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Egusphere-2025-2367 (Editor: Christoph Gerbig) 

Response to Reviewer 1 

 

The authors thank the reviewer 1 for a thoughtful review of the manuscript. Considering the 
reviewer’s points, we have made the necessary changes. The responses for the reviewer’s 
specific comments are as follows. 

 

General comments:  

The authors present observation system simulation experiments of regional CO2 concentration 
data assimilation and analyze the impact of different station networks on the forecast quality. 
The work provides interesting insights for high-resolution, regional CO2 forecasting based on 
in-situ observations. These insights deserve publication. 
However, the discussion of the results should be extended with the aim of understanding the 
implications for other setups and possibly for forecasts with real observations. I do not expect 
a long discussion of OSSE in general, and I do see that the authors discuss and evaluate some 
important aspects of their setup, e.g., using the rank histograms. But I miss an overall 
discussion which aspects of the setup the authors deem crucial for the interpretability and 
transferability of the results. Just to provide an example, the construction of the true state in 
the OSSE might be a relevant aspect (see my comments concerning line 233). Ideally, I would 
expect a concise discussion of these aspects in the conclusions section. 
The setup is in general well-structured and well explained, aside from a few remaining 
questions listed in the specific comments. The presentation of the results is well understandable, 
but parts of the results could be presented more concisely (see my comment concerning lines 
468–484). 

Authors’ response: The authors thank the reviewer 1 for a thoughtful review of the 
manuscript. As the reviewer denoted, the experimental design of the observing system 
simulation experiment (OSSE) is important for the interpretability and transferability of 
our results and possibly for forecasts with real observations. To this end, realistic 
differences between the true state and the data assimilation (DA) experiments were ensured 
by using different CO2 emission input data. 

For the anthropogenic and oceanic CO2, different emission datasets were used for the true 
state and the DA experiments. For the biogenic CO2, while the Vegetation Photosynthesis 
and Respiration Model (VPRM) was used in true state and DA experiments, different 
parameter tables in VPRM were used to calculate biogenic fluxes, which creates 
considerable differences. We expect that this experimental design allows the pseudo CO2 
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observations extracted from the true state to operate similarly to real observations. More 
detailed discussions are shown in the authors’ response to specific comments 3. 

Regarding the suggestion to present parts of the results section more concisely, please refer 
to the authors’ response to specific comments 9. 

 

Specific comments:  

1. line 139, beginning of section 2.3.2 In section 2.3.1, the authors define the self-sensitivity, 
which is defined in observation space. In section 2.3.2, a similar vector notation as for the 
observation space is used for the state space. A brief comment on the structure of the state 
vectors (𝒙𝒙𝑓𝑓 and 𝒙𝒙𝑡𝑡) could guide the reader to immediately see this difference. 

Authors’ response: As the reviewer denoted, the self-sensitivity in section 2.3.1 was 
calculated using state vectors in the observation space (i.e., 𝐇𝐇𝐇𝐇𝑎𝑎 : analysis ensemble 
perturbation in the observation space), whereas the observation impact in section 2.3.2 was 
calculated using state vectors in model space (i.e., 𝐱𝐱𝑓𝑓 and 𝐱𝐱𝑡𝑡) . To clarify this difference, 
we have revised the text as follows. The revised parts are underlined. 

Line 188-191 in the revised manuscript: “Forecast error is calculated as follows: 

𝑒𝑒 =  (𝐱𝐱𝑓𝑓 − 𝐱𝐱𝑡𝑡)𝐓𝐓𝐂𝐂(𝐱𝐱𝑓𝑓 − 𝐱𝐱𝑡𝑡),           (8) 

where 𝐱𝐱𝑓𝑓 is the forecast, 𝐱𝐱𝑡𝑡 is the true state, and 𝐂𝐂 is the positive definite matrix that 
defines the norm. 𝐱𝐱𝑓𝑓 and 𝐱𝐱𝑡𝑡 are state vectors in the model space.” 

 

2. line 155 Eq. (13) The definition of δ𝐲𝐲o is missing. I assume that 𝛿𝛿𝐲𝐲𝑜𝑜 = 𝐲𝐲 − 𝐇𝐇𝐱𝐱�𝑏𝑏. 

Authors’ response: We have added the definition of 𝛿𝛿𝐲𝐲𝑜𝑜  in the revised manuscript as 
follows. The added parts are underlined.  

Line 203-206 in the revised manuscript: “where 𝐌𝐌  is the tangent linear model of the 
nonlinear NWP model, 𝐗𝐗𝑎𝑎 is the ensemble perturbation of analysis, 𝐗𝐗𝑎𝑎

𝑓𝑓 is the ensemble 
perturbation of forecast integrated from the analysis, 𝐘𝐘𝑎𝑎 is the ensemble perturbation of 
analysis in observation space, satisfying the relationship of 𝐘𝐘𝑎𝑎 ≈ 𝐇𝐇𝐗𝐗𝑎𝑎  (Note Eq. (6)). 
𝛿𝛿𝐲𝐲𝑜𝑜 is the observational increment compare to the first guess, satisfying the relationship 
of 𝛿𝛿𝐲𝐲𝑜𝑜 = 𝐲𝐲 − 𝐇𝐇𝐱𝐱�𝑏𝑏.”  

 

3. line 233, emissions in OSSE The choice of emissions for the OSSE true state and for the DA 
experiments is mentioned in sections 2.4.1 and 2.4.2. This choice is important to obtain 
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meaningful results, as indicated by the authors when mentioning the identical twin problem 
(line 234). My impression is that the comparison of the emissions chosen for generating the 
true state and those use for the DA experiment deserves more attention.  
The importance of the choice of emissions is illustrated by the following interpretation of the 
results: The simulation of the true state and the four DA experiments used VPRM and will 
therefore show very similar (or identical?) biogenic fluxes. The authors find that observation 
sites in regions with strong biogenic fluxes greatly reduce forecast errors (line 543). Is this 
because the fluxes in these regions were close to the true fluxes by construction? Or do the 
authors expect a similar improvement in an experiment with real observations?  
I suggest to state explicitly how the emissions in the true state and in the DA experiments differ. 
If the authors agree on the relevance of this choice of emissions for the results, this aspect 
should be mentioned when presenting or discussing the results. (see also my general comments 
above) 

Authors’ response: In this study, to avoid the identical twin problem, different emission 
data were used for true state and DA experiments (Table_rev1_1). In VPRM simulations 
of biogenic CO2 in WRF-Chem, empirical parameters α , β , γ , and 𝑃𝑃𝑃𝑃𝑃𝑃0  should be 
optimized for each land use type in the experimental region (Hilton et al. 2013). Although 
VPRM module was used to simulate biogenic CO2 fluxes in true state and DA experiments, 
four parameters (α , β , γ , and 𝑃𝑃𝑃𝑃𝑃𝑃0 ) in VPRM were different in true state and DA 
experiments, which provides sufficient differences in the biogenic CO2 concentrations in 
true state and DA experiments. In this study, based on Seo et al. (2024), which analyzed 
the effect of VPRM parameters on CO2 simulations over East Asia, the US parameter table 
and Li parameter table (Li et al. 2020) were used for true state and DA experiments, 
respectively.  

 

Table_rev1_1. Description of emission data used in each experiment. 

Experiments 
Emission input 

DA 
Anthropogenic Biogenic Oceanic 

True state Average of CT2022 
and ODIAC 

VPRM 
* US table CT2022 X 

DA experiments 
(EXP1, EXP2, 

EXP3, and EXP4) 
ODIAC 

VPRM 
* Li table 

JMA ocean 
map O 

 

Figure_rev1_1 shows the distributions of anthropogenic and biogenic CO2 concentrations 
simulated in true state and DA experiments, along with the spatial distribution of absolute 
relative differences of DA experiments from the true state. The distribution in DA 
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experiments is the average distribution of four DA experiments. The average difference in 
anthropogenic CO2 concentrations between true state and DA experiments is 2.7%, and 
that of biogenic CO2 concentrations is 2.2%, indicating that the biogenic CO2 
concentrations in true state and DA experiments are not identical and differ similar 
magnitudes as the anthropogenic CO2 concentrations.  

Therefore, the substantial reduction in forecast errors at observation sites located in regions 
with strong biogenic fluxes is not due to the biogenic fluxes being identical between the 
true state and the DA experiments.  

 

 

Figure_rev1_1. Distribution of average anthropogenic CO2 concentrations (ppm) in (a) 
true state and (b) four DA experiments, and average biogenic CO2 concentrations (ppm) in 
(d) true state and (e) four DA experiments. Absolute relative difference (%) distribution 
between DA experiments and true state based on true state for (c) anthropogenic and (f) 
biogenic CO2 concentrations. 

 

In addition, if the biogenic flux is identical in true state and DA experiments, then the 
regions with large biogenic flux will appear similarly in both true state and DA experiments, 
and the differences between the two will be small. When data assimilation is done in 
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regions where the absolute magnitude of the flux is large with small differences in two 
types of experiments (i.e., true state and DA experiments), it is difficult to significantly 
reduce the forecast error in those regions, because the forecast error—defined as the 
difference between the true state and DA experiments—was small. In this study, data 
assimilation reduced forecast errors greatly in regions with strong biogenic fluxes, which 
implies that the flux differences in those regions are large and that the modules used to 
calculate the biogenic fluxes in two experiments (i.e., true state and DA experiments) were 
different in those regions. 

To clarify the differences in the VPRM parameter tables used in each experiment, we have 
revised the text as follows. The revised parts are underlined. 

Line 286-294 in the revised manuscript: “The emission data used in the four experiments 
differed from those used to simulate the true state. This is to avoid the identical twin 
problem that can occur in the OSSE by setting the experimental design of the true state and 
four experiments sufficiently different (Masutani et al., 2010; Shu et al., 2023; Kim et al., 
2022). In the four experiments, ODIAC v2020b (Oda and Maksyutov, 2015) was used for 
anthropogenic emission, the Japan Meteorological Agency (JMA) ocean map (Iida et al., 
2021; Takatani et al., 2014) was used for oceanic emission, and VPRM was used for 
biogenic emission. To ensure sufficient differences between the biogenic CO2 in the true 
state and in the four experiments, different VPRM parameter tables were used: the US table 
for the true state and the Li table (Li et al., 2020) for the four experiments. Seo et al. (2024a) 
showed that biogenic CO2 fluxes in East Asia vary considerably depending on the VPRM 
parameter tables used, and the parameter values for the US and Li tables are described in 
detail in Seo et al. (2024a).” 

 

4. [line 191] The authors write: “The CO2 variability of the true state in this study was included 
in the CO2 variabilities of CT2022 and the Copernicus Atmosphere Monitoring Service 
(CAMS), …” It is not clear to me how CAMS is used and how the variabilities of CT2022 are 
considered to create a reasonable deviation of the DA experiments from the true state. 

Authors’ response: In the OSSE framework, the nature run (NR) is assumed to be the true 
state and should reasonably reflect the variability of real atmospheric states (Yang et al., 
2014). Accordingly, the CO2 concentrations in the true state should reflect the variability 
of real atmospheric CO2 concentrations.  

Seo and Kim (2025) employed the same true state (i.e., NR) as in this study and examined 
whether CO2 concentrations in the NR appropriately represent the variability of real 
atmospheric CO2 concentrations. For this purpose, the variability of CO2 concentrations in 
the NR was compared with that in CarbonTracker 2022 (CT2022) and the Copernicus 
Atmosphere Monitoring Service (CAMS), which are widely used CO2 reanalysis datasets. 
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The mean and standard deviation of CO2 concentrations in the NR fell within the variability 
range represented by the standard deviations of CT2022 and CAMS (Figure 2 in Seo and 
Kim (2025)). This implies that the CO2 concentrations in the NR reasonably reflect the 
variability of real atmospheric CO2 concentrations. 

To clarify, we have revised the text as follows. The revised parts are underlined. 

Line 242-246 in the revised manuscript: “In OSSE, the true state must not deviate from the 
real natural variability (Masutani et al., 2010). The mean and standard deviation of CO2 
concentrations in the true state of this study fell within the variability range represented by 
the standard deviations of CT2022 and the Copernicus Atmosphere Monitoring Service 
(CAMS), which are widely used CO2 reanalysis datasets (see Fig. 2 in Seo and Kim (2025)). 
This indicates that the CO2 concentrations in the true state reasonably reflect the variability 
of real atmospheric CO2 concentrations.” 

 

 

Figure 2 in Seo and Kim (2025). Mean (black line) and standard deviation (black bar) of 
surface CO2 concentrations in the nature run (NR); mean (red line) and standard deviation 
(red shading) of surface CO2 concentrations in the CT2022: (a) January 2019 and (c) July 
2019. Mean (black line) and standard deviation (black bar) of surface CO2 concentrations 
in the NR; mean (blue shading) of surface CO2 concentrations in the Copernicus 
atmosphere monitoring service (CAMS): (b) January 2019 and (d) July 2019.  
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5. [line 256] The authors list the meteorological and chemical initial and lateral boundary 
conditions for the experiments without distinguishing between the single forecast run for the 
true state and the ensemble forecast for the DA experiments. Were the lateral boundary 
conditions identical for all model runs? If yes, do the authors expect an underestimated 
deviation from the true state at the lateral boundaries that could influences the results?  

How did the authors make sure that the spread of the meteorological ensemble remains 
approximately constant? Was an initial condition update cycling or similar technique used? 

Authors’ response: We addressed the three types of the reviewer’s questions as follows. 

1) Lateral boundary conditions for the experiments 

In all experiments (the true state and four DA experiments), final analysis (FNL) was 
used as the meteorological lateral boundary condition, and CT2022 was used as the 
chemical lateral boundary condition. The purpose of this study is to investigate the effect 
of assimilating CO2 observations on analysis and forecast of CO2 concentrations. If the 
types of lateral boundary conditions are different for the true state and the DA 
experiments, the effect of assimilating CO2 observations (i.e., observation impact) was 
conflated with the effect of using different lateral boundary conditions, making it difficult 
to investigate the pure observation impact on analysis and forecast of CO2 concentrations.  

According to Kim and Kim (2021), which analyzed the effect of lateral boundary 
conditions on the observation impact in a regional model (i.e., WRF), the greater the 
influence of lateral boundary conditions on the forecast error, the smaller the observation 
impact. Therefore, in this study, the types (i.e., FNL and CT 2022) of lateral boundary 
conditions were identical in all experiments to clearly analyze the effect of the 
assimilated CO2 observations. 

Although the types (i.e., FNL and CT 2022) of lateral boundary conditions were identical 
in all experiments, we did use perturbed lateral boundary conditions for ensemble 
forecasts in DA experiments, which is different from the single forecast run for true state 
using a single unperturbed lateral boundary condition. When performing the 20 members 
of ensemble forecasts, 20 different perturbations in boundary conditions were applied on 
20 runs using pert_wrf_bc and update_wrf_bc program from the Data Assimilation 
Research Testbed (DART) to prevent a decrease in the ensemble spread. 

We have revised the text as follows. The revised parts are underlined. 

Line 155-157 in the revised manuscript: “Initial perturbations of the chemical variables 
(i.e., CO2 concentrations) were produced using the method presented in Yumimoto (2013) 
and Miao (2014). The lateral boundary conditions for the 20 ensemble members were 
perturbed using the pert_wrf_bc and update_wrf_bc program in DART.” 
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2) The spread of the meteorological ensembles 

To appropriately maintain the ensemble spread of both meteorological variables and CO2 
concentrations throughout the entire experimental period, four methods were used: (a) 
initial perturbations, (b) perturbations in boundary conditions, (c) inflation, and (d) multi 
physics options.  

a) Initial perturbations were applied not only to chemical variables (i.e., CO2) but also 
meteorological variables for the 20 ensemble members. For the meteorological 
variables, perturbations were randomly selected from 150 perturbation banks 
generated based on be.dat.cv3 in the Weather Research Forecasting model data 
assimilation system (WRFDA).  

b) The lateral boundary conditions for 20 ensemble members were perturbed using the 
pert_wrf_bc and update_wrf_bc program in DART.  

c) Both prior and posterior inflation were applied to meteorological variables and CO2 
concentrations.  

d) The multi physics options, which were used to maintain the ensemble spread, 
influenced the spread of the meteorological variables in each ensemble member by 
applying different combinations of microphysics, cumulus, and planetary boundary 
layer schemes. 

Above information was already described in Section 2.2. In addition, we calculated the 
ensemble standard deviation for meteorological variables. The ensemble standard 
deviation for 10 m U, 10 m V, and 2 m temperature remained stable throughout the 
experimental period (Figure_rev1_2).  

To clarify that the spread of the meteorological variables was consistently maintained 
throughout the experimental period, we have added a text to the manuscript. The added 
parts are underlined. 

Line 161-166 in the revised manuscript: “The multiplicative inflation of the RTPS was 
set to 1.0, which was found to be the most appropriate in sensitivity tests. To maintain 
ensemble spread, multi physics options were also applied for microphysics, cumulus, and 
planetary boundary layer schemes when conducting ensemble forecasts. The physical 
parameterization schemes used for the ensemble forecasts are listed in Table 1. Through 
initial perturbations, boundary condition perturbations, inflation, and multi physics 
schemes, the ensemble spreads of CO2 concentrations and meteorological variables were 
properly maintained throughout the experimental period.”  

3) Initial condition update cycling 
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Data assimilation cycles updating initial conditions were used in this study. A cycling 
run was performed at 6-hour intervals, where the analysis generated from the data 
assimilation was used as the initial condition for the subsequent forecast cycle. To clarify, 
we have revised the text as follows. The revised parts are underlined. 

Line 146-150 in the revised manuscript: “The experimental settings for assimilating the 
surface CO2 concentration using EAKF were as follows: As diurnal cycle of CO2 
concentration due to vegetation activities was clear, the assimilation window was ± 1 h 
and DA cycling was conducted at 6-h intervals. In previous studies that optimized CO2 
concentrations and carbon fluxes by assimilating CO2 concentration observations, the 
cycling interval was 6 h or 24 h (Kang et al., 2011, 2012; Zhang et al., 2021; Liu et al., 
2019; Liu et al., 2022).” 

 

 

Figure_rev1_2. Time series of ensemble standard deviation of (a) 10 m U [m s-1], (b) 
10 m V [m s-1], and (c) 2 m temperature [K], averaged over the four DA experiments. 

 

6. [line 354 (minor comment)] The authors provide many values with the unit 104 ppm2, to be 
interpreted as the sum of squared errors in all grid cells. A (very) brief guidance on how to 
interpret these numbers could possibly help the reader in section 3.3.1 and in Table 5. 

Authors’ response: As the reviewer indicated, ea, eb, and nonlinear error forecast reduction 
(NER) in Section 3.3.1 were calculated as the sum of squared errors in all grid points. 
Previously, the NER unit was stated as 105 J kg-1 in Kim and Kim (2024) which 
investigated the effect of observations on meteorological forecast errors in the Arctic.  
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Table_rev1_2 shows the reference eref value which is calculated assuming uniform forecast 
errors of “X” ppm occur across the entire grid. For instance, if there is an error of 1 ppm 
for all grids, the eref would be 12.42 x 104 ppm2; for 5 ppm error, the eref would be 310.38 
x 104 ppm2. These reference values are useful for interpreting the magnitudes of ea, eb, and 
NER in Table 5. 

As the reviewer suggested, we have added the following text under Table 5 in the revised 
manuscript: “Note: For reference, if a uniform forecast error of 1 ppm is assumed for all 
grid points, then the corresponding forecast error value is 12.42 x 104 ppm2.” 

 

Table_rev1_2. Reference forecast error (eref) values corresponding to assumed uniform 
forecast errors of “X” ppm across all grid points. 

Assumed uniform forecast error (ppm) Reference forecast error (eref) 

1 ppm 12.42 x 104 ppm2 

2 ppm 49.66 x 104 ppm2 

3 ppm 111.74 x 104 ppm2 

4 ppm 198.64 x 104 ppm2 

5 ppm 310.38 x 104 ppm2 
 

7. [lines 354 and 361 (minor comment)] The authors provide many numbers and even lists of 
numbers in the text. I do not want to criticize what is a matter of style, but instead of reading 
lists of 8 numbers as in lines 354 and 361, I personally prefer the structure of a table. The 
paper contains many tables already and some of the numbers provided in the text could be 
included in the existing tables, e.g., by including averages in Table 5. 

Authors’ response: Following the reviewer’s suggestion, we have moved the average 
values that were listed in the original manuscript into Table 5 and deleted the corresponding 
sentences. In addition to Table 5, we also added the average values for each experiment to 
Tables 4 and 6. The deleted parts are as follows.  

Line 395-397 in the revised manuscript: “In all experiments and forecast times, 𝑒𝑒𝑎𝑎 was 
smaller than 𝑒𝑒𝑏𝑏 , which implied that the forecast error of the CO2 concentration was 
reduced with DA of surface CO2 observations (Figs. 7a and b). The average 𝑒𝑒𝑏𝑏 (𝑒𝑒𝑎𝑎) for 
all forecast times was 184.60 (154.04) × 104, 192.64 (159.61) × 104, 191.16 (159.83) × 104, 
and 188.27 (154.54) × 104 ppm2 for EXP1, EXP2, EXP3, and EXP4, respectively (Table 
5). The forecast error was reduced by an average of 17.0% by assimilating the surface CO2 
observations.” 
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Line 401-402 in the revised manuscript: “Assimilating evenly distributed surface CO2 
observations reduced forecast errors in EXP1 and EXP4. The average 𝑒𝑒𝑏𝑏  (𝑒𝑒𝑎𝑎 ) for all 
experiments was 37.68 (8.20) × 104, 92.95 (67.80) × 104, 295.62 (252.79) × 104, and 330.42 
(299.23) × 104 ppm2 for 6 h, 12 h, 18 h, 24 h forecasts, respectively (Table 5). The forecast 
errors with and without DA in all experiments increased as the forecast time increased from 
6 to 24 h (Figs. 7a and b).” 

 

8. [lines 424 to 484 (minor comment)] Section 3.3.3 mainly discusses three separate aspects: 
The correlation of EFSO with self-sensitivity and CO2 concentration variability; the impact of 
vegetation types around the observation sites; and the fraction of beneficial observations. For 
the reader it might be easier to follow if section 3.3.3 is split into two or even three parts (e.g. 
start a new section 3.3.4 on line 468 for the fraction of beneficial observations). 

Authors’ response: Following the reviewer’s suggestion, Section 3.3.3 has been split into 
two parts: Section 3.3.3. Ensemble forecast sensitivity to observation and Section 3.3.4. 
Fraction of beneficial observations. 

 

9. [lines 468 to 484 (minor comment)] This paragraph could be written more concisely. For 
example, the following sentences seem redundant: “The average fractions of beneficial 
observations … were 68.9% and 66.3% … On average, more than half of the observations 
contributed to reducing the forecast errors. … Therefore, on average, more than half of the 
assimilated surface CO2 observations in the four experiments contributed to the reduction of 
forecast errors.” 

In general, the presentation of the results is clear and understandable. But as the example 
shows, it could be more concise in a few paragraphs. 

Authors’ response: Following the reviewer’s suggestion, we have revised the paragraph 
to remove redundant sentences. The deleted parts are denoted. 

Line 531-532 in the revised manuscript: “The average fractions of beneficial observations 
for the four experiments were 68.9% and 66.3% for the 6 h and 12h forecast, respectively. 
On average, more than half of the observations contributed to reducing the forecast errors.” 

 

Technical corrections:  

1. [line 104] Eq. (4) I do not understand how Eq. (4) leads to 𝐴𝐴⊤ in Eq. (3) (instead of just 𝐴𝐴). 

Authors’ response: The ensemble adjustment Kalman filter (EAKF) equations in Section 
2.2 are referred from Anderson (2001), which first introduced the EAKF method. The 
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EAKF in Data Assimilation Research Testbed (DART) system used in this study was 
developed based on the formulations in Anderson (2001, 2003).  

Anderson (2001) addressed the limitations of the traditional Ensemble Kalman Filter 
(EnKF), particularly the spurious sampling noise introduced by perturbing observations. 
To overcome this, he proposed the Ensemble Adjustment Kalman Filter (EAKF), a novel 
approach that adjusts the ensemble deterministically. In the EAKF, ensemble perturbations 
are first projected onto the observation space, rescaled according to the Kalman update, 
and then mapped back to the model state space. This approach eliminates the need for 
stochastic perturbations of observations, reduces sampling noise, and provides more 
accurate analysis estimates, especially for small ensemble sizes. 

Anderson (2001) used AT, while Anderson (2003) used A in Eq. (3), which implies that 
the choice between A and AT is not essential. In practice, Eq. (3) is implemented in a scalar 
formulation, as shown in Anderson (2003). Many EAKF studies have used A and AT 
interchangeably, and as noted above, they are equivalent in practical coding.  

We have revised the text as follows. The revised parts are underlined. 

Line 142-144 in the revised manuscript: “𝐀𝐀 in Eq. (3) satisfies the relationship given in 
Eq. (4). Using Eq. (4), 𝐏𝐏𝑎𝑎 is adjusted to match the theoretical analysis error covariance in 
Eq. (2). More detailed formulations of the EAKF can be found in Anderson (2001).” 

 

2. [Fig. 1] The figure is very illustrative, but on the horizontal axis, the label “t h” seems odd 
to me since 𝑡𝑡 is usually considered a value including a unit. 

Authors’ response: Following the reviewer’s suggestion, we have revised the Fig. 1 
accordingly. 

 

3. [line 284] I was confused by the word “multiple”, which is meant here in the sense of “too 
many”. 

Authors’ response: Following the reviewer’s suggestion, we have revised the text as 
follows. The revised parts are underlined. 

Line 321-322 in the revised manuscript: “When an observation error is not considered, a 
large number of observations can be counted in the first and last ranks.” 

 

4. [line 381] “forecast reduction” should probably be “forecast error reduction”. 
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Authors’ response: We have revised the text. The revised parts are underlined. 

Line 418-420 in the revised manuscript: “The impact of the surface CO2 observations 
added in EXP3 was large in the analysis (Fig. 5c), whereas it was relatively small in 
forecast error reduction.” 

 

5. [line 481] Sites “A1, A4” should probably be “V1, V4”. 

Authors’ response: We have corrected the typo. The revised parts are underlined. 

Line 538-540 in the revised manuscript: “More than half of the observations at Sites V1, 
V4, and R14 did not contribute to reducing forecast errors for the 12-h forecast, whereas 
the average EFSO impact of Sites V1, V4, and R14 negatively contributed to reducing the 
forecast error.” 
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Egusphere-2025-2367 (Editor: Christoph Gerbig) 

Response to Reviewer 2 

 

The authors thank the reviewer 2 for a thoughtful review of the manuscript. Considering the 
reviewer’s points, we have made the necessary changes. The responses for the reviewer’s 
specific comments are as follows. 

 

Comments:  

1. The manuscript "Ensemble-based observation impact of surface CO2 concentration 
observations on analysis and forecast of atmospheric CO2 concentrations over East Asia" of 
Min-Gyung Seo and Hyun Mee Kim analyze the impact of CO2 observations in OSSEs for the 
regional analysis (via data assimilation) and forecast of atmospheric CO2 concentrations in 
East Asia. 

The introduction does not really state a clear objective for such an analysis of the observation 
impact for existing and potential CO2 observation sites (in particular, something is missing in 
lines 73-74) and lines 211-214 narrow down the potential scope of the study. However, in 
principle, it should support the extension of surface networks "to better analyze and forecast 
atmospheric CO2 concentrations in East Asia" (l74). 

Authors’ response: The objective of this study was to investigate the impacts of surface 
CO2 concentration observations on analysis after data assimilation (DA) and on CO2 
concentration forecasts to improve the analysis and forecast of atmospheric CO2 
concentrations in East Asia, as mentioned in lines 73-74 in the original manuscript.  

For this purpose, the observation impact was evaluated in pseudo observations from 
existing surface CO2 observation sites under an observation system simulation experiment 
(OSSE). Because the number of existing surface CO2 observation sites is limited in East 
Asia, we additionally evaluated the potential benefits of adding and redistributing surface 
CO2 observation sites. These evaluations help to clarify the characteristics of observation 
impacts and provides useful insights for anticipating the impact of assimilating aircraft and 
satellite observations in future studies, as well as for designing improved observation 
networks to better analyze and forecast atmospheric CO2 concentrations in East Asia.  

We agree that the objective and possible extensions of the study were not clearly stated in 
the introduction. To address this, the text in lines 211-214 in the original manuscript was 
combined with the objective in the introduction, and revised accordingly. Following the 
reviewer’s suggestion, we have revised the manuscript to present the objective and its 
potential contributions more clearly. We have revised the text in Section 1 (line 73-74 in 
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the original manuscript) and Section 2.4.2 (line 211-214 in the original manuscript) as 
follows. The revised parts are underlined.  

Line 79-89 in the revised manuscript: “In this study, the impacts of surface CO2 
concentration observations on analysis after DA and on CO2 concentration forecasts were 
investigated, under various observation networks including existing observation network, 
to enhance the analysis and forecast of atmospheric CO2 concentrations in East Asia. Using 
an observation system simulation experiment (OSSE), the impacts of surface CO2 
concentration observations were evaluated for pseudo observations from existing surface 
CO2 observation sites. Compared to North America and Europe, the number of surface CO2 
observations in East Asia is insufficient, and in situ observations are even fewer. 
Investigation of the observation impact using the existing in situ observations has 
limitations in fully understanding the characteristics of the observation impact. Therefore, 
the potential benefits of adding and redistributing surface CO2 observation sites were also 
examined. These evaluations help to understand the characteristics of observation impacts 
and provide insights for anticipating the effects of assimilating aircraft and satellite 
observations, as well as for designing future observation network to better analyze and 
forecast atmospheric CO2 concentrations in East Asia.” 

Line 261-263 in the revised manuscript: “Compared to North America and Europe, the 
number of surface CO2 observations in East Asia is insufficient, and in situ observations 
are even fewer. Investigation of the observation impact using the existing in situ 
observations has limitations in fully understanding the characteristics of the observation 
impact. Therefore, to To examine the impact of each observation used for DA on the 
simulated CO2 concentrations under the framework of existing in situ surface observation 
sites and changed observation sites, four experiments with different observation networks 
were conducted in this study.” 

 

2. The authors deploy complex experimental, data assimilation and analysis theoretical and 
practical frameworks to conduct this study. However, as explained below, many major aspects 
of the study and of the manuscript raise concerns, from the rationale and objective of the study 
to the implementation of the experiments and interpretation of the results, including the quality 
of the writing. These concerns are such that they can hardly be addressed if limiting the request 
of the journal to major revisions, which is why I suggest to reject this manuscript and to 
encourage the authors to reconsider and rebuild their study before resubmitting a new 
manuscript based on their valuable tools. 

From my point of view, the regional analysis and forecast of the atmospheric CO2 
concentrations is not a sensible target for the deployment of surface CO2 networks. There is 
no major scientific or societal need for accurate forecasts of the CO2 concentrations over short 
timescales. Global CO2 forecasts at relatively high spatial resolution are often used to 
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constrain the boundary conditions of regional and local CO2 atmospheric inversion systems 
(solving for the surface CO2 fluxes), but in many cases, such regional and local inversion 
systems are coupled to global CO2 inversion systems (solving for the surface fluxes). One could 
still argue that regional forecasts could also be used to constrain the boundary conditions of 
local atmospheric inversion systems. However, given the current lack of CO2 surface stations, 
it would not make sense to optimize the design of relatively dense continental monitoring 
networks for such an objective. In any case, the analysis and discussions in this study do not 
provide indications regarding the potential for such a coupling. 

The introduction is quite revealing regarding this concern: the part dedicated to the rationale 
of the study up to line 36 mainly discusses the need to estimate the CO2 fluxes. However, line 
37 jumps into the analysis and forecast of CO2 concentrations without explanations, starting 
with a "Therefore", which artificially connects the two parts. 

Authors’ response: Atmospheric CO2 concentration is a fundamental variable measured 
by various observation platforms, including surface stations, aircraft, and satellites. The 
model’s ability to simulate atmospheric CO2 concentrations reflects how well the model 
represents reality. In addition to the use of CO2 concentration forecasts for boundary 
conditions of the regional model, mentioned by the reviewer, accurately simulating CO2 
concentrations in the model is important from the following two perspectives.  

First, the accuracy of optimized CO2 fluxes in inverse modeling is validated not by 
comparing optimized CO2 fluxes directly with observed CO2 fluxes, but by comparing 
simulated CO2 concentrations (using optimized fluxes) against observed CO2 
concentrations. For instance, Kim et al. (2017) and Cho and Kim (2022), which optimized 
CO2 fluxes over East Asia using inverse modeling with the CarbonTracker, evaluated the 
accuracy of the optimized CO2 fluxes by comparing the simulated CO2 concentrations 
against observed CO2 concentrations. Thus, high-resolution CO2 concentrations simulated 
in the model can be used to validate the CO2 fluxes from the inverse modeling.  

Second, accurate analyses and forecasts of atmospheric CO2 concentrations are necessary 
to produce accurate optimized CO2 fluxes in the inverse modeling. Inaccurate CO2 
concentration forecasts lead to large discrepancies with observed CO2 concentrations. This 
makes the flux optimization in inverse modeling difficult because the differences between 
them (i.e., CO2 concentration observations and forecasts) are used to update the surface 
CO2 fluxes by the data assimilation in the inverse modeling. Thus, CO2 concentrations and 
surface CO2 fluxes are augmented in the data assimilation, forward modeling, and inverse 
modeling system, which cannot be treated separately. 

Accurate CO2 concentration analysis and forecasts are therefore essential for accurate CO2 
flux estimates. For this reason, numerous previous studies have investigated the accuracy 
of CO2 concentration simulations using regional atmospheric chemistry models (Chen et 
al., 2019; Díaz-Isaac et al., 2018; Dong et al., 2021; Gerken et al., 2021; Seo et al., 2024b). 
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The objective of this study was to investigate the impacts of surface CO2 concentration 
observations on analysis after data assimilation and on CO2 concentration forecasts, under 
various observation networks, to improve the analysis and forecast of atmospheric CO2 
concentrations in East Asia. By quantitatively evaluating the effect of observed CO2 
concentrations on the analysis and forecast of CO2 concentrations, one can indirectly infer 
how the observed CO2 concentrations affect the optimization of surface CO2 fluxes. 

For future studies, we plan to expand our system to inverse modeling system for optimizing 
surface CO2 fluxes. To develop the inverse modeling system, the analysis and forecast of 
CO2 concentrations should be validated and the effects of assimilated observations on the 
analysis and forecast of CO2 concentrations need to be fully understand. In addition, 
although the current surface CO2 observation network in East Asia is sparse, advances in 
low-cost sensors and portable, high-precision instruments (Martin et al., 2017; Shusterman 
et al., 2018) make the construction of a denser network feasible in the future. By assessing 
the potential benefits of additional CO2 observation sites, this study provides scientific 
evidence to support investments in expanding CO2 observation infrastructure. 

Following the reviewer’s suggestion, the manuscript has been revised to clarify the logical 
connection between the CO2 concentration simulation and estimation of surface CO2 fluxes. 
The revised parts are underlined. 

Line 24-44 in the revised manuscript: “Atmospheric CO2 concentrations are influenced by 
various factors, including CO2 emissions from several sources, respiration and 
photosynthesis of vegetation, and interactions between the atmosphere and the oceans 
(Ussiri and Lal, 2017). Efforts have been made to reduce the recently elevated atmospheric 
CO2 concentrations (Le Quéré et al., 2019; Zhang et al., 2020). To verify whether efforts 
to reduce CO2 emissions have been implemented, the distribution of the surface CO2 flux 
has to be accurately estimated. Many studies have attempted to optimize surface CO2 
fluxes using inverse modeling by combining atmospheric chemistry models with data 
assimilation (DA) (Kim et al., 2014a, 2014b; Kim et al., 2017a; Kim et al., 2018; Monteil 
et al., 2020; Park and Kim, 2020; Wang et al., 2020; Maksyutov et al., 2021; Zhang et al., 
2021; Cho and Kim, 2022). Accurate simulations of atmospheric CO2 concentrations are 
essential for estimating optimized surface CO2 fluxes in inverse modeling, since 
discrepancies between simulated and observed CO2 concentrations directly constrain 
surface CO2 flux estimation through DA. Thus, atmospheric CO2 concentrations and 
surface CO2 fluxes are augmented in the DA, forward modeling, and inverse modeling 
frameworks, and cannot be treated independently. For this reason, various studies have 
investigated the accuracy of CO2 concentration simulations using regional atmospheric 
chemistry models (Chen et al., 2019; Díaz-Isaac et al., 2018; Dong et al., 2021; Gerken et 
al., 2021; Seo et al., 2024b). In previous studies that optimized the surface CO2 flux and 
atmospheric CO2 concentration using modeling, surface CO2 flux observations were not 
used, but atmospheric CO2 concentration observations were used in the DA. Atmospheric 
CO2 concentration observations include surface in situ and flask observations, aircraft 



19 

 

observations, and satellite observations. The characteristics of the CO2 concentration 
observations from various sources differ (Byrne et al., 2017). In particular, the number of 
CO2 concentration observations in East Asia, which is important for understanding the 
carbon cycle, is smaller than those in North America and Europe (Byrne et al., 2017; Seo 
and Kim, 2023; Seo et al., 2024a, b). Therefore, understanding how each observation 
reduces the analysis and forecast errors of CO2 concentration estimation is crucial for 
optimizing atmospheric CO2 concentrations using DA with limited atmospheric CO2 
concentration observations.” 

 

3. Even if assuming that optimizing the design of continental networks as a function of their 
skill for supporting the analysis and forecast of CO2 concentrations could make sense, the study 
keeps on raising concerns. 

The analysis for each assimilation window focuses on the correction of the CO2 initial 
conditions, without correcting the surface fluxes. However, even over few hours, CO2 
concentrations are highly impacted by such surface fluxes, and in particular (when considering 
networks such as those tested here) by the surface land ecosystem fluxes. In the real world, the 
system that is tested here would thus project large biases in the analysis of the CO2 atmospheric 
fields to compensate for the large uncertainties arising from the surface fluxes during the 
assimilation window, and the forecasting skill of such a system would be strongly limited by 
ignoring these fluxes in the analysis. This point is missed by the experiments here, because the 
authors implicitly assume that the biogenic surface fluxes are perfectly known (the true and 
"perturbed" estimate of these fluxes are identical = the outputs from VPRM). This issue may 
not be so significant if there had not been a large number of regional scale atmospheric 
inversion systems and studies in the past decades. 

Authors’ response: As mentioned in the authors’ response for comment 1 above, the 
objective of this study was to investigate the impacts of surface CO2 concentration 
observations on analysis after data assimilation (DA) and on CO2 concentration forecasts 
to improve the analysis and forecast of atmospheric CO2 concentrations in East Asia. For 
this purpose, the observation impact was evaluated for existing real network and additional 
networks for possible extension. The optimization of observing networks is not the main 
purpose of this study.  

It seems that mentioning simply “VPRM” for biogenic emission in the original manuscript 
may have caused some misunderstanding. In this study, to reflect the uncertainty of each 
emission and to avoid the identical twin problem in OSSE, different emission data were 
used for true state and DA experiments (Table_rev2_1). In VPRM simulations of biogenic 
CO2 in WRF-Chem, empirical parameters α, β, γ, and 𝑃𝑃𝑃𝑃𝑃𝑃0 should be optimized for 
each land use type in the experimental region (Hilton et al. 2013). Although VPRM module 
was used to simulate biogenic CO2 fluxes in true state and DA experiments, four 
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parameters (α, β, γ, and 𝑃𝑃𝑃𝑃𝑃𝑃0) in VPRM were different in true state and DA experiments, 
to provide sufficient differences in the biogenic CO2 concentrations in true state and DA 
experiments. In this study, based on Seo et al. (2024a), which analyzed the effect of VPRM 
parameters on CO2 simulations over East Asia, the US parameter table and Li parameter 
table (Li et al. 2020) were used for true state and DA experiments, respectively.  

Figure_rev2_1 shows the distributions of anthropogenic and biogenic CO2 concentrations 
simulated in true state and DA experiments, along with the spatial distribution of absolute 
relative differences of DA experiments from the true state. The distribution of DA 
experiments is the average distribution of four DA experiments. The average difference in 
anthropogenic CO2 concentrations between true state and DA experiments is 2.7%, and 
that of biogenic CO2 concentrations is 2.2%, indicating that the biogenic CO2 
concentrations in true state and DA experiments are not identical and differ similar 
magnitudes as the anthropogenic CO2 concentrations.  

 

Table_rev2_1. Description of emission data used in each experiment. 

Experiments 
Emission input 

DA 
Anthropogenic Biogenic Oceanic 

True state 
Average of CT2022 

and ODIAC 
VPRM 

* US table CT2022 X 

DA experiments 
(EXP1, EXP2, 

EXP3, and EXP4) 
ODIAC VPRM 

* Li table 
JMA ocean 

map 
O 
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Figure_rev2_1. Distribution of average anthropogenic CO2 concentrations (ppm) in (a) 
true state and (b) four DA experiments, and average biogenic CO2 concentrations (ppm) in 
(d) true state and (e) four DA experiments. Absolute relative difference (%) distribution 
between DA experiments and true state based on true state for (c) anthropogenic and (f) 
biogenic CO2 concentrations. 

 

To clarify the differences in the VPRM parameter tables used in each experiment, we have 
revised the text as follows. The revised parts are underlined. 

Line 286-294 in the revised manuscript: “The emission data used in the four experiments 
differed from those used to simulate the true state. This is to avoid the identical twin 
problem that can occur in the OSSE by setting the experimental design of the true state and 
four experiments sufficiently different (Masutani et al., 2010; Shu et al., 2023; Kim et al., 
2022). In the four experiments, ODIAC v2020b (Oda and Maksyutov, 2015) was used for 
anthropogenic emission, the Japan Meteorological Agency (JMA) ocean map (Iida et al., 
2021; Takatani et al., 2014) was used for oceanic emission, and VPRM was used for 
biogenic emission. To ensure sufficient differences between the biogenic CO2 in the true 
state and in the four experiments, different VPRM parameter tables were used: the US table 
for the true state and the Li table (Li et al., 2020) for the four experiments. Seo et al. (2024a) 
showed that biogenic CO2 fluxes in East Asia vary considerably depending on the VPRM 
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parameter tables used, and the parameter values for the US and Li tables are described in 
detail in Seo et al. (2024a).” 

 

4. Furthermore, even though they use complex diagnostics to read the results from their 
experiments, the authors face difficulties to interpret them: 

- a challenge associated to such a study is the mix between the observation impact of a given 
station within a given network, which can be very different within another network, and the 
impact of using different networks. The experimental framework and the analysis here do not 
fully ensure the distinction between these two impacts which limits the ability to draw robust 
conclusions regarding specific types of stations or of networks. 

Authors’ response: Following the reviewer’s suggestion, we examined whether the effects 
of observations of a given station within a given network and that within different networks 
are mixed. We have compared the self-sensitivity and EFSO impact for the overlapping 
observation sites in multiple experiments. 

1) Self-sensitivity 

Self-sensitivity is a measure of how much observation information is reflected in 
generating the analysis in DA. Specifically, self-sensitivity quantifies how much the 
analysis at a given observation site changes due to the assimilated observation, considering 
only the diagonal component of the influence matrix (Eq. 7 in the manuscript). 
Table_rev2_2 presents the self-sensitivity for sites that overlapped in two or more 
experiments. As shown in Table_rev2_2, the self-sensitivity for a given observation site 
was very similar across different experiments, indicating that the influence of each 
observation on the analysis is not significantly affected by the surrounding observation 
network.  

According to the self-sensitivity equation (Eq. 7), self-sensitivity is fundamentally 
proportional to the ratio of the analysis error to the observation error at a given site. In our 
OSSE framework, the observation error was set to be identical for all sites, making the 
magnitude of the analysis error the primary factor determining self-sensitivity. As analyzed 
in Figure 6 of the original manuscript, self-sensitivity was strongly positively correlated 
with the analysis RMSE at each observation site. Therefore, self-sensitivity reflects the 
unique characteristics of the observation location, while the influence of the observation 
networks is relatively small and limited. 
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Table_rev2_2. Average self-sensitivity (%) at overlapped observation sites in EXP2, EXP3, 
and EXP4. 

Site ID EXP2 EXP3 EXP4 

YON 5.1 5.0 5.0 
AMY 27.0 26.8 26.8 
DDR 19.1 19.0 19.0 

KIS 18.1 17.9 18.0 

RYO 9.6 9.7 9.6 

V1 - 52.2 51.1 

V2 - 25.9 26.8 
V3 - 36.7 38.4 

 

2) EFSO impact 

The EFSO impact quantifies how much an observation reduces the forecast error across 
the entire model domain, and thus its characteristics differ from those of self-sensitivity. 
The analysis and background used in the EFSO calculation result from integrating 
information from all assimilated observations, rather than from a single observation alone. 
As a result, the observation impact on forecast error reduction from each observation site 
can vary depending on its interaction with other observations in the network.  

For example, when observations are dense in a specific region, some of the information 
may be redundant, leading to a reduced EFSO for an individual site (Casaretto et al., 2023). 
Table_rev2_3 shows the EFSO impact for the 6-h and 12-h forecasts at the overlapping 
observation sites. Unlike self-sensitivity, the EFSO impact for the same observation sites 
varied considerably depending on the observation network.  

 

Table_rev2_3. Average EFSO impact at overlapping observation sites in EXP2, EXP3, and 
EXP4. The unit is × 104 ppm2. 

Site ID 
6 h forecast 12 h forecast 

EXP2 EXP3 EXP4 EXP2 EXP3 EXP4 

YON 0.00 -0.03 0.00 0.00 -0.01 0.00 

AMY -0.64 -1.82 -1.18 -1.94 -3.96 -1.12 

DDR -0.40 -0.28 -0.52 -0.42 -0.29 -0.28 
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KIS -0.47 -0.05 0.14 -0.71 -0.49 -0.12 

RYO -0.48 -0.47 -0.43 -0.22 -0.29 -0.22 

V1 - -4.73 -7.62 - -3.40 -4.66 

V2 - -3.91 -2.44 - -4.44 -8.63 

V3 - -3.70 -7.34 - -5.69 -6.65 
 

To analyze the impact of a single observation on forecast error reduction without the 
influence of nearby observations, one could ideally conduct single observation 
experiments or increase the distance between observation sites greatly. However, because 
single observation experiments are computationally expensive and unrealistic, many 
studies employ the EFSO method to efficiently assess observation impacts given network 
environment (Chang et al., 2023; Gasperoni et al., 2024). Thus, the mixed impact of EFSO 
is an inherent characteristic of the EFSO method rather than a limitation. 

To clarify the different characteristics of self-sensitivity and EFSO impact, we have revised 
the text as follows. The revised parts are underlined. 

Line 352-358 in the revised manuscript: “In each assimilation cycle, more than half of the 
observational information from V1 site was reflected in the analysis. For the existing 
observation sites in EXP2, AMY, XL, and HF showed larger self-sensitivity. These sites 
coincided with regions of large hourly CO2 variability identified by the Variability strategy 
(Fig. 1b). For the overlapping observation sites (e.g., YON, AMY, DDR, KIS, RYO in 
EXP2, EXP3, and EXP4, and V1, V2, and V3 in EXP3 and EXP4), the self-sensitivity was 
similar regardless of the network configuration (Fig. 5 and Table 4). This indicates that 
self-sensitivity is more influenced by the intrinsic characteristics of each observation site 
rather than by the surrounding observation network design, which can be inferred from Eq. 
(7).” 

Line 483-489 in the revised manuscript: “This implies that the impact on reducing forecast 
errors was greater when the observation sites were located evenly over the entire domain 
considering the variability of CO2 concentrations, rather than simply randomly locating 
observation sites throughout the entire domain. 

The EFSO impact exhibited different characteristics from self-sensitivity. While self-
sensitivity for a specific site remained consistent regardless of the surrounding observation 
network (Table 4), the EFSO impact varied depending on the observation network (Table 
6). This indicates that the EFSO impact does not measure the inherent effect of an 
individual site but quantifies its contribution to forecast error reduction within a specific 
network, influenced by other observation sites.” 
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- the lack of account for the atmospheric transport conditions over East Asia in July 2019 when 
evaluating the impact of the different stations or networks is an issue, e.g., since the positioning 
of the stations with respect to the study domain, to each other or to the domain boundaries 
when following the wind probably plays an important role in the forecasting skills, and since 
the transport conditions in July 2019 could be specific. 

Authors’ response: The objective of this study is to quantitatively evaluate the effect of 
individual CO2 observations on the analysis and forecasts of CO2 concentrations within an 
OSSE framework. This objective differs from trying to perfectly reproduce actual CO2 
concentrations by assimilating real CO2 concentration observations. 

July was chosen as the experimental period because it represents a time when uncertainties 
from both anthropogenic and biogenic emission sources, which affect the uncertainty of 
CO2 concentrations, are appropriately reflected. In contrast, experiments for winter period 
would have been dominated by uncertainties from anthropogenic emissions alone. 
Therefore, the experiment was conducted for the one-month period of July, to reflect 
comparable contributions from both anthropogenic and biogenic emission sources and to 
comprehensively evaluate the effects of surface CO2 observations on the reduction of 
analysis and forecast errors of CO2 concentrations. 

We examined whether the meteorological conditions during the experimental period, July 
2019, were anomalous compared to the 30-year (i.e., 1991-2020) climatological mean from 
the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis v5 
(ERA5) reanalysis. The meteorological conditions for July 2019 simulated in WRF-Chem 
were compared with the climatological mean at the 500 hPa and surface level. Specifically, 
the geopotential height and horizontal wind were compared at 500 hPa, while mean sea 
level pressure (MSLP) and horizontal wind were compared at the surface level 
(Figure_rev2_2). At 500 hPa, the geopotential height pattern in July 2019 closely 
resembled the climatological mean, and the position of the edge of the North Pacific High 
was very similar in both July 2019 and climatological mean (Figure_rev2_2a, b). At the 
surface, the location of the North Pacific High and mean horizontal wind in July 2019 were 
also nearly identical to the climatological mean, showing a southerly flow (Figure_rev2_2c, 
d). These results indicate that the meteorological conditions in July 2019 were not 
significantly different from the climatological mean, confirming that the experiment was 
conducted under representative conditions of July. 

In addition, to consider the effect of atmospheric transport on the calculation of observation 
impacts, a moving localization method was applied in the EFSO calculation. This method 
shifts the localization center based on the horizontal wind forecast at each time step, 
thereby reflecting the influence of the simulated winds on the calculation of observation 
impacts. 
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To clarify the reason for selecting July as the experimental period, we have revised the text 
as follows. The revised parts are underlined. 

Line 116-120 in the revised manuscript: “The experimental period was from June 22 to 
July 31, 2019, and the spin up period for model stabilization was from June 22 to June 30, 
2019. This period was selected to reflect uncertainties from both anthropogenic emissions 
and biogenic fluxes. A comparison with the 30-year (1991-2020) climatological mean from 
the ERA5 reanalysis confirmed that the large-scale meteorological conditions in July 2019 
were representative of a typical summer in East Asia (not shown). The experimental 
domain was East Asia with a horizontal resolution of 9 km and 51 vertical layers (Fig. 1).” 

 

 

Figure_rev2_2. The average 500 hPa geopotential height [m] (black line) and 500 hPa wind 
[m s-1] (blue vector) in (a) July 2019 from WRF-Chem and (b) climatological mean from 
30-year (i.e., 1991-2020) of ERA5 reanalysis. The average mean sea level pressure [hPa] 
(contour) and surface wind [m s-1] (blue vector) in (c) July 2019 from WRF-Chem and (d) 
climatological mean from 30-year of ERA5 reanalysis.  
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- the lack of clear information on and characterization of the initial and/or sequential 
derivation of the uncertainties in the background state / initial conditions (the Pb matrix and 
the spread of the (xb)_i) of the assimilation windows (what are the spatial scales of the 
correlations associated to these uncertainties?) further limits the ability to analyze properly 
the observation impacts (page 4 is confusing; the discussions on min distances between stations 
= 600 km or 300 km on page 9 is highly questioning). 

Authors’ response: We have addressed the reviewer’s questions as follows. 

1) Characteristics of uncertainties in the background state/initial conditions. 

The CO2 DA-forecast system used in this study was first developed and fully evaluated 
in Seo and Kim (2025) through various analyses. The configuration of model and data 
assimilation in this study is identical to that of Seo and Kim (2025). An analysis of the 
uncertainties in the background state/initial conditions was sufficiently discussed in Seo 
and Kim (2025). To avoid redundancy, only the rank histogram was analyzed in this 
study. However, following the reviewer’s suggestion, we additionally evaluated the 
uncertainties of background state in the DA experiments of this study to clarify them 
further. 

In an ensemble DA system, one way to diagnose the uncertainties in the background 
state is to compare the ensemble spread with root mean square error (RMSE) between 
the background state interpolated to the observation space and the observations. If the 
ensemble DA system operates stably throughout the experimental period, the RMSE and 
total spread are expected to have comparable magnitudes (Raeder et al., 2012; Jung et 
al., 2012). 

Figure_rev2_3 shows the time series of RMSE and total spread for the four DA 
experiments (i.e., EXP1, EXP2, EXP3, and EXP4) conducted in this study. Although the 
RMSE was slightly larger in EXP3 and EXP4, which included observation sites with 
high variability, compared to EXP1 and EXP2, the trends and magnitudes of the RMSE 
and total spread were similar across all experiments. This indicates that the ensemble 
DA system used in this study adequately represents the uncertainties in the background 
state. 

Furthermore, the background error covariance in the ensemble adjustment Kalman filter 
(EAKF) is flow-dependently determined by 20 ensembles. To reduce the spurious 
correlations that may result from this limited ensemble size, spatial localization with a 
radius of 1274.2 km was applied. Therefore, the effective spatial correlation scales in the 
DA are determined by physically meaningful correlations at distance shorter than the 
localization radius. 

We have added the text in Section 2.1 as follows. The revised parts are underlined. 
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Line 107-109 in the revised manuscript: “The CO2 DA-forecast system used in this study 
was first developed and comprehensively evaluated in Seo and Kim (2025). Detailed 
descriptions of the model and data assimilation configurations and extensive analyses of 
system stability are provided in Seo and Kim (2025).” 

 

 

Figure_rev2_3. Time series of RMSE [ppm] (black solid line) and total spread [ppm] (gray 
dashed line) of surface CO2 concentrations in (a) EXP1, (b) EXP2, (c) EXP3, and (d) EXP4 
with respect to the pseudo CO2 concentrations. 

 

2) Discussion on the minimum distance between observation sites. 

In an ensemble DA system, spatial localization is applied to reduce spurious correlations 
arising from the limited number of ensemble members. In this study, a localization radius 
of 1274.2 km was used for surface CO2 observations. Theoretically, if the distance between 
observation sites is sufficiently greater than the localization radius, the impact of each 
observation on the analysis and forecast error reduction can be considered independent. 

However, in the actual CO2 observation network over East Asia, many CO2 observation 
sites are located closer than the localization radius. Moreover, designing a realistic 
observation network requires considerations beyond statistical independence, including 
cost and monitoring of specific emission sources. Therefore, this study aimed to analyze 
observation impacts under realistically achievable networks with different densities and 
objectives, rather than assuming ideal statistical independence.  
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Yang et al. (2014), which conducted observation network experiments under an OSSE 
framework for Asian dust forecasts, showed that selecting random sites with greater 
distances between sites (up to 300 km) more effectively reduced forecast errors. In addition, 
adding observations in sensitive regions based on adjoint-sensitivity reduced forecast error 
more than locating them randomly. However, if observation sites were too dense within 
these sensitive regions, the performance in forecast error reduction could be reduced. 

Based on Yang et al. (2014), minimum distances between observation sites were 
determined for two strategies (i.e., the Random and Variability strategies). For the Random 
strategy, a minimum distance of 600 km was used to distribute observation sites as evenly 
as possible over the land of the experimental domain, while matching the number of 
observation sites (i.e., 13) with the number of real observation sites in EXP2. For the 
Variability strategy, a minimum distance of 300 km was used to simulate a high-density 
observation network for targeted monitoring of regions with high surface CO2 variability. 
Distances larger than 300 km would prevent placing observation sites in these high-
variability regions. The minimum distance between observation sites of 300 km is also the 
distance that showed the most effective improvement in dust forecast performance in Yang 
et al. (2014).  

Therefore, the minimum distance of 600 km for the Random strategy and 300 km for the 
Variability strategy are not arbitrary but represent observation networks that can be 
considered in reality.  

We have added the reason for the selected minimum distances as follows. The revised parts 
are underlined. 

Line 264-275 in the revised manuscript: “Two strategies (i.e., Random and Variability) 
were used to select surface CO2 observation sites. The Random strategy randomly selects 
observation locations within the experimental domain, ensuring that the observation 
locations are at least 600 km from each other. This is because close observation locations 
are less effective for reducing the forecast error (Yang et al., 2014). A minimum distance 
of 600 km was used to distribute the 13 observation sites as evenly as possible over the 
land of the experimental domain, matching the number of real observation sites in EXP2.”  

The Variability strategy selects observation locations from regions with highly variable 
true CO2 concentrations, which have high standard deviation of the true state at each grid 
point (Fig. 1b). In the Variability strategy, observation sites were selected starting from the 
grid with the greatest standard deviation, and the distances between the observation 
locations were at least 300 km from each other. Distances larger than 300 km would 
prevent placing observation sites in these high-variability regions. The 300 km distance for 
Variability strategy is the distance that showed the most effective improvement in dust 
forecast performance in Yang et al. (2014). For the Random and Variability strategies, the 
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selected observation sites were located on land and at least 10 grids away from each domain 
boundary.” 

- The conclusion that stations located in areas with strong biogenic fluxes have a larger impact 
could be questioning since there is no perturbation of these fluxes in the experiments. The 
authors do not propose a mechanism to explain this. It could actually be linked to the transport, 
e.g. the PBL (a strong driver of the CO2 diurnal variations that is ignored at lines 451-452), 
whose modeling scheme is perturbed in the OSSEs. In areas with high biogenic fluxes, such a 
transport uncertainty would propagate into higher CO2 errors. 

Authors’ response: As explained in our response to reviewer’s comment 3, the biogenic 
CO2 concentrations in the true state and DA experiments were simulated using different 
parameter tables in VPRM to account for uncertainties in biogenic fluxes. This resulted in 
a 2.2% difference in biogenic CO2 concentrations, comparable to the 2.7% difference in 
anthropogenic CO2 concentrations between the true state and the DA experiments. 

Regions with active vegetation exhibit large diurnal variability in CO2 concentrations, with 
large CO2 uptake from photosynthesis during the daytime and large CO2 release from 
respiration at nighttime. We consider uncertainties associated with large diurnal variability 
in CO2 concentrations in active vegetation regions to be the primary source of uncertainty 
in this study. In addition, as the reviewer indicated, the errors related to transport and 
planetary boundary layer height (PBLH) could also influence uncertainties in CO2 
concentrations. In regions with large diurnal CO2 variability, forecast errors may be 
amplified by uncertainties associated with transport and PBLH, under specific conditions.  

Nevertheless, this study was conducted within an OSSE framework for a one-month period, 
in which the four DA experiments were simulated using the same transport model (i.e., 
WRF-Chem) with similar perturbations. As noted in Zheng et al. (2018), the impact of the 
systematic transport error is relatively small in this OSSE framework.  

Therefore, the primary source of uncertainty in simulating CO2 concentrations in this study 
was from the differences in emission inventories between the true state and the DA 
experiments. The effects of uncertainties in transport and PBLH simulations on CO2 

forecast errors are beyond the scope of this study and would be addressed in future work. 

 

5. The authors do not discuss any potential problem associated with the assimilation of CO2 
observations at night while most of the global to local inverse modelling systems keep on 
avoiding to assimilate nighttime CO2 observations from plain or low altitude stations due to 
the large CO2 transport modelling biases at night. 

Authors’ response: In this study, surface pseudo CO2 observations were assimilated at 6 
h interval, including both daytime and nighttime observations. Previous studies have also 
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assimilated both daytime and nighttime observations: 1) Peng et al. (2023) developed a 
CO2 inverse modeling system using The Community Multiscale Air Quality model 
(CMAQ) and ensemble Kalman smoother (EnKS), and assimilated real CO2 observations 
from 14 surface sites in East Asia. CO2 observations from all hours were used for DA 
except for 5 observation sites where only daytime observations were available. In regions 
where only daytime observations were assimilated, the optimized posterior carbon fluxes 
were underestimated because only observations from the daytime when photosynthesis is 
active were assimilated. 2) Ma et al. (2019), which simulated air pollutant using a WRF-
Chem and data assimilation research testbed (DART) system, also assimilated all available 
observations from surface observation sites to analyze simulation performance for both 
day and night. As demonstrated in these previous studies, assimilating all available 
observations is effective to properly simulate the diurnal cycle, despite challenges in 
modeling the nocturnal boundary layer. 

Furthermore, this study was conducted within an OSSE framework, in which the true state 
and the four DA experiments were simulated using the same transport model (i.e., WRF-
Chem). As denoted in Zheng et al. (2018), the impact of the systematic transport error is 
negligible in this OSSE framework. Thus, the primary source of uncertainty in simulating 
CO2 concentrations in this study was from the differences in emission inventories between 
the true state and the DA experiments. 

To investigate the impact of assimilating nighttime observations, we categorized the daily 
cycle into two groups (i.e., daytime and nighttime). Based on the general PBL evolution 
(Figure 1.7 in Stull, 1988) in East Asia, we classified 00 UTC (growth phase of the 
convective mixed layer) and 06 UTC (peak of convective mixed layer) as daytime 
(convective regime), while 12 UTC and 18 UTC, when a stable layer forms due to surface 
cooling, were classified as nighttime (stable regime). 

First, we examined the impact of excluding nighttime observations. If observations are 
assimilated continuously every 6 hour, the background for the 00 UTC cycle (the start of 
the daytime) is 6-hour forecast (Figure_rev2_4a). In contrast, when only daytime (00 and 
06 UTC) observations are assimilated, the background for the 00 UTC cycle is 18-hour 
forecast (Figure_rev2_4b). Comparison of background RMSE at 00 UTC for these two 
cases shows a significant increase in error when nighttime observations are not assimilated 
(Figure_rev2_5). This increase was particularly pronounced in EXP3 and EXP4, which 
included observation sites with large diurnal CO2 variability. Thus, omitting nighttime CO2 
observations in DA allows the uncertainties from the emission inventory accumulated and 
uncorrected during nighttime, which degrades the accuracy of the background forecasts for 
the following daytime. 
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Figure_rev2_4. Schematic diagram for two DA cases: (a) a continuous DA with 6-h 
cycles using all observations, and (b) a hypothetical DA using only daytime observations. 
The yellow star represents the background at 00 UTC (i.e., the start of the daytime). The 
solid arrows represent the model forecast, and the dotted lines represent the analysis step 
including DA. Gray shaded boxes represent the nighttime (i.e., 12 and 18 UTC). 
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Figure_rev2_5. Background RMSE [ppm] at 00 UTC for each experiment in 
Figure_rev2_4 with respect to the pseudo CO2 observations. All cycles DA (gray bar) 
represents the case with assimilation every 6 h, while the Daytime cycles DA (black bar) 
represents the hypothetical assimilation during only daytime (i.e., 00 and 06 UTC). 

 

Next, we evaluated CO2 simulation performance during daytime (i.e., 00 and 06 UTC) and 
nighttime (i.e., 12 and 18 UTC) (Figure_rev2_6a) for the experiments in this study. The 
background RMSE was larger during the nighttime in all experiments, reflecting greater 
uncertainties from emissions during nighttime. However, after assimilating surface CO2 
observations, the analysis RMSE during the nighttime was reduced considerably. Across 
assimilation cycles (Figure_rev2_6b), background RMSE was lowest at 06 UTC, but the 
impact of DA was significant at all hours. The RMSE reduction rate from background to 
analysis exceeded 30% for all experiments at all times (Table_rev2_4), indicating that the 
nighttime observations at 12 and 18 UTC, when uncertainty was greatest, also contributed 
substantially to improving CO2 simulation performance. Therefore, assimilating nighttime 
observations is essential for maintaining overall accuracy and stability by most effectively 
improving model performance when its uncertainty is greatest. 
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Figure_rev2_6. (a) RMSE [ppm] of the background (Back) and analysis (Anal) for each 
experiment with respect to the pseudo CO2 observations, averaged for daytime cycles (i.e., 
00 and 06 UTC) and nighttime cycles (i.e., 12 and 18 UTC). (b) RMSE [ppm] of the 
background (Back) and analysis (Anal) for each experiment and for each assimilation cycle 
(00, 06, 12, and 18 UTC) with respect to the pseudo CO2 observations. 

 

Table_rev2_4. RMSE [ppm] of the background and analysis for each experiment and 
assimilation cycle, with respect to the assimilated pseudo CO2 observations. RMSE 
reduction (%) of the analysis compared to the background. 

Exp. name Time [UTC] 
Background 

[ppm] 
Analysis 

[ppm] 
Reduction 

[%] 

EXP1 
00 4.95 2.93 40.7 
06 3.44 1.90 44.9 
12 4.54 2.68 40.9 
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18 5.50 2.50 54.6 

EXP2 

00 4.61 2.80 39.2 
06 3.84 2.56 33.2 
12 4.13 2.77 32.9 
18 4.54 2.41 46.9 

EXP3 

00 10.59 7.11 32.8 
06 4.44 2.45 44.6 
12 9.71 4.43 54.4 
18 13.61 5.80 57.4 

EXP4 

00 7.34 4.66 36.5 
06 4.46 2.56 42.6 
12 7.58 4.18 44.9 
18 8.92 4.47 49.8 

 

6. The writing of the manuscript is not satisfactory, many sections are unclear, and they do 
not introduce the main goals, concepts and ideas in a clean way, which does not encourage 
the reader to delve into the mathematical framework. As an example, the lines 105-117 which 
contain key information are confusing: here, the authors do not really try to describe or 
explain things rigorously but rather to list the values or options for their various input 
parameters. Part of the basic information on the study domain, period, modelling framework 
(content of the state vector x, spatial resolutions, duration of the assimilation windows and 
forecasts...) etc. is delivered too late, i.e., after considerations that should be driven by such 
information, or is simply skipped (see the discussion on Pb above). The abstract provides a 
first good illustration of this general problem. In the introduction and result sections, the 
authors often lose the reader with a high number of statements and statistics which do not 
systematically follow a logical flow or which do not seem to be the most relevant. 

Authors’ response: Following the reviewer’s opinion, we have revised Section 2 Methods. 
Specifically, the text in Section 2.5 was moved to Section 2.1, 2.3.1, and 2.3.2. In addition, 
as noted in the authors’ responses above, Introduction, and Results sections were revised 
to improve the overall structure and logical flow of the manuscript. 

The revised parts for Section 2 are as follows and underlined. 

Line 105-122 in the revised manuscript: “In this study, DART was modified to be 
combined with WRF-Chem: an observation operator for surface CO2 concentration 
observations was added to assimilate surface CO2 observations in DART, and some of the 
code within DART was modified accordingly (Seo and Kim, 2025). The CO2 DA-forecast 
system used in this study was first developed and comprehensively evaluated in Seo and 
Kim (2025). Detailed descriptions of the model and data assimilation configurations and 
extensive analyses of system stability are provided in Seo and Kim (2025). 
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Final analysis (FNL) (NCEP/NOAA, 2000) was used for the meteorological initial and 
lateral boundary conditions, and CarbonTracker version 2022 (CT2022) (Jacobson et al., 
2023) was used for the chemical lateral boundary conditions. For the chemical initial 
condition, CT2022 was used only at the first time; thereafter, forecasts were conducted 
using the analysis produced by assimilating surface CO2 observations as the initial 
condition. Ensemble forecasts with 20 members were conducted in the CO2 DA cycle, and 
the multi physical parameterization schemes used in the ensemble forecasts are presented 
in Table 1.  

The experimental period was from June 22 to July 31, 2019, and the spin up period for 
model stabilization was from June 22 to June 30, 2019. This period was selected to reflect 
uncertainties from both anthropogenic emissions and biogenic fluxes. A comparison with 
the 30-year (1991-2020) climatological mean from the ERA5 reanalysis confirmed that the 
large-scale meteorological conditions in July 2019 were representative of a typical summer 
in East Asia (not shown). The experimental domain was East Asia with a horizontal 
resolution of 9 km and 51 vertical layers (Fig. 1). To sufficiently increase the ensemble 
spread to avoid filter divergence, a 12 h ensemble forecast was conducted only on June 22, 
2019, at the beginning of the experiment, and the ensemble DA cycle was conducted every 
6 h (00, 06, 12, and 18 UTC) thereafter.”  

Line 146-162 in the revised manuscript : “The experimental settings for assimilating the 
surface CO2 concentration using EAKF were as follows: As diurnal cycle of CO2 
concentration due to vegetation activities was clear, the assimilation window was ± 1 h and 
DA cycling was conducted at 6-h intervals. In previous studies that optimized CO2 
concentrations and carbon fluxes by assimilating CO2 concentration observations, the 
cycling interval was 6 h or 24 h (Kang et al., 2011, 2012; Zhang et al., 2021; Liu et al., 
2019; Liu et al., 2022). The number of ensembles was set to 20, as preliminary tests showed 
no significant difference in simulation performance of CO2 concentrations between 20 and 
50 members. To prevent spurious correlations, the method of Gaspari and Cohn (1999) was 
applied for the localization of surface CO2 observations. with a localization radius of 
1274.2 km. Initial perturbations were applied to the meteorological and chemical variables 
of 20 ensemble members to represent initial uncertainties. The initial perturbations of the 
meteorological variables were obtained from 150 perturbation banks using be.dat.cv3 of 
the WRF DA (WRFDA). Initial perturbations of the chemical variables (i.e., CO2 
concentrations) were produced using the method presented in Yumimoto (2013) and Miao 
(2014). The lateral boundary conditions for the 20 ensemble members were perturbed using 
the pert_wrf_bc and update_wrf_bc program in DART. To prevent filter divergence and 
maintain the ensemble spread during the forecast, both prior and posterior inflation related 
to model and sampling error, respectively, were applied. Spatially varying state space 
inflation, based on the Gaussian distribution, was applied as prior inflation (Anderson et 
al., 2009) and relaxation to prior spread (RTPS) was applied as posterior inflation 
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(Whitaker and Hamill, 2012). The multiplicative inflation of the RTPS was set to 1.0, 
which was found to be the most appropriate value in sensitivity tests.” 

Line 183 in the revised manuscript : “Self-sensitivity was calculated using analysis at 00, 
06, 12, and 18 UTC.” 

Line 223-225 in the revised manuscript: “The EFSO was calculated for the 6, 12, 18, and 
24 h forecasts at 00 UTC to avoid the influence of the diurnal cycle in CO2 concentrations. 
To calculate the EFSO, 30 h and 24 h ensemble forecasts were conducted every 18 UTC 
(corresponding to – 6 h in Fig. 2) and 00 UTC (corresponding to 0 h in Fig. 2), respectively.” 

 

7. Going into more details in this manuscript raise further questions and concerns, but I limit 
this review to this list of general issues. 

Authors’ response: The authors thank the reviewer 2 for a thoughtful review of the 
manuscript. The reviewer’s comments on general issues were very helpful in improving 
the clarity of the manuscript.    
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