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The study proposes a novel approach for mid- and long-term sea surface temperature 6 

(SST) prediction by integrating granular computing with a data-knowledge-driven 7 

ConvLSTM model. The method is comprehensively validated through comparisons 8 

with five commonly used models, demonstrating its effectiveness. The research is 9 

interesting and holds substantial value. The manuscript is well-structured and presents 10 

thorough results. While I do not have major concerns, I offer the following minor 11 

comments to help the authors further improve their work: 12 

Reply: Thank you for your thoughtful review and valuable feedback. We 13 

appreciate your positive acknowledgment of the potential significance of our study and 14 

your constructive comments, and we are grateful for the time and effort you've 15 

dedicated to this review. Your comments and good suggestions are very important for 16 

us to improve the quality of the manuscript. We have carefully addressed all the issues 17 

raised by you and the response is presented below. 18 

Introduction Section: The authors should provide a more comprehensive review of 19 

recent literature. This would help highlight the research gap and better articulate the 20 

novelty of the proposed method. 21 

Reply: Thank you for your valuable feedback. We fully agree with your 22 

suggestion and have revised the introduction section accordingly. Specifically, we have 23 

supplemented the review of data-driven SST prediction methods, incorporating relevant 24 

references to enhance the comprehensiveness of the literature review. You can find 25 

these revisions in the revised manuscript on pages 2-3 at lines 62-65, 80-83, and 91-94. 26 

Lines 62-65 in the revised manuscript on page 2: “Some data-driven models 27 

have been used, such as Markov models (Xue and Leetmaa, 2000), support vector 28 

regression(Imani et al., 2017), empirical canonical correlation analysis (Collins et al., 29 

2004; Tang et al., 2000), linear regression (Kug et al., 2004), empirical orthogonal 30 

functions (Neetu et al., 2011), and artificial neural networks (ANNs)(Azhary and 31 

Minaoui, 2025; Liu et al., 2024; Philippus et al., 2024).” 32 

Lines 80-83 in the revised manuscript on page 3: “Graph neural networks 33 

(GNNs) effectively capture local spatial correlations through adjacent-node 34 

aggregation. However, the prevalent overemphasis on neighborhood relationships and 35 

neglect of global connections in current models inevitably undermines SST prediction 36 



accuracy, particularly given the ocean’s interconnected nature where geographically 37 

distant sites exhibit correlated patterns (Dai et al., 2025; Liang et al., 2023).” 38 

Lines 91-94 in the revised manuscript on page 3: “Azhary and Minaoui (2025) 39 

proposed an encoder-decoder dual attention ConvLSTM model that leverages 40 

convolutional operations for spatial dependencies, LSTM for temporal sequences, and 41 

dual attention (contextual + spatial) to prioritize critical spatiotemporal features. The 42 

model achieves significant improvements in prediction accuracy and computational 43 

efficiency for Moroccan coastal SST forecasting compared to single-attention 44 

baselines.” 45 

Line 11: It is unclear what Figure 2(a) is intended to convey. Are the two panels 46 

representing the same spatial locations? What do the pixel distributions imply? Please 47 

elaborate in the figure caption and/or the main text. 48 

Reply: We thank the reviewer for this insightful observation. We have revised Fig. 49 

2’s caption and added explanatory text on page 5 in lines 156-161 to clarify: 50 

Fig. 2(a) displays co-occurrence networks generated from the predictor matrix for 51 

all pixels in Study Area I (the South China Sea). In these networks, nodes represent 52 

individual pixels, and edges between nodes indicate the correlation strength between 53 

corresponding pixels. Each color denotes a distinct module, where pixels within the 54 

same module share similar meteorological and oceanic conditions (e.g., comparable 55 

temperature gradients, current patterns, or atmospheric forcing). Building on the 56 

module patterns observed in Fig. 2(a), we can explicitly determine that Study Area I 57 

can be divided into two distinct subregions, corresponding to the two primary color-58 

coded modules in the co-occurrence networks. After identifying the specific spatial 59 

locations of each module—i.e., mapping the clustered pixels of each color to their 60 

geographical coordinates within the study area—we visualized these spatial 61 

distributions as separate subregions. This spatial mapping of the module-based 62 

partitions is presented in Fig. 2(b), where the two subregions are clearly delineated to 63 

show their respective geographical extents within the South China Sea. 64 



 65 

Revised manuscript: Fig.2 (a) Co-occurrence networks generated from the matrix of 66 

predictors for all pixels in study area I. (b) The study area I is divided into two sub-67 

regions, corresponding to the two color-coded modules in the co-occurrence networks. 68 

Line 87: This sentence should be revised to clearly articulate the research gap that the 69 

study addresses. 70 

Reply: Thanks for your valuable comment. We have modified it, which can be 71 

seen in lines 98-102 in the revised manuscript. 72 

Lines 98-102 in the revised manuscript on page 3: “Furthermore, actual SST 73 

variability is governed by complex interactions among multiple oceanic-atmospheric 74 

parameters. Prevailing data-driven SST forecasting approaches often treat SST as an 75 

isolated variable, focusing primarily on its temporal dynamics while neglecting critical 76 

cross-parameter couplings—particularly thermodynamic-dynamic interactions across 77 

spatiotemporal scales—which fundamentally limit prediction accuracy.” 78 

Line 94: Please define what constitutes "medium-term" and "long-term" predictions in 79 

this context. 80 

Reply: Thanks a lot for pointing these out. We are sorry for our unclear expression. 81 

We have modified it, which can be seen in lines 106-107 in the revised manuscript. 82 

Lines 106-107 in the revised manuscript on page 3: “Validation against 83 

observations and model comparisons across three heterogeneous sea areas demonstrate 84 

the method’s reliability for medium-term (1 month–10 years) and long-term (>10 years) 85 

SST forecasting.” 86 

Lines 121–124: The rationale for selecting specific predictor variables should be 87 

supported with references. It would also be helpful to visualize the mechanistic 88 

relationship between these variables and SST (e.g., via mechanism plots). Additionally, 89 

are "sea-air temperature difference", "relative humidity" and "wind speed" included as 90 

predictors? 91 



Reply: Thank you for your valuable comments regarding the predictor variables. 92 

The 13 predictor variables used in this study are as follows: total cloud cover (tcc), 93 

evaporation (e), 2m temperature (t2m), 10m u-component of wind (u10), 10m v-94 

component of wind (v10), 2m dewpoint temperature (d2m), mean sea level pressure 95 

(msl), total precipitation (tp), sea surface temperature (SST), sea skin temperature (skt), 96 

surface net solar radiation (ssr), surface latent heat flux (slhf), and surface sensible heat 97 

flux (sshf). Notably, “sea-air temperature difference” is not included as an independent 98 

predictor, but its related components (e.g., 2m temperature and sea surface temperature) 99 

are incorporated; “relative humidity” is not directly included, though 2m dewpoint 100 

temperature (d2m) serves as a relevant indicator of moisture conditions; “wind speed” 101 

is represented by its u (u10) and v (v10) components to capture wind direction and 102 

magnitude comprehensively. 103 

As for visualizing these mechanisms, we acknowledge the value of mechanism 104 

plots but note that the current manuscript already contains a substantial number of 105 

figures. Adding further plots might overly occupy page space and potentially disrupt 106 

the flow of information. Thus, we have supplemented relevant references in the revised 107 

manuscript to support the rationale for selecting these variables, clarifying their 108 

established links to SST variations (e.g., radiation-related variables influencing heat 109 

exchange, wind components affecting mixing processes). However, we appreciate this 110 

suggestion and note that in our ongoing work on the latest SSTA prediction article, we 111 

will adopt your recommendation to incorporate mechanism plots. The added references 112 

are as follows: 113 

Espinosa, Z. I. and Zelinka, M. D.: The Shortwave Cloud-SST Feedback Amplifies Multi-Decadal 114 

Pacific Sea Surface Temperature Trends: Implications for Observed Cooling, Geophysical 115 

Research Letters, 51, e2024GL111039, 10.1029/2024GL111039, 2024. 116 

Fu, S., Hu, S., Zheng, X.-T., McMonigal, K., Larson, S., and Tian, Y.: Historical changes in wind-117 

driven ocean circulation drive pattern of Pacific warming, Nature Communications, 15, 1562, 118 

10.1038/s41467-024-45677-2, 2024. 119 

Hsiao, W.-T., Hwang, Y.-T., Chen, Y.-J., and Kang, S. M.: The Role of Clouds in Shaping Tropical 120 

Pacific Response Pattern to Extratropical Thermal Forcing, Geophysical Research Letters, 49, 121 

e2022GL098023, 10.1029/2022GL098023, 2022. 122 

Roach, L. A., Mankoff, K. D., Romanou, A., Blanchard-Wrigglesworth, E., Haine, T. W. N., and 123 

Schmidt, G. A.: Winds and Meltwater Together Lead to Southern Ocean Surface Cooling and 124 

Sea Ice Expansion, Geophysical Research Letters, 50, e2023GL105948, 125 

10.1029/2023GL105948, 2023. 126 

Tuchen, F. P., Perez, R. C., Foltz, G. R., McPhaden, M. J., and Lumpkin, R.: Strengthening of the 127 

Equatorial Pacific Upper-Ocean Circulation Over the Past Three Decades, Journal of 128 

Geophysical Research: Oceans, 129, e2024JC021343, 10.1029/2024JC021343, 2024. 129 

Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C., and Battisti, D. S.: Systematic Climate 130 

Model Biases in the Large-Scale Patterns of Recent Sea-Surface Temperature and Sea-Level 131 

Pressure Change, Geophysical Research Letters, 49, e2022GL100011, 132 

10.1029/2022GL100011, 2022. 133 



Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T.: Global Warming Pattern 134 

Formation: Sea Surface Temperature and Rainfall, Journal of Climate, 23, 966-986, 135 

10.1175/2009JCLI3329.1, 2010. 136 

Line 123: Please clarify whether "SST" and "sst" refer to the same variable or different 137 

ones. 138 

Reply: Thank you for pointing out this potential ambiguity. We apologize for the 139 

inconsistency in notation. In the manuscript, “SST” and “sst” refer to the same variable: 140 

sea surface temperature. We have modified the notation to “SST” throughout the text 141 

and figure (Figs.3-4 in the revised manuscript) for consistency and clarity. 142 

Line 135: The description of region sub-grouping using a correlation coefficient matrix 143 

lacks temporal detail. What time period is used for calculating the matrix? Do the 144 

identified subregions change over different years? 145 

Reply: Sincere thanks for the valuable comment. The correlation coefficient 146 

matrix was calculated using the complete temporal span of our study period (1850–147 

2021), as explicitly stated in revised Section 2.1 (Lines 149–152): 148 

Lines 149-152 in the revised manuscript on page 5: “Therefore, by quantifying 149 

the similarity between the pixels within the study area using data from the entire study 150 

period, the study area was divided into different sub-regions, and different parameters 151 

were selected for each sub-region as predictors for SST prediction.”  152 

Line 137: What is the spatial resolution of the individual pixels? 153 

Reply: Thank you for your thoughtful comment. The spatial resolution of the 154 

pixels is 0.25°. We have further elaborated on the spatial resolution of the data in 155 

Section 3.1 of the revised manuscript for clarity. 156 

Line 171: Regarding Fig. 3, it is evident that when four variables are selected, the 157 

prediction accuracy nearly reaches its maximum and stabilizes. Including eight or nine 158 

variables might lead to overfitting and increased model complexity. The authors should 159 

discuss this tradeoff more explicitly. 160 

Reply: Thanks for your good suggestion. While four variables do yield high 161 

accuracy, our analysis of regional specificity revealed that the SST dynamics in regions 162 

1 and 2 are driven by distinct, context-dependent interactions between meteorological 163 

and oceanic factors. For instance, region 1 exhibits stronger coupling between surface 164 

heat fluxes (sshf) and precipitation (tp), while region 2 is more sensitive to latent heat 165 

flux (slhf) and evaporation (e). These nuanced relationships, though not the top four 166 

most "globally" important variables, contribute to capturing region-specific variability 167 

that might be missed with only four predictors—especially in extreme or transitional 168 

conditions (e.g., monsoon-driven SST fluctuations in the South China Sea). Thus, we 169 

compared the outcomes derived from the co-occurrence network and the random forest 170 

analysis. The common variables identified will then be utilized as predictor variables 171 

in regional models aimed at predicting SST. We have elaborated on this tradeoff in the 172 



revised manuscript, clarifying our rationale for selecting eight variables for region 1 173 

and nine for region 2 (Lines 175–188). 174 

Lines 175-188 in the revised manuscript on pages 6-7: “Fig. 3 shows the 175 

importance ranking of the 13 predictors in regions 1 and 2 based on the random forest 176 

algorithm and the prediction errors using different numbers of predictor variables after 177 

ranking by importance. The prediction accuracy of the model increases and then 178 

decreases as the number of input predictors increases, both for region 1 and region 2. 179 

While the random forest results indicate that using just four variables as input can 180 

already yield high accuracy, our co-occurrence network analysis revealed that the SST 181 

dynamics in regions 1 and 2 are driven by distinct, context-dependent interactions 182 

between meteorological and oceanic factors. For instance, region 1 exhibits stronger 183 

coupling between sshf and tp, while region 2 is more sensitive to slhf and e. These 184 

nuanced relationships, though not the top four most “globally” important variables, 185 

contribute to capturing region-specific variability that might be missed with only four 186 

predictors—especially in extreme or transitional conditions. Thus, for region 1, the 187 

model has a high accuracy of prediction when eight variables are selected: SST, skt, 188 

t2m, sshf, msl, u10, tp and ssr. For region 2, the model has a high accuracy of prediction 189 

when nine variables are selected: SST, skt, t2m, slhf, e, u10, v10, sshf and d2m. 190 

Following this, a comparison will be made between the outcomes derived from the co-191 

occurrence network and the random forest analysis. The common variables identified 192 

will then be utilized as predictor variables in regional models aimed at predicting SST.”  193 

Line 190: Please explain on how the parameters 𝜃𝑗 and ∅j are determined. 194 

Reply: Thank you for your guidance. The parameters  𝜃𝑗 and ∅𝑗  were estimated 195 

from all available temporal data (1850–2021). Now, we have modified it, which can be 196 

seen in lines 208-209 in the revised manuscript. 197 

Line 192: The authors could explain why this type of templates was chosen. It would 198 

also be helpful to discuss how this type of specific templates contributes to 199 

approximating the information granules. Could other types of templates also be used? 200 

If so, why were they not selected? 201 

Reply: Thank you for the valuable comment. The selection of quarter-circle 202 

sinusoids was driven by three key considerations tied to the characteristics of the target 203 

variables and the nature of the information granules: 204 

Alignment with natural variability of oceanic/meteorological variables: Oceanic 205 

and meteorological time series (e.g., SST fluctuations) often exhibit smooth, non-abrupt 206 

trends with inherent periodicity (seasonal cycles). Quarter-circle sinusoids, by virtue of 207 

their continuous curvature and smooth transitions, naturally mirror these gradual, 208 

nonlinear dynamics—unlike rigid linear segments or discontinuous functions, which 209 

would fail to capture the subtlety of real-world variability (e.g., the slow 210 

warming/cooling phases of SST driven by solar radiation or ocean currents). 211 

Flexibility in capturing local trend features: Information granules are defined by 212 

their monotonicity (increasing/decreasing) and concavity-convexity 213 

(upward/downward curvature), which reflect short-term (local) trend segments. A 214 



quarter-circle sinusoid, when stretched horizontally (to adjust duration) or vertically (to 215 

adjust amplitude), can flexibly approximate any combination of these local features: for 216 

example, a “concave-up increasing” granule (common in early-stage seasonal warming) 217 

or a “convex-down decreasing” granule (seen in late-stage cooling). This versatility 218 

stems from the template’s fixed curvature direction within a quarter-period, making it 219 

a modular building block for diverse local trends. 220 

Mathematical tractability: Compared to more complex templates (e.g., exponential 221 

curves, polynomial segments), quarter-circle sinusoids have a simple parametric form, 222 

which simplifies the calculation of derived features (e.g., curvature (C), and fluctuation 223 

(F)) and reduces computational overhead during template matching. This efficiency is 224 

critical when processing large-scale spatiotemporal data. In summary, quarter-circle 225 

sinusoids were chosen for their ability to balance flexibility, mathematical simplicity, 226 

and alignment with the physical nature of the variables studied. Thank you.  227 

Line 196: What is SKT? Is it the same as "skt" mentioned elsewhere? Consistency in 228 

terminology is needed. 229 

Reply: Thank you for your valuable suggestion. “SKT” and “skt” refer to the same 230 

variable, i.e., sea skin temperature. We have modified the notation to “skt” throughout 231 

the text and figure for consistency and clarity. 232 

Lines 215–216: Should the variable "i" be replaced with "t"? Please check for 233 

consistency in notation. 234 

Reply: Thank you for your guidance. We have carefully checked the relevant 235 

sections and confirm that “i” in these lines should indeed be replaced with “t” to align 236 

with the consistent notation used throughout the manuscript for temporal indices. We 237 

apologize for the oversight. In the revised manuscript, we have corrected “i” to “t” in 238 

Lines 234–235 and conducted a full review of the entire text to ensure uniform use of 239 

notation for temporal variables, thereby enhancing clarity and consistency. 240 

Line 217: Are 𝑚𝑡 and 𝑚𝑡−1 correctly written? Please verify and ensure consistent use 241 

of subscripts throughout the section. 242 

Reply: Thank you for the valuable comment. We have revised the relevant 243 

notation to ensure accuracy and consistency. The modifications can be found in Lines 244 

236–237 of the revised manuscript, where we have clarified the subscript conventions 245 

for 𝑚𝑡 and 𝑚𝑡−1 to align with the overall notation framework of the section. 246 

Lines 346–350: Consider summarizing the three types of inputs into a table for clearer 247 

comparison and explanation. 248 

Reply: Thank you for your constructive suggestion to summarize the three types 249 

of inputs in a table for clearer comparison. We fully agree that tabular presentation can 250 

enhance readability and have carefully considered this approach. Following your advice, 251 

we attempted to construct a table to organize the input types. However, due to the 252 

complexity of our experimental design, the table structure became overly large and 253 

cumbersome: our study includes 3 main study areas, which are further divided into 7 254 



sub-regions, and each sub-region involves 3 sets of comparative experiments. This 255 

resulted in a table with 22 rows (covering all sub-regions and experiments) and 4 256 

columns (including the three input types and relevant annotations). Additionally, the 257 

input indicators for each column, which consist of multiple variables and feature 258 

descriptors, would require excessive width to present clearly. Such a large table would 259 

occupy an inordinate amount of page space and potentially disrupt the flow of the 260 

manuscript, making it less reader-friendly. Therefore, we retained the original textual 261 

description. We appreciate your understanding. 262 

Lines 375–377: These lines could be deleted, as the same information is already 263 

presented in the figure caption. 264 

Reply: Done as suggested, thanks. 265 

Figure 11: The color scales used for temperature in different panels are inconsistent, 266 

even within the same time period for predicted and observed values. This limits direct 267 

visual comparison across columns 1 and 2. A consistent colormap should be used. 268 

Reply: Done as suggested, thanks. To aid your review, the revised figures are also 269 

provided below. 270 



 271 



 272 



 273 

Revised manuscript: Fig.11 The predicted SSTs (first column), observed SSTs (second 274 

column), and spatial distribution (third column) and statistics (fourth column) of 275 

prediction errors for study area I in 2009 276 

Line 416: What is the rationale for comparing results between 2020 and 2021 277 

specifically? Clarifying this would help contextualize the results. 278 

Reply: Thank you for the valuable comment. This is a valuable point, and we 279 

appreciate the opportunity to clarify. In our 10-year prediction period (2012–2021), 280 



2021 showed the lowest prediction accuracy, while 2020 ranked second-lowest in 281 

accuracy. Due to space constraints, we were unable to present all 120 months of 282 

prediction results. By showcasing these two years with relatively lower accuracy, we 283 

aim to demonstrate that even in less optimal scenarios, the model maintains reliable 284 

performance, thereby supporting the robustness of predictions for other years with 285 

higher accuracy. The modifications can be found in Lines 429–433 of the revised 286 

manuscript. 287 

Line 477: The expression "-0.7–0.7K" is confusing. 288 

Reply: Thanks a lot for pointing these out. We have revised this part to clarify the 289 

range of differences, which can be seen in Line 501 of the revised manuscript 290 

Line 486: I guess the word ‘aperiodic’ should be deleted, right? 291 

Reply: Thank you for your guidance. We agree with your observation and have 292 

deleted the word “aperiodic” from the revised manuscript. 293 

Additional remark: 294 

Lines 519-520 in the revised manuscript: “The authors are grateful to three 295 

reviewers and the editor for their constructive comments and suggestions on this paper.” 296 

has been added to Acknowledgments. 297 

 298 

Special thanks are extended to you for your valuable comments. 299 

 300 

We have tried our best to improve the manuscript and made substantial changes to the 301 

manuscript to correct certain shortcomings. 302 

 303 

We greatly appreciate your help and hope that the corrections will meet with approval. 304 

 305 

Once again, we would like to extend our sincere gratitude and appreciation for the 306 

valuable comments and suggestions. 307 


