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Abstract

Snowpack dynamics play a key role in controlling hydrological and ecological processes at
various scales, but snow monitoring remains challenging. Data assimilation techniques are
emerging as promising tools to improve uncertain snowpack simulations by fusing state-of-the-
art numerical models with information rich, but noisy observations. However, the occlusion of
the ground below the forest canopy limits the retrieval of snowpack information from remote
sensing tools. Remote sensing observations in these environments are spatially incomplete,
impeding the implementation of fully distributed data assimilation techniques. Here we
propose different experiments to propagate the information obtained in forest clearings, where
it is possible to retrieve observations, towards the sub-canopy, where the point of view of
remote sensors is occluded. The experiments were conducted in forests within Sagehen Creek
watershed (California, USA), by updating simulations conducted with the Flexible Snow Model
(FSM2) using airborne lidar snow data using the Multiple Snow data Assimilation system
(MuSA). The successful experiments improved the reference simulations significantly both in
terms of validation metrics (correlation coefficient from R=0.1 to R ~0.8 on average) and spatial
patterns. Data assimilation configurations using geographical distances and space of
topographical dimensions, improved the reference run. However, those creating a space of
synthetic coordinates by combining the spatiotemporal data assimilation with a principal
components analysis did not show any improvement, even degrading some validation metrics.



Future data assimilation initiatives would benefit from building specific localization functions
that are able to model the spatial snowpack relationships at different resolutions.

1 Introduction

The seasonal snowpack is a crucial component in various ecological and hydrological processes
in mountain areas and cold regions (Han et al., 2024; Slatyer et al., 2022), covering over 47
million square kilometers of the northern hemisphere (Robinson & Frei, 2000) and 45% of
global mountain areas (Gascoin et al., 2024),. It has significant implications for both the
economy and ecology of these areas, as well as for downstream regions (Barnett et al., 2005;
Qin et al.,, 2020; Sturm et al., 2017). However, accurately estimating the spatiotemporal
dynamics of the snowpack, in particular the snow water equivalent (SWE), remains a
challenging and unresolved issue (Tsang et al., 2022). These difficulties are only increased in
forested terrain, due to the complex relationships between snowpack and canopy cover
(Mazzotti, Essery, Moeser, et al., 2020).

The overlapping area between the snowpack and forested areas is estimated in at least 19% of
the terrain in the northern hemisphere, only accounting for the boreal forest (Rutter et al.,
2009). This estimation can only be higher considering the overlapping area in alpine forests.
Snow beneath the canopy behaves differently than in open terrain (Dickerson-Lange et al.,

2023 Safa et al., 2021 Varhola et al., 2010) —One—ma;te#p#eeess—rs—the—m%e#eephen—ef—snea#&”

34—29@3)—The intercepted snow will elther subllmate drlp as liquid water or unload as snow
(Lundquist et al., 2021). In addition, the canopy cover changes the net radiation available to
melt the snowpack, both by shading the snow surface and increasing the incoming longwave
radiation (Lundquist et al., 2013). -Generally, this leads to increased ablation under the canopy
in warmer environments from longwave radiation compared to colder environments where
shading from solar radiation causes less ablation under canopy (Lundquist et al., 2013). This
relationship leads to differences between under canopy and open clearing snowpack in most
environments (Dickerson-Lange et al., 2017) that are challenging to observe across complex
terrain (Safa et al., 2021).

Direct observations of the snowpack under the forest are rare and chaIIenglng to obtain (K|nar
& Pomeroy, 2015)

\ Remote sensing techniques are well established as snow cover monitoring tools (Gascoin et al.,



2024). Due to different remote sensing initiatives, it is possible to monitor the dynamics of the
snowpack even at continental scales at frequenues approachlng real time. —Deserte—bemg

2020: Painteretal2016)- Unfortunately, most of these retrievals are I|m|ted to observations in
open terrain or clearings in forested areas, being limited either spatially or temporally. Recent
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prebtemane%ang—et—at—zg%z—) One partial solutlon to observmg snow under the canopy is

with airborne lidar systems that can partially penetrate the canopy and retrieveretrive the snow
depthsurfaceelevation. Recent work has processed lidar point clouds to resolve under canopy
snowpack and validated the results against ﬁeld observations (Kostadlnov et al,, 2019 Safa et

al., 2021, Piske et al., 2025)

Numerical modeling of the snowpack allows simulating the complete state of the snowpack,
including the SWE, at any spatiotemporal resolutions. Modern snowpack models of increasing
complexity even represent the horizontal transport of the snow caused by wind and
avalanches, and the interactions with forests (Mazzotti et al., 2020; Vionnet et al., 2021).
However, numerical models often rely on adjustable parameters to represent different physical
processes, whose transferability between different areas and model resolutions is usually
complex, leading to uncertain simulations (Essery et al., 2013). In addition, these models rely on
high resolution meteorological forcings, that are very challenging to generate and constrain, in

part due to the Iack of dense in 5|tu observatlons T—An—a#ematwe—rs—te—use—meteerelegrea#

Q-Q%harma—et—aJTZO%).—Hewe#er,—the computatlonal cost of reglonal atmospheric models
increases significantly with finer resolution, with the current state of the art at the kilometer
scale (Rasmussen et al., 2023) As—sueh—dynamreaLdeMmseﬂmg—rsaqet—yet—a—tnaetabLe—ephen—te

A lens—A partial, and very widespread,
solutlon to this problem is to use S|mpI|ﬁed downscallng models that rely on different
assumptions and/or empirical apprOX|mat|ons to generate hlgh resolutlon meteorologlcal

Gruber 2014 Liston & EIder 2006 Reynolds et aI 2023) Desplte thelr S|mpI|C|ty, these more
heuristic approaches may lead to a performance comparable with dynamically downscaled
meteorological products (Alonso-Gonzalez et al., 2023; Gutmann et al., 2012; Kruyt et al.,
2022). Nonetheless, any (often considerable) remaining uncertainty in the forcing will, together
with the uncertainty in the snow model structure and parameters, be propagated to the
snowpack simulations, typically leading to simulations that differ significantly from reality



(Krinner et al., 2018; Raleigh et al., 2015).

Data assimilation (DA) is the exercise of merging noisy observations with uncertain numerical
models to exploit the strengths of both worlds (Evensen et al., 2022). Thanks to DA, it is
possible to constrain model uncertainty using partial information from snowpack observations
(Largeron et al., 2020).

Using DA, it is possible to infer uncertain
parameters to improve the simulations so as to better match the observations, providing an
estimation of the model uncertainty. However, snow DA is still rarely used in forested areas due
to the lack of reliable remote sensing observations of the snowpack under the canopy.

Canopy cover impedes the direct observation of the snowpack from space or airborne sensors,
which collaterally hampers the use of DA, and may even degrade simulation outputs if
implemented in its simplest form (Yatheendradas et al., 2012). This is probably the reason that
the majority of snow DA experiments have been limited to arctic or alpine areas above the
treeline, with only some experiments approaching specifically the topic of snow DA in forested
areas. Smyth et al. (2022) tested the potential of a particle filter DA algorithm to improve
snowpack simulations generated by the Flexible Snow Model (FSM2) in the presence of
observations beneath the canopy. The results show that simulations can be improved by
assimilating data in snow models that consider canopy interactions. However, the question of
how to improve simulations of the snowpack in case of a total occlusion of the snow view in
certain regions of the simulation domain (i.e. lack of local observations) remains unanswered.
Pflug et al., (2024) proposed a simplified three dimensional DA scheme to update the SWE state
variable at unobserved locations from remote observations in forest gaps and tested their
approach with a synthetic observing system simulation experiment (OSSE).

Due to its simplicity, heuristic
procedure succeeded in performing a promising synthetic assimilation experiment over a very
large area of North America at an affordable computational cost. Cho et al. (2023) assimilated
spatially coarse airborne gamma ray based SWE retrievals in forested environments,
using a three-dimensional EnKF. These recent works lay the foundations of snow data
assimilation in forests, with great potential to (i) improve snowpack simulations in forested
watersheds, (ii) better understand snow-forest processes, and (iii) identify shortcomings in
snow-forest model parameterizations. However, these previous works are based on necessarily
simplified approximations to limit the computational cost, synthetic experiments or very coarse
resolutions unable to capture the spatial variability present in montane forests (Safa et al.,
2021; Tennant et al., 2017). The emergence of new technologies that allow the acquisition of
snowpack observations at high and hyper resolutions (Gascoin et al., 2024), make it necessary
to adapt classical DA techniques to maximize the value of the available information.

The interactions between the canopy and the snowpack behavior pose challenges for inferring
the snow mass beneath the canopy directly from nearby observed locations in forest clearings,
preventing simple interpolation techniques (Dharmadasa et al., 2024) or DA techniques



designed to update the model states directly from the information obtained in nearby cells to
work efficiently in this context (Pflug et al., 2024). It is necessary to explore how the available
information can be transferred from in forest
clearings to beneath the canopy, where observations are typically either missing or highly
uncertain. In this work, we test a recently developed spatio-temporal snow DA methodology
(Alonso-Gonzalez et al., 2023), specifically designed to update distributed snowpack
simulations from spatially incomplete observations such as in a forest environment where the
information from remote sensors is mostly available in forest clearings. We combine that
information with a unique post-processed lidar dataset that resolves the under-canopy
snowpack explicitly (Kostadinov et al., 2019; Piske et al., 20254) to validate the model. The
objective of this work is (i) to explore the potential of lidar-derived real observations to update
distributed snowpack simulations at hyperresolution (10 m) scales in forest environments, and
(ii) to test different spatiotemporal DA configurations for estimating snow under the canopy
when only observations in forest gaps are available. Here we propose different spatio-temporal
DA configurations to propagate information under the canopy where the observations are often
not available.



2 Data and Methods

2.1 Observed snow depth maps, vegetation parameters and meteorological
forcing

The experiments proposed in this work were developed in the Sagehen Creek forest (California,
USA, Fig. 1). The observations consist of one airborne LiDAR derived snow depth map collected
by the National Center for Airborne Laser Mapping on 21 March 2022 (Piske, 2022) and a
snow-—off flight (Graup, 2021). From all the available areas, we have selected a
domain of ~2x2 km that maximizes canopy heterogeneity and the observed snowpack data that
are incomplete due to dense canopy cover

The Sagehen Creek
site was used to develop and test a new method of under canopy snow depth detection from
airborne lidar (Kostadinov et al., 2019) that resolves a considerable amount of snow
information beneath the canopy (Fig. 1). We use an-slightl~improved method, as compared to
Kostadinov et al., to extract vegetation from the snow surface described in- Piske (20252) that
better resolves low vegetation from the snow surface using the lidar point cloud. Based on
nearby SNOTEL at a similar elevation (SNOTEL Site: 539, Independence Camp,
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=539, last accessed: 11-Nov-2024), the SWE
was 43 cm on 21 March when lidar was collected compared to a maximum annual SWE of 48
cm on 9 March, 2022. The native spatial resolution of the lidar dataset was 1 m which was
resampled to 10_m for use in the DA analysis. The error variance of the observations was
assumed to be 0%=0.01m? at 10m resolution based on previous airborne LIDAR snow
experiences that reported similar error metrics (Currier et al., 2019; Harpold et al., 2014;
Mazzotti et al., 2019; Painter et al., 2016). Future initiatives may benefit from more
sophisticated error models. In addition to the snow depth observations, different vegetation
parameters were computed from the three-dimensional lidar data, including vegetation height,
the Vegetation area index and the in forest sky view factor based on methods described in
Broxton et al., (2015) and Broxton et al. (2021). This dataset was segmented into grid cells in
forest clearings (to be assimilated) and canopy-covered cells (to be used as independent
validation) based on this vegetation information. The meteorological forcing was generated
using MicroMet (Liston & Elder, 2006) forced by the ERA5 atmospheric reanalysis (Hersbach et
al., 2020). The meteorological fields were downscaled to the same geometry of the
observations using a LIDAR based digital elevation model (Sourp et al., 20254). The precipitation
partitioning was estimated using the psychrometric parameterization scheme proposed by
Harder & Pomeroy (2013).



https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=539
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Figure 1. (a) Localization map, (b) Digital elevation model, (c) vegetation height and (d) available observations (with
its segmentation between canopy covered data used for validation or forest gaps to be assimilated). The red
transect in the digital elevation map indicates the location of the profile used later for validation.

2.2 Data assimilation and computational setup

All DA experiments presented in this work were developed using the Multiple Snow data
Assimilation (MuSA) system (Alonso-Gonzalez et al., 2022). MuSA is an open-source DA toolbox
designed primarily as a python wrapper around the Flexible Snow Model (FSM2, Essery et al.
(20245), but now providing support for other numerical models as well while not necessarily
being limited to snowpack models. MuSA provides support to different DA algorithms, and
simplifies the implementation of new ones thanks to its modular design. In this work, the FSM2
model was chosen due to its already coupled canopy module that required only minimal
modifications of the original MuSA code to be activated. MuSA—and-therefereHere FSM2; was
forced by the Micromet outputs, and provided with the aferementioned—lidar-derived
vegetation parameter maps._The most complex FSM2 parameterisation was selected, based on
previous experience. In the case of canopy parameterisation, this includes a two layer canopy
model with nonlinear snow interception, snow unloading dependent on wind or temperature
and two-stream approximation canopy radiative transfer. In any case,; the methods presented
here are independent of the numerical model and forcing used, so they are transferable to
different spew-data assimilation initiatives. It should be noted that although in this work we
focus on the MuSA snow depth outputs (as this is what we can validate) posterior simulations
include the full state vector of FSM2, including SWE.




The spatio-temporal DA scheme is described in Alonso-Gonzalez et al. (2023), and therefore we
only briefly introduce some key points here, its configuration, and the new modifications
implemented to improve its performance for the new problem at hand. We only infer
meteorological correction parameters and not model states, leading to physically consistent (in
terms of FSM2) simulations of the modeled snow state across the snow season. As mentioned
above, snowpack in the forest gaps shows a different behavior than beneath the trees (Varhola
et al., 2010), so trying to infer canopy-occluded states directly from the information we can
obtain in the gaps could also introduce artifacts in the simulations. Crucially the forcing
perturbations will also be modified by the canopy scheme in FSM2, so even if the above canopy
forcing is constrained to be similar for neighboring cells the forcing that the below canopy
snowpack experiences will be different to model physics.

As the first step in our workflow, we generated an ensemble of 100 FSM2 simulations by
randomly drawing stationary (i.e. constant across the water year) spatially correlated prior
parameters to perturb the meteorological forcing, particularly the precipitation and 2m air

fields. The choice of perturbing only precipitation and temperature was motivated
by previous successful experiments with a similar setup, albeit in non-forested environments
(Alonso-Gonzalez et al., 2023; Alonso-Gonzalez et al., 2022). Herein, the prior probability
distributions that we sampled using a random number generator were: a normal (additive
parameter) for the temperature bias and lognormal (multiplicative parameter) for the
precipitation scaling. These prior distributions were defined by: its mean (i = 0) and standard
deviation (o = 1) in the case of the temperature and by the mean and standard deviation (u =0,
o = 0.4) of the underlying normal distribution in the case of the precipitation. The latter results
in log-normally distributed prior multiplicative precipitation scaling parameters in the physical
space whose median is ~1. The objective of the algorithm is to update these parameters by
assimilating observations to directly correct the temperature and precipitation fields and
indirectly update the corresponding snowpack states

For this purpose we have used a deterministic ensemble Kalman filter (DEnKF)-based algorithm
in iterative smoother mode, namely the Deterministic Ensemble Smoother (DES, Sakov & Oke,
2008) with multiple data assimilation (DES-MDA, Emerick, 2018). In this DES-MDA scheme, the

update proceeds in two steps for each grid cell * = L....,Ngand £ =0,...,(Na — 1) MDA

A i)
iteration. Firstly, the Np x 1 updated ensemble mean parameter column vector 011 is
obtained using a Kalman analysis equation of the form

ol =0 + K [y — 3]



7 (1)
where 90 is the NVp X 1 ensemble mean parameter column vector from the current (prior for

) (@) K@, . . ,
¢ = () iteration, the Ny X No” matrix K4 is a localized and inflated ensemble Kalman gain

. . . . (i) .
computed using ensemble covariances and the observation error covariance, Y’ is the

NCEZ) X 1 local observation vector containing available local observations that are within a yet to
be defined distance-based neighborhood d < 2¢ (see the GC function below) of grid cell 7, and

the NCEZ) x 1 vector yéZ) contains the corresponding local ensemble mean predicted (i.e.
modeled) observations from the last iteration obtained at neighboring grid cells. We refer to
Alonso-Gonzalez et al. (2022) for the full form of the ensemble Kalman gain matrix in particular
and a more detailed overview of the implementation of spatio-temporal DA using the DES-MDA

. . N. x N el -
in MuSA in general. Secondly, the ‘Vp % {Ve matrix - ¢+1 containing the updated ensemble of

parameter vector anomalies (from the mean) is obtained modified Kalman analysis
equation of the form

N0

(i) (i) [y a0
o1 = 0, — 05K, y )1;(9) —Y,

()1
where ©¢ is the NVp X Ne matrix containing the ensemble of parameter vector anomalies
T

1. j v (9) ;
from the current iteration, N is a 1 X N(SZ) row vector of ones, and Y/ is the N(gz) X N
matrix of predicted observations from the current iteration. Once the mean and anomaly

. N. N, . @(i) . . -
update steps have been carried out, the ‘Vp < Ve matrix — ¢+1 (without the prime) containing

the updated ensemble of parameter vectors is obtained through the matrix sum

(i) _ p) 4T (a)!
O, =01y +0,5,

T

where 1Np is a1 X Np row vector of ones. Unlike the classic stochastic (perturbed observation)
ensemble Kalman scheme, this deterministic ensemble Kalman scheme is less overconfident
thanks to built-in model covariance inflation and also avoids the need to factorize the
observation error covariance that can be costly in spatio-temporal problems (Emerick, 2018). In
the loop over iterations above we implicitly rerun the forward model, FSM2 in this case, with

the updated parameter values to generate an updated ensemble of hidden snowpack states
including the predicted snow depth observations to be assimilated.



The Gaussian assumptions inherent in this ensemble Kalman method make it more robust
against ensemble collapse (where a single member carries all the posterior probability) than
particle methods which are more widely used for snow DA (Alonso-Gonzalez et al., 2022). In
particular, we have used an iterative version of DES, that performs the update of the
parameters in multiple data assimilation (MDA) steps, creating the DES-MDA used here
(Emerick, 2018). The MDA is a form of likelihood tempering (Murphy, 2023)that helps relax the
undesirable effects of the linear assumption inherent to EnKF based algorithms. In nonlinear DA
problems such as the one tackled here, previous work has shown that these MDA iterations
lead to significant improvement of the results compared with non-iterative versions of the
algorithm(Aalstad et al., 2018; Alonso-Gonzalez et al., 2022). In this work, based on previous
studies (Alonso-Gonzalez et al., 2022 and references therein), the number of iterations was
fixed to 4. To accommodate the Gaussian assumption, we employed analytical Gaussian
anamorphosis (Bertino et al., 2003) to log transform the precipitation parameter distribution to
a normal distribution and perform the update in Gaussian space. After the update, the
parameters are mapped back to the model space using the exponential function before
generating the new ensembles.

The spatial propagation of information may happen through two main mechanisms in the DES-
MDA: observation error correlations or prior correlations (van Leeuwen 2019). Since
observation error correlations are more challenging to specify and arguably less general than
prior correlations, we will focus only on the latter. A key component of the scheme is to draw
random prior parameters for each cell that are correlated with other cells in the domain,
reflecting similarities among different regions of the simulation domain. In the general DA
literature, this is typically done by computing the pairwise geographic (Euclidean) distance to
map the proximity of the cells. The pairwise distance matrix is then used to generate a
covariance matrix. In this work we have used the 5th-order piecewise rational function
proposed by Gaspari and Cohn (GC) (Gaspari & Cohn, 1999), as is often done in DA to generate
and localize the covariance matrix. The GC localization function depends on an important
hyperparameter, the correlation length scale, that in practice controls how far information can
be spatially. Crucially, this length scale both the
posterior results and the computational cost since a larger length scale results in a greater
number of neighbors with non-zero correlation. The GC function defines a distance-based

correlation as follows
—%(%)5+%(%)4+%(%)3—%(%)2+1= for0 < () <1,

Pl = H(9) - (' + §(&) + BE -5(8) +4-4(#)7, mr1<dsa,
0, for%>2.
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where, d is the pairwise distance between cells and c is the correlation length scale. This
function is used for localization, with two important roles: first, it reduces spurious long range
correlations that arise due to the limited size of the ensemble (Morzfeld & Hodyss, 2023), and
second, to save considerable computational costs since relatively distant locations can be
ignored when updating a particular cell.—-Note that without localization, the spatio-temporal
DA problem would essentially be intractable, especially in this context with a relatively large
domain and a high spatial density of observations. In addition to ensemble collapse, this is
another motivation for using the ensemble Kalman method over particle techniques here, since
more developed localization methods exist for the former (Evensen 2022). Despite being the
typical spatial snow DA configuration (e.g. De Lannoy et al., 2012; Magnusson et al., 2014) and
references herein), there is no reason to restrict the distance mapping to the geographic
(northing and easting dimensions) space, since an arbitrary number of dimensions can be used
to define a feature space and generate the distance matrix. It is widely acknowledged that
snowpack redistribution is strongly dominated by the topographic characteristics of the terrain,
such as concavity, slope, and elevation as well as vegetation parameters (e.g. Dharmadasa et
al., 2023; Essery & Pomeroy, 2004; Revuelto et al., 2014; Zheng et al., 2019). In the context of
snow DA, it is possible to map the similarities between cells using a multidimensional feature
space of topographical (or any other) dimensions. The only two considerations to be taken into
account are that these feature dimensions may have different units, and that they can be
potentially correlated. This may generate a space of non-orthogonal dimensions where using
the Euclidean distance directly may lead to a spurious similarity mapping (Curriero, 2006). It is
possible to overcome these issues by using the Mahalanobis distance, a generalization of the
Euclidean distance that includes a covariance-based normalization attempting to address these
two problems in a single step. Alternatively, it may be possible to generate other spaces using
synthetic transformed orthogonal dimensions in a potentially lower dimensional space from the
previously scaled topographical dimensions using a principal components analysis or
multidimensional scaling approaches (e.g. Aversano et al., 2019; Murphy et al., 2015), and
compute the pairwise Euclidean distance matrix in the new synthetic space.

11



Whichever approach is used to define the space that enables information to be spread, it is
necessary to generate a pairwise distance matrix to compute a prior covariance matrix. The
previous version of MuSA generated the complete distance matrix, which is highly memory and
time intensive with poor scalability. The reason for this is that the
size of the matrix scales quadratically with the number of cells, further complicating subsequent
linear algebra operations. However, it is not necessary to compute the full distance matrix since
localization ensures that long distances will be ignored in the analysis

This makes the distance and the subsequent covariance
matrix very sparse, opening new possibilities to make prior sampling
more tractable. As such, in MuSA we have now implemented the capability of mapping the
distances using a k-dimensional tree (k-d tree) space-partitioning data structure, as
implemented in the SciPy python module (Virtanen et al., 2020). This allows MuSA to ignore all
distances beyond the GC hyperparameter value, generating a sparse distance matrix.
Unfortunately only Minkowski metrics (which includes the Euclidean distance) are available so
far with the k-d tree implementation. As such, this method is not compatible with Mahalanobis
spaces in the current MuSA version, and therefore it was not used for all the experiments
proposed here. In addition, we have implemented the capability of computing the distance
matrix cell by cell, which has proven to be very memory efficient with a very manageable loss
of efficiency that is compatible with Mahalanobis, or any other, distance metric. Since the
distance matrix, and the generated prior covariance matrix, are very sparse, we have now
migrated most MuSA linear algebra routines to the SciPy.sparse module. This allows

us to sample even in very large domains while
maintaining an affordable computational cost. All these modifications
are included in a new MuSA version (v2.2), compatible with the use of arbitrary masks, even
non-contiguous ones within the same simulation domain, indicating over which cells to perform
the analysis. This allows simulations to be performed only in the areas of interest such as.
above a certain elevation or within a certain complex basin geometry), while still performing
spatio-temporal assimilation by propagating the information between the selected cells

12



The last step of the prior sampling requires approximating the square root of the covariance
matrix via Cholesky factorization. As noticed by previous research (Alonso-Gonzalez et al., 2023;
Curriero, 2006), the use of non-Euclidean distances (e.g. using the Mahalanobis distance) leads
easily to non-positive definite covariance matrices, making it impossible to compute the
Cholesky factor. We have increased the numerical stability of the prior sampling in MuSA by
regularizing the prior covariance matrix, adding small values to the elements of its diagonal.
These diagonal elements are increased iteratively up to a limit defined by the user (from 1e-6 to
a maximum of 0.1 in this study), following a technique known as jitter as is commonly done in
the Gaussian Process machine learning community (Neal, 1999; Rasmussen & Williams, 2005).
The remaining steps, including the DES-MDA update itself, remain the same as in the previous
version of MuSA, despite a few minor updates with the intention of improving the 1/0
performance by optimizing the compression routines. All these modifications are packed as a
new version, whose code has been released together with this work (Alonso-Gonzalez et al.,
2024).

2.3 Experimental design

We propose different experiments to evaluate the potential of ensemble-based data
assimilation techniques to update hyperresolution simulations in forest environments. First, as
a reference, we generated a deterministic reference run without any DA for comparison with
the updated simulations. Then, different experiments were developed in an effort to find a
MuSA configuration that is able to exploit dispersed hyperresolution information in forested
terrain. Here we are not aiming to find a generalistic optimal configuration, since each specific
case will require a different configuration, depending on the resolution of the simulations, the
spatial density of the observations, the domain, and the availability of computational resources.
We propose 3 different information propagation schemes, and two different GC
hyperparameters for each, leading to 6 different simulations:

® Using Euclidean distances in the geographical space. We developed two different
simulations where the Euclidean distance over the northing and easting dimensions is
used to map the similarities among cells, using the values of 50 (Eu50) and 100 (Eu100)
m for the GC hyperparameter.

e Using the Mahalanobis distance in a topographical space. Here, we propose two
experiments where in addition to northing and easting, we included elevation, the
Topographic Position index, the Diurnal Anisotropic Heat index and the slope to define
a topographical space. Since we have separated the data beneath the canopy and in the
forest gaps, using them for assimilation and validation data, it is not instructive to
include dimensions based on vegetation parameters. In fact, due to the GC function, it
might even prevent the information transfer towards the canopy covered cells. The
open cells that are geographically (or topographically) distant, and nearby
geographically (or topographically) cells under the canopy, would be equally far away in
Mahalanobis distance from a given open observed cell in that hypothetical space
including vegetation parameters. The distances were computed using the Mahalanobis
distance (Ma), and the GC hyperparameters tested were 0.5 (Ma0.5) and 1 (Ma1).

13



® Using Euclidean distances in a synthetic topographical space. Here we included a
PCA (after z-score standardization) analysis over the
topographical space to generate an orthogonal space that ensures a positive definite
covariance matrix by sorting the cells prior to computing the covariance matrix. This
saves significant computational cost since it allows for distance mapping using the new
k-d tree implementation. The number of principal components was selected
automatically using the algorithm proposed by Minka (2000), which in practice resulted

in 5 components. The GC hyperparameters tested were 0.5 (PCA0.5) and 1 (PCA1).

For each of the experiments, we have computed the cell wise Continuous Ranked Probability
Score (CRPS, Hersbach, 2000), a generalization of the mean absolute error for probabilistic
simulations:

CRPS(F,2*) = [, [F(z) — H(z — 2*))* dw

Where F'(7) is the predicted cumulative distribution function of the snowpack state variable x
to be evaluated, r* is the reference (ground truth) value for the state obtained from
observations, and H(x — x*) is the Heaviside function resulting in 1if * > =™ and 0 otherwise.
We have used a normal approximation of the posterior snow depth distribution defined from
the posterior mean and standard deviation derived from the ensemble together with the
observations to compute the cell by cell mean CRPS and standard deviation (SD). We have also
computed the spatial bias, which is the mean error of all cells used for validation, where error is
the difference between the posterior mean and the observations. In addition, we computed the
correlation (R) and root mean square error (RMSE) between the posterior mean and
observations across the domain. To evaluate the spatial patterns of each of the experiments,
we calculated the variograms of each simulation. To quantify how far the variogram curves are
from the one obtained from the observations under the forest canopy, we used the discrete
Frechet distance (FrDist) as an indicator of similarity between the variogram curves.
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3 Results

3.1 Validation metrics of the reference run and DA experiments

Compared with the deterministic reference simulation, both the Euclidean (Eu) and
Mahalanobis (Ma) experiments improved the quantitative error metrics considerably (Table 1).
The marked improvement in R (from R = 0.1 to R ~0.8 on average for all the Eu and Ma
experiments) is especially notable, and, combined with the lower Frechet distance values
(FrDist = 0.29 for the reference, while FrDist = 0.005 on average for the Eu and Ma
experiments), indicates a significant improvement of the spatial patterns of the simulation.
RMSE values also improved significantly (RMSE improvement ~30%). The bias remained lower
and close to zero (bias mean = -0.07 m) for the reference simulation compared with the Eu and
Ma experiments (bias mean ~ 0.13 m), suggesting a slight overestimation of the snow mass in
the updated simulations. However, the RMSE in the reference run (RMSE = 0.32) compared
with the Ma and Eu experiments (RMSE = 0.2) suggest many cells in the reference run exhibit
higher errors than the ones of the Eu and Ma experiments. The CRPS, which is the only
uncertainty-aware metric considered that accounts for both the precision and accuracy of the
ensemble, showed lower values for the Eu50 (CRPS = 0.12), but followed closely by the other
experiments, except the PCAO.5 and PCA1.

Unfortunately, despite the convenience of using a PCA preprocessing step, the experiments
using PCA exhibited only a slight improvement in some metrics while degrading other
indicators. In particular, they exhibited a slight improvement in the correlation values (R=0.20
and 0.46 for PCAO0.5 and PCA1 respectively), while all other metrics were similar to the
reference (e.g. bias), with a FrDist being equivalent or significantly degraded relative to the
reference for the PCAOQ.5 (FrDist = 0.021) and PCA1 (FrDist = 0.046), respectively. This suggests
not only that absolute error metrics were not improved, but even that spatial patterns were not
adequately simulated with the PCA approach.

Table 1:
Exp. RMSE R Bias CRPS FrDist
[mean(+/- SD)]
Ref. 0.32 0.10 -0.07 - 0.029
Eu50 0.20 0.84 0.12 0.12 (+/-0.09) | 0.006
Eu100 0.22 0.85 0.15 0.13 (+/-0.12) | 0.009
Ma0.5 0.22 0.76 0.10 0.14 (+/-0.10) | 0.003
Ma1l 0.24 0.81 0.16 0.15 (+/-0.12) | 0.003
PCAO0.5 0.33 0.20 -0.03 0.19 (+/-0.13) | 0.021
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PCA1

0.33

0.46

0.08

0.21 (+/- 0.18)

0.046
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Among the Eu experiments, Eu50 exhibited slightly better or similar error metrics than the
Eu100. However, the differences were minimal, suggesting there is flexibility in choosing the GC
hyperparameters, in this case at least, in terms of validation metrics. A similar conclusion can
be drawn from the validation metrics of the Ma experiments, where there was not a clearly
superior simulation. Similarly, Eu and Ma yielded comparable performance according to these
error metrics. However, the FrDist metric was consistently lower in the Ma experiments
compared with the Eu experiments, suggesting a better representation of the spatial patterns,
while the remaining error metrics were slightly better or similar for the Eu experiments. This
superior performance in representing the spatial patterns was evident in the snow depth
semivariograms of the experiments (Fig.2), where Ma experiments exhibited a semivariance
much closer to the observations, even reproducing accurately the nugget effect exhibited by
the observations, suggesting a better representation of the small scale patterns. In any case, the
variograms of the Eu and Ma experiments exhibit a closer shape to the one obtained from the
observations, compared with the one obtained in the reference run, which is nearly flat.
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Figure 2: Snow depth spatial semivariance derived from the lidar-derived observations, the reference run and
different experiments.
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When examining the distributed posterior mean simulations, these considerations about the
spatial patterns become evident (Fig. 3). First, there was a very limited spatial variability in the
deterministic reference run, as reflected quantitatively by the Frechet distance and qualitatively
by the variograms. Among the Eu50 and Ma0.5 posterior maps, there is a clear difference in its
snow depth spatial patterns. While the large scale patterns were similar in both simulations,
and close to the observations, the small scale patterns were different. In Eu50 small scale
patterns of the posterior mean were clearly affected by the shape of the GC function, since the
blurrier horizontal patterns are reminiscent of the Gaussian-like shape of this function. On the
other hand, Ma0.5 small scale patterns, which do not depend solely on geographic distance, are
considerably more intricate, which also explains the lower FrDist error metric.
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Figure 3: Distributed snow depth observations, reference simulation and posterior mean simulations of the Eu50
and Ma0.5 experiments
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While both in Ma0.5 and Eu50 point scale comparison with observations show a similar overall
R metric and distribution, it is worth noting the differences shown in Fig.4. In Ma0.5, the cells
with local observations (i.e. the cells in the forest gaps, which include assimilated information)
exhibit slightly larger residuals (R = 0.99 and R=0.97 for Eu50 and Ma0.5 respectively). These
differences suggest that the influence of the GC hyperparameter makes both schemes not fully
comparable. This is a consequence of the varying number of observations used to update the
parameters of each cell that differ for each experiment, depending on how much space falls
within the correlation length scale of the GC function in each case.
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Figure 4: Scatterplot based comparison of the under canopy (withheld) and forest gaps (assimilated) observations,
with the reference simulation, and the posterior mean of a data assimilation experiment without and with the
spatial propagation of the information enabled (experiments Eu50 and Ma0.5)

However, these error metrics should be taken with care. Most of them (except CRPS) used the
posterior mean as an optimal point estimate of the updated simulation. This assumption was
adopted for simplicity but may compromise the interpretation of the results. Posterior
simulations are not deterministic simulations and come with an uncertainty estimate inherent
in the posterior ensemble. To investigate this issue, we extracted a longitudinal profile along
the easting dimension, including both the deterministic reference simulation and the posterior
mean, but for the latter we now included the associated uncertainty represented by +/-1
posterior standard deviation (which accounts for approximately 68% of the posterior
probability, Fig. 5). In addition, we included a representation of the observations obtained both
beneath the canopy and in forest gaps. The profile highlights the differences of using the GC
function in the Euclidean or topographic space, with Eu exhibiting a much smoother surface
compared with the sharper Ma profile. Both profiles exhibited a similar performance if we
account for the uncertainty. In terms of the posterior mean, Ma0.5 was able to accurately
capture snow depth in large areas beneath the canopy (e.g. Fig.5 from 1000 to 1250), while
maintaining most of the observations in at least the range of its standard deviation. Both Eu50
and Ma0.5 improved the reference run, which exhibited an evident underestimation and lack of
heterogeneity along this profile, with only a few observations approaching the simulated
reference values.
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Figure 5: Snow depth profile showing the match between the reference run (black line), the Eu50 and Ma0.5
experiments and the observations for the horizontal profile delineated by the red line shown in Figure 1. The dark
blue line is the posterior mean and the shaded area the posterior standard deviation.
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Although the aim of the present work is to explore how to propagate the information spatially,
it is tempting to analyze the posterior distribution of the parameters (Fig. 6). On average for all
cells, using the experiment Ma0.5 as a reference, the multiplicative precipitation parameter
was 1.06 (+/- 0.30) and the additive temperature parameters was -0.04 (+/-0.73). Figure 6
should be interpreted with caution. It is designed to provide a rough estimate of the posterior
parameter values. However, drawing conclusions beyond that is risky, since there is likely to be
equifinality in the parameter posteriors of the simulations, something that is merely suggested
by the obvious correlation between the posterior mean parameters.
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Figure 6: Posterior distributions of perturbation parameters in the model space for the Ma0.5 experiment, each
point represents a grid cell.

4 Discussion
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The results shown here demonstrate the potential of ensemble-based DA experiments to
improve hyper resolution snowpack simulations in forested terrain, by updating the canopy
covered cells from information retrieved in clearings. Recall that the DA schemes proposed
herein are theoretically independent of the underlying numerical model,meteorological forcing
or site. As such, in practice any other snow or land surface model forced by meteorological data
generated by any downscaling tool at any geographical location may benefit from the proposed
techniques. The aim of this work is not to perform the best possible simulation, but to explore
whether it is possible to improve snowpack simulations in forested areas by means of DA.
Future initiatives may choose to explore the added value of including additional forcing
corrections or internal model parameters in the parameter vector since there is, in theory, not
any particular limitation on this provided that a large enough ensemble is computationally
feasible.

All experiments were performed using the Centre National D'Etudes Spatiales (CNES)
supercomputing infrastructure. For reference, the Ma0.5 experiment took one day and eight
hours to complete, using 6 nodes with 10 CPUs each to solve the 40401 cells (201 cells in each
geographical direction) that compose the domain using the aforementioned DA scheme. This
estimate of computational cost, which could be considered very affordable, especially given the
iterative nature of the assimilation algorithm and the relatively low number of processors
involved, should be treated with some caution. The computational time varied significantly
between experiments, as in practice the /O increases with the GC hyperparameter, which
effectively defines a search radius. In addition, MuSA benefits from distributed systems that
share 1/0O bottlenecks among their nodes, so the computational scheme can also be very
relevant. On the other hand, other DA experiments with a lower density of observations will
see their computational cost dramatically reduced, independent of the GC hyperparameter.
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Most of the DA configurations managed to improve the posterior simulations compared with
the deterministic reference simulation, with different configurations showing similar error
metrics. However, the PCA based experiments, despite their desirability given the orthogonal
properties of the synthetic coordinate system, did not perform as expected. We hypothesize
that the limitations found may come from the fact that the new set of coordinates do not
explicitly preserve the Cartesian northing and easting information by mixing them with other
dimensions, relaxing the relations between nearby cells in the Euclidean space (Davis &
Curriero, 2019). However, the same could be said when using the Mahalanobis distance, but
the performance of the Ma experiments was clearly superior compared to the PCA ones. A
potential reason may be the fact that, to ease the positive-definiteness of the PCA-based
covariance matrix by sorting the cells in a lower dimensional space, we used the Minka
algorithm to reduce the dimensionality of the synthetic coordinate system. This dimension
reduction comes in practice with a loss of information. However, this is very unlikely, since in
practice it resulted in only one dimension being removed, which represented a very low
percentage of the total variance of the system. This requires further research to fully
understand how the information can be effectively propagated in different spaces. A potential
future approach may be the use of multidimensional scaling techniques, instead of PCA, that
have shown previous success in geostatistics (R. R. Murphy et al., 2015). The challenges
previously encountered in generating non-positive definite covariance matrices have been
substantially mitigated. Previous research has proposed to enforce positive definiteness in
covariance matrices by using (potentially iterative) methods based on eigendecomposition, to
make any negative eigenvalues of the covariance matrix become nonnegative (e.g. Davis &
Curriero, 2019 and references herein), which imposed a considerable computational burden,
particularly for large matrices. However, regularizing the covariance matrix with the
introduction of the jitter technique (where small values are iteratively added to the diagonal)
has proven to be both highly effective and computationally efficient. Whether the results of
prior sampling differ significantly between these two approaches to regularize the covariance
matrix remains an open question for future investigation.

n these experiments we update meteorological correction parameters only, and
not snowpack states, the numerical model to resolve the snow-canopy
interactions. This prevents the posterior simulations to be degraded by the fact that in reality
the snowpack beneath the canopy behaves differently than in open terrain (Pflug et al., 2024;
Varhola et al., 2010), by updating only parts of the simulation that we assume to be similar
independently of the canopy cover (such as the precipitation or temperature), and letting the
model to resolve the parts that can't be constrained (such as snow states), due to the lack of

\ information.
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Since the main objective of this experiment was to explore how the information can be
propagated effectively from clearings towards the canopy covered cells, we split the
observation dataset in two, keeping the cells beneath the canopy for validation. This has not
allowed us to include vegetation parameters in the distance mapping of the Ma experiments, as
the cells inside and outside the forest would have been too far away in Mahalanobis space, and
therefore due to the localization, the information would not have been transmitted from the
clearings towards the sub-canopy. Some vegetation model parameters could have been
included in the inference, but because the information is located in the forest gaps, they could
not have been constrained. However, given the success of the experiments, future research
would benefit from assimilating data also in canopy-covered cells, if a proper error model is
developed. State of the art remote sensing techniques are able to retrieve at least a partial
information of the snowpack in forested terrain (Mazzotti et al., 2019), or even snow cover
information from satellites (Xiao et al., 2022). This may be used not just to further improve the
posterior simulations but as a tool to infer internal model parameters spotting weakness in
canopy/snow models or their parameters.

It should be noted that these spatio-temporal techniques are compatible with joint DA
initiatives, where more than one type of observation is assimilated into the same simulation,
potentially only spatially spreading some of them (Mazzolini et al., 20254). This may include the
ingestion of under canopy in situ observations jointly with remotely sensed retrievals of any
kind. It is worth noting that, due to the assimilation of only a single incomplete snow
distribution map, the posterior simulations exhibit equifinality (Beven & Freer, 2001), which
prevents us from exploring in detail which of these components is more dominant over the
other since they are correlated (Fig. 6). Adding other data sources and using more varied
information could help address this issue in future studies. In any case, the mean posterior
values obtained were close to unity for precipitation (in the physical space) and close to zero for
temperature, suggesting that it is not the total amount of precipitation that is biased, but rather
the small-scale redistribution of the meteorological forcing.

Among the experiments that improved the simulations compared with the deterministic
reference run, there was not a clearly superior experiment depending on the GC correlation
length scale hyperparameter. Similar conclusions could be drawn from the findings in Cho et al.
(2023), who tested different correlation length scales for their Gaussian decay-based
localization function, showing that the differences were always lower than the improvement
compared with their reference simulation. This suggests some flexibility in the choice of this
hyperparameter, which may be complex especially when using non-Euclidean distances, and
often limited by the availability of considerable computing resources.
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\ When comparing the Eu and Ma experiments, it was also difficult to spot differences if
considering only quantitative error metrics. However, the spatial patterns at smaller scales
seem more realistic when using the Ma configuration, as also found in Alonso-Gonzélez et al.
(2023). This is based on the fact that the snow spatial patterns are correlated with the
characteristics of the terrain, since it controls its distribution by modulating accumulation and
melt processes in both open and forested terrain (Geissler et al., 2024; Revuelto et al., 2014).

he proposed domain is relatively small exhibiting a limited
topographical complexity. Other experiments over larger areas of increasing topographical
complexity may benefit from the increasing topographical variability. A potential limitation of
this method will be found in non-complex terrain, as is typical in high latitude areas, where the
topographical control of the snowpack dynamics may be less clear, although still very relevant
(Bennett et al., 2022). In any case, snowpack in these areas exhibits less spatial variability, so we
hypothesize that the use of Euclidean distance to map cell similarity is likely to be sufficient in
these environments and/or at coarser resolutions.

Alternatively, it is possible to use snow climatologies or observations to perform a more direct
cell similarity mapping based on the persistence of the spatial patterns of the snow (Alonso-
Gonzalez, et al., 2023; Mazzolini et al., 20254). Despite developing snow cover
climatologies in forest environments is significantly more challenging than in open terrain due
to the aforementioned limitations of satellites to retrieve information beneath the canopy, it is
possible to generate maps of the snow distribution in forested terrain by combining different
techniques such as ground observations, lidar and field campaigns (Geissler et al., 2023). The
generation of such products requires a significant effort in logistics that prevent its operational
exploitation as a real time monitoring tool. In addition, such field methods will not be able to
retrieve information at other times that the observation time itself. A promising application of
the assimilation scheme presented here is to exploit such products to map the similarity
between cells in forested terrain, allowing the significant effort needed for these initiatives to
be exploited to generate gap-free re-analyses or near real time updated simulations.
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In this work, we have explored the effect of using the GC function to create a prior covariance
matrix in different spaces. However, what remains to be investigated is the potential benefit of
using different covariance (or kernel) functions. It is possible that other functions may offer a
more accurate representation of snowpack correlograms across various spatial scales and
resolutions, especially in topographical Mahalanobis spaces. One obvious source of inspiration
is to take advantage of the extensive literature on kernels developed by the Gaussian process
community (Rasmussen & Williams, 2005). In particular, kernels with compact support—those
that become zero beyond a certain boundary— (Barber, 2020) could be of special interest since
they will behave similarly to the GC function, helping in limiting the computational cost and
preventing spurious correlations among the ensembles. Given the increasing availability of
snow depth information over large domains (Magnusson et al., 2024; Painter et al., 2016) , it
will be beneficial for the snow DA community to explore which kernel functions better
approximate the empirical snowpack spatial variability in different spaces and resolutions.
Given that snowpack exhibits persistent spatial patterns in both forest and open terrain
(Geissler et al., 2024; Helfricht et al., 2014), there is potential to find a single flexible kernel
configuration, ideally depending on a very limited number of parameters, to be widely used in
both spatiotemporal DA and observation interpolation initiatives.

5 Conclusions

In this work, we have explored the potential of the observations obtained in forest clearings to
be used to update spatially complete snow simulations in forest environments by means of
spatio-temporal ensemble-based data assimilation. Six different experiments were conducted
in the Sagehen Creek (California, USA) using different data assimilation configurations,
demonstrating the potential obvious benefits of spatiotemporal DA in forest environments.
While most of the experiments greatly improved the reference snow simulations, those relying
on a set of synthetic dimensions generated by a PCA were clearly inferior. Future research may
benefit from exploring other dimension reduction techniques such as multidimensional scaling.

Among the remaining successful experiments, there was not a clearly superior configuration , in
that the differences among them were significantly lower than the improvement compared
with the reference run. This suggests some flexibility on the selection of the critical
hyperparameters of the DA. However, we found that in terms of both qualitative and
guantitative error metrics, those experiments built on a cell similarity mapping based on the
Euclidean distance were slightly more accurate in terms of absolute validation metrics, but with
a more realistic representation of the spatial variance when using the Mahalanobis distance in a
topographical space. This suggests that this latter technique is better suited for preserving

spatial relationships in complex terrain. The differences found in the implementation of

prior covariance function in Mm Ee ,

suggests the importance of future research investing effort in of specific
sho
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