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Abstract. Tensor fields, as spatial derivatives of scalar or vector potentials, offer powerful insight into subsurface structures in

geophysics. However, accurately interpolating these measurements–such as those from full-tensor potential field gradiometry–

remains difficult, especially when data are sparse or irregularly sampled. We present a physics-informed spatial neural network

that treats tensors according to their nature as derivatives of an underlying scalar field, enabling consistent, high-fidelity

interpolation across the entire domain. By leveraging the differentiable nature of neural networks, our method not only honours5

the physical constraints inherent to potential fields but also reconstructs the scalar and vector fields that generate the observed

tensors. We demonstrate the approach on synthetic gravity gradiometry data and real full-tensor magnetic data from Geyer,

Germany. Results show significant improvements in interpolation accuracy, structural continuity, and uncertainty quantification

compared to conventional methods.
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1 Introduction10

Full-tensor gravity and magnetic gradiometry measurements capture the spatial derivatives of potential fields, offering rich

detail about subsurface density and magnetisation variations. These tensor fields enhance geological imaging by encoding

directional and gradient information that scalar fields do not straightforwardly provide (Brewster, 2011; Ugalde et al., 2024).

However, gradiometry data are typically sparse and anisotropically sampled—often along sub-parallel flight lines—posing

significant challenges for downstream analysis, which relies on gridded representations.15

Interpolating these tensor fields accurately is far from trivial. Conventional methods often treat tensor components as

independent scalar fields, leading to noise amplification, loss of directional trends, and violations of physical constraints like

symmetry and harmonicity. More advanced approaches, such as eigen-decomposition-based interpolation (Fitzgerald et al.,

2012; Satheesh et al., 2023), attempt to preserve tensor structure, but remain limited in generalisability and scalability.

Recent advances in neural fields (Xie et al., 2022)—also known as coordinate-based or implicit neural representations—offer a20

promising alternative. These models learn continuous functions that map spatial coordinates to field values. Their differentiable

nature allows them to incorporate gradient information directly into training—a key advantage for geophysical applications

where tensor data often represents derivatives of an underlying field (Raissi et al., 2019). However, standard multilayer

perceptron (MLP) architectures suffer from spectral bias (Rahaman et al., 2019), meaning they struggle to capture high-

frequency features common in geophysical signals. To address this, techniques like Random Fourier Feature mapping (Tancik25

et al., 2020), periodic activation functions (e.g. SiREN, Sitzmann et al., 2020), and wavelet activations (Saragadam et al., 2023)

have been introduced, enabling neural fields to model fine-scale spatial variations more effectively.

In this paper, we introduce a physics-informed neural field approach tailored for interpolating geophysical tensor data. Our

model learns a single scalar potential field from sparse tensor measurements, leveraging RFF mappings and embedded physical

constraints (e.g., symmetry, Laplacian properties) to reconstruct consistent, physically meaningful tensor fields. We further30

introduce an ensemble strategy to quantify uncertainty in the interpolations, offering insights into data sensitivity and model

confidence. We demonstrate this framework on both synthetic gravity gradiometry data and real airborne magnetic gradiometry

from Geyer, Germany, highlighting clear improvements over traditional methods in accuracy and structural continuity, as well

as opening the door to uncertainty quantification.

2 Background35

A tensor is an algebraic object that encodes multilinear relationships between sets of vectors and linear functionals (Lee,

2012). A tensor field assigns a tensor to every point in space, describing the local structure of a vector field or scalar potential

throughout a region. In geophysical applications, tensors naturally arise as derivatives of vector and scalar fields, extending

classical multivariable calculus into field-based formulations.
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2.1 Potential fields40

Many measured geophysical quantities, such as gravitational acceleration g and the magnetic field b, are conservative vector

fields—i.e., they are gradients of scalar potential fields (Blakely, 1995). Within R3, a conservative vector field v is irrotational

at all points (given by the position vector r), satisfying

v =∇ϕ ↔ ∇×v = 0 (1)

Where ∇=
[

∂
∂rx

, ∂
∂ry

, ∂
∂rz

]
is the gradient operator. For instance, the magnetic field can be expressed as the gradient of a45

scalar magnetic potential in regions free of electric currents—a condition typically met outside source distributions. Taking the

gradient of v yields the Hessian tensor H, a second-order tensor that captures the local curvature of the scalar potential

H=∇v =∇(∇ϕ) =
∂2ϕ

∂ri∂rj
≡ ∂i∂jϕ ∀ i, j = 1,2,3 (2)

In source-free regions, these fields are not only irrotational but also solenoidal—i.e., divergence-free. The divergence of v

corresponds to the trace of the Hessian, which reflects the Laplace equation50

∇2ϕ≡ tr(H) = 0 (3)

This implies that, outside source regions, scalar potentials are harmonic functions, and their Hessians are traceless.

Additionally, since mixed partial derivatives commute (by Schwarz’s theorem), the Hessians are symmetric and thus comprise

five independent components.

2.2 Full Tensor Gradiometry55

Direct measurements of second-order Hessian tensors—particularly gravity and magnetic gradient tensors—represent the

current frontier in potential field surveying (Rudd et al., 2022; Stolz et al., 2021). Access to the full tensor enables

characterisation of scalar field curvature, aiding in tasks such as edge detection, structure delineation (Zuo and Hu, 2015), and

magnetic remanence characterisation (Ugalde et al., 2024). These measurements are typically acquired via airborne surveys,

which are highly anisotropic in their sampling: dense along flight lines and sparse across them. Vector fields are frequently60

reconstructed from tensor components using Fourier-domain transfer functions, which integrate the measured gradients into

vector components while suppressing noise (Vassiliou, 1986). Since most downstream analyses, including Fourier-based

reconstructions, require gridded tensor and vector fields, interpolation is a critical preprocessing step.

Rudd et al. (2022) note that, in practice, tensor components are often treated as separate scalar fields and interpolated

using standard methods like minimum curvature or radial basis functions (RBFs). Several alternative approaches have been65

proposed to enforce physical or geometric constraints during interpolation. For example, Brewster (2011) uses iterative Fourier-

domain transformations, while Fitzgerald et al. (2012) suggest interpolating eigenvalues and eigenvectors separately, using a

quaternion-based interpolation technique. In essence, the quaternion interpolation algorithm decomposes the process into two

parts: interpolating the eigenvalues and the corresponding eigenvectors. Two of the three eigenvalues are interpolated using
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standard schemes (e.g., RBF or minimum curvature), with the third computed such that their sum is zero—a direct consequence70

of the Hessian’s traceless-ness. The eigenvector matrix of any symmetric real matrix is guaranteed to be real and orthogonal,

allowing it to be represented as a 3D orientation and encoded as a quaternion (Hamilton, 1844), provided some constraints

on ordering and sign convention are imposed (Satheesh et al., 2023). These quaternions are then interpolated using Spherical

Linear Interpolation or SLERP (Shoemake, 1985), which ensures smooth variation of orientation across space. While SLERP

works for two quaternions, Markley et al. (2007) devised a scheme that works across a set of weighted quaternions.75

Another widely used approach for interpolating and transforming potential-field (and gradient) data is the equivalent-source /

equivalent-layer method: one replaces the true 3D distribution of sources by a 2D layer of hypothetical monopoles or dipoles

beneath the observation surface whose field exactly reproduces the measured data on that surface (Dampney, 1969; Blakely,

1995). In practice the infinite layer is discretised into a finite set of sources and the corresponding dense sensitivity matrix

is solved—often with regularisation—to obtain source strengths that honour the physical constraints of potential fields and80

enable stable continuation and derivative transforms (Hansen and Miyazaki, 1984; Blakely, 1995; Oliveira Junior et al., 2023).

This formulation is powerful but computationally demanding for large surveys. Consequently, a substantial literature focuses

on accelerating the method by exploiting data geometry and matrix structure: scattered equivalent-source gridding (Cordell,

1992); the “equivalent data” concept to reduce system size (Mendonça and Silva, 1994); wavelet compression and adaptive

meshing to sparsify sensitivities (Li and Oldenburg, 2010; Davis and Li, 2011); fast iterative schemes in the space/wavenumber85

domains (Xia and Sprowl, 1991; Siqueira et al., 2017); and scalable algorithms that leverage the block-Toeplitz Toeplitz-

block (BTTB) structure of the sensitivity matrix (Piauilino et al., 2025). Recent machine-learning–inspired variants (e.g.,

gradient-boosted equivalent sources) further cut memory and runtime for continental-scale datasets (Soler and Uieda, 2021).

Open-source implementations, notably Harmonica, provide practical tools for gravity and magnetic datasets using these ideas

(Fatiando a Terra Project et al., 2024).90

However, these methods still have limitations: component-wise methods can be insensitive to the true shape of the tensor,

whereas full-tensor schemes involve complex handling of 3D rotations, which are complicated due to the existence of

indeterminate points and the need for shifting reference frames due to non-uniqueness of 3D rotations. Equivalent source

methods offer a physically consistent approach, but suffer from the trade-off between computational expense and fidelity of

the interpolated result (e.g., Piauilino et al., 2025). In this contribution, we propose a neural field method that interpolates95

the scalar potential field directly—constrained by physical laws and Hessian measurements—to produce consistent, noise-

minimising tensor and vector fields that respect observations and preserve geologically meaningful structures.

2.3 Neural fields

Neural fields—also known as implicit neural representations, or spatial neural networks—are models that represent continuous

spatial functions using neural networks. Unlike traditional methods that store information in discrete grids or meshes, neural100

fields encode spatial structure within the weights and biases of a neural network, enabling resolution-independent, continuous

representations of complex signals.
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The application of spatial neural networks in geoscience dates back to Openshaw (1993), who used them for interpolating

sparse spatial data and found their performance competitive with fuzzy logic and genetic algorithms, a conclusion also reached

by Hewitson et al. (1994). More recently, neural fields have gained traction in computer vision—for example, in volumetric105

radiance field modelling (Mildenhall et al., 2020)—and in geoscience applications such as 3D geological modelling (Hillier

et al., 2023) and potential field representation (Smith et al., 2025).

A key advantage of neural fields is their differentiability: they allow access not only to predicted signals but also to their spatial

derivatives via automatic differentiation. This is especially useful when the scalar field itself is unmeasurable or physically

arbitrary, but its gradients are measurable—as is often the case in geological modelling using structural orientation data110

(Kamath et al., 2025; Thiele et al., 2025), or in reconstructing potential fields from tensor gradiometry data.

3 Methodology

This section outlines the key components of our proposed framework, including the use of random Fourier features, a harmonic

feature embedding, model architecture, training regimen, and loss function. We also describe the methodology used to generate

the synthetic dataset used in our study.115

3.1 Random Fourier Feature mapping

A common challenge in implicit neural representations is the mismatch between low-dimensional input coordinates and the

complex, high-frequency structure of the target signal. To address this, we employ Random Fourier Feature (RFF) mapping—a

kernel approximation technique introduced by Rahimi and Recht (2007) and adapted to deep learning by Tancik et al. (2020).

RFF mapping projects spatial coordinates into a higher-dimensional space, making it easier for the network to learn fine-scale120

spatial variation.

Given the position vector r ∈ RN , we define a frequency (also called weights) matrix W, of the dimension M×N , with every

component sampled from a standard Gaussian distribution, where M is the number of Fourier features (i.e., frequencies).

To encode known signal frequency characteristics (e.g., the maximum possible frequency based on sampling resolution), we

rescale the weights matrix using different length scales. Therefore, for a 3D input, we get a 2M dimensional feature vector νs125

for every length scale ℓs given by

νs = [sin(2πWsr) , cos(2πWsr)] , whereWs = ℓ−1
s WM×3 (4)

Where r = [x, y, z]
T , Wij ∼N (0,1), sin(x) := [sin(xi)]i, and [:, :] represents concatenation along the feature axis. Hence,

for L length scales, as the feature vectors are concatenated, we get a 2ML-dimensional feature vector. This feature vector is

then fed into the subsequent multi-layer perceptron to get the scalar potential at the input coordinate.130

The transformation enables the model to capture high-frequency details more effectively, while the random sampling of

frequencies introduces a useful stochastic component. When followed by a linear MLP with no non-linear activations, the

5



resulting mapping approximates a full Fourier reconstruction of the signal (Bracewell and Kahn, 1966). Non-linear activations

help the model fit sparse data more flexibly (LeCun et al., 2015), albeit at the cost of simplicity, interpretability, and gradient

stability.135

3.2 Harmonic feature embedding

Applying Fourier features uniformly in all dimensions can hinder convergence when modelling harmonic fields. By Liouville’s

Theorem (Axler et al., 2001), any bounded harmonic function on RN is constant, so naive periodic embeddings can bias the

network toward trivial solutions. We therefore introduce a harmonic Fourier mapping that uses Fourier features in the horizontal

plane and an analytically motivated vertical decay. Since our model reconstructs the spatial domain signal from a combination140

of sinusoids, we use the frequencies of the sinusoids to encode the harmonicity condition into the mapping. Specifically, in the

Fourier domain, if we couple Laplace’s equation with the standard separation-of-variables method for a scalar potential ϕ, we

get an ordinary differential equation of the form

(k2z −∥kh∥22)Fx,y (ϕ) = 0 (5)

Where Fx,y(·) is the 2D Fourier transform operator, kh = [kx,ky] represents the horizontal wavenumbers (i.e., frequencies),145

and kz is the vertical wavenumber (Lacava, 2022). This implies that the vertical wavenumber is constrained by k2z = k2x + k2y ,

making the vertical dependence evanescent and not oscillatory. This is the classical half-space solution of Laplace’s equation

and underpins upward/downward continuation in potential-field geophysics (Blakely, 1995; Parker, 1973). Our harmonic

embedding scheme simply bakes in the same physics at a feature-level, helping with convergence while training on mostly

co-planar datasets, and potentially allowing robust upward/downward continuation.150

For a 3D input r = [x, y, z]
T , we extract the horizontal coordinates rxy = [x, y]

T . As defined in the previous section, we

generate a random weights matrix WM×2 with the entries independently drawn from a standard normal distribution Wij ∼
N (0, 1), and scale it with the length scale ℓs to acquire a scaled matrix Ws = ℓ−1

s W. For every length scale, we define a new

vector, κs, such that

(κs)m = ∥Ws,m:∥2, κs ∈ RM (6)155

Where m refers to the mth row of the Ws matrix, giving us a vector of length M i.e., one norm per row (per feature). With

element-wise sine/cosine and Hadamard product ⊙, the new feature vector νs for the scale ℓs is

νs =
[
sin

(
2πWsrxy

)
⊙ e−κs z, cos

(
2πWsrxy

)
⊙ e−κs z

]
(7)

where z is the vertical coordinate, and the exponential is applied element-wise, producing a 2M -dimensional vector.

Concatenating across L scales yields a 2ML-dimensional embedding that encodes horizontal oscillations with physically160

consistent vertical decay, aligning the features with solutions of Laplace’s equation and improving generalisation in under-

sampled regions.
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3.3 Synthetic dataset

To evaluate our method, we generated a synthetic gravity gradiometry dataset (Fig. 1) using SimPEG (Cockett et al., 2015).

The model consists of three density-contrast anomalies within a zero-density half-space:165

1. Torus: +1 gcm−3, semi-major axis 450m, semi-minor axis 220m, cross-section radius 40m, lying in the xy plane and

rotated 12◦ CCW from the y-axis.

2. Dyke: +0.15 gcm−3, 60m aperture, striking at 45◦ to the y-axis.

3. Cube: –0.2 gcm−3, 400m side length, rotated 45◦ about the vertical (z) axis.

The simulation mesh has a voxel size of 20m. This geometry offers a challenging mix of sharp discontinuities and smooth170

curvature for testing interpolation. We generated a high-resolution ground truth dataset sampled at 25m spacing both along and

across the lines, as well as a low-resolution airborne-style dataset with flight lines 200m apart in the y direction (perpendicular

to the flight line), and sampled densely (15m) along the x direction (Fig. 1b-f). Furthermore, to make the data more realistic,

We corrupt the full-tensor gradiometry data with additive white Gaussian noise at a prescribed signal-to-noise ratio (SNR).

For each independent component of the Hessian Hk (where k ∈ {xx, xy, xz, yy, yz}), we estimate the power spectrum175

Pk = ⟨H2
k⟩, convert the target SNR from dB to linear units as:

SNRk = 10SNRk,dB/10 (8)

Using this SNR, we set the noise variance of the signal as σ2
k =

P 2
k

SNRk
. Independent samples εi,k ∼N (0,σ2

k) are then added

to each datum, to acquire a noisy synthetic dataset (H̃), given by:

H̃i,k =Hi,k + εi,k ∀ i= 1...P (9)180

Where P is the number of points in the dataset.

To test robustness to data sparsity, we also computed 10 versions of the low-resolution dataset with line spacings varying

from 80m to 560m. These were used to benchmark interpolation quality and information loss under varying acquisition

densities. Comparisons were made with a truncated RBF interpolator (250 nearest neighbours, smoothing factor 100), as well

as results from the quaternion interpolation (QUAT; Fitzgerald et al., 2012), combining RBF-interpolated eigenvalues with185

SLERP-interpolated quaternions. All results were evaluated on the same high-resolution grid using the R2 (coefficient of

determination), MSE (Mean Squared Error), and SSIM (Structural Similarity Index Measure).

3.4 Model architecture, training regimen, and loss functions

Our model has two main components: a RFF mapping block followed by a sequence of fully-connected feed-forward layers

that together produce a continuous scalar field representation (Fig. 2). In our tests, we varied the number of Fourier features190

from anywhere between 16 to 64, depending on the complexity of underlying field. The specifications of each individual model

showcased in this contribution can be found in the following sections.
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The MLP block in our model uses non-linear activations for all layers except the output layer. As our framework involves

computing second derivatives with AD, activation functions like ReLU (which do not satisfy the C2 differentiability criterion)

resulted in abrupt edges within the resultant interpolation. Notably, even within the activations that satisfy the aforementioned195

criterion, some functions performed better than the others. For example, the Hyperbolic Tangent activation function has

extremely small second order derivatives which tend to get saturated, impeding convergence. These activations are stable,

but not ideal for our models. Among the various activation functions tested, Swish (Sigmoid Linear Unit, SiLU; Ramachandran

et al., 2017) and Mish (Misra, 2019) activations provided the best results.

The loss function used to train our model involves two types of losses - a data loss and a Laplacian loss. The data loss is200

computed at the points of measurement between the measured tensor components and the Hessians acquired from the predicted

scalar field through automatic differentiation (AD) (Margossian, 2019). Since the model is built with PyTorch (v2.8.0; Paszke

et al., 2019), we use the inbuilt autograd engine to compute Hessians from the scalar field output. For the predicted scalar field

ϕ, the data loss term is given by

Ld =
1

P

P∑
p=1

∣∣∂i∂jϕp −Hp
ij

∣∣ ∀ i, j = 1,2,3 (10)205

Where ∂iϕ
p refers to the partial derivative with the respect to the ith input computed with AD at the pth location, and Hp is

the corresponding measured hessian tensor. The first, second, and third indices correspond to x (East-West), y (North-South)

and z (Up-Down) axes respectively. Only the upper-triangular part of the Hessian is used for loss computation i.e., the losses

for the off-diagonal components are only considered once per measurement. Hence we get a six-component data loss vector,

consisting of the misfit between the xx, xy, xz, yy, yz and zz components.210

The second term in the loss function is derived to encourage the predicted scalar field to conform with a partial differential

equation defined across the whole domain of interest. Since the predicted field has to be harmonic not only at the points of

measurement, but everywhere, we thus penalise non-zero traces of the predicted Hessian tensors, hereafter referred to as the

Laplacian loss. During every training epoch, we use a Poisson disk sampling routine based on a hierarchical dart throwing

approach (White et al., 2007), to select evenly spaced points within a predefined grid that covers the area of interest. The215

spacing for these points is evaluated using an exponentially decaying function that goes from a user specified large spacing (at

the start of training) to a tighter spacing (towards the final epochs). For the Q sampled points in any epoch, the Laplacian loss

is given by:

Ll =
1

Q

Q∑
q=1

|tr(∇(∇ϕq))|= 1

Q

Q∑
q=1

|∂i∂iϕq| (11)

Here, the Einstein summation convention is used to represent the Laplacian, and the superscript refers to the point of evaluation.220

This loss penalises high values of the trace of the predicted hessian tensor outside the measured points, thereby encouraging

harmonicity on the underlying scalar field within the domain of interest. Hence, for every epoch, we get a seven component

combined loss vector, with the first six components corresponding to the data loss, and the seventh component referring to the

global Laplacian loss.
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When combined, the total loss acquired from equations 10 and 11 is thus225

Ltotal =

7∑
i=1

αiLi (12)

Where Li is the ith component of the combined loss vector, [αi] are the corresponding hyperparameters. Instead of manually

fine-tuning these hyperparameters, we tested various multi-objective optimisation schemes for our framework. The best-

performing scheme involved dynamically updating hyperparameters, such that every loss function was scaled by the real-time

magnitude of the loss. Mathematically, we replace the [αi] in Eq. 12 as follows:230

Ltotal =

7∑
i=1

Li

L̃i

(13)

Where L̃i refers to the magnitude of the loss, detached from the computational graph. This ensures that the gradients only

flow through the numerator of the scaled loss, even when the real-time value of the loss is always equal to 1. This real-time

normalisation yields a scale-invariant objective whose update is approximately ∇θ

∑
i logLi (where ∇θ is the gradient with

respect to the network parameters), encouraging proportional improvements across terms. Similar in spirit to uncertainty-based235

weighting (Kendall et al., 2017), GradNorm (Chen et al., 2017), and Density Weight Averaging (Liu et al., 2019), this variant

requires no extra parameters or gradient-norm computations and worked reliably in our setting.

We train the MLP parameters (weights and biases) with Adam (Kingma and Ba, 2014), while keeping the RFF encoder fixed

after initialisation. The initial learning rate is set to 10−3 (occasionally 10−2 when the initial loss scale is large). We apply a

plateau scheduler that reduces the learning rate by a factor of 0.8 whenever the loss fails to improve for 20 epochs. Optionally,240

we also optimise a set of learnable length-scale parameters that modulate the Fourier features; the log-values of these scales

are stored as parameters and updated jointly with the MLP. However, the learnable nature of these length scales did not help

the model convergence greatly, reproducing results explored by Tancik et al. (2020), which suggested that neural fields fail to

suitably optimise these length scale parameters.

To make the stopping criterion robust to small oscillations, we monitor an exponential moving average (EMA) of the pre-scaled245

loss:

L̂n = βL̂n−1 +(1−β)Ln β ∈ (0,1) (14)

Where L̂n denotes the smoothed loss on the nth epoch. This combination—Adam for fast, well-scaled updates, plateau-

based learning-rate decay, and EMA-stabilised early stopping—follows common best practices for training smooth function

approximators and has been shown to curb overfitting while maintaining convergence speed (Goodfellow et al., 2016; Prechelt,250

1998; Bottou, 2012).

3.5 Uncertainty estimation

A key benefit of using RFF embeddings is that their stochastic nature allows for ensemble-based uncertainty estimation. As

a result of the stochasticity, each initialisation of the RFF mapping induces a unique basis in the feature space, causing the
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neural network to converge on a solution that represents a random sample from a broader distribution of plausible scalar fields255

conditioned on the training data.

To exploit this property for uncertainty quantification, we generate an ensemble of model outputs by varying the random seed

used to sample the RFF projection matrix. Ensemble-based uncertainty quantification has a long and successful history in

geophysics, particularly in subsurface modelling and inversion. In seismic full waveform inversion (FWI), ensembles have

been used to assess the variability and reliability of recovered velocity models under data noise and model ambiguities260

(Fichtner et al., 2011). In reservoir geophysics, the Ensemble Kalman Filter (EnKF) has become a widely used tool to

propagate uncertainty in dynamic reservoir simulation and history matching (Evensen, 2009). More recently, ensemble-based

methods have also been applied to probabilistic gravity and magnetotelluric inversion (Tveit et al., 2020; Giraud et al., 2023),

demonstrating their utility in quantifying non-uniqueness and guiding data acquisition strategies.

In our implementation, each ensemble member corresponds to a different realisation of the frequency space, leading to265

stochastically independent function approximations that depend, largely, on the degree to which the solution is constrained by

the available data. This ensemble-based approach provides a Monte Carlo-style estimate of the model’s epistemic uncertainty.

Furthermore, because the scalar field is modelled continuously, we can propagate this ensemble approach to the field’s

derivatives, helping us quantify uncertainty in derived physical quantities. Therefore, we showcase our results as the Ensemble

Neural Field (ENF) method, which corresponds to the average prediction from an ensemble of models. We also compute results270

from the individual models within the ensemble (shown as the Neural Field or NF result), to ascertain the effect of averaging

over multiple predictions.

4 Results

4.1 Synthetic Data

We first evaluate the Ensemble Neural Field (ENF) method on the synthetic gravity gradiometry dataset, comparing it against275

a Truncated Radial Basis Function (RBF) interpolator (Fig. 3). The ensemble showcased here has 25 models, each with 16

Fourier features, three length scales of [200, 400, 1000], and two hidden layers with 256 neurons each. Each model within the

ensemble was trained for 400 epochs. A predefined grid with a cell-size of 25m was provided for evaluating the Laplacian

loss, with the Poisson sampling radius going from 250m to 80m. Panels (a) and (b) show the residuals between predicted

and true Hxy values for the RBF and ENF methods, respectively. The RBF output exhibits high-amplitude residuals (MSE =280

4.60 eotvos) between flight lines, indicating overfitting to sampled regions and poor generalisation across them. It also fails to

preserve continuity in linear trends that lie at high angles to the flight direction. In contrast, the ENF method yields spatially

smoother residuals with significantly lower error (MSE = 0.30 eotvos; improvement of ≈ 93.4% over the RBF), suggesting

homogeneous improved performance across the domain. Insets in both panels show 1:1 kernel density plots, where the ENF

predictions cluster more tightly along the identity line—further confirming its accuracy.285
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For a quantitative measure of the improvement offered by our method, we plot the R2 scores for each tensor component across

three interpolation methods: RBF, and two neural field-based (NF and ENF) (Fig. 3c). The NF method reflects the mean R2

from 25 independently trained models, with error bars showing standard deviation. The ENF method, by contrast, uses the

averaged prediction across those same models. Both neural field approaches outperform classical methods, with ENF showing

a slight edge—demonstrating that ensemble averaging reduces variance and enhances prediction stability. Fig. 3d shows the290

loss curves for the various losses for one of the models within the ensemble, as a function of epochs. The data loss terms

reasonably plateau after reaching values of ≈ 1 eotvos, while the real-time updating hyperparameters help avoid overfitting to

a single component. The Laplacian loss (dotted pink line; Ll) keeps steadily decreasing as the sampling gets tighter and ever

more points are sampled from the grid.

To further evaluate structural accuracy, we compute the Structural Similarity Index Measure (SSIM) between predicted and true295

tensor fields (Fig. 4). The ENF method achieves higher SSIM scores across all three components—0.95 (Hxx), 0.97 (Hxy), and

0.96 (Hxz)—compared to 0.78, 0.64, and 0.76 for RBF. The greatest improvement is seen in Hxy (improvement of ≈ 50.46%),

where RBF results show structural distortion, over-smoothing, and “boudinage” artefacts along flight lines (Naprstek and

Smith, 2019). ENF, on the other hand, preserves coherent anomalies and directional continuity even across sparsely sampled

regions.300

4.2 Rate of information loss

To assess robustness under sparse sampling, we compare the interpolation results for varying line spacings from 80m to 560m

(Fig. 5). Classical methods (RBF and quaternion-based interpolation, or QUAT) show sharp drops in accuracy beyond 200m

spacing. For example, the RBF method’s root-mean-squared R2 (computed over the components) drops to 0.54, and the root-

mean-squared SSIM plummets to 0.26 at 560m. In contrast, NF interpolation maintains relatively stable performance up to305

≈ 400m spacing, with a much gentler decline at wider gaps. At 560m, the NF model still achieves a root-mean-squared R2 of

0.91 and an SSIM of 0.65.

The MSE trends mirror this behaviour: classical methods exhibit steep error increases with sparser lines, while the NF

model degrades more gracefully. QUAT offers minor improvements over component-wise interpolation but follows a similar

performance trajectory. This suggests that the main bottleneck in full tensor interpolation lies in the eigenvalue interpolation310

step, which—like the component-wise case—relies on RBF methods.

4.3 Magnetic gradiometry from Geyer

Finally, we validated the method on real airborne magnetic gradiometry data from Geyer, located in Germany’s Erzgebirge

region—part of the Central European Variscides. The area features high- and medium-pressure metamorphic units, orthogneiss

domes, and post-orogenic granites (Kroner and Romer, 2013), with abundant ore-forming skarns containing magnetic minerals315

(Burisch et al., 2019; Lefebvre et al., 2019) as well as magnetite-rich quartzites and amphibolites that occur as intercalations

within the metamorphic rocks. These rocks contribute to complex magnetic anomalies ideal for real-world evaluation.
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We test the ENF method on a real airborne magnetic gradiometry dataset from Geyer (Fig. 6), acquired by Supracon AG in

2016 as part of the E3 (ErzExploration Erzgebirge) project. As in the synthetic case, we compare ENF to RBF interpolation.

Due to the complex nature of the signal, we run a 50 model ensemble for the Geyer dataset. Each model uses 64 Fourier320

features, with four length scales of [220,400,1000,100000]. The number of hidden layers is increased to three, with 1024,

512 and 256 neurons respectively. Each model is trained for 600 epochs, with early stopping triggered after 30 epochs of no

improvement. A predefined grid with a cell-size of 20m is used to evaluate the Laplacian loss, with the Poisson sampling

radius starting at 500m, and going to 200m. Every fourth flight line is used for training, with the others reserved for testing

the interpolation. Since ground-truth grids are unavailable, we assess accuracy using residual analysis and R2 scores computed325

for points in the withheld lines.

We plot the residual maps for Hxy on test lines (Fig. 7). While absolute R2 scores are lower than in the synthetic case—owing

to added geological complexity and noise—ENF still achieves more than 30% better performance than RBF across most tensor

components, with a whopping increase of ≈ 157% in the R2 score for Hyy, and an average increase of approximately 57.27%.

Both NF and ENF results are better than the RBF across all components. Residuals show that ENF (Fig. 7a) reduces systematic330

bias between lines and preserves anomaly shapes more faithfully. RBF (Fig. 7b), by contrast, displays patchy behaviour with

abrupt shifts between lines—a well-known artifact of interpolating sparse or anisotropically sampled data (Hillier et al., 2014;

Wittwer, 2009). The loss curves (Fig. 7d) show a similar trend to the synthetic case, with the data loss terms plateauing around

0.1 nTm−1, and the Laplacian loss steadily decreasing.

To get a qualitative overview of the overall result, we plot the gridded visualisations of the Hxx, Hxy , and Hxz tensor335

components (Fig. 8). We also compute a result from using all of the flight lines with an RBF interpolator (Fig. 8a-c),

serving as our ground-truth. The RBF results from using every fourth line (Fig. 8d-f) reveal strong aliasing and inconsistent

behaviour between flight lines—hallmarks of inadequate cross-line interpolation. In contrast, the ENF interpolations (Fig. 8g-i)

exhibit smoother transitions and clearer structural trends, especially in directions orthogonal to flight lines. The ENF model

successfully mitigates high-frequency striping and captures geologically meaningful features.340

5 Discussion

5.1 Accurately reconstructing tensor fields

The proposed Neural Field (NF) Interpolator has shown remarkable success in interpolating tensor gradiometry data. Our

results show that the additional information contained within the hessian tensor can help derive a more accurate reconstruction

of the entire field as sampling gets sparser (Fig. 5), provided the interpolation algorithm can access the full tensor constraints.345

For equivalent inputs, the NF interpolation recovers a signal that better fits all the tensor components, while maintaining the

integrability and physical properties inherent to a hessian tensor field.
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We also see equivalent results from all methods when line spacings are tight (i.e., for line spacings of 80m, 100m and 120m

in our synthetic tests). This suggests an oversampling with respect to the spatial frequencies in the signal, such that all the

interpolation methods converge to the same (correct) result to yield high accuracy metrics. Results then diverge as line spacing350

increases to 200m, indicating the neural field interpolation is able to leverage information in the shape of the tensors to continue

to derive accurate reconstructions, while the RBF and quaternion methods cannot.

The reason that the results converge with close spatial sampling could be attributed to the equivalence of SLERP and standard

linear interpolation as the angle between the quaternions describing the orientations of the input data points goes to zero.

Since a tighter line spacing ensures a smoother graduation of the eigenvector orientations (i.e., a smaller change in the angle355

between the corresponding quaternions), the resulting interpolation is closer to what one would achieve with standard linear

interpolation of the components. But, under sparse sampling conditions, the differences seen in the results indicate that an

interpolation using neural field formulation better preserves the shape of interpolated tensors, without the need for cumbersome

quaternion formalisms.

The interpolated tensor components for Geyer (Fig. 8) also showcase significant improvements over the component-wise360

interpolation of these tensors. The extension and continuation of the trend from the centre of the grid, towards the north-east

is preserved in the ENF result, but is completely absent in the RBF result. Any interpretation of these grids would thus result

in significantly different geological structures, highlighting the necessity for appropriate interpolation methods. The Laplacian

constraint is handled with an objective minimisation approach in our method. One could potentially enforce harmonicity

by design, however this is challenging for 3D (i.e. geophysical potential) fields and difficult to enforce through the non-365

linear activation functions inherent to neural networks. In 2D, holomorphic functions (i.e., complex-differentiable functions of

multiple variables) consist of real and imaginary parts that are harmonic functions, a fact that is utilised by Harmonic Neural

Networks (e.g., PIHNNs; Calafà et al., 2024) to yield exactly harmonic outputs. These concepts do not directly extend to

3D, promoting an objective driven enforcement of the constraint. Vector potential based formulations (e.g. CurlNet; Ghosh

et al., 2022) enforce divergence-free fields but fail to enforce the zero curl constraint. Furthermore, as our network consists370

of non-linear activations, and as non-linear compositions do not generally preserve harmonicity (Chen et al., 2010), we are

further motivated to rely on our new mapping that has harmonic elements (see Section 3.2) and use an objective to constrain

the Laplacian.

5.2 Recovery of vector fields

Many analysis methods applied to tensor gradiometry data require a domain-wide integral to estimate the underlying vector375

field. The simplest way of computing this integral is by ignoring everything but the last row of the gradiometry tensor, and

using the Hxz , Hyz , and Hzz components to get vector components. Due to the Fourier domain properties, vector components

are defined as a vertical integral in the Fourier domain (Mickus and Hinojosa, 2001). Similarly, the power spectrum of these

signals can also be used to generate vector components, using transfer functions that fit all of the signals while minimising noise

(Vassiliou, 1986). However, in our method, we can completely avoid this potentially complex integral. We can use automatic380
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differentiation to acquire the vector field components from the predicted scalar potential as the neural field predicts scalar

potential and not the gradiometry tensor itself. Importantly, we thus estimate the vector field components exclusively from real

measurements, rather than from an integral over a regularly spaced (i.e. interpolated) grid that is already one-step removed

from the data.

To test the recovery of vector components from our model, we compared it to the benchmark generated using the RBF385

interpolation on all flight lines and then applying Fourier domain transfer functions to compute the integral. We also use

the transfer functions on the RBF interpolation results for our training data for a baseline comparison (Fig. 9). Comparing the

resulting bx (Fig. 9, Panels a, d, g) components, we see that features present in both the ground truth and the ENF results are

completely erased from the RBF result. Similarly, the shape of the anomaly at the top-right corner of the grid is distorted in

the RBF result, but completely preserved within the ENF grid. Slight changes in trend directions (i.e., the shift of the strike of390

the anomalies to having a smaller azimuth) also cannot be seen in the RBF results, which has prominent “boudinage” artefacts

along the flight lines that cause a loss of trend and directional information perpendicular to the flight line. We suggest that these

results highlight the ability of the neural field interpolation to extract sensible information (resembling the ground truth) from

data acquired at four times the line spacing.

5.3 Uncertainty analysis and ensemble models395

We also used the stochastic nature of our feature embeddings to do a preliminary uncertainty analysis for the results from our

interpolator for the Geyer dataset (Fig. 10). The standard deviation plot shows higher variability in model predictions across

regions without data points (i.e., between the flight lines), which could be interpreted as an uncertainty measure. Interestingly,

the variance between flight lines seems to scale with the value of the underlying tensor component, leading to heteroscedasticity

in the predictions. This might need correction in future developments of our methodology. It is also worth noting that the NF400

approach has parallels to the turning bands and spectral methods to simulate random fields (Mantoglou and Wilson, 1982),

suggesting that a deeper stochastic link to other Gaussian process methods may be possible. This link could be exploited to

better understand the variance of neural field ensembles or consider future modifications of the present NF algorithms towards

tuned frequency matrix distributions.

The variance of our ensemble model is generally higher for the components with two derivatives in the same dimension (i.e.,405

Hxx, Hyy, and Hzz), and for the derivatives involving the z component (i.e., Hxy seems to be the least uncertain). High same-

dimension double derivative uncertainties might reflect the propagation of uncertainty through differentiation, as uncertainties

in two variables have a chance of cancelling out, but are only amplified with multiple passes through the same derivative

operator (Li and Oldenburg, 1998). The high uncertainty in the z components likely reflects the lack of information in the z

direction, as all of our training data are close to co-planar. Furthermore, we also see that the uncertainty in the recovered vector410

components (Fig. 10, Panels g, h, i) never goes to zero (even where we have measurements of the tensor), reflecting the lack of

information on the constant of integration.
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Interpolated grids alter the observation error model: smoothing and continuation introduce spatially correlated errors that, if

ignored, can bias ensemble-based inversions (EnKF). Best practice is naturally to invert at the real measurement locations,

however when a grid is needed we suggest that our ENF ensemble could provide a mean and a sample covariance for the415

pseudo-observations. It is possible (although untested) that this might be used as the observation-error covariance in the

inversion.

5.4 Challenges and future directions

We suggest that the proposed approach opens the door to using neural fields for potential field geophysics, and broader

applications involving tensor quantities (e.g., stresses and strains). However, further work and research is needed in several420

areas. Firstly, our model is highly sensitive to the length scales chosen for the Fourier encoding. As shown by Tancik et al.

(2020), optimisation algorithms fail to tweak these scales, meaning they need to be selected with careful empirical tuning.

Furthermore, while we have utilised a real-time updating hyperparameter based on the magnitude of the loss, research into

other possible avenues of automatising hyper-parameter tuning could boost the usability of our method and help to ensure

robust results.425

In addition, while the recovery of integrated vector fields is a big advantage of our approach, these have arbitrary integration

constants. This ambiguity means that, for every vector component, there is a constant that is unbounded in the other two

dimensions. The same problem occurs when we use the Fourier domain transfer functions, as a fundamental lack on long

wavelength information leads us to misrepresenting the baseline for the recovered vector field (Ugalde et al., 2024). However,

in our methodology, this could be resolved with a few measurements of the vector components included as constraints on430

the neural field. Therefore, one additional future direction would be to include multiple datasets (e.g., TMI measurements for

magnetic gradiometry, satellite or ground gravity measurements for gravity gradiometry) during the training process. Further

research on the propagation of uncertainties through our model, as well as impact of ensembles during inversion, would help

in improving the robustness of our proposed framework.

Finally, the inclusion of a harmonic decaying term in the feature mapping makes our method a possible contender for an435

innovative downward continuation scheme, and thus help with the problem of noise amplification in the ill-posed downward

continuation of potential field anomalies. This application needs further research, with proper tuning of the weight matrices

and data acquired at multiple elevations for validation.

6 Conclusion

We introduce an innovative interpolation method tailored to tensor gradiometry data in potential field geophysics. This approach440

leverages the inherent physical relationships among tensor components by representing them as derivatives of an underlying

scalar potential field. Our method clearly demonstrates advantages over conventional interpolation techniques, particularly in

scenarios involving sparse and anisotropic data coverage, as are typical during aerial surveys.
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Our method has shown substantial improvements in interpolation accuracy, structural fidelity, and robustness against data

sparsity during evaluations on both synthetic gravity gradiometry data and a real-world magnetic gradiometry dataset from445

Geyer, Germany. Quantitative comparisons using metrics such as R2 scores and Structural Similarity Index Measure (SSIM)

highlights the NF interpolator’s performance across all tensor components, a preservation of geological trends that are typically

used during interpretation, and a reduction of common artefacts caused by line-to-line inconsistencies.

Furthermore, by incorporating stochastic random Fourier features, our model likely opens the possibility to quantify

uncertainty. Our analysis reveals heteroscedastic behaviour in the interpolations, and also highlights regions that require further450

data acquisition or refinement. Additionally, our approach seamlessly integrates vector and scalar field reconstructions through

automatic differentiation, simplifying subsequent geophysical analyses and interpretations.

Overall, we argue that the proposed neural field interpolation method represents a significant advancement in processing tensor

gradiometry data. Future developments should focus on larger scale applications, better understanding uncertainty of the model

predictions, extended vertical interpolation capabilities (e.g., up- and downward continuations), and the integration of this455

approach into broader geophysical inversion and interpretation frameworks.
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Figures

Figure 1. Synthetic subsurface model and corresponding gravity gradiometry data. (a) Horizontal cross-section of the synthetic geological

model at a depth of 140m, with high-resolution observation points shown as black dots. The five independent components of the gravity

gradiometry tensor generated via forward modelling using SimPEG are also shown (b-f). Each panel displays both the high-resolution dataset

(grey scale; cell size of 25m) and the low-resolution dataset (colour; 200m cross-line spacing and 15m inline spacing) for the corresponding

tensor component.
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Figure 2. Neural Fourier Field model architecture. The blue block projects the input position vector into a feature space and passes it through

the fully-connected layers (orange block) to acquire the scalar potential. The red arrows signify the use of automatic differentiation to acquire

the first (gradient) and second (curvature) spatial derivatives of the potential.
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Figure 3. Quantitative comparison of interpolation performance for the synthetic dataset. Spatial distribution of residuals between the true

and predicted Hxy tensor component using (a) the Truncated Radial Basis Function (RBF) method and (b) the Ensemble Neural Field (ENF)

approach (with 25 models in the ensemble). Insets show 1:1 parity kernel density plots comparing predicted and true values. (c) R2 scores

for each tensor component (Hxx, Hxy , Hxz , Hyy , Hyz , Hzz) across three interpolation methods: RBF, the mean of the individual Neural

Field (NF) scores from the models within the ensemble, and ENF. The ENF and NF models consistently achieve higher accuracy across all

components, while RBF exhibits reduced performance. The loss curves (d) for various components of the loss show the data fitting parts

(solid lines) plateau while the Laplacian part (dotted line) keeps decreasing owing to increased sampling with each progressive epoch.
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Figure 4. Comparison of gravity gradiometry tensor components derived from two interpolation methods applied to the synthetic dataset.

The ground truth Hxx, Hxy , and Hxz components (a-c) are compared with the results from the Truncated Radial Basis Function (RBF)

(d-f) interpolation with 250 nearest neighbours and a smoothing factor of 100, and corresponding results produced by the Ensemble Neural

Field (ENF) method (g-i) with 25 models in the ensemble. Black lines in interpolated results (d-i) indicate the input flight lines used for

interpolation.
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Figure 5. Accuracy metrics as a function of increasing line spacing for the synthetic dataset. R2 Score (a), Structural Similarity Index

Measure (SSIM) (b), and Mean Squared Error (MSE) (c) were computed between the ground truth and the gridded results from the

interpolation methods. The Radial Basis Function (RBF) used 250 nearest neighbours, with a smoothing factor of 100, and the Neural Field

(NF) model used the same architecture as discussed in Section 3.3. The full tensor interpolation algorithm (QUAT; Fitzgerald et al., 2012)

was also included for comparison, using the aforementioned RBF for the eigenvalue interpolation, and SLERP for rotational interpolation.

The shaded regions show the minimum and maximum metric across all the components, and the plotted line shows the root-mean-squared

metric computed across the components.

27



Figure 6. Case study site near Geyer, Erzgebirge, Germany. Flight lines from a subset of the airborne magnetic gradiometry survey (a), with

every fourth line (red) used as input for interpolation and the remaining lines (black) reserved for validation. (b) Spatial distribution of the

measured zz-component of the magnetic gradiometry tensor across the survey region.
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Figure 7. Quantitative comparison of interpolation performance for the Geyer dataset. Spatial distribution of residuals between the true and

predicted Hxy tensor component along the test flight lines using the Truncated Radial Basis Function (RBF) (a) method and the Ensemble

Neural Field (ENF) (b) approach (with 50 models in the ensemble). Insets show 1:1 parity kernel density plots comparing predicted and true

values. (c) R2 scores for each tensor component (Hxx, Hxy , Hxz , Hyy , Hyz , Hzz) across three interpolation methods: RBF, mean of the

individual Neural Field (NF) scores from the models within the ensemble, and ENF. The ENF and NF models consistently achieve higher

scores across all components, while RBF exhibits reduced performance. The loss curves (d) for various components of the loss show similar

characteristics to the synthetic loss curve.
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Figure 8. Comparison of magnetic gradient tensor components interpolated onto a uniform grid (cell size = 20m) using two methods.

Gridded Hxx, Hxy , and Hxz components obtained using the Truncated Radial Basis Function (RBF) interpolation method, with 250 nearest

neighbours and a smoothing factor of 100 for all of the flight lines (a-c) are used as the ground truth. We compare the ground truth with the

corresponding components interpolated with RBF using every fourth flight line (d-f), and the corresponding components interpolated using

the Ensemble Neural Field (ENF) approach (g-i) with 50 models in the ensemble. Each column visualises a distinct component of the tensor.

Black lines within the plots indicate the locations of the input flight lines used in the interpolation process.
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Figure 9. Comparison of recovered vector magnetic field components from two interpolation methods, evaluated against a high-resolution

reference model. We use vector components bx, by , and bz computed using Fourier domain transfer functions applied to magnetic tensor

components gridded via the Truncated Radial Basis Function (RBF) from all available flight lines (a-c) as our reference. Fourier domain

reconstruction of the vector components obtained using the RBF method on tensor data from the training set of flight lines (d-f), and the

corresponding results computed from the spatial derivatives of the scalar field predicted by the Ensemble Neural Field (ENF) model (g-i)

are shown. The black lines in each panel represent the flight lines used to generate the corresponding component. Each panel shows the

histogram-equalised spatial distribution of the respective vector component across the subset of the Geyer survey area, mapped from 0 to 1.
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Figure 10. Uncertainty maps for the 50-model ensemble. The standard deviation computed across 50 models for the Hxx (a), Hxy (b), Hxz

(c), Hyy (d), Hyz (e), and Hzz (f) tensor components, and the recovered components bx (g), by (h), and bz (i) vector magnetic field.
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