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Abstract 

Snowpack  dynamics  play  a  key  role  in  controlling  hydrological  and  ecological  processes  at 
various  scales,  but  snow  monitoring  remains  challenging.  Data  assimilation  techniques  are 
emerging as promising tools to improve uncertain snowpack simulations by fusing state-of-the-
art numerical models with information rich, but noisy observations. However, the occlusion of 
the ground below the forest canopy limits the retrieval of snowpack information from remote 
sensing tools.  Remote sensing observations in these environments are spatially  incomplete, 
impeding  the  implementation  of  fully  distributed  data  assimilation  techniques.  Here  we 
propose different experiments to propagate the information obtained in forest clearings, where 
it  is  possible to retrieve observations,  towards the sub-canopy, where the point of view of  
remote sensors is occluded. The experiments were conducted in forests within  Sagehen Creek 
watershed (California, USA), by updating simulations conducted with the Flexible Snow Model 
(FSM2)  using  airborne  lidar  snow  data  using  the  Multiple  Snow  data  Assimilation  system 
(MuSA). The successful experiments improved the reference simulations significantly both in 
terms of validation metrics (correlation coefficient from R=0.1 to R ~0.8 on average) and spatial 
patterns.  Data  assimilation  configurations  using  geographical  distances  and  space  of 
topographical dimensions, improved the reference run.  However, those creating a space of 
synthetic  coordinates  by  combining  the  spatiotemporal  data  assimilation  with  a  principal 
components analysis did not show any improvement, even degrading some validation metrics. 
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Future data assimilation initiatives would benefit from building specific localization functions 
that are able to model the spatial snowpack relationships at different resolutions.

1 Introduction
 The seasonal snowpack is a crucial component in various ecological and hydrological processes  
in mountain areas and cold regions (Han et al., 2024; Slatyer et al., 2022),  covering over 47 
million square kilometers  of  the northern hemisphere  (Robinson & Frei,  2000) and 45% of 
global  mountain  areas  (Gascoin  et  al.,  2024),.  It  has  significant  implications  for  both  the 
economy and ecology of these areas, as well as for downstream regions (Barnett et al., 2005; 
Qin  et  al.,  2020;  Sturm  et  al.,  2017).  However,  accurately  estimating  the  spatiotemporal 
dynamics  of  the  snowpack,  in  particular  the  snow  water  equivalent  (SWE),  remains  a 
challenging and unresolved issue  (Tsang et al., 2022). These difficulties are only increased in 
forested  terrain,  due  to  the  complex  relationships  between  snowpack  and  canopy  cover 
(Mazzotti, Essery, Moeser, et al., 2020).

The overlapping area between the snowpack and forested areas is estimated in at least 19% of 
the terrain in the northern hemisphere, only accounting for the boreal forest (Rutter et al.,  
2009). This estimation can only be higher considering the overlapping area in alpine forests.  
Snow beneath the canopy behaves differently than in open terrain  (Dickerson-Lange et  al., 
2023; Safa et al., 2021; Varhola et al., 2010).The intercepted snow will either sublimate, drip as 
liquid water or unload as snow (Lundquist et al., 2021). In addition, the canopy cover changes 
the  net  radiation  available  to  melt  the  snowpack,  both  by  shading  the  snow  surface  and 
increasing the incoming longwave radiation (Lundquist et al.,  2013). Generally, this leads to 
increased  ablation  under  the  canopy  in  warmer  environments  from  longwave  radiation 
compared to  colder  environments  where  shading  from solar  radiation causes  less  ablation 
under canopy (Lundquist et al., 2013).  This relationship leads to differences between under 
canopy and open clearing snowpack in most environments (Dickerson-Lange et al., 2017) that 
are challenging to observe across complex terrain (Safa et al., 2021).

Direct observations of the snowpack under the forest are rare and challenging to obtain (Kinar 
& Pomeroy, 2015).Remote sensing techniques are well established as snow cover monitoring 
tools (Gascoin et al., 2024). Due to different remote sensing initiatives, it is possible to monitor 
the  dynamics  of  the  snowpack  even  at  continental  scales  at  frequencies  approaching  real 
time.Unfortunately,  most  of  these retrievals  are  limited to  observations  in  open terrain  or  
clearings in forested areas, being limited either spatially or temporally. One partial solution to  
observing snow under the canopy is with airborne lidar systems that can partially penetrate the 
canopy and retrieve the snow depth.  Recent work has processed lidar point clouds to resolve  
under canopy snowpack and validated the results against field observations (Kostadinov et al., 
2019; Safa et al., 2021, Piske et al., 2025).

Numerical modeling of the snowpack allows simulating the complete state of the snowpack,  
including the SWE, at any spatiotemporal resolutions. Modern snowpack models of increasing 
complexity  even  represent  the  horizontal  transport  of  the  snow  caused  by  wind  and 
avalanches,  and  the  interactions  with  forests  (Mazzotti et  al.,  2020;  Vionnet  et  al.,  2021). 
However, numerical models often rely on adjustable parameters to represent different physical 
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processes,  whose  transferability  between  different  areas  and  model  resolutions  is  usually 
complex, leading to uncertain simulations (Essery et al., 2013). In addition, these models rely on 
high resolution meteorological forcings, that are very challenging to generate and constrain, in 
part  due  to  the  lack  of  dense  in  situ  observations.  The  computational  cost  of  regional 
atmospheric models increases significantly with finer resolution, with the current state of the 
art at the kilometer scale (Rasmussen et al., 2023). A partial, and very widespread, solution to 
this problem is to use simplified downscaling models that rely on different assumptions and/or 
empirical approximations to generate high resolution meteorological forcing fields  (Fiddes & 
Gruber, 2014; Liston & Elder, 2006; Reynolds et al., 2023). Despite their simplicity, these more 
heuristic  approaches  may lead to  a  performance comparable  with  dynamically  downscaled 
meteorological  products  (Alonso-González  et  al.,  2023;  Gutmann et  al.,  2012;  Kruyt  et  al., 
2022). Nonetheless, any (often considerable) remaining uncertainty in the forcing will, together 
with  the  uncertainty  in  the  snow  model  structure  and  parameters,  be  propagated  to  the 
snowpack  simulations,  typically  leading  to  simulations  that  differ  significantly  from  reality 
(Krinner et al., 2018; Raleigh et al., 2015).

Data assimilation (DA) is the exercise of merging noisy observations with uncertain numerical 
models  to  exploit  the  strengths  of  both worlds  (Evensen et  al.,  2022).  Thanks  to  DA,  it  is 
possible to constrain model uncertainty using partial information from snowpack observations 
(Largeron et al., 2020). Using DA, it is possible to infer uncertain parameters to improve the 
simulations  so  as  to  better  match  the  observations,  providing  an  estimation of  the  model 
uncertainty. However, snow DA is still rarely used in forested areas due to the lack of reliable 
remote sensing observations of the snowpack under the canopy. 

Canopy cover impedes the direct observation of the snowpack from space or airborne sensors, 
which  collaterally  hampers  the  use  of  DA,  and  may  even  degrade  simulation  outputs  if 
implemented in its simplest form (Yatheendradas et al., 2012). This is probably the reason that 
the majority of snow DA experiments have been limited to arctic or alpine areas above the  
treeline, with only some experiments approaching specifically the topic of snow DA in forested 
areas.  Smyth et  al.  (2022) tested the potential  of  a particle filter DA algorithm to improve 
snowpack  simulations  generated  by  the  Flexible  Snow  Model  (FSM2)  in  the  presence  of 
observations  beneath  the  canopy.  The  results  show  that  simulations  can  be  improved  by 
assimilating data in snow models that consider canopy interactions. However, the question of  
how to improve simulations of the snowpack in case of a total occlusion of the snow view in 
certain regions of the simulation domain (i.e. lack of local observations) remains unanswered. 
Pflug et al., (2024) proposed a simplified three dimensional DA scheme to update the SWE state 
variable  at  unobserved locations from remote observations in  forest  gaps and tested their 
approach with a synthetic observing system simulation experiment (OSSE). Due to its simplicity, 
their  heuristic  procedure  succeeded  in  performing  a  promising  synthetic  assimilation 
experiment over a very large area of North America at an affordable computational cost. Cho et 
al.  (2023) assimilated spatially coarse airborne gamma ray based SWE retrievals in forested 
environments, using a three-dimensional EnKF. These recent works lay the foundations of snow 
data assimilation in forests, with great potential to (i) improve snowpack simulations in forested 
watersheds,  (ii)  better  understand  snow-forest  processes,  and  (iii)  identify  shortcomings  in 
snow-forest model parameterizations. However, these previous works are based on necessarily 
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simplified approximations to limit the computational cost, synthetic experiments or very coarse 
resolutions unable to capture the spatial variability present in montane forests  (Safa et al., 
2021; Tennant et al., 2017). The emergence of new technologies that allow the acquisition of 
snowpack observations at high and hyper resolutions (Gascoin et al., 2024), make it necessary 
to adapt classical DA techniques to maximize the value of the available information.

The interactions between the canopy and the snowpack behavior pose challenges for inferring 
the snow mass beneath the canopy directly from nearby observed locations in forest clearings,  
preventing  simple  interpolation  techniques  (Dharmadasa  et  al.,  2024) or  DA  techniques 
designed to update the model states directly from the information obtained in nearby cells to 
work efficiently in this context (Pflug et al., 2024). It is necessary to explore how the available 
information can be transferred from the observations in forest clearings to beneath the canopy, 
where observations are typically  either missing or highly uncertain.  In this  work,  we test  a 
recently  developed spatio-temporal  snow DA methodology  (Alonso-González  et  al.,  2023), 
specifically  designed  to  update  distributed  snowpack  simulations  from spatially  incomplete 
observations such as in a forest environment where the information from remote sensors is  
mostly available in forest clearings. We combine that information with a unique post-processed 
lidar dataset that resolves the under-canopy snowpack explicitly (Kostadinov et al., 2019; Piske 
et al., 2025) to validate the model.  The objective of this work is (i) to explore the potential of  
lidar-derived real observations to update distributed snowpack simulations at hyperresolution 
(10 m) scales in forest environments, and (ii) to test different spatiotemporal DA configurations 
for estimating snow under the canopy when only observations in forest gaps are available. Here 
we propose different spatio-temporal DA configurations to propagate information under the 
canopy where the observations are often not available.
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2 Data and Methods

2.1  Observed  snow  depth  maps,  vegetation  parameters  and  meteorological 
forcing

The experiments proposed in this work were developed in the Sagehen Creek forest (California,  
USA, Fig. 1). The observations consist of one airborne LiDAR derived snow depth map collected 
by the National Center for Airborne Laser Mapping on  21 March 2022  (Piske, 2022) and a 
snow-off flight (Graup, 2021). From all the available areas, we have selected a domain of ~2x2 
km that maximizes canopy heterogeneity and the observed snowpack data that are incomplete 
due to dense canopy coverThe Sagehen Creek site was used to develop and test a new method  
of  under  canopy  snow  depth  detection  from  airborne  lidar  (Kostadinov  et  al.,  2019) that 
resolves a considerable amount of  snow information beneath the canopy (Fig.  1).   We use 
animproved method, as compared to Kostadinov et al., to extract vegetation from the snow 
surface described in Piske (2025) that better resolves low vegetation from the snow surface 
using the lidar point cloud.  Based on nearby SNOTEL at a similar elevation (SNOTEL Site: 539,  
Independence Camp,  https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=539, last accessed: 11-
Nov-2024), the SWE was 43 cm on 21 March when lidar was collected compared to a maximum 
annual SWE of 48 cm on 9 March, 2022.  The native spatial resolution of the lidar dataset was 1  
m  which  was  resampled  to  10  m  for  use  in  the  DA  analysis.  The  error  variance  of  the 
observations was assumed to be  σ2= 0.01 m2  at 10m resolution based on previous airborne 
LiDAR snow experiences that reported similar error metrics (Currier et al., 2019; Harpold et al., 
2014;  Mazzotti et  al.,  2019;  Painter  et  al.,  2016).  Future initiatives may benefit from more 
sophisticated error models. In addition to the snow depth observations, different vegetation 
parameters were computed from the three-dimensional lidar data, including vegetation height,  
the Vegetation area index and the in forest sky view factor based on methods described in 
Broxton et al., (2015) and Broxton et al. (2021). This dataset was segmented into  grid cells in 
forest  clearings  (to  be  assimilated)  and  canopy-covered  cells  (to  be  used  as  independent 
validation) based on this  vegetation information. The meteorological  forcing was generated 
using MicroMet (Liston & Elder, 2006) forced by the ERA5 atmospheric reanalysis (Hersbach et 
al.,  2020).  The  meteorological  fields  were  downscaled  to  the  same  geometry  of  the 
observations using a LiDAR based digital elevation model (Sourp et al., 2025). The precipitation 
partitioning  was  estimated  using  the  psychrometric  parameterization  scheme  proposed  by 
Harder & Pomeroy (2013). 
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Figure 1. (a) Localization map, (b) Digital elevation model, (c) vegetation height and (d) available observations (with 
its segmentation between canopy covered data used for validation or forest gaps to be assimilated).  The red 
transect in the digital elevation map indicates the location of the profile used later for validation.

2.2 Data assimilation and computational setup

All  DA  experiments  presented  in  this  work  were  developed  using  the  Multiple  Snow data  
Assimilation (MuSA) system (Alonso-González et al., 2022). MuSA is an open-source DA toolbox 
designed primarily as a python wrapper around the Flexible Snow Model (FSM2,  Essery et al. 
(20245), but now providing support for other numerical models as well while not necessarily 
being limited to snowpack models.  MuSA provides support to different DA algorithms,  and 
simplifies the implementation of new ones thanks to its modular design. In this work, the FSM2 
model  was  chosen  due  to  its  already  coupled  canopy  module  that  required  only  minimal 
modifications  of  the  original  MuSA  code  to  be  activated.  Here  FSM2  was  forced  by  the 
Micromet outputs, and provided with the lidar-derived vegetation parameter maps. The most  
complex FSM2 parameterisation was selected, based on previous experience. In the case of 
canopy  parameterisation,  this  includes  a  two  layer  canopy  model  with  nonlinear  snow 
interception,  snow  unloading  dependent  on  wind  or  temperature  and  two-stream 
approximation  canopy  radiative  transfer.  In  any  case,  the  methods  presented  here  are 
independent of the numerical model and forcing used, so they are transferable to different data 
assimilation initiatives. It should be noted that although in this work we focus on the MuSA 
snow depth outputs (as this is what we can validate) posterior simulations include the full state  
vector of FSM2, including SWE.
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The spatio-temporal DA scheme is described in Alonso-González et al. (2023), and therefore we 
only  briefly  introduce  some  key  points  here,  its  configuration,  and  the  new  modifications 
implemented  to  improve  its  performance  for  the  new  problem  at  hand.  We  only  infer 
meteorological correction parameters and not model states, leading to physically consistent (in 
terms of FSM2) simulations of the modeled snow state across the snow season. As mentioned 
above, snowpack in the forest gaps shows a different behavior than beneath the trees (Varhola  
et al., 2010), so trying to infer canopy-occluded states directly from the information we can  
obtain  in  the  gaps  could  also  introduce  artifacts  in  the  simulations.  Crucially  the  forcing 
perturbations will also be modified by the canopy scheme in FSM2, so even if the above canopy 
forcing is  constrained to be similar for neighboring cells  the forcing that the below canopy 
snowpack experiences will be different due to model physics. 

As  the first  step in  our  workflow,  we generated an ensemble of  100 FSM2 simulations by 
randomly drawing stationary  (i.e.  constant  across  the water  year)  spatially  correlated prior 
parameters  to  perturb the meteorological  forcing,  particularly  the precipitation and 2m air  
temperature fields. The choice of perturbing only precipitation and temperature was motivated 
by previous successful experiments with a similar setup, albeit in non-forested environments 
(Alonso-González et  al.,  2023;  Alonso-González  et  al.,  2022).  Herein,  the  prior  probability 
distributions that  we sampled using a  random number generator  were:  a  normal  (additive 
parameter)  for  the  temperature  bias  and  lognormal  (multiplicative  parameter)  for  the 
precipitation scaling. These prior distributions were defined by: its mean (μ = 0) and standard 
deviation (σ = 1) in the case of the temperature and by the mean and standard deviation (μ = 0,  
σ = 0.4) of the underlying normal distribution in the case of the precipitation. The latter results 
in log-normally distributed prior multiplicative precipitation scaling parameters in the physical 
space whose median is ~1. The objective of the algorithm is to update these parameters by  
assimilating  observations  to  directly  correct  the  temperature  and  precipitation  fields  and 
indirectly update the corresponding snowpack states.

For this purpose we have used a deterministic ensemble Kalman filter (DEnKF)-based algorithm 
in iterative smoother mode, namely the Deterministic Ensemble Smoother (DES, Sakov & Oke, 
2008) with multiple data assimilation (DES-MDA, Emerick, 2018). In this DES-MDA scheme, the 
update proceeds in two steps for each grid cell   and   MDA 

iteration.  Firstly,  the   updated  ensemble  mean  parameter  column  vector   is 
obtained using a Kalman analysis equation of the form 
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where is the  ensemble mean parameter column vector from the current (prior for 

)  iteration, the   matrix   is  a localized and inflated ensemble Kalman gain 
computed  using  ensemble  covariances  and  the  observation  error  covariance,   is  the 

 local observation vector containing available local observations that are within a yet to 
be defined distance-based neighborhood  (see the GC function below) of grid cell  , and 

the   vector   contains  the  corresponding  local  ensemble  mean  predicted  (i.e. 
modeled) observations from the last iteration obtained at neighboring grid cells. We refer to 
Alonso-Gonzalez et al. (2022) for the full form of the ensemble Kalman gain matrix in particular  
and a more detailed overview of the implementation of spatio-temporal DA using the DES-MDA 

in MuSA in general. Secondly,  the  matrix  containing the updated ensemble of 
parameter vector anomalies (from the mean) is  obtained using a modified Kalman analysis 
equation of the form 

where   is  the   matrix containing the ensemble of parameter vector anomalies 

from the current iteration,   is a   row vector of ones, and   is the   
matrix  of  predicted  observations  from  the  current  iteration.  Once  the  mean  and  anomaly 

update steps have been carried out, the  matrix   (without the prime) containing 
the updated ensemble of parameter vectors is obtained through the matrix sum

 

where  is a  row vector of ones. Unlike the classic stochastic (perturbed observation) 
ensemble Kalman scheme, this deterministic ensemble Kalman scheme is less overconfident 
thanks  to  built-in  model  covariance  inflation  and  also  avoids  the  need  to  factorize  the 
observation error covariance that can be costly in spatio-temporal problems (Emerick, 2018).  In 
the loop over iterations above we implicitly rerun the forward model, FSM2 in this case, with 
the updated parameter values to generate an updated ensemble of hidden snowpack states 
including the predicted snow depth observations to be assimilated. 
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The Gaussian assumptions inherent  in  this  ensemble Kalman method make it  more robust 
against ensemble collapse (where a single member carries all the posterior probability) than 
particle methods which are more widely used for snow DA (Alonso-Gonzalez et al., 2022). In 
particular,  we  have  used  an  iterative  version  of  DES,  that  performs  the  update  of  the 
parameters  in  multiple  data  assimilation  (MDA)  steps,  creating  the  DES-MDA  used  here 
(Emerick, 2018). The MDA is a form of likelihood tempering (Murphy, 2023)that helps relax the 
undesirable effects of the linear assumption inherent to EnKF based algorithms. In nonlinear DA 
problems such as the one tackled here, previous work has shown that these MDA iterations 
lead to significant  improvement of  the results  compared with non-iterative versions of  the 
algorithm(Aalstad et al., 2018; Alonso-González et al., 2022). In this work, based on previous 
studies (Alonso-González et al.,  2022 and references therein), the number of iterations was 
fixed  to  4.  To  accommodate  the  Gaussian  assumption,  we  employed  analytical  Gaussian 
anamorphosis (Bertino et al., 2003) to log transform the precipitation parameter distribution to 
a  normal  distribution  and  perform  the  update  in  Gaussian  space.  After  the  update,  the 
parameters  are  mapped  back  to  the  model  space  using  the  exponential  function  before 
generating the new ensembles. 

The spatial propagation of information may happen through two main mechanisms in the DES-
MDA:  observation  error  correlations  or  prior  correlations  (van  Leeuwen  2019).  Since 
observation error correlations are more challenging to specify and arguably less general than 
prior correlations, we will focus only on the latter. A key component of the scheme is to draw 
random prior  parameters  for  each cell  that  are  correlated with  other  cells  in  the  domain, 
reflecting similarities  among different  regions  of  the  simulation domain.  In  the  general  DA 
literature, this is typically done by computing the pairwise geographic (Euclidean) distance to 
map  the  proximity  of  the  cells.  The  pairwise  distance  matrix  is  then  used  to  generate  a 
covariance  matrix.  In  this  work  we  have  used  the  5th-order  piecewise  rational  function 
proposed by Gaspari and Cohn (GC) (Gaspari & Cohn, 1999), as is often done in DA to generate 
and  localize  the  covariance  matrix.  The  GC  localization  function  depends  on  an  important 
hyperparameter, the correlation length scale, that in practice controls how far information can 
be transferred spatially. Crucially, this length scale will affect both the posterior results and the 
computational cost since a larger length scale results in a greater number of neighbors with 
non-zero  correlation.  The  GC  function  defines  a  distance-based  correlation  as  follows  :
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where,  d  is  the pairwise distance between cells  and  c is  the  correlation length scale.  This 
function is used for localization, with two important roles: first, it reduces spurious long range 
correlations that arise due to the limited size of the ensemble (Morzfeld & Hodyss, 2023), and 
second,  to  save  considerable  computational  costs  since  relatively  distant  locations  can be 
ignored when updating a particular cell.Note that without localization, the spatio-temporal DA 
problem  would  essentially  be  intractable,  especially  in  this  context  with  a  relatively  large 
domain and a high spatial density of observations. In addition to ensemble collapse, this is  
another motivation for using the ensemble Kalman method over particle techniques here, since 
more developed localization methods exist for the former (Evensen 2022). Despite being the 
typical spatial snow DA configuration (e.g. De Lannoy et al., 2012; Magnusson et al., 2014) and  
references  herein),  there  is  no  reason  to  restrict  the  distance  mapping  to  the  geographic 
(northing and easting dimensions) space, since an arbitrary number of dimensions can be used 
to define a feature space and generate the distance matrix.  It  is  widely acknowledged that 
snowpack redistribution is strongly dominated by the topographic characteristics of the terrain, 
such as concavity, slope, and elevation as well as vegetation parameters  (e.g. Dharmadasa et 
al., 2023; Essery & Pomeroy, 2004; Revuelto et al., 2014; Zheng et al., 2019). In the context of 
snow DA, it is possible to map the similarities between cells using a multidimensional feature 
space of topographical (or any other) dimensions. The only two considerations to be taken into 
account  are that  these feature dimensions may have different  units,  and that  they can be 
potentially correlated. This may generate a space of non-orthogonal dimensions where using 
the Euclidean distance directly may lead to a spurious similarity mapping (Curriero, 2006). It is 
possible to overcome these issues by using the Mahalanobis distance, a generalization of the 
Euclidean distance that includes a covariance-based normalization attempting to address these 
two problems in a single step. Alternatively, it may be possible to generate other spaces using 
synthetic transformed orthogonal dimensions in a potentially lower dimensional space from the 
previously  scaled  topographical  dimensions  using  a  principal  components  analysis  or 
multidimensional  scaling  approaches  (e.g.  Aversano et  al.,  2019;  Murphy et  al.,  2015),  and 
compute the pairwise Euclidean distance matrix in the new synthetic space.
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Whichever approach is used to define the space that enables information to be spread, it is  
necessary to generate a pairwise distance matrix to compute a prior covariance matrix. The 
previous version of MuSA generated the complete distance matrix, which is highly memory and 
time intensive with poor scalability. The reason for this is that the size of the matrix scales  
quadratically  with  the  number  of  cells,  further  complicating  subsequent  linear  algebra 
operations. However, it is not necessary to compute the full distance matrix since localization 
ensures that long distances will be ignored in the analysis. This makes the distance and the 
subsequent covariance matrix very sparse, opening new possibilities to make prior sampling 
more tractable. As such, in MuSA we have now implemented the capability of mapping the 
distances  using  a  k-dimensional  tree  (k-d  tree)  space-partitioning  data  structure,  as 
implemented in the SciPy python module (Virtanen et al., 2020). This allows MuSA to ignore all 
distances  beyond  the  GC  hyperparameter  value,  generating  a  sparse  distance  matrix. 
Unfortunately only Minkowski metrics (which includes the Euclidean distance) are available so 
far with the k-d tree implementation. As such, this method is not compatible with Mahalanobis  
spaces in the current MuSA version, and therefore it  was not used for all  the experiments 
proposed here. In addition, we have implemented the capability of computing the distance 
matrix cell by cell,  which has proven to be very memory efficient with a very manageable loss 
of  efficiency that  is  compatible with Mahalanobis,  or  any other,  distance metric.  Since the 
distance matrix,  and the generated prior  covariance matrix,  are very sparse,  we have now 
migrated most  MuSA linear  algebra routines to  the SciPy.sparse module.  This  allows us  to 
sample even in very large domains while maintaining an affordable computational  cost.  All 
these modifications are included in a new MuSA version (v2.2),  compatible with the use of 
arbitrary masks, even non-contiguous ones within the same simulation domain, indicating over 
which cells to perform the analysis. This allows simulations to be performed only in the areas of 
interest such as. above a certain elevation or within a certain complex basin geometry), while 
still  performing  spatio-temporal  assimilation  by  propagating  the  information  between  the 
selected cells.

The last step of the prior sampling requires approximating the square root of the covariance 
matrix via Cholesky factorization. As noticed by previous research (Alonso-González et al., 2023; 
Curriero, 2006), the use of non-Euclidean distances (e.g. using the Mahalanobis distance) leads 
easily  to  non-positive  definite  covariance  matrices,  making  it  impossible  to  compute  the 
Cholesky factor. We have increased the numerical stability of the prior sampling in MuSA by 
regularizing the prior covariance matrix, adding small values to the elements of its diagonal.  
These diagonal elements are increased iteratively up to a limit defined by the user (from 1e-6 to 
a maximum of 0.1 in this study), following a technique known as jitter as is commonly done in 
the Gaussian Process machine learning community (Neal, 1999; Rasmussen & Williams, 2005). 
The remaining steps, including the DES-MDA update itself, remain the same as in the previous  
version  of  MuSA,  despite  a  few  minor  updates  with  the  intention  of  improving  the  I/O 
performance by optimizing the compression routines. All these modifications are packed as a 
new version, whose code has been released together with this work  (Alonso-González et al., 
2024).

2.3 Experimental design
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We  propose  different  experiments  to  evaluate  the  potential  of  ensemble-based  data 
assimilation techniques to update hyperresolution simulations in forest environments. First, as 
a reference, we generated a deterministic reference run without any DA for comparison with 
the updated simulations. Then, different experiments were developed in an effort to find a 
MuSA configuration that is able to exploit dispersed hyperresolution information in forested 
terrain. Here we are not aiming to find a generalistic optimal configuration, since each specific  
case will require a different configuration, depending on the resolution of the simulations, the 
spatial density of the observations, the domain, and the availability of computational resources. 
We  propose  3  different  information  propagation  schemes,  and  two  different  GC 
hyperparameters for each, leading to 6 different simulations:

● Using  Euclidean  distances  in  the  geographical  space.  We  developed  two  different 
simulations where the Euclidean distance over the northing and easting dimensions is 
used to map the similarities among cells, using the values of 50 (Eu50) and 100 (Eu100) 
m for the GC hyperparameter.

● Using  the  Mahalanobis  distance  in  a  topographical  space.  Here,  we  propose  two 
experiments  where  in  addition  to  northing  and  easting,  we  included  elevation,  the 
Topographic Position index, the Diurnal Anisotropic Heat index  and the slope to define 
a topographical space. Since we have separated the data beneath the canopy and in the 
forest  gaps,  using  them for  assimilation and validation data,  it  is  not  instructive  to 
include dimensions based on vegetation parameters. In fact, due to the GC function, it 
might even prevent the information transfer towards the canopy covered cells.  The 
open  cells  that  are  geographically  (or  topographically)  distant,  and  nearby 
geographically (or topographically) cells under the canopy, would be equally far away in 
Mahalanobis  distance  from  a  given  open  observed  cell  in  that  hypothetical  space 
including vegetation parameters. The distances were computed using the Mahalanobis 
distance (Ma), and the GC hyperparameters tested were 0.5 (Ma0.5) and 1 (Ma1). 

● Using  Euclidean  distances  in  a  synthetic  topographical  space.  Here  we  included  a 
principal  component  analysis  PCA   (after  z-score  standardization)  analysis  over  the 
topographical space to generate an orthogonal space that ensures a positive definite 
covariance matrix by sorting the cells prior to computing the covariance matrix.  This 
saves significant computational cost since it allows for distance mapping using the new 
k-d  tree  implementation.  The  number  of  principal  components  was  selected 
automatically using the algorithm proposed by Minka (2000), which in practice resulted 
in 5 components. The GC hyperparameters tested were 0.5 (PCA0.5) and 1 (PCA1).

For each of the experiments, we have computed the cell wise  Continuous Ranked Probability  
Score (CRPS,  Hersbach,  2000),  a  generalization of  the mean absolute error  for  probabilistic 
simulations:

Where  is the predicted cumulative distribution function of the snowpack state variable  
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to  be  evaluated,   is  the  reference  (ground  truth)  value  for  the  state  obtained  from 
observations, and  is the Heaviside function resulting in  if  and  otherwise. 
We have used a normal approximation of the posterior snow depth distribution defined from 
the  posterior  mean  and  standard  deviation  derived  from  the  ensemble  together  with  the 
observations to compute the cell by cell mean CRPS and standard deviation (SD). We have also  
computed the spatial bias, which is the mean error of all cells used for validation, where error is 
the difference between the posterior mean and the observations. In addition, we computed the 
correlation  (R)  and  root  mean  square  error  (RMSE)  between  the  posterior  mean  and 
observations across the domain. To evaluate the spatial patterns of each of the experiments, 
we calculated the variograms of each simulation. To quantify how far the variogram curves are 
from the one obtained from the observations under the forest canopy, we used the discrete 
Frechet distance (FrDist) as an indicator of similarity between the variogram curves.
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3 Results

3.1 Validation metrics of the reference run and DA experiments 

Compared  with  the  deterministic  reference  simulation,  both  the  Euclidean  (Eu)  and 
Mahalanobis (Ma) experiments improved the quantitative error metrics considerably (Table 1).  
The marked improvement  in  R  (from R =  0.1  to  R  ~0.8  on average for  all  the Eu and Ma  
experiments)  is  especially  notable,  and,  combined  with  the  lower  Frechet  distance  values 
(FrDist  =  0.29  for  the  reference,  while  FrDist  =  0.005  on  average  for  the  Eu  and  Ma 
experiments),  indicates a  significant  improvement of  the spatial  patterns of  the simulation. 
RMSE values also improved significantly (RMSE improvement ~30%). The bias remained lower 
and close to zero (bias mean = -0.07 m) for the reference simulation compared with the Eu and 
Ma experiments (bias mean ~ 0.13 m), suggesting a slight overestimation of the snow mass in 
the updated simulations. However, the RMSE in the reference run (RMSE = 0.32) compared 
with the Ma and Eu experiments (RMSE = 0.2) suggest many cells in the reference run exhibit 
higher  errors  than  the  ones  of  the  Eu  and  Ma  experiments.  The  CRPS,  which  is  the  only 
uncertainty-aware metric considered that accounts for both the precision and accuracy of the 
ensemble, showed lower values for the Eu50 (CRPS = 0.12), but followed closely by the other 
experiments, except the PCA0.5 and PCA1.

Unfortunately,  despite the convenience of using a PCA preprocessing step, the experiments 
using  PCA  exhibited  only  a  slight  improvement  in  some  metrics  while  degrading  other 
indicators. In particular, they exhibited a slight improvement in the correlation values (R=0.20 
and  0.46  for  PCA0.5  and  PCA1  respectively),  while  all  other  metrics  were  similar  to  the 
reference (e.g. bias), with a FrDist being equivalent or significantly degraded relative to the 
reference for the PCA0.5 (FrDist = 0.021) and PCA1 (FrDist = 0.046), respectively. This suggests 
not only that absolute error metrics were not improved, but even that spatial patterns were not 
adequately simulated with the PCA approach.

Table 1: Validation metrics comparing the under canopy (withheld) and forest gaps (assimilated) observations

Exp. RMSE R Bias CRPS 
[mean(+/- SD)]

FrDist

Ref. 0.32 0.10 -0.07 - 0.029

Eu50 0.20 0.84 0.12 0.12 (+/- 0.09) 0.006

Eu100 0.22 0.85 0.15 0.13 (+/- 0.12) 0.009

Ma0.5 0.22 0.76 0.10 0.14 (+/- 0.10) 0.003

Ma1 0.24 0.81 0.16 0.15 (+/- 0.12) 0.003

PCA0.5 0.33 0.20 -0.03 0.19 (+/- 0.13) 0.021

PCA1 0.33 0.46 0.08 0.21 (+/- 0.18) 0.046
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Among the Eu experiments,  Eu50 exhibited slightly better or similar error metrics than the 
Eu100. However, the differences were minimal, suggesting there is flexibility in choosing the GC 
hyperparameters, in this case at least, in terms of validation metrics. A similar conclusion can 
be drawn from the validation metrics of the Ma experiments, where there was not a clearly 
superior simulation. Similarly, Eu and Ma yielded comparable performance according to these 
error  metrics.  However,  the  FrDist  metric  was  consistently  lower  in  the  Ma  experiments 
compared with the Eu experiments, suggesting a better representation of the spatial patterns, 
while the remaining error metrics were slightly better or similar for the Eu experiments. This  
superior  performance  in  representing  the  spatial  patterns  was  evident  in  the  snow  depth 
semivariograms of the experiments (Fig.2), where Ma experiments exhibited a semivariance 
much closer to the observations, even reproducing accurately the nugget effect exhibited by 
the observations, suggesting a better representation of the small scale patterns. In any case, the 
variograms of the Eu and Ma experiments exhibit a closer shape to the one obtained from the 
observations, compared with the one  obtained in the reference run, which is nearly flat. 

Figure 2: Snow depth spatial semivariance derived from the lidar-derived observations, the reference run and 
different experiments.
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When examining the distributed posterior mean simulations, these considerations about the 
spatial patterns become evident (Fig. 3). First, there was a very limited spatial variability in the  
deterministic reference run, as reflected quantitatively by the Frechet distance and qualitatively 
by the variograms. Among the Eu50 and Ma0.5 posterior maps, there is a clear difference in its  
snow depth spatial patterns. While the large scale patterns were similar in both simulations,  
and close to  the observations,  the small  scale  patterns were different.  In  Eu50 small  scale 
patterns of the posterior mean were clearly affected by the shape of the GC function, since the 
blurrier horizontal patterns are reminiscent of the Gaussian-like shape of this function. On the 
other hand, Ma0.5 small scale patterns, which do not depend solely on geographic distance, are 
considerably more intricate, which also explains the lower FrDist error metric.

Figure 3: Distributed snow depth observations, reference simulation and posterior mean simulations of the Eu50 
and Ma0.5 experiments
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While both in Ma0.5 and Eu50 point scale comparison with observations show a similar overall  
R metric and distribution, it is worth noting the differences shown in Fig.4. In Ma0.5, the cells  
with local observations (i.e. the cells in the forest gaps, which include assimilated information) 
exhibit slightly larger residuals (R = 0.99 and R=0.97 for Eu50 and Ma0.5 respectively). These 
differences suggest that the influence of the GC hyperparameter makes both schemes not fully  
comparable. This is a consequence of the varying number of observations used to update the 
parameters of each cell that differ for each experiment, depending on how much space falls  
within the correlation length scale of the GC function in each case.
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Figure 4: Scatterplot based comparison of the under canopy (withheld) and forest gaps (assimilated) observations,  
with the reference simulation, and the posterior mean of a data assimilation experiment without and with the 
spatial propagation of the information enabled (experiments Eu50 and Ma0.5)

However, these error metrics should be taken with care. Most of them (except CRPS) used the 
posterior mean as an optimal point estimate  of the updated simulation. This assumption was 
adopted  for  simplicity  but  may  compromise  the  interpretation  of  the  results.  Posterior 
simulations are not deterministic simulations and come with an  uncertainty estimate inherent 
in the posterior ensemble. To investigate this issue, we extracted a longitudinal profile along 
the easting dimension, including both the deterministic reference simulation and the posterior 
mean,  but  for  the  latter  we  now included  the  associated  uncertainty  represented  by  +/-1 
posterior  standard  deviation  (which  accounts  for  approximately  68%  of  the  posterior 
probability, Fig. 5). In addition, we included a representation of the observations obtained both 
beneath the canopy and in forest gaps. The profile highlights the differences of using the GC 
function in the Euclidean or topographic space, with Eu exhibiting a much smoother surface 
compared with the sharper Ma profile.  Both profiles exhibited a similar  performance if  we 
account for the uncertainty.  In terms of the posterior mean, Ma0.5 was able to accurately  
capture snow depth in large areas beneath the canopy (e.g. Fig.5 from 1000 to 1250), while  
maintaining most of the observations in at least the range of its standard deviation. Both Eu50  
and Ma0.5 improved the reference run, which exhibited an evident underestimation and lack of 
heterogeneity  along  this  profile,  with  only  a  few  observations  approaching  the  simulated 
reference values.

Figure 5: Snow depth profile showing the match between the reference run (black line), the Eu50 and Ma0.5 
experiments and the observations for the horizontal profile delineated by the red line  shown in Figure 1. The dark  
blue line is the posterior mean and the shaded area the posterior standard deviation.
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Although the aim of the present work is to explore how to propagate the information spatially,  
it is tempting to analyze the posterior distribution of the parameters (Fig. 6). On average for all  
cells,  using the experiment Ma0.5 as a reference, the multiplicative precipitation parameter 
was 1.06 (+/-  0.30)  and the additive temperature parameters  was -0.04 (+/-0.73).  Figure 6 
should be interpreted with caution. It is designed to provide a rough estimate of the posterior  
parameter values. However, drawing conclusions beyond that is risky, since there is likely to be 
equifinality in the parameter posteriors of the simulations, something that is merely suggested 
by the obvious correlation between the posterior mean parameters.

Figure 6: Posterior distributions of perturbation parameters in the model space for the Ma0.5 experiment, each 
point represents a grid cell.

4 Discussion
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The  results  shown  here  demonstrate  the  potential  of  ensemble-based  DA  experiments  to 
improve hyper resolution snowpack simulations in forested terrain, by updating the canopy 
covered cells from information retrieved in clearings. Recall  that the DA schemes proposed 
herein are theoretically independent of the underlying numerical model,meteorological forcing 
or site. As such, in practice any other snow or land surface model forced by meteorological data 
generated by any downscaling tool at any geographical location may benefit from the proposed 
techniques. The aim of this work is not to perform the best possible simulation, but to explore 
whether it  is  possible to improve snowpack simulations in forested areas by means of  DA. 
Future  initiatives  may  choose  to  explore  the  added  value  of  including  additional  forcing 
corrections or internal model parameters in the parameter vector since there is, in theory, not 
any particular  limitation on this  provided that  a  large enough ensemble is  computationally  
feasible.

All  experiments  were  performed  using  the  Centre  National  D'Etudes  Spatiales  (CNES) 
supercomputing infrastructure. For reference, the Ma0.5 experiment took one day and eight 
hours to complete, using 6 nodes with 10 CPUs each to solve the 40401 cells (201 cells in each 
geographical direction) that compose the domain using the aforementioned DA scheme. This 
estimate of computational cost, which could be considered very affordable, especially given the 
iterative  nature  of  the  assimilation algorithm and the  relatively  low number  of  processors 
involved,  should be treated with some caution.  The computational  time varied significantly 
between experiments,  as  in  practice the I/O increases with the GC hyperparameter,  which 
effectively defines a search radius. In addition, MuSA benefits from distributed systems that 
share  I/O  bottlenecks  among  their  nodes,  so  the  computational  scheme  can  also  be  very 
relevant. On the other hand, other DA experiments with a lower density of observations will  
see their computational cost dramatically reduced, independent of the GC hyperparameter.
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Most of the DA configurations managed to improve the posterior simulations compared with 
the  deterministic  reference  simulation,  with  different  configurations  showing  similar  error 
metrics. However, the PCA based experiments, despite their desirability given the orthogonal 
properties of the synthetic coordinate system, did not perform as expected. We hypothesize 
that the limitations found may come from the fact that the new set of coordinates do not  
explicitly preserve the Cartesian northing and easting information by mixing them with other 
dimensions,  relaxing  the  relations  between  nearby  cells  in  the  Euclidean  space  (Davis  & 
Curriero, 2019). However, the same could be said when using the Mahalanobis distance, but 
the performance of the Ma experiments was clearly superior compared to the PCA ones. A 
potential  reason  may  be  the  fact  that,  to  ease  the  positive-definiteness  of  the  PCA-based 
covariance  matrix  by  sorting  the  cells  in  a  lower  dimensional  space,  we  used  the  Minka 
algorithm to reduce the dimensionality  of  the synthetic coordinate system.  This  dimension 
reduction comes in practice with a loss of information. However, this is very unlikely, since in 
practice  it  resulted  in  only  one  dimension  being  removed,  which  represented  a  very  low 
percentage  of  the  total  variance  of  the  system.  This  requires  further  research  to  fully 
understand how the information can be effectively propagated in different spaces. A potential 
future approach may be the use of multidimensional scaling techniques, instead of PCA, that 
have  shown  previous  success  in  geostatistics  (R.  R.  Murphy  et  al.,  2015).  The  challenges 
previously  encountered  in  generating  non-positive  definite  covariance  matrices  have  been 
substantially  mitigated.  Previous  research  has  proposed  to  enforce  positive  definiteness  in 
covariance matrices by using (potentially iterative) methods based on eigendecomposition, to 
make any negative eigenvalues of the covariance matrix become nonnegative  (e.g.  Davis & 
Curriero, 2019 and references herein), which imposed a considerable computational burden, 
particularly  for  large  matrices.  However,  regularizing  the  covariance  matrix  with  the 
introduction of the jitter technique (where small values are iteratively added to the diagonal) 
has proven to be both highly effective and computationally efficient. Whether the results of 
prior sampling differ significantly between these two approaches to regularize the covariance 
matrix remains an open question for future investigation.

In these experiments we update meteorological correction parameters only, and not snowpack 
states, allowing the numerical model to resolve the snow-canopy interactions. This prevents 
the posterior simulations to be degraded by the fact that in reality the snowpack beneath the 
canopy behaves differently than in open terrain (Pflug et al., 2024; Varhola et al., 2010), by 
updating only parts of the simulation that we assume to be similar independently of the canopy 
cover (such as the precipitation or temperature), and letting the model to resolve the parts that 
can't be constrained (such as snow states), due to the lack of information. 
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Since  the  main  objective  of  this  experiment  was  to  explore  how  the  information  can  be 
propagated  effectively  from  clearings  towards  the  canopy  covered  cells,  we  split  the 
observation dataset in two, keeping the cells beneath the canopy for validation. This has not 
allowed us to include vegetation parameters in the distance mapping of the Ma experiments, as 
the cells inside and outside the forest would have been too far away in Mahalanobis space, and 
therefore due to the localization, the information would not have been transmitted from the 
clearings  towards  the  sub-canopy.  Some  vegetation  model  parameters  could  have  been 
included in the inference, but because the information is located in the forest gaps, they could 
not have been constrained. However, given the success of the experiments, future research 
would benefit from assimilating data also in canopy-covered cells, if a proper error model is  
developed. State of the art remote sensing techniques are able to retrieve at least a partial 
information of the snowpack in forested terrain (Mazzotti et al.,  2019), or even snow cover  
information from satellites (Xiao et al., 2022). This may be used not just to further improve the  
posterior simulations but as a tool to infer internal model parameters spotting weakness in  
canopy/snow models or their parameters. 

It  should  be  noted  that  these  spatio-temporal  techniques  are  compatible  with  joint  DA 
initiatives, where more than one type of observation is assimilated into the same simulation, 
potentially only spatially spreading some of them (Mazzolini et al., 2025). This may include the 
ingestion of under canopy in situ observations jointly with remotely sensed retrievals of any 
kind.  It  is  worth  noting  that,  due  to  the  assimilation  of  only  a  single  incomplete  snow 
distribution map, the posterior simulations exhibit equifinality (Beven & Freer, 2001), which 
prevents us from exploring in detail which of these components is more dominant over the  
other  since  they  are  correlated (Fig.  6).  Adding  other  data  sources  and using  more varied  
information could help address this issue in future studies. In any case, the mean posterior 
values obtained were close to unity for precipitation (in the physical space) and close to zero for 
temperature, suggesting that it is not the total amount of precipitation that is biased, but rather 
the small-scale redistribution of the meteorological forcing.

Among  the  experiments  that  improved  the  simulations  compared  with  the  deterministic 
reference run, there was not a clearly superior experiment depending on the GC correlation 
length scale hyperparameter. Similar conclusions could be drawn from the findings in Cho et al. 
(2023),  who  tested  different  correlation  length  scales  for  their  Gaussian  decay-based 
localization function, showing that the differences were always lower than the improvement 
compared with their reference simulation. This suggests some flexibility in the choice of this 
hyperparameter, which may be complex especially when using non-Euclidean distances, and 
often limited by the availability of considerable computing resources. 
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When  comparing  the  Eu  and  Ma  experiments,  it  was  also  difficult  to  spot  differences  if  
considering only  quantitative error  metrics.  However,  the spatial  patterns at  smaller  scales 
seem more realistic when using the Ma configuration, as also found in Alonso-González et al. 
(2023).  This  is  based  on  the  fact  that  the  snow  spatial  patterns  are  correlated  with  the 
characteristics of the terrain, since it controls its distribution by modulating accumulation and 
melt processes in both open and forested terrain (Geissler et al., 2024; Revuelto et al., 2014). 
The proposed domain is relatively small exhibiting a limited topographical complexity. Other 
experiments over larger areas of  increasing topographical  complexity may benefit from the 
increasing topographical variability.  A potential limitation of this method will be found in non-
complex terrain,  as is  typical  in high latitude areas,  where the topographical  control  of the 
snowpack dynamics may be less clear, although still very relevant (Bennett et al., 2022). In any 
case, snowpack in these areas exhibits less spatial variability, so we hypothesize that the use of 
Euclidean distance to map cell similarity is likely to be sufficient in these environments and/or 
at coarser resolutions. 

Alternatively, it is possible to use snow climatologies or observations to perform a more direct 
cell similarity mapping based on the persistence of the spatial patterns of the snow (Alonso-
González, et al., 2023; Mazzolini et al., 2025). Despite developing snow cover climatologies in 
forest  environments  is  significantly  more  challenging  than  in  open  terrain  due  to  the 
aforementioned  limitations  of  satellites  to  retrieve  information  beneath  the  canopy,  it  is  
possible to generate maps of the snow distribution in forested terrain by combining different 
techniques such as ground observations, lidar and field campaigns  (Geissler et al., 2023). The 
generation of such products requires a significant effort in logistics that prevent its operational  
exploitation as a real time monitoring tool. In addition, such field methods will not be able to  
retrieve information at other times that the observation time itself. A promising application of 
the  assimilation  scheme  presented  here  is  to  exploit  such  products  to  map  the  similarity 
between cells in forested terrain, allowing the significant effort needed for these initiatives to 
be exploited to generate gap-free re-analyses or near real time updated simulations.
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In this work, we have explored the effect of using the GC function to create a prior covariance 
matrix in different spaces. However, what remains to be investigated is the potential benefit of 
using different covariance (or kernel) functions. It is possible that other functions may offer a 
more  accurate  representation  of  snowpack  correlograms  across  various  spatial  scales  and 
resolutions, especially in topographical Mahalanobis spaces. One obvious source of inspiration 
is to take advantage of the extensive literature on kernels developed by the Gaussian process 
community (Rasmussen & Williams, 2005). In particular, kernels with compact support—those 
that become zero beyond a certain boundary— (Barber, 2020) could be of special interest since 
they will behave similarly to the GC function, helping in limiting the computational cost and 
preventing  spurious  correlations  among  the  ensembles.  Given  the  increasing  availability  of 
snow depth information over large domains (Magnusson et al., 2024; Painter et al., 2016) , it 
will  be  beneficial  for  the  snow  DA  community  to  explore  which  kernel  functions  better 
approximate  the  empirical  snowpack  spatial  variability  in  different  spaces  and  resolutions. 
Given  that  snowpack  exhibits  persistent  spatial  patterns  in  both  forest  and  open  terrain 
(Geissler et al., 2024; Helfricht et al., 2014), there is potential to find a single flexible kernel 
configuration, ideally depending on a very limited number of parameters, to be widely used in 
both spatiotemporal DA and observation interpolation initiatives.

5 Conclusions

In this work, we have explored the potential of the observations obtained in forest clearings to 
be used to update spatially complete snow simulations in forest environments by means of 
spatio-temporal ensemble-based data assimilation.  Six different experiments were conducted 
in  the  Sagehen  Creek  (California,  USA)  using  different  data  assimilation  configurations, 
demonstrating the potential  obvious benefits  of  spatiotemporal  DA in forest  environments. 
While most of the experiments greatly improved the reference snow simulations, those relying 
on a set of synthetic dimensions generated by a PCA were clearly inferior. Future research may 
benefit from exploring other dimension reduction techniques such as multidimensional scaling.

Among the remaining successful experiments, there was not a clearly superior configuration , in 
that the differences among them were significantly lower than the improvement compared 
with  the  reference  run.  This  suggests  some  flexibility  on  the  selection  of  the  critical  
hyperparameters  of  the  DA.  However,  we  found  that  in  terms  of  both  qualitative  and 
quantitative error metrics, those experiments built on a cell similarity mapping based on the 
Euclidean distance were slightly more accurate in terms of absolute validation metrics, but with 
a more realistic representation of the spatial variance when using the Mahalanobis distance in a 
topographical  space.  This  suggests  that  this  latter  technique is  better  suited for  preserving 
spatial relationships in complex terrain. The differences found in the implementation of the 
prior covariance function in the Mahalanobis and Euclidean spaces, suggests the importance of 
future research investing effort  in exploring of  specific covariance functionfunct that better 
capture the snowpack spatial patternssno
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