{\circ}$  N through Pune (Green circle) shows its position in a  
140 rain shadow region.

141

## 142 2.2 Sample Collection, Isotope Measurements

143

144 The onset and withdrawal dates of ISM (based on the wind direction, specific humidity, and outgoing long wave  
145 radiation (OLR; IMD, 2019) at Pune in 2019 were 22 June 2019 and 4 October 2019, respectively. Liquid water  
146 samples were collected during rains using samplers made following the guidelines of the International Atomic  
147 Energy Agency ([http://www.naweb.iaea.org/napc/ih/documents/other/gnip\\_manual\\_v2.02\\_en\\_hq.pdf](http://www.naweb.iaea.org/napc/ih/documents/other/gnip_manual_v2.02_en_hq.pdf)). The  
148 samples were transferred into 8 ml Polycarbonate bottles and stored in a dark and cold place. The sampling  
149 procedure and storage were such as to ensure negligible evaporation of the samples after collection (Rajaveni et  
150 al., 2024). A total of 59 rain samples were collected. An indigenously fabricated glass condenser was used for  
151 the vapour sample collection. One end of the condenser was connected to a diaphragm pump through a PTFE  
152 tube. The ambient air was pulled by the pump through this glass condenser at a flow rate of 800 ml min<sup>-1</sup>. The  
153 glass condenser was immersed in a precooled Dewar flask. The temperature of the flask was maintained at -80°  
154 C by using alcohol slurry. At this temperature, the atmospheric moisture is condensed into water, and all other



155 non-condensable gases are pumped out. The sampling was usually carried out for 3-4 hours, which was  
156 sufficient to obtain an adequate amount of water (the collected sample was at least double the minimum amount  
157 required for isotope analysis, ~1 ml). Most of the samples were collected during the rainy days (avoiding direct  
158 raindrop entry), but some were collected during the non-rainy period. The collected samples are transferred to 2  
159 ml glass vials, which are directly used for isotopic measurement. Due to logistical problems, vapour samples  
160 could not be collected before mid-July. A total of 50 vapour samples were collected during the study period, and  
161 29 of them coincided with rainy days. The liquid samples (both water and condensed vapour) were measured  
162 using a Liquid Water Isotope Analyser (Model Number TIWA-45-EP) manufactured by Los Gatos Research  
163 (LGR). This instrument measures liquid samples using Off-Axis integrated cavity output spectroscopy (OA-  
164 ICOS) with a routine precision of 0.1 ‰ and 1 ‰ for  $\delta^{18}\text{O}$  and  $\delta\text{D}$ , respectively (Rajaveni et al., 2024). The d-  
165 excess values defined as:  $d\text{-excess} = \delta\text{D} - 8 \times \delta^{18}\text{O}$  (Dansgaard, 2012) have a precision of 1 ‰. The daily rain  
166 isotope data are weighted by the amount of rainfall on that day.

167

### 168 **2.3 Satellite and ground-based meteorological observations**

169

170 The rainfall data (cumulated over 24 hours) are obtained from the Pune observatories of the IMD (available at  
171 the National Data Centre ([www.imdpune.gov.in/ndc\\_new/ndc\\_index.html](http://www.imdpune.gov.in/ndc_new/ndc_index.html))). Apart from daily rainfall, hourly  
172 rainfall, daily average temperature and relative humidity data for Pune observatory were also obtained from the  
173 IMD. The daily gridded data (zonal and meridional wind, specific humidity, air temperature, and cloud liquid  
174 water content) from the European Centre for Medium-Range Weather Forecasts Reanalysis (ERA-5) dataset  
175 with a resolution of  $0.25^\circ \times 0.25^\circ$  (Hersbach et al., 2020) are also used. The Interpolated Outgoing Longwave  
176 Radiation (OLR) data ( $2.5^\circ \times 2.5^\circ$ ) from NOAA (<https://psl.noaa.gov/data/gridded/data.olrcdr.interp.html>) are  
177 used in this study. The upper-air radiosonde measurements (relative humidity, temperature) were obtained from  
178 the University of Wyoming repository (<http://weather.uwyo.edu/upperair/sounding.html>) in February 2023. The  
179 radiosonde data were available over Pune at 00 UTC and 12 UTC for the entire study period. The two profiles  
180 are averaged to make a representative daily profile for the study period. The typical uncertainty of temperature  
181 and relative humidity is  $0.5^\circ \text{C}$  (Jensen et al., 2016) and 5 % (Xu et al., 2023), respectively. Tropospheric  
182 Emission Spectrometer (TES) Level 2 (Nadir-Lite-Version 6) retrievals of HDO and  $\text{H}_2\text{O}$  profiles for the  
183 available period (2005–2007) are used to construct a mean vapour  $\delta\text{D}$  profile. The details of quality control  
184 criteria and biases associated with TES observations are discussed by Herman et al. (2014) and Worden et al.  
185 (2011). Grid point observations of  $\delta\text{D}$  by TES have a precision of  $\sim 10\text{--}15\text{ ‰}$ , which reduces to 1–2 ‰ when  
186 the data are averaged over a larger region (Lee et al., 2011; Pradhan et al., 2019).

187

188 To decipher the moisture sources for vapour/rain at and around our study area, 48 h air mass back  
189 trajectory analysis was carried out at 850 mb pressure level using the NOAA Hybrid Single-Particle Lagrangian  
190 Integrated Trajectory (HYSPLIT) model (Draxler and Hess, 1997). The model tracks the movement of air  
191 parcels backward from a given location for a desired period. The Global Data Assimilation System (GDAS;  $1^\circ \times$   
192  $1^\circ$ ; Kanamitsu, 1989) dataset is used for back-trajectory analyses.

193

### 194 **2.4 Isotope Model BCIM**



195

196 As mentioned before, to understand water vapour isotope exchange in the sub-cloud layer, we used the Below  
197 Cloud Interaction Model (BCIM) proposed by Graf et al. (2019). Various parameterisation schemes used in the  
198 BCIM have been discussed in the aforementioned earlier study. A brief description of this model, as applicable  
199 for Pune (shallow cloud processes), is provided for completeness. The model comprises a single vertical column  
200 that extends from the ground level to the point at which a single hydrometeor is introduced at the base of the  
201 cloud, and follows its fate. Within this column, the hydrometeor descends under the influence of gravity,  
202 undergoes growth or evaporation (depending upon the ambient humidity and temperature), changes its isotopic  
203 composition through equilibrium and kinetic isotope exchange with surrounding vapour, and finally reaches the  
204 surface as rain. The final isotopic composition of the hydrometeor is estimated following four steps of  
205 calculations: (1) setting up the initial condition, (2) estimation of the initial isotopic composition of the  
206 hydrometeor, (3) micro-physics of falling hydrometeor, and (4) tracking the changes in isotopic composition  
207 along the vertical fall trajectory. To estimate the initial isotopic composition of the drop and its evolution, the  
208 model requires temperature, humidity and vapour isotope depth profiles for a given day as input parameters. The  
209 drop is assumed to form in equilibrium (at relative humidity, RH=100 %) at the cloud base and starts its  
210 journey. The input parameters applicable to the vapour can be introduced into the model in two different ways:  
211 (1) the profiles can be calculated based on the idealised (moist) adiabatic ascent of an air parcel from the surface  
212 to the top of the column following a Rayleigh model; isotope values at various pressure levels are then estimated  
213 from the Rayleigh distillation equation, and (2) the pressure level specific values of the aforementioned  
214 parameters, if available from radiosondes and any model, can be introduced directly into the BCIM.

215 Apart from temperature, humidity and vapour isotopes, the model also requires a drop diameter of the  
216 initial hydrometeor (given in Section 4.3.1.1). Next, the isotopic composition of the introduced hydrometeors is  
217 estimated. They are assumed to be formed in equilibrium from the vapour at this altitude, and their composition  
218 is calculated from the isotopic composition of this vapour at ambient temperature. Subsequently, these drops  
219 grow or diminish as they fall. The isotopic composition of the falling hydrometeor at a given altitude is then  
220 estimated from the composition of the surrounding vapour by using isotope mass balance and diffusive transport  
221 involving appropriate fractionation factors (Graf et al., 2019).

222 The mass and temperature of the hydrometeor are calculated along its fall trajectory through the  
223 microphysics of the falling hydrometeor. The terminal velocities are estimated using Foote and du Toit (1969).  
224 To calculate the change in mass and temperature between two pressure levels, the temperature, pressure, and  
225 humidity values are interpolated between the two levels. These changes are estimated as per Pruppacher and  
226 Klett (2010). It is important to mention here that many processes considered in BCIM do not occur for the  
227 shallow convective clouds in Pune (Utsav et al., 2017). Therefore, the BCIM as given in Graf et al. (2019) is  
228 modified in the present study.

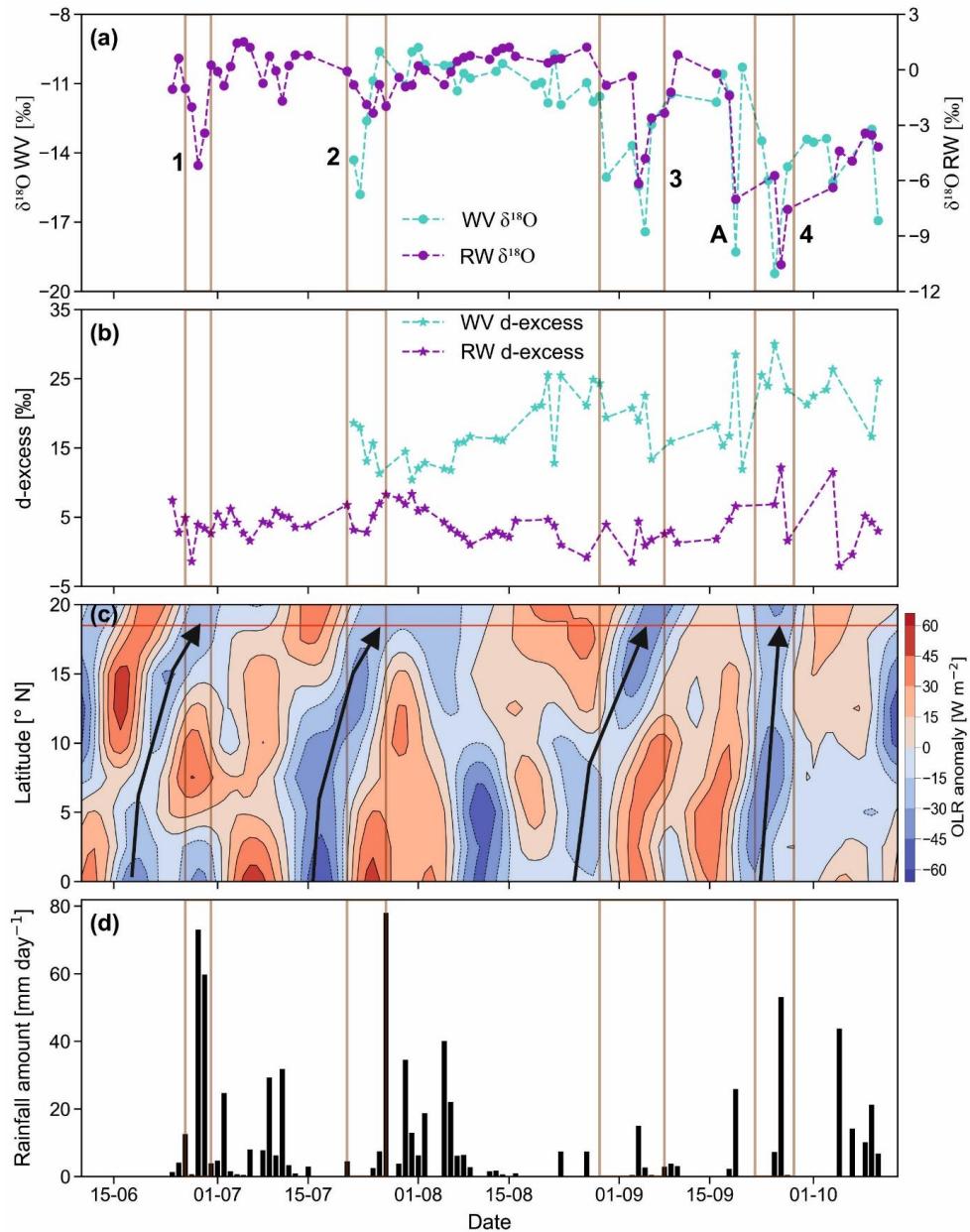
229

### 230 **3. Results**

231

232 Measured rain and vapour isotope ratios ( $\delta^{18}\text{O}$  and d-excess) on a daily scale are plotted in Fig. 2a and 2b. The  
233 general pattern of variations in vapour and rain  $\delta^{18}\text{O}$  values is similar; both decrease significantly and  
234 consistently after mid-August. The vapour  $\delta$ -values are lower than the rain. In contrast, the d-excess values of



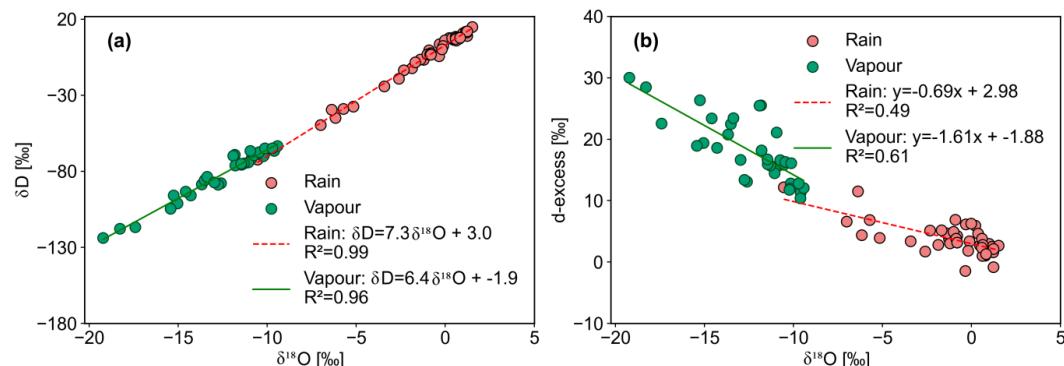

235 vapour are always much higher. The  $\delta^{18}\text{O}$  and d-excess values of rainwater range from  $-10.8\text{ ‰}$  to  $1.5\text{ ‰}$  and  
236  $-2\text{ ‰}$  to  $12\text{ ‰}$ , while those of the vapour range from  $-19\text{ ‰}$  to  $-9\text{ ‰}$  and  $10\text{ ‰}$  to  $30\text{ ‰}$ , respectively. The  
237 mean and  $0.5\sigma$  standard deviation of  $\delta^{18}\text{O}$  and d-excess values of rainwater are  $-1.3\pm1.2\text{ ‰}$  and  $3.9\pm1.3\text{ ‰}$ ,  
238 while those of the vapour are  $-12.5\pm1.25\text{ ‰}$  and  $18.3\pm2.55\text{ ‰}$ , respectively. The  $\delta^{18}\text{O}$  (Fig. 2a) and d-excess  
239 (Fig. 2b) time series show four interesting features: (1) For the four date ranges: 27-29 July, 24-27 July, 4-8  
240 September, 19-27 September, significant and consistent decrease in isotope values are observed in both rain and  
241 vapour phases (marked 1, 2, 3, 4 in Fig. 2a), (2) On 19 September, the vapour shows sudden decrease (marked  
242 A in Fig. 2a), (3) Gradual decrease in vapour  $\delta^{18}\text{O}$  values and increase in d-excess values are observed with  
243 progress of monsoon, especially more in the later part, and (4) Rain d-excess values remained essentially  
244 constant with time but  $\delta^{18}\text{O}$  of both rain and vapour started decreasing beginning from early September  
245 onwards.

246 The rain and vapour isotopic depletion in the tropics is often associated with mesoscale convection  
247 (Lekshmy et al., 2014; Risi et al., 2008; Sengupta et al., 2020). We define depleted-isotope events as those  
248 where isotope ratios of a group of samples fall below the overall mean ( $\mu$ )-0.5 standard deviation ( $\sigma$ ; Sengupta  
249 et al., 2020). To examine the extent to which the depleted (more negative) isotope events are related to large  
250 convective events, a latitude-time Hovmöller plot of daily OLR anomaly (averaged over the longitude  $70^\circ\text{ E}$  -  
251  $75^\circ\text{ E}$ ) is displayed in Fig. 2c. The OLR values are often used as a proxy for convection in tropical and  
252 subtropical regions. Since cloud top temperatures (colder is higher) are an indicator of cloud height, negative  
253 OLR anomaly means colder cloud top temperatures or higher cloud thickness. This, in turn, implies extensive  
254 coverage by deep cloud systems characteristic of mesoscale convection and rain. A time synchronous  
255 association of low OLR and low isotope events thus indicates mesoscale convection affecting isotope values.  
256 Fig. 2c indicates four such isotope-depleting mesoscale events (marked as 1, 2, 3 and 4). In addition, we also see  
257 one depleted isotope event without such association (marked as A in the Fig. 2c). We note from Fig. 2d that  
258 major rainfall occurred during the months of July and August; the relative humidity at the surface during the  
259 whole period varied from 57 % to 99 %, and the surface temperature varied from  $22^\circ\text{ C}$  to  $32^\circ\text{ C}$  (not shown). It  
260 is evident from the figure that deep convection is associated with high rainfall for three events (1, 2, and 4). A  
261 recent study, based on a year-long continuous measurement of atmospheric vapour, also noticed such isotopic  
262 depletion during high rainfall events over a northern tropical station in Sri Lanka (Wu et al., 2025).

263 As mentioned, an increasing trend (13 % to 30 %) in the vapour d-excess values associated with a  
264 decrease in the  $\delta^{18}\text{O}$  values is noted with the progress of the monsoon (Fig. 2b). In contrast, the rain d-excess  
265 values were reasonably constant within a small range. The increase in vapour d-excess (and decrease in the  
266  $\delta^{18}\text{O}$ ) is large and could be ascribed to significant recycling of the moisture with contribution from some  
267 evaporative sources (discussed later). We are not certain about the source at this stage. Risi et al. (2023) have  
268 discussed the possibility of down-drafted vapours as the source of such anomalously low isotope ratios in the  
269 case of Sahelian squall lines. Earlier studies over some Indian sites have shown that changes in moisture sources  
270 are often associated with a concomitant change in isotope values in rain and vapours (Deshpande et al., 2010;  
271 Midhun et al., 2018). We investigated the possibility of this by forty-eight hours of air-parcel back trajectory  
272 analysis (Supplementary Fig. S1), which shows that moisture for the 2019 summer monsoon season was derived  
273 mainly from the Arabian Sea. However, this does not rule out the possibility of minor contributions from



274 continental moisture sources or down-drafted moisture characterised by low isotope ratios and high d-excess  
275 values (Risi et al., 2010).




276  
277 **Figure 2.** The time series of  $\delta^{18}\text{O}$  (a) and d excess values, (b) of the rainwater (RW) and water vapour (WV), (c) OLR  
278 anomalies ( $\text{W m}^{-2}$ ), and (d) daily rainfall (mm over 24 h; d) in Pune. The four shaded vertical bars (numbered 1, 2, 3, and 4)  
279 denote synchronous low OLR values and low isotope values (i.e., less than their respective  $\mu - 0.5\sigma$  values). These periods  
280 are defined as low-isotope events. A indicates one isolated low isotope value without low OLR. Thick arrows show how  
281 convective cloud bands (indicated by low OLR anomaly) traverse to the sampling region over Pune.  
282



283 Fig. 3a shows the local meteoric water line (LMWL) using rainwater samples and the local water  
 284 vapour line (LWVL) using vapour samples, both pertaining to the monsoon period. The LMWL equation is  $\delta D_r$   
 285  $= (7.3 \pm 0.1) \delta^{18}\text{O} + (3.0 \pm 0.3)$  and the LWVL,  $\delta D_v = (6.4 \pm 0.2 \delta^{18}\text{O}) - (1.9 \pm 3.0)$ . The slope and intercept of the  
 286 LMWL values are lower than those of the Global Meteoric Water Line (GMWL), which are 8.0 and 10.0,  
 287 respectively (Dansgaard, 2012; Gat, 1996). This difference, though small, suggests some amount of below-cloud  
 288 evaporation of the rains. At Roorkee, a high-latitude Indian Station, Saranya et al. (2018) found an LMWL with  
 289 a lower slope (5.4) but a higher intercept (27) compared to our Pune values. They attributed these changes to the  
 290 contribution of evaporation from water bodies nearby and moisture recycling during the monsoon. Rahul et al.  
 291 (2016) got a similar slope (7.4) but a lower intercept (1.5) in Bangalore (southern central India, at a high altitude  
 292 of  $\sim 1$  km). The slopes of meteoric water lines provide a signature of evaporation processes associated with  
 293 kinetic fractionations occurring during rainfall events.

294 The d-excess values of rain samples suffering evaporation generally bear a negative relationship with  
 295  $\delta^{18}\text{O}$  values (Bonne et al., 2014; Munksgaard et al., 2020). This is seen in our study (Fig. 3b) where rain d-  
 296 excess increases with a decrease in  $\delta^{18}\text{O}$  values. In addition, the vapour d-excess values also show a statistically  
 297 significant negative correlation with  $\delta^{18}\text{O}$  values (Fig. 3b;  $R^2 = 0.61$ ;  $p = 0.001$ ), probably indicating  
 298 contribution of vapour derived from rain evaporation (Kurita, 2013; Risi et al., 2021). Correlation studies can be  
 299 indicative, but the causative factors behind the above variations can be explored with the help of a process-based  
 300 model. Below, the role of local meteorological factors and rain-vapour isotope exchange will be explored with  
 301 the help of BCIM.



302  
 303

304 **Figure 3.** A cross-plot of (a)  $\delta D$  and  $\delta^{18}\text{O}$  of rain and vapour; (b) a cross-plot of d-excess and  $\delta^{18}\text{O}$  of rain and vapour. Mean  
 305 regression lines and correlation coefficients are shown inside the plots.

306

#### 307 4. Discussion

##### 308 4.1 Influence of local meteorological parameters on isotopes

309

310 Water isotopes in the tropics often vary with rainfall, humidity, and temperature (Dansgaard, 2012; Lee and  
 311 Fung, 2008). Scatter plots between the vapour d-excess values and local meteorological parameters such as  
 312 rainfall amount, relative humidity, specific humidity and temperature are shown in Supplementary Fig. S2. The  
 313 d-excess of vapour shows only a marginal positive correlation with temperature ( $R^2=0.16$ ;  $p\text{-value}=0.03$ ; not



314 significant) and a small negative correlation with relative humidity ( $R^2=0.22$ ;  $p\text{-value}=0.01$ ; marginally  
315 significant).

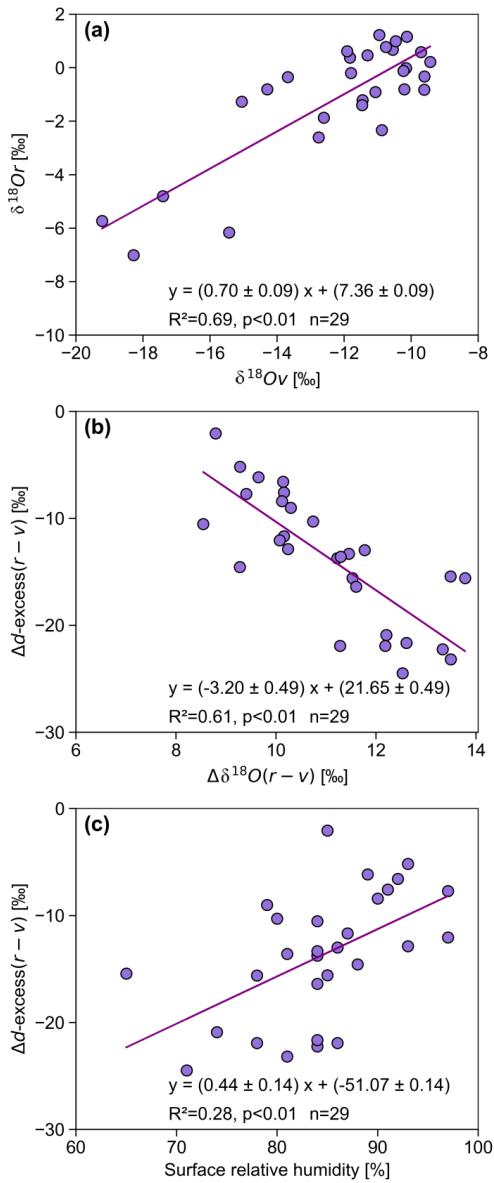
316 It is known that temperature and relative humidity of air have opposite controls on raindrop  
317 evaporation (Lee and Fung, 2008; Stewart, 1975). No significant correlations (not shown) are found between the  
318 rainwater isotopes and rainfall. This is contrary to the anti-correlation found in other climate zones (Lee and  
319 Fung, 2008). The absence of correlation in tropics is also found in many recent studies (Chakraborty et al.,  
320 2016; Moerman et al., 2013; Vimeux et al., 2011). In fact, a correlation is often found with the regional  
321 convective activities (Kurita, 2013; Lekshmy et al., 2018). Risi et al. (2023) have noted that in the tropics, most  
322 of the precipitation falls under deep convective systems, which are controlled by different microphysical  
323 processes (like rain evaporation, diffusive liquid-vapour exchanges, and mesoscale downdrafts) connected  
324 through mesoscale circulations.

325

#### 326 **4.2 Rain-vapour isotope exchange and rain evaporation**

327

328 The micro-physical process of evaporative exchange during the fall of raindrops causes isotopic enrichment in  
329 the rain. Though important, raindrop evaporation cannot be easily quantified. As discussed before, evaporation  
330 is reflected in the higher  $\delta$ -values and lower d-excess values (mean~2‰) of the rain samples. Froehlich et al.  
331 (2008) used d-excess values of precipitation in the Alpine region to derive the extent of evaporation using  
332 assumed end-member values of the regional vapours.


333 To inspect the isotope exchange between the rain and ambient vapour, the isotope data for the dates  
334 when both rain and vapour samples were collected are analysed here. A strong correlation between rain and  
335 vapour  $\delta^{18}\text{O}$  values is found (Fig. 4a;  $R^2=0.64$ ,  $p < 0.01$ ,  $n=29$ ), suggesting a genetic connection between them.  
336 Sinha and Chakraborty (2020) also found significant positive relations ( $R^2>0.8$ ) between rain and vapour  $\delta^{18}\text{O}$   
337 values over Andaman Island. However, they did not find any anti-correlation between rain  $\delta^{18}\text{O}$  and rain d-  
338 excess, as we did (Fig. 3b). The current study exhibits a reasonable anti-correlation between the differences in d-  
339 excess ( $\Delta\text{d-excess (r-v)}$ ) and  $\delta^{18}\text{O}$  ( $\Delta\delta^{18}\text{O(r-v)}$ ) of rain and vapour (Fig. 4b). This would be expected if  
340 evaporation of rain contributes a significant amount of vapour because the inherited vapour is lower in  $\delta^{18}\text{O}$  but  
341 higher in d-excess compared to the rain.

342 As raindrops evaporate, the newly formed vapour may get down-drafted to the low level vapour, and  
343 therefore, the two phases at the ground would exhibit opposite changes. Interestingly, in the case of tropical  
344 precipitation, we do not expect a substantial contribution from rain evaporation to the background vapour  
345 because the latter is a large reservoir. It has been shown in several earlier studies that the total rain is derived  
346 from only a few percent of the overhead vapour mass (Pathak et al., 2014; Rahul et al., 2016). Earlier studies  
347 have also shown that vapour d-excess values do not exhibit any systematic change in central or southern WG  
348 stations, although, surprisingly, their rain  $\delta^{18}\text{O}$  values exhibit slight but gradual depletion (1‰ to -10‰) in the  
349 later part of the monsoon (Lekshmy et al., 2018; Rahul et al., 2016). The negative correlation found in this study  
350 suggests that the ground-level vapour gets a significant contribution from drop evaporation. How can moisture  
351 generated by drop evaporation over the falling path contribute to the ground-level vapour? This is possible  
352 when there is a strong downdraft associated with intense monsoon rains (Risi et al., 2023). In a modelling study,  
353 Mandke et al. (1999) pointed out that deep convective cloud systems contain both upward and downward

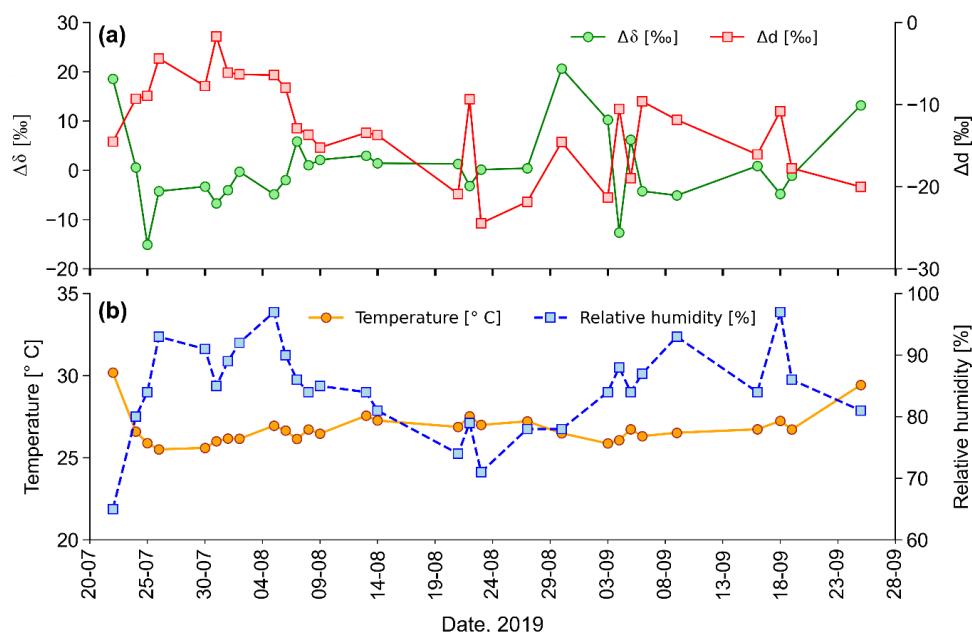


354 components. The downward motion is driven by the evaporation of falling precipitation and the dragging of the  
355 ambient air and vapour by big droplets. This downdraft brings moisture down from above and increases the  
356 vapour d-excess at the surface (Risi et al., 2010; Kurita, 2013; Aemisegger et al., 2015). The existence of drop  
357 evaporation is further supported by a relation between  $\Delta d$ -excess ( $r-v$ ) and surface relative humidity (RH;  
358  $R^2=0.31$ ; Fig. 4c). The difference between rain and vapour isotopes is more in lower RH and less in higher RH,  
359 as expected (Stewart, 1975). A similar analysis (Xing et al., 2020) in China also found that the change in  
360 isotopic composition is large when RH is less than 60 %.

361



362




363 **Figure 4.** The correlations between (a)  $\delta^{18}\text{O}$  of rain ( $\delta^{18}\text{Or}$ ) and  $\delta^{18}\text{O}$  of vapour ( $\delta^{18}\text{Ov}$ ) at the ground level; (b) the  
364 difference in d-excess of rain and vapour ( $\Delta d$ -excess(r-v)) and  $\delta^{18}\text{O}$  ( $\Delta\delta^{18}\text{O(r-v)}$ ); (c) difference in the d-excess of rain and  
365 vapour ( $\Delta d$ -excess (r-v) ) and ground level relative humidity (RH).

366

367 Falling raindrops and the water vapour in the atmospheric column constitute an interacting two-phase  
368 system, especially below the cloud base. On the way down, the water molecules are constantly exchanged  
369 between these two phases depending on the ambient RH and temperature. This makes the system evolve  
370 towards an isotopic steady state. The difference between isotopes of vapour in equilibrium with raindrops and  
371 the observed vapour (at the ground level, defined as  $\Delta\delta$  and  $\Delta d$ ) is useful to quantify the departure from  
372 equilibrium. Graf et al. (2019) demonstrated the importance of a  $\Delta\delta$ - $\Delta d$  plot to represent the effect of sub-cloud  
373 processes, such as evaporation and equilibration, which influence the water isotopes. In our case, the expected  
374 equilibrium vapour isotope values were estimated by using the standard fractionation formula (Horita and  
375 Wesolowski, 1994) at the ambient temperature. The time series of  $\Delta\delta$  values (Fig. 5a) for the Pune precipitation  
376 samples varied between -20 ‰ and 20 ‰ (omitting one outlier) respectively. For  $\Delta d$ , the time series shows  
377 negative values in all cases (ranging from 0 to -20 ‰). The close-to-equilibrium samples correspond mostly to  
378 the high-humidity period in July (Fig. 5b). Fifteen samples indicate the influence of below-cloud evaporation  
379 with positive  $\Delta\delta$  values associated with strongly negative  $\Delta d$  values (up to -20 ‰).

380



381

382 **Figure 5.** (a) Time series of  $\Delta\delta$  and  $\Delta d$  of the rain samples collected during 2019 monsoon (July to September) in Pune.  $\Delta\delta$   
383 and  $\Delta d$  values (total points=29) as defined in the text following Graf et al. (2019). (b) Time series of daily average surface  
384 temperature and relative humidity recorded at IMD Pune observatory during the study period.

385



386 A  $\Delta\delta$ - $\Delta d$  scatter plot based on these observed data (Fig. 6d and 6h and Fig. 7d and 7h) show that none of the rain  
387 samples is in equilibrium with the corresponding ground-level vapour. About 63 % of the sample pairs fall in  
388 the lower right quadrant of the diagram, where the raindrop evaporation is relatively more significant, as per  
389 Graf et al. (2019). We note that the observed rainfall amount was low (less than 5 mm) for these samples, which  
390 is consistent with a substantial evaporation effect. Nine samples have negative  $\Delta\delta$  and  $\Delta d$  values, indicating  
391 incomplete equilibration with near-surface vapour. The crucial driving factors for below-cloud processes seem  
392 to be the size of raindrops and the intensity of precipitation. This is primarily because raindrops with larger  
393 diameters correspond to increased intensity and have shorter residence times in the atmospheric column. As a  
394 result, they experience reduced evaporation while descending toward the ground.

395 The regression line for  $\Delta d/\Delta\delta$  has a slope of -0.43 (Fig. 6d). This is more than the slope of -0.3 reported  
396 by Graf et al. (2019) for their study area, Zurich, Switzerland. Their study was based on short-time intra-event  
397 samples in a mid-latitude region, whereas daily samples in a tropical region are used in the current study. A set  
398 of complex processes operates to dictate the value of the slope, and Graf et al. (2019) pointed out that the slope  
399 could represent a balance between below-cloud evaporation and equilibration of rainfall. They suggested that it  
400 would be insightful to explore the slope for other climatic regions, hinting that the slope will help assess the  
401 evaporation magnitude.

402 From the analysis of our data, it seems that drop evaporation is more important in our case (for the same change of  $\Delta\delta$ , the change in  $\Delta d$  is comparatively bigger). Simulation experiments by Graf et al. (2019) showed that at high humidity (lower evaporation), the change of  $\Delta d$  is negligible, leading to a lower slope. Conversely, when the temperature is higher, the slope is higher due to higher evaporation. Below, we explore how accurately the BCIM can simulate rainwater isotopes in our tropical location.

407

#### 408 **4.3 Application of BCIM with appropriate input parameters**

##### 409 **4.3.1 Setting the boundary condition of the model**

410

411 As mentioned before, to estimate hydrometeor isotopic composition, the BCIM requires vertical profiles of  
412 temperature, humidity and vapour isotope as input parameters. The vertical profiles can be introduced into the  
413 model in two ways: (1) Vertical ascent assumption. Here, the profiles can be calculated based on an idealised  
414 Rayleigh model having moist adiabatic ascent of air parcels from the surface to the top of the column, and (2)  
415 the T, RH profiles can be constructed based on available sounding data and isotope profiles can be derived from  
416 simulations conducted using isotope-enabled atmospheric models (Pfahl et al., 2012). These are discussed below  
417 (Sections 4.3.2 and 4.3.3).

418

###### 419 **4.3.1.1 Formation height and drop size assignment**

420

421 The formation height of the drop is an important factor and should be fixed by considering the most probable  
422 altitude range. This parameter is not known a priori, but we can infer this from the cloud liquid water content  
423 analysis. An earlier study by Kumar et al. (2014) pointed out that a peak of Cloud Liquid Water Content  
424 (CLWC) is often present at 850 mb during the monsoon season over western India. The CLWC data for a period  
425 of 29 days of the study period obtained from the ERA-5 dataset also show a peak at  $850 \pm 50$  mb (Supplementary



426 Fig. S3). Here, we consider the CLWC peak at  $850 \pm 50$  mb (about 1 km above ground from Pune) as the drop  
427 introduction height for our case, where the RH reaches the value of 100 % (following Graf et al., 2019).

428 The BCIM also requires an initial drop size at the formation height. Unfortunately, no disdrometer or  
429 MRR observations are available in the study area during 2019. We, therefore, adopted an empirical procedure,  
430 known as the Marshall-Palmer relationship, to estimate the mean drop size at the ground. This was done by a  
431 weighing procedure. First, we estimated the hourly mean drop size of the raindrops at the ground level from the  
432 hourly rain rate data available from an IMD observatory at Shivajinagar, Pune, located about 4 km away from  
433 our study area. Next, we calculated the 24 h mean drop size by taking a weighted average of the size and using  
434 rain rates as the weights. The surface drop sizes thus calculated vary from 0.61 to 1.80 mm for various days. The  
435 drop diameter at the ground is next provided as an input, and then the initial size at the drop height (about 1.5  
436 km above ground) is estimated iteratively in BCIM using the microphysics part of the model. This procedure  
437 was adopted for each day.

438

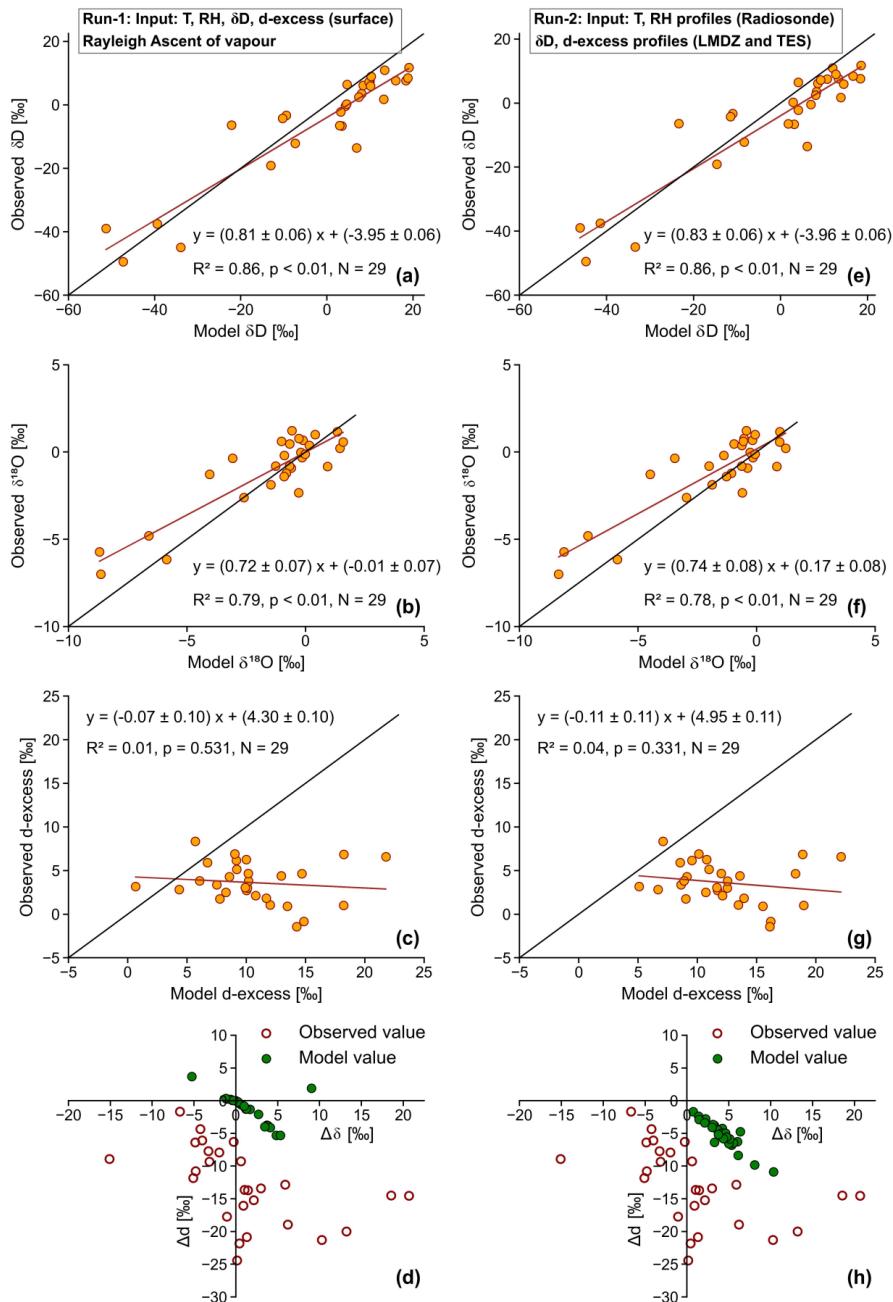
### 439 **4.3.2 Results of simulation**

#### 440 **4.3.2.1 Run-1: Rayleigh ascent assumptions**

441

442 As mentioned above, the model needs vertical background profiles of atmospheric temperature (T), relative  
443 humidity (RH),  $\delta D$ , and d-excess,  $d$ . In Rayleigh simulations, various profiles were calculated from the moist-  
444 adiabatic ascent of an air parcel with surface values of temperature ( $T_0$ ), relative humidity ( $h_0$ ),  $\delta D$  ( $\delta v, 0$ ) and  
445  $d$  ( $d v, 0$ ) of each sampling day as inputs (see isotope profiles in Supplementary Fig S4a and b). The surface  
446 values of  $\delta D$  and d-excess of vapour were taken from our vapour measurements along with the daily  
447 temperature and humidity data obtained from the IMD publication (Section 2.3). The results for the set of  
448 calculations using the Rayleigh ascent assumption (designated as Run-1) are shown in Fig. 6(a-d). In this set of  
449 figures, we compare observed and model rain  $\delta D$  (Fig. 6a),  $\delta^{18}\text{O}$  (Fig. 6b), and d-excess (Fig. 6c) values. We  
450 also construct  $\Delta\delta$ - $\Delta d$  diagrams for both observed and model values and compare them in Fig. 6d. Although  
451 observed and model isotope values (Fig. 6a and 6b) show strong correlation ( $R^2=0.86$  and 0.79, respectively),  
452 the model values are mostly overestimated (the plotted points lie below the 1:1 line). The overestimations of  
453 isotopes (for  $\delta^{18}\text{O}$  and  $\delta D$ ) affect the d-excess values considerably more; the points lie far to the right, and no  
454 correlation exists between the observed and model d-excess values (Fig. 6c). This is because the d-excess  
455 parameter is more sensitive to departure from equilibration due to dominance of evaporation, which means that  
456 a small departure of delta values would magnify the discrepancy in case of d-excess. We also note that most of  
457 the model data points in a  $\Delta\delta$ - $\Delta d$  cross-plot do not agree with the observed ones. However, they do fall in the  
458 lower right quadrant, which is consistent with high raindrop evaporation. We also note that the  $\Delta\delta$  and  $\Delta d$  model  
459 values (Fig. 6d, Run-1) show smaller variations compared to the observations. The  $\Delta\delta D$  of the model  
460 simulations varies from 0 % to 5 % and  $\Delta d$  from 0 % to -5 %, while the observed values have variations of  
461 about 25 % (higher by a factor of 5). These comparisons show that the Rayleigh ascent model fails to reproduce  
462 the evolution of the rain isotopes in our region.

463


#### 464 **4.3.2.2 RH and T from Radiosonde and isotope profiles from TES and LMDZ (Run-2)**

465



466 Rayleigh ascent in Run-1 assumes that the source of vapour aloft is the rising air parcel, and the isotope values  
467 along with RH and T should reflect that. But this did not yield a good fit. The simulation can possibly be  
468 improved if we use RH and T data from local radiosonde observations and different isotope profiles. For the  
469 present period, the radiosonde data were available only at a few specific pressure levels, and hence, appropriate  
470 interpolations were carried out. To obtain the vertical profiles of vapour isotopes, we first use the isotope  
471 outputs of a GCM, LMDZ for Pune (Dr. Camille Risi; personal communication). These values are used in  
472 BCIM as inputs, and the simulated rainwater and vapour composition were compared with the observed values.  
473 We found that a wide difference exists between the observed and model rain/vapour isotopic values. We suspect  
474 that the LMDZ model may not be able to simulate the vapour isotope ratios accurately. This limitation was  
475 noted by Risi et al. (2021) in a recent study involving large-eddy simulation; they observed that for high  
476 precipitation areas, the convective or mesoscale downdrafts bring more depleted vapour from above into the  
477 sub-cloud layer. Therefore, as an alternative, we used the  $\delta$ D<sub>v</sub> profiles modified from TES observations. These  
478 profiles are constrained by using the measured ground-level vapour isotope ratios as a boundary condition while  
479 maintaining the shape of the profile. The procedure is discussed in the light of our analysis period.

480 Firstly, TES vapour  $\delta$ D data are not available for 2019. Moreover, it is also known that the data have  
481 large uncertainty within the boundary layer (Nimya et al., 2022). This necessitates the derivation of vapour  
482 isotope profiles, which would merge with the TES observations at upper layers. The TES provides  $\delta$ D values of  
483 moisture at 17 pressure levels with a 5.3 km  $\times$  8.4 km footprint during the years 2005-2009. Based on these, we  
484 derived an average TES profile, which is deemed to be representative of the mean monsoon values constructed  
485 by averaging TES observations over a box (16°-20° N; 72°-76° E) for the ISM period.



486

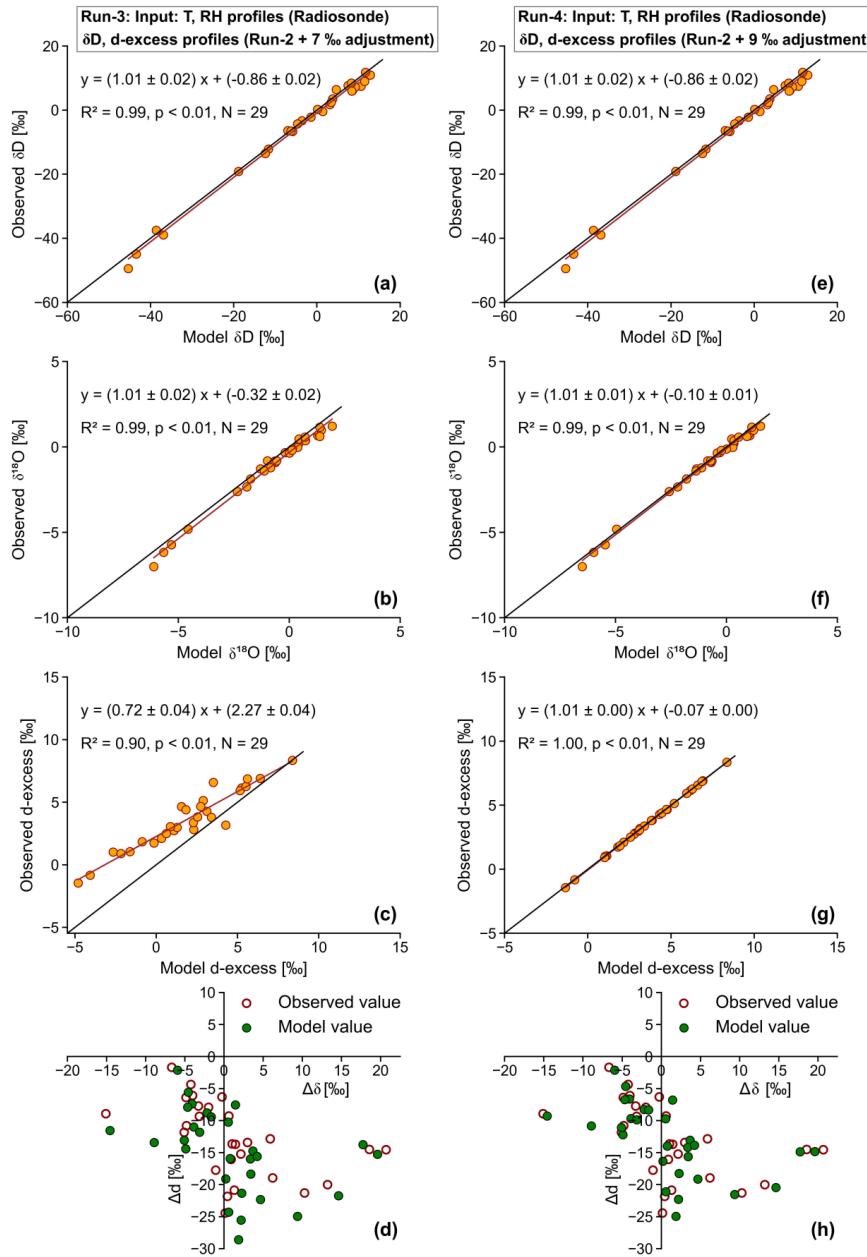
487 **Figure 6.** Scatter plot showing observed and simulated (a) rain  $\delta^{18}\text{O}$ , (b) rain  $\delta$ D, (c) rain d-excess, and (d) same data in  
488  $\Delta\delta$ - $\Delta d$  diagram. Rayleigh ascent of a surface air parcel is assumed here (named as Run-1). Similar plots for Run-2 are  
489 shown in **Fig. 6e-h**, in which input profiles of T, RH, and vapour  $\delta$ D and d-excess values are obtained by adopted TES and  
490 LMDZ outputs (see text).

491



492 To derive the vertical profiles for each of our sampling days, we use our daily surface measurements as  
493 boundary values. The average TES profile (as mentioned above) is modified through a curve-fitting technique  
494 where the shape of the average profile is slightly altered while being constrained to pass through the surface  
495 value. A 4<sup>th</sup> order Polynomial of the type:  $Ah^4 + Bh^3 + Ch^2 + Dh + E$  (where h is the altitude in meters) was fitted  
496 to the average profile after adjusting its surface value so that a smooth shape is obtained (D/H decreasing with  
497 height following the average pattern). The polynomial coefficients (five in number) were calculated for three  
498 cases: (1) for the maximum observed surface D/H value, (2) for the mean surface value, and (3) for the  
499 minimum observed value, giving us three sets of A, B, C, D and E values. The constants for each day were next  
500 estimated by interpolation using these three sets. Obviously, this method of interpolation, constrained by surface  
501 vapour measurements, assumes that the vapour aloft is related to the surface value, and this assumption may not  
502 be correct. But it, at least, allows us to check if the surface constraints yield better rain isotope ratios at the  
503 ground (using BCIM) while being consistent with the TES measurements of vapour aloft.

504 Unfortunately, the vapour  $\delta^{18}\text{O}$  values at various pressure levels are not available from TES (which  
505 gives only the HDO/H<sub>2</sub>O ratio). Therefore, we adopted a derivation technique using the vapour isotope profiles  
506 simulated by the LMDZ model. In this technique, daily average vapour  $\delta^{18}\text{O}$  and  $\delta\text{D}$  values were obtained from  
507 the LMDZ model outputs over our study region for the sampling dates at each height. For each day, two profiles  
508 (for  $\delta^{18}\text{O}$  and  $\delta\text{D}$ ) were constructed, and polynomials were fitted. Next, the d-excess profiles were constructed  
509 from these two profiles. Each of the daily d-excess profiles was then constrained by using the surface d-excess  
510 vapour value for that day to obtain the fitted d-excess Polynomial for that day. The rationale is that even though  
511 the individual profiles of  $\delta\text{D}$  and  $\delta^{18}\text{O}$  provided by LMDZ do not predict well the rain isotope ratios (as seen by  
512 our trial), the d-excess based on these two isotope ratios should be reasonably good. The obtained vapour d-  
513 excess and  $\delta\text{D}$  profiles are shown in Fig. S4c and S4d, Run-2. These profiles were subsequently employed in  
514 BCIM (named Run-2) to generate the daily-scale  $\delta^{18}\text{O}$ ,  $\delta\text{D}$  and d-excess values of surface rain isotope ratios  
515 (Fig. 6e-6h). However, the results do not show much improvement compared to the Run-1 (Fig. 6e-g) despite  
516 showing a larger variability in the  $\Delta\delta$ – $\Delta\text{d}$  plot (Fig. 6h); the  $\Delta\delta$  values varied from -4.7 ‰ to 11 ‰ and  $\Delta\text{d}$  from  
517 -1.8 ‰ to -12.4 ‰. Additionally, in this case, all the data points fell in the 3<sup>rd</sup> quadrant of the  $\Delta\delta$ – $\Delta\text{d}$  cross plot  
518 (Fig. 6h and Fig. 6d). Both Run-1 and Run-2 simulations fail to yield a good match between the observations  
519 and model (especially the d-excess) values.


520

#### 521 **4.3.4 Vapour $\delta^{18}\text{O}$ correction in the profile (Run-3 and Run-4)**

522 The main source of error in Run 1 and Run 2 could be improper vapour isotope profiles. It is possible  
523 that the true profile for a given date may not coincide with the surface-measured value in extrapolation, as  
524 assumed by the boundary constraint. In other words, the vapour aloft may not be derived entirely from the  
525 surface vapour as measured at our sampling location. One possible explanation could be a significant  
526 contribution from the small-scale local surface moisture having a different isotopic composition (evaporation or  
527 evapotranspiration from water bodies or trees within a few hundred meters). However, this possibility can be  
528 ruled out as a study using satellite data showed that due to high humidity and low temperature during ISM,  
529 evaporation/ evapotranspiration ( $\sim 0.5 \text{ mm day}^{-1}$ ) adds a negligible amount of moisture compared to the  
530 advective fluxes in this region (Pathak et al., 2014). Our investigation is also limited by the absence of upper air



531  $\delta D$ ,  $\delta^{18}\text{O}$  values from an independent observation or model on a daily scale. Due to this limitation, we adopted a  
532 forward modelling approach.



533

534

535 **Figure 7.** Scatter plot showing observed and BCIM simulated (a, e) rain  $\delta D$ , (b, f) rain  $\delta^{18}\text{O}$ , (c, g) rain d-excess; in (d, h)  
536 data are cast in the form of  $\Delta\delta$ - $\Delta d$  diagram (for definition of  $\Delta$  values see text). In the panels (a, b, c and d), the input vapour  
537  $\delta^{18}\text{O}$  values in the profile are reduced at each level appropriately so that maximum reduction is  $\sim 7\text{‰}$  at the fall height; in the



538 panels (e, f, g and h) the reduction is ~9 ‰.

539

540 Keeping the D/H ratios nearly the same, we tuned the vapour  $\delta^{18}\text{O}$  input profile to achieve a reasonable  
541 agreement for each date. Two such tunings are attempted. In both, we reduced the  $\delta\text{D}$  values slightly and  
542 increased the  $\delta^{18}\text{O}$  moderately while keeping the shapes similar to Run-2. In Run-3 (Fig. 7a-d), the vapour  $\delta^{18}\text{O}$   
543 value is increased at each interval in such a way that the d-excess of the drop decreased to ~8.2 ‰ (on average)  
544 from the measured surface value of about 17 ‰ (on average). In the second trial, Run-4 (Fig. 7e-h), the d-excess  
545 decrease was made slightly less (average d-excess ~10.7 ‰). These changes are shown in the vapour isotope  
546 profiles given in supplementary Fig. S4(f) and S4(h).

547 We recognise that it is difficult to validate the vapour  $\delta\text{D}$  or d-excess profiles constructed by the above  
548 method due to a lack of height-specific observations. However, the available aircraft-based vapour isotope  
549 observations suggest that both d-excess and  $\delta\text{D}$  values of vapour decrease with altitude and thus provide some  
550 evidential support to the assumed decrease (Sodemann et al., 2017). With the above choices, simulations of rain  
551 isotopes improve (Fig. 7) considerably (both in terms of the uncertainty of the slope of the regression line and  
552 the correlation coefficient). Between the two alternatives of Run-3 and Run-4, Run-4 is found to be superior in  
553 the matter of comparison of the model with observations; the average  $\Delta\text{d}$  (observation-model) difference  
554 decreases from 2.1 to 0.4. Additionally, there is considerable improvement in the  $\Delta\delta$ - $\Delta\text{d}$  cross plot (see Fig. 7d  
555 and 7h).

556 The tuning exercise suggests that the adoption of the  $\delta^{18}\text{O}$  profiles or the d-excess profiles based on  
557 TES  $\delta\text{D}$  and LMDZ  $\delta\text{D}/\delta^{18}\text{O}$  values (Run-2) was slightly in error. We found that, on average, the adopted  $\delta^{18}\text{O}$   
558 should be increased by about 0.4 ‰, and the adopted  $\delta\text{D}$  decreased by about 3.5 ‰. Consequently, the model d-  
559 excess should be changed on average by about -7 ‰ (ranging from +3 ‰ to -17 ‰). A preliminary inspection  
560 has shown that the situation would not improve had we taken another isotope-enabled GCM, IsoGSM2  
561 simulation (instead of LMDZ) for  $\delta^{18}\text{O}$ -calibration; in fact, IsoGSM2 simulates higher values for both the  
562 vapour isotopes ( $\delta\text{D}$  and d-excess; results not shown).

563

#### 564 **4.3.5 Sensitivity analysis and uncertainty estimates**

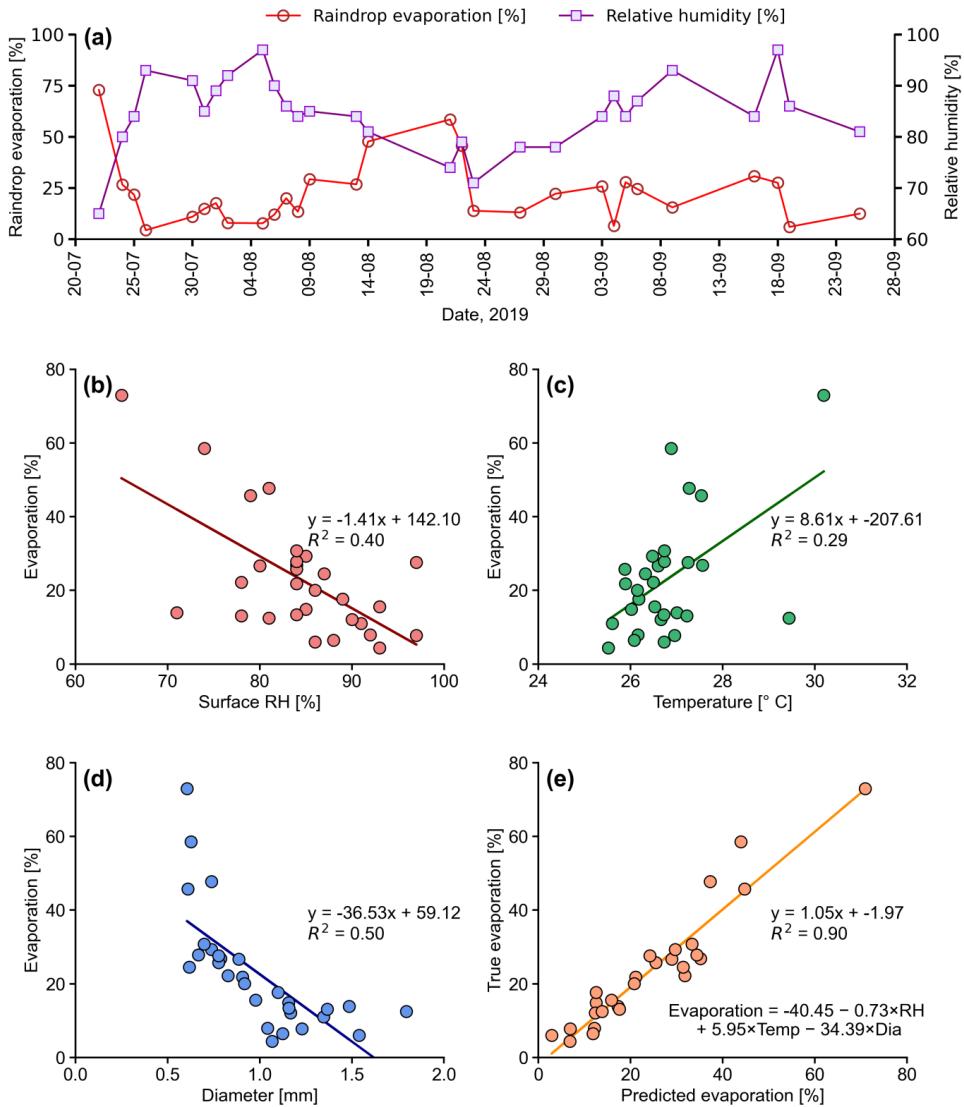
565

566 In the context of point #4, we examine the effects of the formation height on isotopes, keeping all other  
567 parameters the same. We increase the formation height by 1 km (from 1.5 km to 2.5 km) and run the BCIM. To  
568 form the drop at a higher altitude, we need to change the RH profile so that the RH=100 % level is reached at  
569 the new height. A simplified RH profile is used by approximating the real profile with a straight line, where the  
570 surface RH value is taken as one end member, and the 100 % level is taken at the new height. We found that the  
571 simulated values of the rain isotope ratios did not change significantly, and similarly, the raindrop evaporation  
572 fraction also did not change. We provide detailed uncertainty estimates of the model rain isotope values in  
573 Supplementary Information (SI-1). The uncertainty values for  $\delta\text{D}_{\text{rain}} = 3.5$  ‰ and  $\text{d-excess}_{\text{rain}} = 2$  ‰.

574 We also did a detailed sensitivity analysis (see Supplementary information, SI-2) to study the effects of  
575 variation in temperature, relative humidity, vapour isotopes, and drop size using the BCIM. These analyses  
576 show that vapour isotope values, RH, Temperature and drop sizes are the dominant factors controlling the model  
577 rain isotope ratios.



578 **4.3.6 Estimate of raindrop evaporation**


579

580 Our analysis shows that with minor tuning of vapour profiles, the BCIM can be used to simulate the rain isotope  
581 ratios in Pune. For tuning, the  $d$  excess of the vapour needs to be reduced, on average, by about 7 % compared  
582 to the observed ground vapours. Assuming the validity of this tuning, we find that the rains suffer substantial but  
583 variable evaporation in the Pune region. We see from the output of BCIM that the mass of the drop reduces as it  
584 falls. The ratio of final mass/initial mass (or remaining fraction of mass of the hydrometeor relative to the initial  
585 mass, i.e.,  $m/m_0$ ) can then be used to estimate the mass loss suffered by the drop on its way down for each day.  
586 The difference ( $1-m/m_0$ ) of the drop then represents the effective rain evaporation. Defining rain evaporation in  
587 this way, a time series of evaporation values is displayed in Fig. 8a, which varies from 4 % to 73 % (average  
588 ~23 %, omitting one outlier). As expected, drop evaporation is inversely related to the surface humidity (Fig.  
589 8b) and drop diameter (Fig. 8d) but directly proportional to the temperature (Fig. 8c).

590 The evaporation was relatively high (59 % and 73 %) for two days (22 July and 21 August) when  
591 humidity was low (65 % and 74 %), and the temperature was high (30° C and 27° C) along with drop diameter  
592 being small; the combined effect resulted in high evaporation fraction (Fig. 8a). In general, the deduced  
593 evaporation fractions are high (23±16 %) in this region. This inference is consistent with the observed anti-  
594 correlation between  $d$ -excess and  $\delta^{18}\text{O}$  of rain samples (Fig. 3b) as expected in drop evaporation when  $d$ -excess  
595 of the raindrop decreases while its  $\delta^{18}\text{O}$  increases.



596

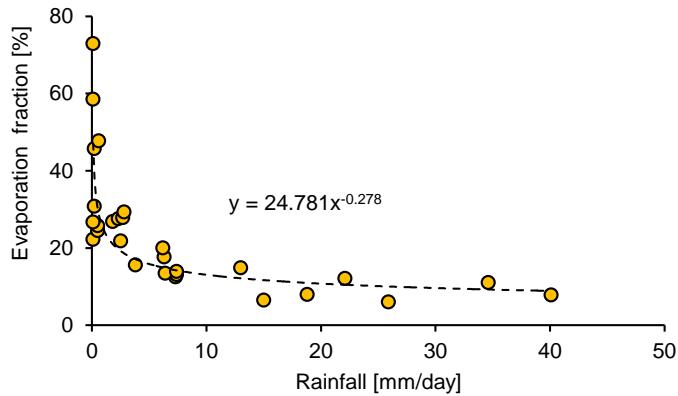


597

598 **Figure 8.** (a) Time series of raindrop evaporation estimated from the BCIM using the simulation in Run-4 and surface  
599 relative humidity. The regression between raindrop evaporation with (b) RH, (c) temperature, and (d) drop diameter. (e)  
600 Multiple regression analysis yields a joint equation:  $\text{Evaporation} (\%) = -40.45 - 0.73 \times \text{RH} + 5.95 \times \text{temperature} - 34.39 \times \text{drop}$   
601 diameter

602

603 A multi-variate regression analysis shows that we can fit the evaporation fraction (in %) as a function of three  
604 surface variables: RH (%), temperature (°C) and drop diameter (mm) as below (Fig. 8e):


$$\text{Evaporation Fraction} = 40.45 - 0.73 \times \text{RH} + 5.95 \times \text{Temperature} - 34.39 \times \text{Diameter} \quad (R^2 = 0.88) \quad (1)$$

605 As we see, these three parameters control the total variance of the error and among them, the RH is the



607 major one because the observed temperature does not vary much ( $26.8 \pm 1.0^\circ\text{C}$ ), being only about 4 %, while for  
 608 RH, the variation is larger ( $84.5 \pm 7.2\%$ ) on the order of 8.5 %. The diameter variation is also rather small  
 609 ( $1.0 \pm 0.3\text{ mm}$ ). From the above relation, we estimate an uncertainty of  $\pm 10\%$  for the model evaporation fraction  
 610 (assuming errors of 5 % in RH,  $0.5^\circ\text{C}$  in T, and 0.3 mm in diameter).

611 To explore the influence of drop evaporation on rainfall amount, we plot evaporation as a function of  
 612 rainfall in Fig. 9 which shows that the two parameters are related by a power law where an increase in the drop  
 613 evaporation causes a reduction in the rainfall. However, for large rainfall, the evaporation influence is less; for  
 614 smaller rainfall range (less than 5 to 10 mm/day), the evaporation change affects the rainfall significantly. For  
 615 example, even for a minor increase in evaporation, say from 20% to 30%, the rainfall decreases from 2.1 to 0.5  
 616 (mm/day). The reason is that smaller rainfall is usually associated with smaller drops which suffer relatively  
 617 more evaporation, considering other parameters (RH, Temperature) constant.



**Figure 9.** Scatter plot showing relationship between the drop evaporation estimated in this study and rainfall in Pune. The black dashed line indicates the best-fit power law.

622 5. Summary and Conclusions

623 We analysed isotope ratios of daily rain and atmospheric vapour samples collected from surface level  
624 at Pune, a tropical rain shadow region in Western India, during the summer monsoon season (June-early  
625 October) of 2019. The key findings are listed below:

626 1. The vapour isotopes show considerable temporal variation (with  $\delta^{18}\text{O}$  from -19.2 ‰ to -9.4 ‰ and  
 627  $\delta\text{D}$  from -123.7 ‰ to -63.4 ‰). Among the diversity of variations, there were four events  
 628 extending over a few days when both rain and vapour isotope ratios were considerably lower (for  
 629 example, rain values were less than the mean -0.5 standard deviation; with  $\delta^{18}\text{O} < -2.6$  ‰). These  
 630 events seem to indicate intimate relations with regional meteorological characteristics.

631 2. We note that the low rain isotope events are found to be synchronous with negative OLR  
 632 anomalies. Negative OLR anomalies in the tropical monsoon zones of India are known to be  
 633 associated with large-scale convections which uplift air masses to great heights (Sengupta et al.,  
 634 2020); We surmise that in such cases, the rain formation takes place in an environment of cold



635 temperatures (larger fractionations) and low  $\delta$ -values of ambient vapour. Both these factors would  
636 yield low rain  $\delta$ -values.

637 3. A gradual increase in the d-excess values of vapour and a small but notable decrease in  $\delta^{18}\text{O}$   
638 values in the later part of the monsoon (after mid-August) were noted. The very high vapour d-  
639 excess in September is especially noticeable. In contrast, the rain d-values are not significantly  
640 different. We also find a strong anti-correlation between vapour  $\delta^{18}\text{O}$ -d-excess values.

641 4. The above observations suggest increased moisture recycling in the form of vapour contribution  
642 from evaporation of raindrops and/or local vapour supply. However, local-scale vapour supply  
643 cannot be a large factor based on an earlier study in central India (Pathak et al., 2014). Therefore,  
644 we strongly believe that downdraft of depleted vapour is the main source of low isotope (and high  
645 d-excess) surface vapour (Risi et al., 2023). The depleted vapour in the sub-cloud region can  
646 originate from raindrop evaporation.

647 5. To quantify the sub-cloud processes altering the rain isotope values, we used the Below Cloud  
648 Interaction Model BCIM. Upon reasonable tuning of the input parameters, we obtained a notable  
649 agreement between the observed and model rain isotope values at the ground level.

650 6. In the  $\Delta\delta$ - $\Delta d$  ( $\Delta$  is defined by rain-equilibrium vapour minus the ambient vapour following Graf et  
651 al) cross plot, the majority of the data points lie in the 3<sup>rd</sup> quadrant, which signifies the dominance  
652 of raindrop evaporation over Pune and the adjoining region during our study period. The cross-plot  
653 is indicative of drop evaporation but cannot quantify the magnitude. The slope of the points (about  
654 -0.43), however, suggests that evaporation is intense. This is because a higher slope in the cross-  
655 plot is caused by a relatively magnified effect of d-excess difference between the rain (and  
656 corresponding equilibrated vapour) and the ambient vapour which is due to a larger evaporation.  
657 For reference, Graf et al. (2019) found that the slope was lower at a value of -0.3 for Zurich.

658 7. Since the BCIM is found to be applicable to our study area, we estimate the raindrop evaporation  
659 parameter from the model output. An event-to-event quantification of raindrop evaporation is the  
660 key finding of our study. The model gives a net reduction of the drop mass at the ground level, and  
661 we can define the relative reduction as a measure of the effective rain evaporation. Using this  
662 innovative technique, the model shows that, on average, about 23 % (varying from 4 % to 73 %) of  
663 the rain evaporates in the sub-cloud layer. There are four abnormally large values (46, 48, 58, and  
664 73 %) of evaporation. The largest value is probably due to low RH (~65 %) on that day, but as for  
665 the other days, probably a combination of smaller drop size and lower RH played a role. Excluding  
666 these four values, the average evaporation is  $18 \pm 8$  % (range of 4 to 30 %).

667 It is instructive to compare our results to the evaporation estimates obtained in similar studies carried  
668 out in other climatic regimes. Sarkar et al. (2003), in a steady state one-dimensional model study of rain in the  
669 North Atlantic Trade Wind region (Barbados), found a high value of 63% ( $63 \pm 23$  %) for raindrop evaporation  
670 which is three times more than our average value of 23% ( $23 \pm 16$  %). The reason for this is a large difference in  
671 drop size and RH. A comparison reveals that their drop size was much smaller (from 125 mm to 6 mm) in  
672 comparison to ours (from 0.61 to 1.80 mm). The drops were so small (smaller than 300 mm) in some cases (4  
673 February, 2020), that they completely evaporated (evaporation  $\sim 100\%$ ) during the fall leading to very small  
674 rain. In addition, in their sampling region, the RH was also lower, ranging from 65% to 80%, compared to ours



675 (65% to 97%). Lower drop size and lower RH lead to higher raindrop evaporation. In addition, the drop sizes  
676 varied over a larger range, leading to a larger variability compared to our study.

677 In another study, rain and vapour isotopes were measured in a cold-front passage over Zurich during  
678 19-25 July 2011, and the data were interpreted by an isotope-enabled regional weather prediction model  
679 COSMOiso (Aemisegger et al., 2015). The authors showed that by switching off the raindrop evaporation, the  
680 rainfall increased by about 75% because the cooling induced by evaporation causes diminished convective  
681 activity. The estimated average evaporation in their study was about 40% (Dr. F. Aemisegger, personal comm.).  
682 This value is also twice our value. The reason is probably lower drop size and lower RH; as stated in their paper:  
683 “weak rainfall intensities (small droplets and thus lower falling velocities), and the possibly lower relative  
684 humidity in the air column above could have contributed to the evaporative enrichment of precipitation”.

685 The tracer-based technique and the BCIM, which we used, are associated with a series of limitations-

- 686 a) We used TES satellite data averaged over 2005-2009 to guide our choice of vapour isotope  
687 profiles, but the year of analysis was 2019. In this matter, there is no way to ascertain the degree of  
688 deviation of the true profile from the adopted ones in Run-2.
- 689 b) The  $\delta^{18}\text{O}$  profiles were adopted based on the  $\delta\text{D}$  and  $\delta^{18}\text{O}$  profiles obtained from the LMDZ  
690 model. As noted, this did not give us good agreement with the observations.
- 691 c) The isotope profiles were constructed using ground observations as boundary values. However,  
692 this also resulted in a mismatch with the observed values, and we had to tune to lower  $\delta^{18}\text{O}$  values  
693 and higher d-excess values to achieve good agreement. It should be mentioned here that Risi et al.  
694 (2023) also discussed a similar idea in their study of water isotopes in tropical squall lines, that  
695 convective downdrafts can introduce depleted vapour produced by rain re-evaporation in the  
696 boundary layer. Moreover, the vapour samples were collected for a duration (about a few hours)  
697 that did not coincide exactly with the longer rain collection period (about 24 hours).
- 698 d) The raindrop formation height was assumed to be the same for all rainy days, and the drops were  
699 all introduced at a constant level, considered to be the cloud base at RH=100 %. However, it is  
700 well known that raindrops do not all form at the same height, even on a single day. With this  
701 assumption, we are neglecting alterations in isotope ratios produced inside the cloud by various  
702 microphysical processes. However, since we are concerned with sub-cloud processes, this is not a  
703 serious problem.

704 Considering these limitations, we provide detailed uncertainty estimates of the model rain isotope values in  
705 Supplementary Information (SI-1) and raindrop evaporation estimates (Section 4.3.6). The uncertainty values  
706 for  $\delta\text{D}_{\text{rain}} = 3.5 \text{ ‰}$ , for d-excess<sub>rain</sub> = 2 ‰, and drop evaporation estimate is 10%.

707 Presence of evaporation during ISM has been postulated earlier in several theoretical models, but this  
708 study provides, for the first time, a quantitative estimate of rain evaporation on a day-to-day basis in the Indian  
709 monsoon season using combined rain vapour isotope data. However, a ~25 % raindrop evaporation applies only  
710 to the highly humid Pune region. The average seasonal rainfall in Pune is about 55 cm (for ISM), and if ~25 %  
711 of this is evaporated, it would mean considerable cooling of the boundary layer leading to localized downdrafts,  
712 formation of cold pools, and changes in atmospheric stability. The cooling can also hinder efficient formation of  
713 convection (Hwong and Muller, 2024) and can have a large effect on the precipitation patterns in the tropics  
714 (Bacmeister et al., 2006; Sarkar et al., 2023). Given the large share of precipitation recycling found in this study for



715 Pune, the question arises, how large precipitation recycling is at larger scales, i.e., regional or continental scales, as  
716 well as in other seasons over India. We need to have a comprehensive program for carrying out such analysis,  
717 aided with appropriate BCIM input parameters, to understand the evaporation of raindrops over various climatic  
718 subdivisions in India. Moreover, high-frequency observation of vapour and rain isotopes would be useful to  
719 quantify this fraction during various convective events associated with low-pressure systems during ISM. As  
720 mentioned above, raindrop evaporation is an important parameter in modelling the energy and moisture budget  
721 in monsoon rainfall prediction.

722

#### 723 **Data Availability**

724 Observed rain and vapour isotope data are available upon communication with the corresponding author. The  
725 upper-air radiosonde measurements were obtained from the University of Wyoming repository  
726 (<http://weather.uwyo.edu/upperair/sounding.html>). The daily gridded data (zonal and meridional wind, specific  
727 humidity, air temperature, and cloud liquid water content) are available from the European Centre for Medium-  
728 Range Weather Forecasts Reanalysis (ERA-5; <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>). The rainfall data (cumulated over 24 hours) are obtained from the Pune observatories of the IMD  
729 (available at the National Data Centre ([www.imdpune.gov.in/ndc\\_new/ndc\\_index.html](http://www.imdpune.gov.in/ndc_new/ndc_index.html))). Apart from daily  
730 rainfall, hourly rainfall data and daily average temperature and relative humidity data for the Pune observatory  
731 were also obtained from the IMD using the above link. The datasets for 48 h air mass back trajectory analysis at  
732 850 mb pressure level are obtained from the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory  
733 (HYSPPLIT) model (<https://www.ready.noaa.gov/HYSPLIT.php>). We received daily outputs of LMDZ isotope-  
734 enabled GCMs, which were provided by Dr. Camille Risi by personal communication. The Interpolated  
735 Outgoing Longwave Radiation (OLR) data from NOAA  
736 (<https://psl.noaa.gov/data/gridded/data.olrcdr.interp.html>) is used in this study. Tropospheric Emission  
737 Spectrometer (TES) Level 2 (Nadir-Lite-Version 6) retrievals of HDO and H<sub>2</sub>O profiles for the available period  
738 (2005–2007; <https://tes.jpl.nasa.gov/tes/data>) are used to construct the vapour δD profile.

739

#### 740 **Author Contribution**

741

742 SSN carried out all rain and vapour isotopic measurements and part of the data analyses, installed and ran the  
743 model BCIM. SPR analysed the majority of the isotopic data, performed all controlled runs in the BCIM, and  
744 constructed most of the figures. SS conceptualized the scientific plan and methodology and wrote the initial  
745 draft of the manuscript. SKB contributed to data analysis and interpretation of model outputs, corrected the  
746 manuscript, and provided useful comments and suggestions.

747

#### 748 **Code Availability**

749

750 We carried out data analysis and plots using licensed versions of Microsoft Excel and Python, the latter being  
751 freely available from <https://www.python.org/downloads/>. The code of the model, BCIM, is freely available  
752 from <https://git.app.uib.no/Harald.Sodemann/bcim>.

753

#### 754 **Competing interests**

755

The authors declare that they have no conflict of interest.



756 **Acknowledgements**

757 The Indian Institute of Tropical Meteorology, Pune (IITM), is fully supported by the Earth System Science  
758 Organization (ESSO) of the Ministry of Earth Sciences, India. This work forms part of the Ph.D. thesis of SSN,  
759 who thanks IITM for a fellowship. SPR thanks IITM for a research associateship. We thank Director IITM for  
760 his constant encouragement. The NASA Langley Research Centre and the Atmospheric Science Data Centre are  
761 acknowledged for the TES dataset. A fruitful discussion with Dr. Camille Risi is also acknowledged.

762

763 **References**

764 Aemisegger, F., Spiegel, J. K., Pfahl, S., Sodemann, H., Eugster, W., and Wernli, H.: Isotope meteorology of  
765 cold front passages: A case study combining observations and modeling, *Geophys. Res. Lett.*, 42, 5652–5660,  
766 <https://doi.org/10.1002/2015GL063988>, 2015.

767 Bacmeister, J. T., Suarez, M. J., and Robertson, F. R.: Rain re-evaporation, boundary layer–convection  
768 interactions, and Pacific rainfall patterns in an AGCM, *J. Atmos. Sci.*, 63, 3383–3403, 2006.

769

770 Bonne, J. L., Masson-Delmotte, V., Cattani, O., Delmotte, M., Risi, C., Sodemann, H., and Steen-Larsen, H. C.:  
771 The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland, *Atmos. Chem.  
772 Phys.*, 14, 4419–4439, <https://doi.org/10.5194/acp-14-4419-2014>, 2014.

773 Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Estimation of Continental Precipitation Recycling, *J.  
774 Climate*, 6, 1077–1089, [https://doi.org/10.1175/1520-0442\(1993\)006<1077:EOCPR>2.0.CO;2](https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2), 1993.

775 Chakraborty, S., Sinha, N., Chattopadhyay, R., Sengupta, S., Mohan, P. M., and Datye, A.: Atmospheric  
776 controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal, *Sci. Rep.*, 6, 19555,  
777 <https://doi.org/10.1038/srep19555>, 2016.

778 Crawford, J., Hollins, S. E., Meredith, K. T., and Hughes, C. E.: Precipitation stable isotope variability and  
779 subcloud evaporation processes in a semi-arid region, *Hydrol. Process.*, 31, 20–34,  
780 <https://doi.org/10.1002/hyp.10885>, 2017.

781 Dai, Q., Yang, Q., Han, D., Rico-Ramirez, M. A., and Zhang, S.: Adjustment of Radar-Gauge Rainfall  
782 Discrepancy Due to Raindrop Drift and Evaporation Using the Weather Research and Forecasting Model and  
783 Dual-Polarization Radar, *Water Resour. Res.*, 55, 9211–9233, <https://doi.org/10.1029/2019WR025517>, 2019.

784 Dansgaard, W.: Stable isotopes in precipitation, *Tellus A: Dynamic Meteorology and Oceanography*, 16, 436,  
785 <https://doi.org/10.3402/tellusa.v16i4.8993>, 2012.

786 Deshpande, R. D., Maurya, A. S., Kumar, B., Sarkar, A., and Gupta, S. K.: Rain-vapor interaction and vapor  
787 source identification using stable isotopes from semiarid western India, *J. Geophys. Res.*, 115, 2010JD014458,  
788 <https://doi.org/10.1029/2010JD014458>, 2010.

789 Draxler, R. R. and Hess, G.: Description of the HYSPLIT4 modeling system, 1997.

790 Foote, G. B. and du Toit, P. S.: Terminal Velocity of Raindrops Aloft, *J. App. Meteorol.* (1962–1982), 8, 249–  
791 253, 1969.

792 Froehlich, K., Kralik, M., Papesch, W., Rank, D., Scheifinger, H., and Stichler, W.: Deuterium excess in  
793 precipitation of Alpine regions – moisture recycling, *Isotopes in Environmental and Health Studies*, 44, 61–70,  
794 <https://doi.org/10.1080/10256010801887208>, 2008.

795 Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, *Annu. Rev. Earth Planet. Sci.*, 24, 225–262,  
796 <https://doi.org/10.1146/annurev.earth.24.1.225>, 1996.

797 Graf, P., Wernli, H., Pfahl, S., and Sodemann, H.: A new interpretative framework for below-cloud effects on  
798 stable water isotopes in vapour and rain, *Atmos. Chem. Phys.*, 19, 747–765, <https://doi.org/10.5194/acp-19-747-2019>, 2019.



800 Gray, W. M.: Fundamental Importance of Convective Downdrafts and Mass Recycling Within the Tropical  
801 Cloud Cluster and the Typhoon-Hurricane, *Trop. Cyclone Res. and Rev.*, 1, 130–141,  
802 <https://doi.org/10.6057/2012TCRR01.14>, 2012.

803 Herman, R. L., Cherry, J. E., Young, J., Welker, J. M., Noone, D., Kulawik, S. S., and Worden, J.: Aircraft  
804 validation of Aura Tropospheric Emission Spectrometer retrievals of HDO / H<sub>2</sub>O, *Atmos. Meas. Tech.*, 7, 3127–  
805 3138, <https://doi.org/10.5194/amt-7-3127-2014>, 2014.

806 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C.,  
807 Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G.,  
808 Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J.,  
809 Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,  
810 Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and  
811 Thépaut, J.: The ERA5 global reanalysis, *Quart. J. Royal Meteorol. Soc.*, 146, 1999–2049,  
812 <https://doi.org/10.1002/qj.3803>, 2020.

813 Horita, J. and Wesolowski, D. J.: Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the  
814 freezing to the critical temperature, *Geochimica et Cosmochimica Acta*, 58, 3425–3437,  
815 [https://doi.org/10.1016/0016-7037\(94\)90096-5](https://doi.org/10.1016/0016-7037(94)90096-5), 1994.

816 Hwong, Y.L. and Muller, C.J.: The unreasonable efficiency of total rain evaporation removal in triggering  
817 convective self-aggregation, *Geophys. Res. Lett.*, 51, p.e2023GL106523.  
818 <https://doi.org/10.1029/2023GL106523>, 2024.

819

820 IPCC, A.: Climate change 2014 synthesis report, IPCC: Geneva, Switzerland, 1059–1072, 2014.

821 Jensen, M. P., Holdridge, D. J., Survo, P., Lehtinen, R., Baxter, S., Toto, T., and Johnson, K. L.: Comparison of  
822 Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site, *Atmos. Meas. Tech.*, 9, 3115–  
823 3129, <https://doi.org/10.5194/amt-9-3115-2016>, 2016.

824 Kanamitsu, M.: Description of the NMC Global Data Assimilation and Forecast System, *Wea. Forecasting*, 4,  
825 335–342, [https://doi.org/10.1175/1520-0434\(1989\)004<0335:DOTNGD>2.0.CO;2](https://doi.org/10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2), 1989.

826 Konwar, M., Das, S.K., Deshpande, S. M., Chakravarty, K., and Goswami, B. N.: Microphysics of clouds and  
827 rain over the Western Ghat, *J. Geophys. Res.-Atmos.*, 119, 6140–6159, <https://doi.org/10.1002/2014JD021606>,  
828 2014.

829 Kumar, S., Hazra, A., and Goswami, B. N.: Role of interaction between dynamics, thermodynamics and cloud  
830 microphysics on summer monsoon precipitating clouds over the Myanmar Coast and the Western Ghats, *Clim.  
831 Dynam.*, 43, 911–924, <https://doi.org/10.1007/s00382-013-1909-3>, 2014.

832 Kumar, T. V. L., Durga, G. P., Rao, K. K., Nagendra, H., and Mall, R. K.: Moisture recycling over the Indian  
833 monsoon core region in response to global warming from CMIP5 models, in: *Indian Summer Monsoon  
834 Variability*, Elsevier, 449–466, <https://doi.org/10.1016/B978-0-12-822402-1.00008-9>, 2021.

835 Kurita, N.: Water isotopic variability in response to mesoscale convective system over the tropical ocean, *J.  
836 Geophys. Res.-Atmos.*, 118, <https://doi.org/10.1002/jgrd.50754>, 2013.

837 Lee, C., Lawson, W. G., Richardson, M. I., Anderson, J. L., Collins, N., Hoar, T., and Mischna, M.:  
838 Demonstration of ensemble data assimilation for Mars using DART, MarsWRF, and radiance observations from  
839 MGS TES, *J. Geophys. Res.*, 116, E11011, <https://doi.org/10.1029/2011JE003815>, 2011.

840 Lee, J. and Fung, I.: Amount effect of water isotopes and quantitative analysis of post-condensation processes,  
841 *Hydrol. Process.*, 22, 1–8, <https://doi.org/10.1002/hyp.6637>, 2008.

842 Lekshmy, P. R., Midhun, M., Ramesh, R., and Jani, R. A.: <sup>18</sup>O depletion in monsoon rain relates to large-scale  
843 organized convection rather than the amount of rainfall, *Sci. Rep.*, 4, 5661, <https://doi.org/10.1038/srep05661>,  
844 2014.



845 Lekshmy, P. R., Midhun, M., and Ramesh, R.: Influence of stratiform clouds on  $\delta$ D and  $\delta^{18}\text{O}$  of monsoon water  
846 vapour and rain at two tropical coastal stations, *J. Hydrol.*, 563, 354–362,  
847 <https://doi.org/10.1016/j.jhydrol.2018.06.001>, 2018.

848 Levine, R. C. and Turner, A. G.: Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian  
849 Sea and the impact of coupled model sea surface temperature biases, *Clim. Dynam.*, 38, 2167–2190,  
850 <https://doi.org/10.1007/s00382-011-1096-z>, 2012.

851 Li, X. and Srivastava, R. C.: An Analytical Solution for Raindrop Evaporation and Its Application to Radar  
852 Rainfall Measurements, *J. Appl. Meteorol.*, 40, 1607–1616, [https://doi.org/10.1175/1520-0450\(2001\)040<1607:AASFRE>2.0.CO;2](https://doi.org/10.1175/1520-0450(2001)040<1607:AASFRE>2.0.CO;2), 2001.

853

854 Li, X., Tang, C., and Cui, J.: Intra-Event Isotopic Changes in Water Vapor and Precipitation in South China,  
855 *Water*, 13, 940, <https://doi.org/10.3390/w13070940>, 2021.

856 Mandke, S.K., Soman, M. K., and Satyan, V.: Impact of Convective Downdrafts in a GCM on the Simulated  
857 Mean Indian Summer Monsoon and its Variability, *J. Meteorol. Soc. Jpn.*, 77, 1061–1082,  
858 [https://doi.org/10.2151/jmsj1965.77.5\\_1061](https://doi.org/10.2151/jmsj1965.77.5_1061), 1999.

859 Midhun, M., Lekshmy, P. R., Ramesh, R., Yoshimura, K., Sandeep, K. K., Kumar, S., Sinha, R., Singh, A., and  
860 Srivastava, S.: The Effect of Monsoon Circulation on the Stable Isotopic Composition of Rainfall, *J. Geophys.*  
861 *Res.-Atmos.*, 123, 5205–5221, <https://doi.org/10.1029/2017JD027427>, 2018.

862 Moerman, J. W., Cobb, K. M., Adkins, J. F., Sodemann, H., Clark, B., and Tuen, A. A.: Diurnal to interannual  
863 rainfall  $\delta^{18}\text{O}$  variations in northern Borneo driven by regional hydrology, *Earth Planet. Sci. Lett.*, 369–370, 108–  
864 119, <https://doi.org/10.1016/j.epsl.2013.03.014>, 2013.

865 Munksgaard, N. C., Zwart, C., Haig, J., Cernusak, L. A., and Bird, M. I.: Coupled rainfall and water vapour  
866 stable isotope time series reveal tropical atmospheric processes on multiple timescales, *Hydrol. Process.*, 34,  
867 111–124, <https://doi.org/10.1002/hyp.13576>, 2020.

868 Murali Krishna, U. V., Das, S. K., Sulochana, E. G., Bhowmik, U., Deshpande, S. M., and Pandithurai, G.:  
869 Statistical characteristics of raindrop size distribution over the Western Ghats of India: wet versus dry spells of  
870 the Indian summer monsoon, *Atmos. Chem. Phys.*, 21, 4741–4757, <https://doi.org/10.5194/acp-21-4741-2021>,  
871 2021.

872 Nimya, S. S., Sengupta, S., Parekh, A., Bhattacharya, S. K., and Pradhan, R.: Region-specific performances of  
873 isotope enabled general circulation models for Indian summer monsoon and the factors controlling isotope  
874 biases, *Clim. Dynam.*, 59, 3599–3619, <https://doi.org/10.1007/s00382-022-06286-1>, 2022.

875 Pathak, A., Ghosh, S., and Kumar, P.: Precipitation Recycling in the Indian Subcontinent during Summer  
876 Monsoon, *J. Hydrometeorol.*, 15, 2050–2066, <https://doi.org/10.1175/JHM-D-13-0172.1>, 2014.

877 Pattanaik, D., Mandal, R., Dey, A., Phani, R., Chattopadhyay, R., Joseph, S., Sahai, A., and Mohapatra, M.:  
878 Extended Range Forecast (ERF) During Southwest Monsoon 2019, 2019.

879 Pfahl, S., Wernli, H., and Yoshimura, K.: The isotopic composition of precipitation from a winter storm – A  
880 case study with the limited-area model COSMO<sub>iso</sub>, *Atmos. Chem. Phys.*, 12, 1629–1648,  
881 <https://doi.org/10.5194/acp-12-1629-2012>, 2012.

882 Pradhan, R., Singh, N., and Singh, R. P.: Onset of summer monsoon in Northeast India is preceded by enhanced  
883 transpiration, *Sci. Rep.*, 9, 18646, <https://doi.org/10.1038/s41598-019-55186-8>, 2019.

884 Pranindita, A., Wang-Erlandsson, L., Fetzer, I., and Teuling, A. J.: Moisture recycling and the potential role of  
885 forests as moisture source during European heatwaves, *Clim. Dynam.*, 58, 609–624,  
886 <https://doi.org/10.1007/s00382-021-05921-7>, 2022.

887 Pruppacher, H. R., and Klett, J. D.: Microstructure of Atmospheric Clouds and Precipitation, in: *Microphysics*  
888 of Clouds and Precipitation

889 of Clouds and Precipitation, vol. 18, Springer Netherlands, Dordrecht, 10–73, [https://doi.org/10.1007/978-0-306-48100-0\\_2](https://doi.org/10.1007/978-0-306-48100-0_2), 2010.



890    Rahul, P., Ghosh, P., Bhattacharya, S.K., and Yoshimura, K.: Controlling factors of rainwater and water vapor  
891    isotopes at Bangalore, India: Constraints from observations in 2013 Indian monsoon, *J. Geophys. Res.-Atmos.*,  
892    121, <https://doi.org/10.1002/2016JD025352>, 2016.

893    Rajaveni, S. P., Nimya, S. S., Sengupta, S., Datye, A., and Sarma, D.: Three Years of Stable Water Isotope Data  
894    of Daily Rain Samples Collected from Three Geomorphic Regions of India, *Sci. Data.*, 11, 1445,  
895    <https://doi.org/10.1038/s41597-024-04308-7>, 2024.

896    Rao, Y.P.: Southwest Monsoon, Meteorological Monograph Synoptic Meteorology No.1., India Meteorological  
897    Department, 1976.

898    Risi, C., Bony, S., and Vimeux, F.: Influence of convective processes on the isotopic composition ( $\delta^{18}\text{O}$  and  
899     $\delta\text{D}$ ) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect, *J. Geophys.*  
900    *Res.*, 113, 2008JD009943, <https://doi.org/10.1029/2008JD009943>, 2008.

901    Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water-stable isotopes in the LMDZ4 general circulation model:  
902    Model evaluation for present-day and past climates and applications to climatic interpretations of tropical  
903    isotopic records, *J. Geophys. Res.-Atmos.*, 115, <https://doi.org/10.1029/2009JD013255>, 2010.

904    Risi, C., Galewsky, J., Reverdin, G., and Brient, F.: Controls on the water vapor isotopic composition near the  
905    surface of tropical oceans and role of boundary layer mixing processes, *Atmos. Chem. Phys.*, 19, 12235–12260,  
906    <https://doi.org/10.5194/acp-19-12235-2019>, 2019.

907    Risi, C., Muller, C., and Blossey, P.: Rain Evaporation, Snow Melt, and Entrainment at the Heart of Water  
908    Vapor Isotopic Variations in the Tropical Troposphere, According to Large-Eddy Simulations and a Two-  
909    Column Model, *J. Adv. Model Earth Syst.*, 13, e2020MS002381, <https://doi.org/10.1029/2020MS002381>, 2021.

911    Risi, C., Muller, C., Vimeux, F., Blossey, P., Védeau, G., Dufaux, C., and Abramian, S.: What Controls the  
912    Mesoscale Variations in Water Isotopic Composition Within Tropical Cyclones and Squall Lines? Cloud  
913    Resolving Model Simulations in Radiative-Convective Equilibrium, *J. Adv. Model Earth Syst.*, 15,  
914    e2022MS003331, <https://doi.org/10.1029/2022MS003331>, 2023.

915    Salamalikis, V., Argiriou, A. A., and Dotsika, E.: Isotopic modeling of the sub-cloud evaporation effect in  
916    precipitation, *Sci. Total Environ.*, 544, 1059–1072, <https://doi.org/10.1016/j.scitotenv.2015.11.072>, 2016.

917    Saranya, P., Krishan, G., Rao, M. S., Kumar, S., and Kumar, B.: Controls on water vapor isotopes over Roorkee,  
918    India: Impact of convective activities and depression systems, *J. Hydrol.*, 557, 679–687,  
919    <https://doi.org/10.1016/j.jhydrol.2017.12.061>, 2018.

920    Sarkar, M., Bailey, A., Blossey, P., de Szoke, S. P., Noone, D., Quiñones Meléndez, E., Leandro, M. D., and  
921    Chuang, P. Y.: Sub-cloud rain evaporation in the North Atlantic winter trade winds derived by pairing isotopic  
922    data with a bin-resolved microphysical model, *Atmos. Chem. Phys.*, 23, 12671–12690,  
923    <https://doi.org/10.5194/acp-23-12671-2023>, 2023.

924    Sengupta, S., Bhattacharya, S. K., Parekh, A., Nimya, S. S., Yoshimura, K., and Sarkar, A.: Signatures of  
925    monsoon intra-seasonal oscillation and stratiform process in rain isotope variability in northern Bay of Bengal  
926    and their simulation by isotope enabled general circulation model, *Clim. Dynam.*, 55, 1649–1663,  
927    <https://doi.org/10.1007/s00382-020-05344-w>, 2020.

928    Sengupta, S., Bhattacharya, S. K., Sunil, N. S., and Sonar, S.: Quantifying Raindrop Evaporation Deficit in  
929    General Circulation Models from Observed and Model Rain Isotope Ratios on the West Coast of India,  
930    *Atmosphere*, 14, 1147, <https://doi.org/10.3390/atmos14071147>, 2023.

931    Sinha, N. and Chakraborty, S.: Isotopic interaction and source moisture control on the isotopic composition of  
932    rainfall over the Bay of Bengal, *Atmos. Res.*, 235, 104760, <https://doi.org/10.1016/j.atmosres.2019.104760>,  
933    2020.

934    Sodemann, H., Aemisegger, F., Pfahl, S., Bitter, M., Corsmeier, U., Feuerle, T., Graf, P., Hankers, R., Hsiao, G.,  
935    Schulz, H., Wieser, A., and Wernli, H.: The stable isotopic composition of water vapour above Corsica during



937 the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights,  
938 *Atmos. Chem. Phys.*, 17, 6125–6151, <https://doi.org/10.5194/acp-17-6125-2017>, 2017.

939 Stewart, M. K.: Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops:  
940 Applications to atmospheric processes and evaporation of lakes, *J. Geophys. Res.*, 80, 1133–1146,  
941 <https://doi.org/10.1029/JC080i009p01133>, 1975.

942 Tao, W., Chen, J., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols on convective clouds and precipitation,  
943 *Rev. Geophys.*, 50, 2011RG000369, <https://doi.org/10.1029/2011RG000369>, 2012.

944 Trenberth, K. E.: Atmospheric Moisture Recycling: Role of Advection and Local Evaporation, *J. Climate*, 12,  
945 1368–1381, [https://doi.org/10.1175/1520-0442\(1999\)012<1368:AMRROA>2.0.CO;2](https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2), 1999.

946 Utsav, B., Deshpande, S. M., Das, S. K., and Pandithurai, G.: Statistical Characteristics of Convective Clouds  
947 over the Western Ghats Derived from Weather Radar Observations, *J. Geophys. Res.-Atmos.*, 122,  
948 <https://doi.org/10.1002/2016JD026183>, 2017.

949 Vimeux, F., Tremoy, G., Risi, C., and Gallaire, R.: A strong control of the South American SeeSaw on the intra-  
950 seasonal variability of the isotopic composition of precipitation in the Bolivian Andes, *Earth and Planet. Sci.*  
951 *Lett.*, 307, 47–58, <https://doi.org/10.1016/j.epsl.2011.04.031>, 2011.

952 Wang, B., Ding, Y., and Sikka, D.: Synoptic systems and weather, *The Asian Monsoon*, 131–201, 2006.

953 Wang, R., Gentine, P., Yin, J., Chen, L., Chen, J., and Li, L.: Long-term relative decline in evapotranspiration  
954 with increasing runoff on fractional land surfaces, *Hydrol. Earth Syst. Sci.*, 25, 3805–3818,  
955 <https://doi.org/10.5194/hess-25-3805-2021>, 2021.

956 Wang, S., Zhang, M., Che, Y., Chen, F., and Qiang, F.: Contribution of recycled moisture to precipitation in  
957 oases of arid central Asia: A stable isotope approach, *Water Resour. Res.*, 52, 3246–3257,  
958 <https://doi.org/10.1002/2015WR018135>, 2016.

959 Worden, J., Noone, D., Bowman, K. et al.: Importance of rain evaporation and continental convection in the  
960 tropical water cycle, *Nature*, 445, 528–532, <https://doi.org/10.1038/nature05508>, 2007.

961 Worden, J., Noone, D., Galewsky, J., Bailey, A., Bowman, K., Brown, D., Hurley, J., Kulawik, S., Lee, J., and  
962 Strong, M.: Estimate of bias in Aura TES HDO/H<sub>2</sub>O profiles from comparison of TES and in situ HDO/H<sub>2</sub>O  
963 measurements at the Mauna Loa observatory, *Atmos. Chem. Phys.*, 11, 4491–4503, <https://doi.org/10.5194/acp-11-4491-2011>, 2011.

964 Wu, Y., Gao, J., Zhao, A., Niu, X., Liu, Y., Ratnasekera, D., Gamage, T. P., and Samantha, A. H. R.: One-year  
965 continuous observations of near-surface atmospheric water vapor stable isotopes at Matara, Sri Lanka, reveal a  
966 strong link to moisture sources and convective intensity, *Atmos. Chem. Phys.*, 25, 4013–4033,  
967 <https://doi.org/10.5194/acp-25-4013-2025>, 2025.

968 Xiao, F., Zhu, B., and Zhu, T.: Inconsistent urbanisation effects on summer precipitation over the typical climate  
969 regions in central and eastern China, *Theor. Appl. Climatol.*, 143, 73–85, <https://doi.org/10.1007/s00704-020-03404-z>, 2021.

970 Xie, X., Evaristo, R., Troemel, S., Saavedra, P., Simmer, C., and Ryzhkov, A.: Radar Observation of  
971 Evaporation and Implications for Quantitative Precipitation and Cooling Rate Estimation, *J. Atmos. and Ocean.*  
972 *Technol.*, 33, 1779–1792, <https://doi.org/10.1175/JTECH-D-15-0244.1>, 2016.

973 Xing, M., Liu, W., and Hu, J.: A set of methods to quantitatively evaluate the below-cloud evaporation effect on  
974 precipitation isotopic composition: a case study in a city located in the semi-arid regions of Chinese Loess  
975 Plateau, <https://doi.org/10.5194/acp-2020-312>, 26 May 2020.

976 Xu, H., Guo, J., Tong, B., Zhang, J., Chen, T., Guo, X., Zhang, J., and Chen, W.: Characterizing the near-global  
977 cloud vertical structures over land using high-resolution radiosonde measurements, *Atmos. Chem. Phys.*, 23,  
978 15011–15038, <https://doi.org/10.5194/acp-23-15011-2023>, 2023.



982 Yoshimura, K., Kanamitsu, M., Noone, D., and Oki, T.: Historical isotope simulation using Reanalysis  
983 atmospheric data, *J. Geophys. Res.*, 113, 2008JD010074, <https://doi.org/10.1029/2008JD010074>, 2008.

984 Zaitchik, B. F., Macalady, A. K., Bonneau, L. R., and Smith, R. B.: Europe's 2003 heat wave: a satellite view of  
985 impacts and land-atmosphere feedbacks, *Int. J. Climatol.*, 26, 743–769, <https://doi.org/10.1002/joc.1280>, 2006.

986 Zhang, F., Huang, T., Man, W., Hu, H., Long, Y., Li, Z., and Pang, Z.: Contribution of Recycled Moisture to  
987 Precipitation: A Modified d-Excess-Based Model, *Geophys. Res. Lett.*, 48, e2021GL095909,  
988 <https://doi.org/10.1029/2021GL095909>, 2021.

989 Zhu, G., Zhang, Z., Guo, H., Zhang, Y., Yong, L., Wan, Q., Sun, Z., and Ma, H.: Below-Cloud Evaporation of  
990 Precipitation Isotopes over Mountains, Oases, and Deserts in Arid Areas, *J. Hydrometeorol.*, 22, 2533–2545,  
991 <https://doi.org/10.1175/JHM-D-20-0170.1>, 2021.

992