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We sincerely thank the reviewer for taking the time to review our manuscript. We believe 
their feedback has improved the clarity of the manuscript and overall quality of this work. 

In this study, the authors demonstrate the ability of deep learning (DL) models to 
emulate the Fire Weather Index (FWI) at 12 UTC. Specifically, three DL models are 
trained using either daily means or proxy data (as in Bedia et al., 2014) of weather 
variables relevant to FWI computation, to produce noon-time FWI estimates based on 
ERA5-Land. The authors also apply interpretability techniques to rank input variables 
according to their relevance in producing the FWI output. They find that, in high and 
extreme FWI scenarios, 24-hour accumulated precipitation is not needed to obtain 
accurate FWI values. 

I appreciate the motivation behind this work and the authors’ methodology. The 
results are compelling and well presented. However, I believe a deeper analysis in 
certain areas would significantly enhance the value of the paper. 

Major Comment 1: Generalization to datasets other than ERA5-Land​
​
One of the main motivations of this work is to emulate reference FWI conditions (i.e., 
those computed using 12 UTC weather variables and 24-hour accumulated 
precipitation) using proxy data from datasets that typically provide only daily 
information, such as climate model outputs. However, the authors do not show an 
example of applying their DL models to such external datasets. 

Given that DL models are often sensitive to the data distribution used during training, 
applying the trained models to daily means from a dataset different from ERA5-Land 
(e.g., GCMs or other reanalysis) may yield inaccurate FWI emulations. Potential issues 
include discrepancies in statistical properties (e.g., mean, variance, extremes), spatial 
resolution (important for CNNs), or temporal characteristics. 

I suggest the authors assess how their models perform when applied to an alternative 
dataset to emphasize the potential of this approach for correcting FWI estimates in 
climate simulations lacking noon-time fields. 

 

We appreciate the referee’s thoughtful comment and fully agree that assessing the 
performance of the proposed models on other datasets, such as GCM outputs, is an 
important future step. In this study, however, we focus solely on emulation: that is, learning 
the transfer function with a DL model using the same database for both predictor set and 
predictand (ERA5-Land). Our primary goals are to evaluate the ability of DL models to 
emulate a multivariate index (FWI, in this case) from linked variables, setting a validation 
framework and looking for a reliable set up for the DL architectures and illustrating an 
intercomparison between the architectures, rather than to assess transferability across 
datasets (e.g., to other reanalyses or GCMs), which lies beyond the scope of this paper. 

Nevertheless, we recognize the importance of transferability and are actively preparing a 
follow-up manuscript in which the proposed models will be applied to GCM outputs. In that 
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work, we will conduct a more detailed analysis of model performance on datasets with 
different statistical and temporal characteristics than ERA5-Land, and discuss the 
implications for correcting FWI estimates in climate simulations that lack noon-time 
meteorological fields. As noted earlier, we are also working on extending this line of research 
to GCM-based downscaling studies. 

It is important to note that applying these models to other datasets, such as GCMs, requires 
careful consideration of statistical differences (e.g., biases in mean, variance, extremes, or 
spatial resolution), which would necessitate additional preprocessing (such as bias 
correction) and extensive validation. A rigorous evaluation of transferability therefore 
requires a more comprehensive and systematic study than can reasonably be 
accommodated within the scope of this manuscript. 

To summarize, our study should be regarded as a case study on the ability of DL models to 
emulate FWI. While we see strong potential for their application beyond ERA5-Land, we 
consider it more appropriate to address transferability to other datasets (e.g., GCMs or 
alternative reanalyses) in future work. Given the already substantial length of the manuscript 
and the aforementioned scope, incorporating such an analysis here would not be feasible. 

 

Major Comment 2: Temporal evaluation of FWI estimations​
​
The authors conclude that their DL models capture both spatial and temporal 
variability of the reference FWI better than traditional proxy methods, and improve the 
detection of high-risk events. While the spatial evaluation is clearly presented, the 
paper does not seem to explicitly evaluate the temporal aspects of the DL-predicted 
FWI. 

Beyond the Max Spell analysis, I suggest comparing the seasonal cycle of the 
reference FWI, proxy FWI, and DL-predicted FWI. This would help assess whether the 
models maintain consistent accuracy across different parts of the year or under 
seasonal biases. I also recommend extending the test dataset beyond the current 
3-year window—e.g., from 2018 to 2024—to ensure more robust temporal assessment. 

 

We thank the reviewer for the suggestion regarding the evaluation of temporal aspects of the 
FWI predictions. In addition to the spatial assessment, we provide an analysis of the monthly 
boxplots of the reference FWI, proxy FWI, and the DL-predicted FWI (Dense, DeepESD, 
U-Net) per climatological region, as shown in Figure 1. Each boxplot represents the 
distribution of FWI values for a given month over the 2012–2021 period, capturing both the 
median and the spread of the values. 

This visualization demonstrates that the DL models not only reproduce the spatial patterns of 
FWI but also effectively capture the temporal variability across the year and the different 
regions. The median and interquartile ranges of the DL predictions closely follow the 
reference FWI throughout the seasonal cycle, including the high fire danger summer months, 
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whereas the traditional proxy FWI tends to slightly underestimate extremes during peak 
months (June–September). This analysis confirms that the DL models maintain consistent 
accuracy across different parts of the year and do not introduce significant seasonal biases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1: Monthly boxplots for the reference FWI, proxy FWI, and the DL-predicted FWI 
(Dense, DeepESD, UNet) for CONTM (top-left), COASM (top-right) and ATL (bottom) 
regions (see Figure A1 of the manuscript to understand the climatological regions). Each 
boxplot represents the distribution of FWI values for a given month over the test period, 
capturing both the median and the spread of the values. 
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The discussion provided in this comment about the temporal evaluation and the Figure 1 
have been added to the manuscript in Section 3.2.1. 

 

Moreover, as suggested by the referee, we have extended the test period from 2018–2021 
to 2012–2021 in order to provide a more comprehensive evaluation of the method’s temporal 
robustness. By increasing the length of the test period, we are able to assess model 
performance across a wider range of interannual variability and climatic conditions, which 
allows for a more rigorous validation. The results obtained for the extended period are 
consistent with those observed in the original 2018–2021 test window, indicating that the 
method maintains its accuracy and reliability over a longer timeframe. This outcome 
reinforces the robustness of our approach and provides additional confidence in the 
generalizability of the model for FWI emulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Results from the Dense, DeepESD and U-Net model trained with the P0 predictors 
set (see Table 1 from manuscript) . The maps display differences relative to the reference 
FWI for the fire season (June–September) during the test period (2012–2021) for the FWI 
MAE (first row), FWI95 MAE (second row), Frequency FWI95 Relative Bias (third row) and 
Maximum annual Spell FWI 95 bias. The MAE value inside the map represents the spatially 
aggregated mean absolute error of the deep learning predictions with respect to the FWI 
reference, while Bias denotes the spatially averaged bias in absolute value. 
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Figure 3: Results from the U-Net model trained with the P0, P1 and  predictors sets (see 
Table 1 from manuscript) . The maps display differences relative to the reference FWI for the 
fire season (June–September) during the test period (2012–2021) for the FWI MAE (first 
row), FWI95 MAE (second row), Frequency FWI95 Relative Bias (third row) and Maximum 
annual Spell FWI 95 bias. The MAE value inside the map represents the spatially 
aggregated mean absolute error of the deep learning predictions with respect to the FWI 
reference, while Bias denotes the spatially averaged bias in absolute value. 

Therefore, as previously commented, we obtain robust results independently of 
modifications in train (from 1979-2017 to 1979-2011) or test (from 2018-2021 to 2012-2021) 
period. The values of spatially aggregated MAE and bias of Figure 2 and 3 are consistent 
with the ones in the manuscript (Figures 3 and 6 respectively). Also the spatial patterns 
observed in the validation indices maps are similar, with a few exceptions such as the case 
of the Relative Bias of the FWI95 Frequency for the U-Net model trained with the P0 and P1 
pattern. Accordingly, we mention in the new version of the manuscript in Section 2.5 that 
“The final results are presented for an independent test period spanning 2018–2021. We 
also evaluated longer test periods (2012–2021), which required shortening the training 
phase to 1979–2011. Since these tests produced robust and consistent results comparable 
to those for 2018–2021, they are not included in the text”. 

Minor 1: 

The authors justify using the term “reference FWI” instead of “ground truth” because 
ERA5-Land is not observational. Since the DL models are trained on ERA5-Land, they 
likely inherit its biases. I suggest briefly discussing known limitations of ERA5-Land 
compared to observations, especially if no comparison with observed FWI is 
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included. This is specially important considering major comment 1 in which the 
ERA5Land's biases learned by the model might be propagate to other models. 

Thank you for the comment. We will include in the discussion the limitations of ERA5-Land 
compared to the observations adding as appendix the biases between observational FWI 
data from the Spanish Agency of Meteorology (AEMET) and the FWI resulting from 
ERA5-Land computations. Here, we present the assessment about the limitations of 
ERA5-Land FWI compared with the observational data in terms of FWI and FWI95 
climatologies biases.  

In the new Appendix B: ERA5-Land limitations we have added the following text and Figure:  

“In this section, we highlight the existent limitations in using ERA5-Land data in our analysis 
due to the inherited biases in ERA5-Land compared with observation data. These biases 
reflect systematic deviations from ground-based observations and can affect the reliability of 
the dataset for certain applications. Therefore, although ERA5-Land provides a valuable, 
spatially and temporally consistent climate dataset, its outputs should be used with caution 
and validated against local observations whenever possible. 

In Figure B1, we illustrate the ERA5-Land biases in some stations in Spain with respect to 
observation data provided by the Spanish Agency of Meteorology (AEMET).”  

 

 

 

 

 

 

 

Figure 4: Biases between observational FWI data from the Spanish Agency of Meteorology 
(AEMET) and the FWI resulting from ERA5-Land computations. The map in the left indicates 
bias for the mean FWI, while the map in the right indicates it for the FWI95. 

Minor 2: 

Please provide the actual thresholds used by the Spanish Meteorological Agency 
(AEMET) for fire danger classification, as these can vary by country and are important 
for interpretation. 

Thank you for your comment. We will include the AEMET fire danger threshold in the 
manuscript, as it is necessary for understanding the FWI magnitudes associated with each 
category. We are also considering adding a table to the manuscript that briefly summarizes 
the thresholds for each category. We have added this table in the manuscript in Section 2.5. 
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Table: FWI Classes According to AEMET (Based on Percentiles) 

 

Minor 3: 

I suggest moving Figure 1 to the Supplementary Information, as similar architectures 
have already been described in previous literature. 

We thank the referee for the suggestion. Although it is true that similar architectures have 
been described in the previous literature, we strongly believe that including this figure makes 
the study more self-contained and improves reader comprehension. For readers who are not  
familiar with Deep Learning, it may be difficult to fully grasp the architecture from the textual 
description alone. Moreover, having the figure available directly in the manuscript makes the 
presentation clearer and more accessible. 

Minor 4: 

Consider merging Figures 2 and 3 to highlight the comparison between reference 
FWI, proxy FWI, and the DL emulators in a more compact and interpretable format. 

We appreciate the referee's observation. However, we believe that merging Figures 2 and 3 
would result in a very dense and large figure, reducing clarity. Additionally, we think the 
figures should remain separate because, first, we present our reference—the proxy 
commonly used in the literature—and then the bias between these two approaches. 
Furthermore, throughout the manuscript, validation figures such as Figures 3 and 6 are used 
to illustrate model bias or errors with respect to the true target values. In our view, this 
separation makes it easier to follow the narrative, identify issues, and clearly understand the 
results. 

Minor 5: 

It’s unclear why the Freq. FWI95 for 12 UTC is not shown in Figure 1, even though it is 
later used to compute biases. Including it would help clarify the comparison. 

Thank you for your comment. Although the frequency of FWI95 events is a key metric in 
validation, it is not explicitly shown in Figure 2 because, by construction, each grid point in 
the reference data records exactly 5% of days above its local 95th percentile threshold 
during the season. In other words, the value in each grid across the spatial map is 0.05. We 
have clarified this in the new version of the manuscript:  
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Section 3.1: “The FWI95 frequency for the reference FWI is not shown, because, by 
construction, each grid point in the reference data records exactly 5% of days above its local 
95th percentile threshold during the season. Therefore, the value in each grid across the 
spatial map is 0.05.” 

Minor 6: 

Could the overestimation of Freq. FWI95 by the UNet be explained by a general 
overestimation of FWI in this model, as suggested by the scatter plot? Are all three DL 
models trained on exactly the same days and years? 

Yes, all three DL models (Dense, DeepESD, and UNet) were trained on exactly the same 
days and years and also with the same parameters setup, ensuring a fair comparison. 
Regarding the overestimation of the frequency of FWI95 by the UNet, this effect is due to an 
error in the calculation of the Figure. The correct version is the following attached below, 
therefore now showing a similar spatial pattern than the other DL models: 

 

Figure 5: Results from the U-Net model trained with the P0 for the FWI95 Frequency 
Relative Bias. The maps display differences relative to the reference FWI for the fire season 
(June–September) during the test period (2018–2021) for the FWI MAE (first row). The Bias 
shown inside the panel denotes the spatially averaged bias in absolute value. 

We thank the referee for the observation and this problem will be solved modifying the 
affected figures in the main manuscript. Despite this, the manuscript's storyline remains 
unchanged 

Minor 7: 

Please use either “proxy FWI” or “Proxy FWI” consistently throughout the text. 

Thank you for your observation. We have replaced “proxy FWI” by “Proxy FWI” to be 
consistent throughout the text. 

Minor 8: 

Have you normalized the input data before training the DL models? If so, please 
specify the normalization method used. 
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Yes, we normalize our input data following a standardization. We set up the standardization 
as follows: 

​ ​      where i is the corresponding gridpoint 𝑥
𝑖
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𝑖
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sigma have been computed relative to the training period 1979-2011 (per gridpoint). 

When the model is applied to unseen (test) data, the standardization is performed using the 
same ​ and ​ values derived from the training data. This ensures that the test data is µ

𝑖
σ

𝑖

normalized in a way that is consistent with the training data, preventing information leakage 
and maintaining comparability between training and prediction phases. 

A brief explanation has been added to the manuscript in Section 2.4. 

 

Minor 9: 

Since your DL architectures do not incorporate temporal dependencies, they may 
miss the effect of temporal accumulation in the Duff Moisture and Drought codes 
(e.g., DC, DMC). Why did you choose non-recurrent architectures over those 
incorporating temporal structure (e.g., LSTMs)? 

We thank the referee for the constructive comments. In response, we implemented a 
ConvLSTM model with a temporal window of seven days (i.e., to predict day i, the model 
incorporates information from days i–6 through i). Given the substantial computational 
demands of ConvLSTM training, this implementation was carried out on GPUs. The 
ConvLSTM model adopts the general U-Net framework described in the manuscript, but 
substitutes the 2D convolutional layers with 2D ConvLSTM layers. Replicating the full depth 
of the original U-Net architecture was not feasible due to memory constraints; therefore, the 
depth of the ConvLSTM model was reduced accordingly. 

Figure 6 presents a comparison between the ConvLSTM results and those of the model 
described in the manuscript for the JJAS season during the test period (2012–2022). The 
training parameters and conditions were kept identical to ensure comparability. Across the 
principal validation metrics reported in the paper, the ConvLSTM exhibits inferior 
performance relative to the other models. This outcome does not necessarily imply that 
ConvLSTMs are unsuitable for emulating the FWI; rather, it suggests that achieving 
competitive performance would require further optimization and the design of a more 
complex ConvLSTM architecture. 

Such an investigation is currently underway, as part of ongoing work aimed at optimizing 
time-dependent models for FWI downscaling applications. However, these efforts fall beyond 
the scope of the present study, which is focused on FWI emulation. Moreover, we consider 
that the use of ConvLSTM is not strictly necessary to capture temporal dependencies, as 
these are inherently embedded in the computation of the FWI itself. As the referee rightly 
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noted, several components of the FWI—such as the Drought Code (DC) and the Duff 
Moisture Code (DMC)—explicitly account for the temporal evolution of moisture and drought 
conditions. Therefore, the FWI, as the target variable, already encapsulates this temporal 
characterization. Consequently, we consider that the absence of explicit temporal modeling 
in the network architecture is not critical, as the models are learning a function that implicitly 
includes these dependencies. 

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Results from the Dense, DeepESD, U-Net and Conv-LSTM model trained with the 
P0 predictor set (see Table 1 from manuscript) . The maps display differences relative to the 
reference FWI for the fire season (June–September) during the test period (2012–2021) for 
the FWI MAE (first row), FWI95 MAE (second row), Frequency FWI95 Relative Bias (third 
row) and Maximum annual Spell FWI 95 bias. The MAE value inside the map represents the 
spatially aggregated mean absolute error of the deep learning predictions with respect to the 
FWI reference, while Bias denotes the spatially averaged bias in absolute value. 
 
In the manuscript we have clarified that we have tested a ConvLSTM, but it is not included in 
the text in Section 2.4: “Alternative architectures, such as Convolutional Long Short-Term 
Memory (ConvLSTM), were also evaluated. However, owing to their inferior performance 
relative to the selected architectures and their greater computational demands, they are not 
presented in this manuscript.” 

Minor 10: Interpretation of input variable relevance​
​
The saliency maps suggest that precipitation is only relevant in low-FWI scenarios. 
However, this may be a result of how precipitation contributes to the FWI calculation 
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itself—namely, it offsets the fuel dryness components. Therefore, in high and extreme 
FWI events (which typically occur during dry periods), the precipitation input often 
has a value of zero, contributing little additional information for the DL model.    

It would be insightful to give more information about why the model changes its focus 
depending on the region and the type of FWI (non or extreme value). Otherwise, the 
only information that this result gives us is that for the DL temperature, relative 
humidity and wind speed are sufficient for obtaining accurate high and extreme FWI 
events. But, is this true in reality? 

Considering this work uses ERA5Land, the predictor variables (T, RH, P and ws) are 
non independent from each other. In fact, temperature and dew point temperature 
(needed to compute relative humidity) are variables calculated by the land surface 
model in ERA5Land, while total precipitation and wind components are forcing 
variables interpolated from ERA5. Therefore it is likely probable that temperature and 
relative humidity in ERA5Land reflects the effects of changes in total precipitation and 
wind speed and, therefore, these two last variables are not so needed by DL models. 
This is just a guess and it likely won't be the full explanation of your interpretability 
results... but in any case it would be very valuable to give more information about this 
or at least mention it if you agree on this limitation. 

 

We thank the referee for this very thoughtful and detailed comment. We agree that the 
apparent low relevance of precipitation in high- and extreme-FWI scenarios is strongly linked 
to how precipitation contributes to the FWI itself. Specifically, precipitation primarily 
influences the fuel moisture codes, and when FWI values are high, these codes already 
reflect prolonged dry conditions, making the precipitation input frequently zero and thus 
uninformative for the DL model. We clarify this point in the revised manuscript to ensure that 
this mechanism is explicitly discussed.  

Regarding the reviewer’s second point, we also agree that providing more insight into why 
the model’s feature attribution changes across regions and FWI regimes would strengthen 
the interpretability section. We will expand our discussion by emphasizing two aspects: 

FWI definition dependency – The DL model’s focus on temperature, RH, and wind in 
high/extreme cases mirrors the FWI’s own reliance on these variables under dry conditions. 
However, this does not imply that precipitation (or other inputs) is unimportant in reality for 
fire risk; rather, it reflects the structure and sensitivity of the FWI metric that the DL model is 
trained to emulate. 

Predictor interdependencies in ERA5Land – As the reviewer correctly notes, ERA5Land 
variables are not independent: RH is derived from temperature and dew point (affected by 
precipitation indirectly), while precipitation and wind are assimilated forcings. These 
dependencies likely explain why the DL model can achieve high predictive accuracy even 
when precipitation and wind receive lower attribution scores. We agree that this introduces a 
limitation in interpreting the saliency maps, since the apparent dominance of temperature 
and RH may partly arise from their embedded relationships with other drivers. 
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We will incorporate this limitation into the revised manuscript and make it clear that the 
interpretability results should not be read as definitive statements about the physical 
importance of individual meteorological drivers in real-world fire danger processes. Rather, 
they highlight how the DL model leverages the structure of the ERA5Land inputs and the 
FWI formulation itself. 

Therefore, in Section 3.5 (in the third paragraph of the discussion) we have incorporated the 
following explanation which summarizes the previous ideas:  

“This finding is consistent with the definition of the FWI itself, which relies primarily on 
temperature, relative humidity, and wind speed under dry conditions. The DL model thus 
reflects the structure and sensitivity of the FWI metric it is trained to emulate. Importantly, 
this does not mean that precipitation (or other inputs) is irrelevant for real-world fire danger; 
rather, it highlights that the predictand (FWI) gives limited weight to precipitation in high and 
extreme danger situations. 

Moreover, ERA5-Land predictor variables are not independent. Relative humidity, for 
instance, is derived from temperature and dew point, which are indirectly influenced by 
precipitation, while precipitation and wind are assimilated forces. These interdependencies 
likely contribute to the model’s ability to achieve high predictive accuracy even when 
precipitation and wind receive lower attribution scores.” 

For all these reasons, we thank the referee for this comment, which enriches the discussion 
of the interpretability results in the manuscript. 

Minor 11: 

I miss an experiment in which you assess how the DL models learn to compute the 
reference FWI using input variables at 12 UTC. Your experiments P1 and P2 address 
this question to some extent, but the resulting biases could also arise from difficulties 
relating daily aggregates to FWI 12 UTC data. It may be worth including this 
experiment to provide insight into where the obtained biases in the DL models may 
come from. 

We thank the referee for this insightful suggestion. In response, we have included an 
additional sensitivity experiment designed to evaluate the ability of the deep learning models 
(deepESD, fully connected (dense) networks, and U-Net architecture) to learn the transfer 
function that defines the Fire Weather Index (FWI) using input variables at 12:00 UTC, 
consistent with the temporal resolution of the reference index. This new experiment is now 
included in the revised manuscript in Figure D1 as part of a new Appendix D: Sensitivity 
analysis of deep learning models and evaluation of other predictors sets. 

This experiment complements our previous configurations (P1 and P2) by isolating the effect 
of temporal aggregation. Specifically, we compare model performance when trained with 
instantaneous inputs (i.e., values at 12:00 UTC and 24-hour precipitation) versus daily mean 
inputs. This comparative framework allows us to disentangle the intrinsic biases of each 
modeling approach from the additional error introduced by using daily-aggregated predictors. 
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Our results, summarized in Figure 7 below, show that models trained with instantaneous 
inputs exhibit lower bias and improved accuracy, while maintaining a similar spatial error 
pattern. This confirms that part of the error observed in experiments P1 and P2 stems from 
the mismatch in temporal resolution between the predictors and the reference FWI. 

Furthermore, we find that the U-Net architecture yields the lowest intrinsic bias in emulating 
the actual FWI function. It consistently exhibits the smallest biases in both FWI and FWI95, 
as well as in the predicted frequency of FWI95 events and the mean annual maximum 
duration of FWI95 spells. These results suggest that the U-Net architecture may offer 
enhanced generalization capabilities. Its ability to maintain low bias across both 
instantaneous and aggregated inputs indicates robustness to temporal variability, which is a 
key factor in modeling climate indices. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 7: Results from the Dense, DeepESD and U-Net model trained with 12UTC input 
variables (temperature, 24h-accumulated precipitation, relative humidity and wind speed) . 
The maps display differences relative to the reference FWI for the fire season 
(June–September) during the test period for the validation indices. The MAE value inside the 
map represents the spatially aggregated mean absolute error of the deep learning 
predictions with respect to the FWI reference, while Bias denotes the spatially averaged bias 
in absolute value. 
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A discussion about these results is provided in the new version of the manuscript in Section 
3.2.1: “Before discussing the performance of the DL models across the validation indices, we 
first highlight how daily aggregation of the input data affects model performance. Figure D1 
in Appendix D presents the results from the Dense, DeepESD, and U-Net models trained 
using 12:00 UTC input variables (temperature, 24-hour accumulated precipitation, relative 
humidity, and wind speed) to compute the FWI. This sensitivity experiment evaluates the 
models’ ability to learn the transfer function defining the FWI using inputs at 12:00 UTC, 
consistent with the temporal resolution of the reference index. 

This analysis complements our other model configurations by isolating the effect of temporal 
aggregation. Specifically, we compare performance when models are trained with 
instantaneous inputs (i.e., values at 12:00 UTC and 24-hour precipitation) versus daily mean 
inputs. This framework allows us to separate the intrinsic biases of each model from the 
additional error introduced by using daily-aggregated predictors. Figure D1 shows that 
models trained with instantaneous inputs exhibit lower bias and improved accuracy while 
maintaining a similar spatial error pattern. This confirms that part of the error observed in 
experiment P0 (Figure 3) stems from the mismatch in temporal resolution between the 
predictors and the reference FWI. 

However, some regions, such as the Mediterranean areas for FWI MAE and the Cantabrian 
Mountains, the Pyrenees, and the Mediterranean coast for FWI MAE95, exhibit intrinsic 
errors even when instantaneous inputs are provided to the DL models. 

Moreover, the U-Net architecture demonstrates the lowest intrinsic bias in emulating the 
actual FWI function. It consistently shows the smallest biases in FWI and FWI95, as well as 
in the predicted frequency of FWI95 events and the mean annual maximum duration of 
FWI95 spells. These results suggest that U-Net offers enhanced generalization capabilities. 
Its ability to maintain low bias across both instantaneous and aggregated inputs indicates 
robustness to temporal variability, a key factor in modeling climate indices.” 
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