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Abstract. Tensor fields, as spatial derivatives of scalar or vector potentials, offer powerful insight into subsurface structures
in geophysics. However, accurately interpolating these measurements—sueh-measurements—such as those from full-tensor
potential field gradiometry—remains-gradiometry—remains difficult, especially when data are sparse or irregularly sampled. We
present a physics-informed spatial neural network that treats tensors according to their nature as derivatives of an underlying
scalar field, enabling consistent, high-fidelity interpolation across the entire domain. By leveraging the differentiable nature
of neural networks, our method not only honours the physical constraints inherent to potential fields but also reconstructs the
scalar and vector fields that generate the observed tensors. We demonstrate the approach on synthetic gravity gradiometry data
and real full-tensor magnetic data from Geyer, Germany. Results show significant improvements in interpolation accuracy,

structural continuity, and uncertainty quantification compared to conventional methods.
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1 Introduction

Full-tensor gravity and magnetic gradiometry measurements capture the spatial derivatives of potential fields, offering rich
detail about subsurface density and magnetization-magnetisation variations. These tensor fields enhance geological imaging
by encoding directional and gradient information that scalar fields do not straightforwardly provide (Brewster, 2011; Ugalde
et al., 2024). However, gradiometry data are typically sparse and anisotropically sampled—often along sub-parallel flight

lines—posing significant challenges for downstream analysis, which relies on gridded representations.

Interpolating these tensor fields accurately is far from trivial. Conventional methods often treat tensor components
as independent scalar fields, leading to noise amplification, loss of directional trends, and violations of physical
constraints like symmetry and harmonicity. More advanced approaches, such as eigen-decomposition-based interpolation

{Satheeshetal;2023)(Fitzgerald et al., 2012; Satheesh et al., 2023), attempt to preserve tensor structure, but remain limited

in generalisability and scalability.

Recent advances in newral—fieldsneural fields (Xie et al., 2022)—also known as coordinate-based or implicit neural

representations—offer a promising alternative. These models learn continuous functions that map spatial coordinates to

field values;—

is—, Their differentiable nature allows them to incorporate gradient
information directly into training—a key advantage for geophysical applications where tensor data often represents derivatives
of an underlying field (Raissi et al., 2019). However, standard multilayer perceptron (MLP) architectures suffer from
spectral bias (Rahaman et al., 2019), meaning they struggle to capture high-frequency features common in geophysical
signalstRahaman-et-al52019). To address this, techniques like randemFourierfeature-(RFF)-mapping-and-Random Fourier
Feature mapping (Tancik et al., 2020), periodic activation functions (e-g-SIREN;-Wavelet(e.g. SIREN, Sitzmann et al., 2020)
. and wavelet activations (Saragadam et al., 2023) have been introduced, enabling neural fields to model fine-scale spatial
variations more effectively(Sitzmann-et-al52020;:Saragadam-et-al;2023).

In this paper, we introduce a physics-informed neural field approach tailored for interpolating geophysical tensor data. Our
model learns a single scalar potential field from sparse tensor measurements, leveraging RFF mappings and embedded physical
constraints (e.g., symmetry, Laplacian properties) to reconstruct consistent, physically meaningful tensor fields. We further
introduce an ensemble strategy to quantify uncertainty in the interpolations, offering insights into data sensitivity and model
confidence. We demonstrate this framework on both synthetic gravity gradiometry data and real airborne magnetic gradiometry
from Geyer, Germany, highlighting clear improvements over traditional methods in accuracy and structural continuity, as well

as opening the door to uncertainty quantification.

2 Background

A tensor is an algebraic object that encodes multilinear relationships between sets of vectors and linear functionals (Lee, 2012).

A tensor field assigns a tensor to every point in space, aewing-describing the local structure of a vector field or scalar potential
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to-be-deseribed-throughout a region. In geophysical applications, tensors naturally arise as derivatives of vector and scalar

fields, extending classical multivariable calculus into field-based formulations.
2.1 Potential fields

Many measured geophysical quantities, such as gravitational acceleration g and the magnetic field b, are conservative vector
fields—i.e., they are gradients of scalar potential fields (Blakely, 1995). Within R?, a conservative vector field v is irrotational

at all points (given by the position vector r), satisfying

v=V¢ <+ Vxv=0

v=V¢ <+ Vxov=0 (D)
Where V = %, %, % is the gradient operator. For instance, the magnetic field can be expressed as the gradient of a
2 Oy Or,

scalar magnetic potential in regions free of electric currents—a condition typically met outside source distributions. Taking the

gradient of v yields the Hessian tensor H, a second-order tensor that captures the local curvature of the scalar potential

H=V —V(V*)——a% =0,0;¢ Vi,j=1,2,3
= Vv = (0] _07',,;@7‘]- = 0;0;0 1,)=1,2,0

H—w:V(w)—Lz‘z’ =0,0;¢ Vi,j=1,2,3 2
B ~ oriory; ) T2

In source-free regions, these fields are not only irrotational but also solenoidal—i.e., divergence-free. The divergence of v

corresponds to the trace of the Hessian, which reflects the Laplace equation

V2 =tr(H) =0

V20 = () =0 ®

This implies that, outside source regions, scalar potentials are harmonic functions, and their Hessians are traceless.
Additionally, since mixed partial derivatives commute (by Schwarz’s theorem), the Hessians are symmetric and thus comprise

five independent components.
2.2 Full Tensor Gradiometry

Direct measurements of second-order Hessian tensors—particularly gravity and magnetic gradient tensors—represent the
current frontier in potential field surveying (Rudd et al., 2022; Stolz et al., 2021). Access to the full tensor enables

charaeterization-characterisation of scalar field curvature, aiding in tasks such as edge detection, structure delineation (Zuo and
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Hu, 2015), and magnetic remanence charaeterization-characterisation (Ugalde et al., 2024). These measurements are typically
acquired via airborne surveys, which are highly anisotropic in their sampling: dense along flight lines and sparse across them.
Vector fields are frequently reconstructed from tensor components using Fourier-domain transfer functions, which integrate
the measured gradients into vector components while suppressing noise (Vassiliou, 1986). Since most downstream analyses,

including Fourier-based reconstructions, require gridded tensor and vector fields, interpolation is a critical preprocessing step.

Rudd et al. (2022) note that, in practice, tensor components are often treated as separate scalar fields and interpolated using
standard methods like minimum curvature or radial basis functions (RBFs). Several alternative approaches have been proposed
to enforce physical or geometric constraints during interpolation. For example, Brewster (2011) uses iterative Fourier-domain

transformations, while Fitzgerald et al. (2012) suggest interpolating eigenvalues and eigenvectors separately-

, using a quaternion-based interpolation technique. In essence, the quaternion interpolation algorithm decomposes the process
into two parts: interpolating the eigenvalues and the corresponding eigenvectors. Two of the three eigenvalues are interpolated
using standard schemes (e.g., RBF or minimum curvature), with the third computed such that their sum is zero—a direct
consequence of the Hessian’s traceless-ness. The eigenvector matrix of any symmetric real matrix is guaranteed to be real and
orthogonal, allowing it to be represented as a 3D orientation and encoded as a quaternion (Hamilton, 1844), provided some
constraints on ordering and sign convention are imposed (Satheesh et al., 2023). These quaternions are then interpolated using
Spherical Linear Interpolation or SLERP (Shoemake, 1985), which ensures smooth variation of orientation across space. While

SLERP works for two quaternions, Markley et al. (2007) devised a scheme that works across a set of weighted quaternions.

Another widely used approach for interpolating and transforming potential-field (and gradient) data is the equivalent-source

/__equivalent-layer method: one replaces the true 3D _distribution of sources by a 2D _layer of hypothetical
monopoles or_dipoles beneath the observation surface whose field exactly reproduces the measured data on_that
surface (Dampney, 1969; Blakely, 1995).
and the corresponding dense sensitivity matrix is solved—often with regularisation—to obtain_source strengths
that _honour_the physical constraints of potential fields and enable stable continuation and derivative transforms
Hansen and Miyazaki, 1984; Blakely, 1995; 2023). This formulation is

demanding for large surveys. Consequently, a substantial literature focuses on accelerating the method by exploitin

data geometry and matrix structure: scattered equivalent-source gridding (Cordell, 1992); the “equivalent data”

concept to reduce system size (Mendonca and Silva, 1994); wavelet compression and adaptive meshing to sparsif’
Li and Oldenburg, 2010; Davis and Li, 2011); fast

Xia and Sprowl, 1991; Siqueira et al., 2017); and scalable algorithms that leverage the block-Toeplitz Toeplitz-block (BTTB

structure of the sensitivity matrix (Piauilino et al., 2025). Recent machine-learnin
equivalent sources) further cut memory and runtime for continental-scale datasets (Soler and Uieda, 2021). Open-source

implementations, notably Harmonica, provide practical tools for gravity and magnetic datasets using these ideas
Fatiando a Terra Project et al., 2024).

ractice the infinite layer is discretised into a finite set of sources

Oliveira Junior et al., owerful but computationall

sensitivities iterative schemes in the space/wavenumber domains

—inspired variants (e.g., gradient-boosted
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However, these methods still have limitations: component-wise methods can be insensitive to the true shape of the tensor,
whereas full-tensor schemes involve complex handling of 3D rotations, which are complicated due to the existence of
indeterminate points and the need for shifting reference frames due to non-uniqueness of 3D rotations. Equivalent source
methods offer a physically consistent approach, but suffer from the trade-off between computational expense and fidelity of the
interpolated result (e.g., Piauilino et al., 2025). In this contribution, we propose a neural field method that interpolates the scalar
potential field directly—constrained by physical laws and Hessian measurements—to produce consistent, reise-mintmizing

noise-minimising tensor and vector fields that respect observations and preserve geologically meaningful structures.
2.3 Neural fields

Neural fields—also known as implicit neural representations, or spatial neural networks—are models that represent continuous
spatial functions using neural networks. Unlike traditional methods that store information in discrete grids or meshes, neural
fields encode spatial structure within the weights and biases of a neural network, enabling resolution-independent, continuous

representations of complex signals.

The application of spatial neural networks in geoscience dates back to Openshaw (1993), who used them for interpolating
sparse spatial data and found their performance competitive with fuzzy logic and genetic algorithms, a conclusion also reached
by Hewitson et al. (1994). More recently, neural fields have gained traction in computer vision—for example, in volumetric
radiance field modelling (Mildenhall et al., 2020)—and in geoscience applications such as 3D geological modelling (Hillier
et al., 2023) and potential field representation (Smith et al., 2025).

A key advantage of neural fields is their differentiability: they allow access not only to predicted signals but also to their spatial
derivatives via automatic differentiation. This is especially useful when the scalar field itself is unobservable-unmeasurable or
physically arbitrary, but its gradients are measurable—as is often the case in geological modelling using structural orientation

data (Kamath et al., 2025; Thiele et al., 2025), or in reconstructing potential fields from tensor gradiometry data.

3 Methodology

This section outlines the key components of our proposed framework, including the use of random Fourier features, a harmonic
feature embedding, model architecture, training regimen, and loss function. We also describe the methodology used to generate

the synthetic dataset used in our study.
3.1 Random Fourier Feature mapping

A common challenge in implicit neural representations is the mismatch between low-dimensional input coordinates and the
complex, high-frequency structure of the target signal. To address this, we employ Random Fourier Feature(RFF)}mapping
(RFF) mapping—a kernel approximation technique introduced by Rahimi and Recht (2007) and adapted to deep learning by
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Tancik et al. (2020). RFF mapping projects spatial coordinates into a higher-dimensional space, making it easier for the network

to learn fine-scale spatial variation.

Given the position vector 7 € RY, we define a frequency (also called weights) matrix W, of the dimension M x N, with every

component sampled from a standard Gaussian distribution
Wi; ~N(0,1)

Where-M-, where M is the number of Fourier features —Furthermoreto-(i.¢., frequencies). To encode known signal frequency

RAARAARAAA

characteristics (e.g., the maximum possible frequency based on sampling resolution), we rescale the weights matrix using

different length scales. Therefore, for a 3D input, we

get a 2M dimensional feature %p%egwﬂig—us—a—feafufevector -with-the-components-givenby-

T W 0, 7 is even
v; = sin <27TW57’ +5,;7> Vi=1...2M, where Wy = —, ¢, =
2 / .
1, 7is odd
v, for every length scale ¢, given b
v, = [sin (20 W,r), cos (2n W,r)], where W, = /7 TWM>*3 4)

Where r = [z T W, ~N(0,1

for L length scales, as the feature vectors are concatenated, we get a 2M L-dimensional feature vector. This feature vector is
then fed into the subsequent multi-layer perceptron to get the scalar potential at the input coordinate.

:,:| represents concatenation along the feature axis. Hence

The transformation enables the model to capture high-frequency details more effectively, while the random sampling of
frequencies introduces a useful stochastic component. When followed by a linear MLP with no non-linear activations, the
resulting mapping approximates a full Fourier reconstruction of the signal (Bracewell and Kahn, 1966). Non-linear activations
help the model fit sparse data more flexibly (LeCun et al., 2015), albeit at the cost of simplicity, interpretability, and gradient
stability.

3.2 Harmonic feature embedding

Applying Fourier features uniformly in all dimensions can lead—te—peer-hinder convergence when modelling harmonic
funetions—fields. By Liouville’s Theorem (Axler et al., 2001)st ,.any
bounded harmonic function on RY mustbe-constant: Fhis ean-cause-the network-to-coHapse-onto-is constant, so naive periodic
embeddings can bias the network toward trivial solutions. Fe-aveid-this;—we partition-the-pesttion—vectorinto-herizontal-and
vertieal-components-

T =Ty +1.k wherer,, R?
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We-apply-the REF-mapping-We therefore introduce a harmonic Fourier mapping that uses Fourier features in the horizontal

W 0, 7 is even

1, 7is odd

lane and an analytically motivated vertical decay. Since our model reconstructs the spatial domain signal from a combination
of sinusoids, we use the frequencies of the sinusoids to encode the harmonicity condition into the mapping. Specifically, in the

Fourier domain, if we couple Laplace’s equation with the standard separation-of-variables method for a scalar potential ¢, we

et an ordinary differential equation of the form

(k2 ~ WEnll2) Py (9) =0 ®)

NI - ; i ; s-the-netw D d-vertteal-deeay ala
potentials;-aligning-the-embedding-with-F , () is the 2D Fourier transform operator, kj, = |k;.k, | represents the horizontal
wavenumbers (i.e., frequencies), and k. is the vertical wavenumber (Lacava, 2022). This implies that the vertical wavenumber

is constrained by k2 = k2 + k2, making the vertical dependence evanescent and not oscillatory. This is the classical half-space

solution of Laplace’s equation —Wh

and underpins upward/downward

continuation in potential-field geophysics (Blakely, 1995; Parker, 1973). Our harmonic embedding scheme simply bakes in

the same physics at a feature-level, helping with convergence while training on mostly co-planar datasets, and potentiall
allowing robust upward/downward continuation—theugh-thatis-outside-the-seope-of-this-study.

T

For a 3D input r = [z we extract the horizontal coordinates r T As defined in the previous section

we generate a random weights matrix W *2 with the entries independently drawn from a standard normal distribution
W;; ~N(0, 1), and scale it with the length scale ¢, to acquire a scaled matrix W, = ¢-'W. For every length scale, we

define a new vector, i, such that

(k) = [Wamill2, _ms R ©
Where m refers to the mth row of the W, matrix, giving us a vector of length M i.e., one norm per row (per feature). With
element-wise sine/cosine and Hadamard product &, the new feature vector v for the scale £ is.

where z is the vertical coordinate, and the exponential is applied element-wise, producing a 2M/-dimensional vector.
Concatenating across L scales yields a 2M L-dimensional embedding that encodes horizontal oscillations with physicall
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consistent vertical decay, aligning the features with solutions of Laplace’s equation and improving generalisation in
under-sampled regions.

3.3 Synthetic dataset

To evaluate our method, we generated a synthetic gravity gradiometry dataset (Fig. 1) using SimPEG (Cockett et al., 2015).

The model consists of three density-contrast anomalies within a zero-density half-space:

3

1. Torus: +1 gcm™7, semi-major axis 450 m, semi-minor axis 220m, cross-section radius 40m, lying in the xy plane and

rotated 12° CCW from the y-axis.
2. Dyke: +0.15 gcm ™2, 60m aperture, striking at 45° to the y-axis.
3. Cube: 0.2 gecm~3, 400m side length, rotated 45° about the vertical (z) axis.

The simulation mesh has a voxel size of 20m. This geometry offers a challenging mix of sharp discontinuities and smooth
curvature for testing interpolation. We generated a high-resolution ground truth dataset sampled at 25 m spacing both along and
across the lines, as well as a low-resolution airborne-style dataset with flight lines 200 m apart in the y direction (perpendicular
to the flight line), and sampled densely (15m) along the x direction (Fig. 1B-F)—Gausstan—neise—was—added—to—simulate

measturement-uneertaintyb-f). Furthermore, to make the data more realistic, We corrupt the full-tensor gradiometry data with
additive white Gaussian noise at a prescribed signal-to-noise ratio (SNR). For each independent component of the Hessian

Hy (where k € {xx, zy, xz . yz}), we estimate the power spectrum P, = (H2), convert the target SNR from dB to linear
SNRy, = 105NFx an/10 (8)

2
2 Pk:

Using this SNR, we set the noise variance of the signal as o

to each datum, to acquire a noisy synthetic dataset (H), given by:

. Independent samples ¢; ;. are then added

Hip=H;+eip Vi=1.P o)

Where P is the number of points in the dataset.

To test robustness to data sparsity, we also computed 10 versions of the low-resolution dataset with line spacings varying
from 80m to 560m. These were used to benchmark interpolation quality and information loss under varying acquisition
densities. Comparisons were made with a truncated RBF interpolator (250 nearest neighbours, smoothing factor 100), as well
as results from the quaternion interpolation (QUAT; Fitzgerald-et-al(2012));(QUAT; Fitzgerald et al., 2012), combining RBF-
interpolated eigenvalues with SLERP-interpolated quaternions. All results were evaluated on the same high-resolution grid

using the R? (coefficient of determination), MSE (Mean Squared Error), and SSIM (Structural Similarity Index Measure).
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3.4 Model architecture, training regimen, and loss funetionfunctions

Our model has two main components: a RFF mapping block followed by a sequence of fully-connected feed-forward layers

that together produce a continuous scalar field representation (Fig. 2—Wefoeund-that-the-best-performing-medel-for-ourusage
used:), In our tests, we varied the number of Fourier features from anywhere between 16 to 64RFFs-and-three-hidden-layers
model showcased in this contribution can be found in the following sections.

The MLP block in our model uses non-linear activations for all layers except the output layer. As our framework involves
computing_second_derivatives with AD, activation functions like ReLU (which do_not satisfy the C? differentiability
criterion) resulted in abrupt edges within the resultant interpolation. Notably, even within the activations that satisfy
the_aforementioned criterion, some functions performed better than the others. For example, the Hyperbolic Tangent
activation function has _extremely small second order derivatives which tend to_get saturated, impeding convergence.

These activations are stable, but not ideal for our models. Among the various activation functions tested, Swish
Sigmoid Linear Unit, SiLLU; Ramachandran et al., 2017) and Mish (Misra, 2019) activations provided the best results.

The loss function used to train our model involves two types of losses - a data loss and a Laplacian loss. The data loss is
computed at the points of measurement between the measured tensor components and the hessians-Hessians acquired from

the predicted scalar field through automatic differentiation (AD) (Margossian, 2019). Since the model is built with pytereh

{Paszke-et-al52619)PyTorch (v2.8.0; Paszke et al., 2019), we use the inbuilt t orch . aut ograd autograd engine to compute
hesstans-Hessians from the scalar field output. For the predicted scalar field ¢, the data loss term is given by

P
1 .
ﬁdzfzmﬁjﬁﬁp_Hfj Vi,j=123 10
p=1

Where 8;:(-)-0;¢P refers to the partial derivative with the respect to the ith input computed with AD —and-H-is-the-at the

pth location, and HP is the corresponding measured hessian tensor. Note-that-thisreconstructionloss-is-computed-using-all
the-measurement-points—The first, second, and third indices correspond to z (East-West), y (North-South) and z (Up-Down)
axes respectively. Only the upper-triangular part of the Hessian is used for loss computation i.e., the losses for the off-diagonal
components are only considered once per measurement. Hence we get a six-component data loss vector, consisting of the misfit
between the xa, zy, 22, yy, yz and zz components.

The second term in the loss function is derived to encourage the predicted scalar field to conform with a partial differential
equation defined across the whole domain of interest. Since the predicted field has to be harmonic not only at the points
of measurement, but everywhere, we thus penalise non-zero traces of the predicted Hessian tensors, hereafter referred to as

the Laplacian loss. During every training epoch,




250

255

260

265

270

Ly = [tr(V(Ve))| =10:0i9|

we use a Poisson disk sampling routine based on a hierarchical dart throwing approach (White et al., 2007), to select evenl

spaced points within a predefined grid that covers the area of interest. The spacing for these points is evaluated using an
exponentially decaying function that goes from a user specified large spacing (at the start of training) to a tighter spacin

towards the final epochs). For the () sampled points in any epoch, the Laplacian loss is given by:
1& 1&

Lr==) " [tx(V(Ve") == [0:0;¢] (11)
Q& Q=

Here, the Einstein summation convention is used to represent the Laplacian, and the superscript refers to the point of evaluation.
This loss penalises high values of the trace of the predicted hessian tensor outside the measured points, thereby encouraging

harmonicity on the underlying scalar field within the domain of interest. Hence, for every epoch, we get a seven component

combined loss vector, with the first six components corresponding to the data loss, and the seventh component referring to the
lobal Laplacian loss.

When combined, the total loss thatis-eptimised-is-thus-

L=oyLls+ oL

acquired from equations 10 and 11 is thus

s-Where £, is the ith component of the combined loss vector, [«;] are
the corresponding hyperparameters. Instead of manually fine-tuning these hyperparameters, we tested various multi-objective

optimisation schemes for our framework. The best-performing scheme involved dynamically updating hyperparameters, such
that every loss function was scaled by the real-time magnitude of the loss. Mathematically, we replace the [¢;] in Eq. 12 as

follows:
7
L
Ltotat = Z = 13)
io Li

Where El refers to the magnitude of the loss, detached from the computational graph. This ensures that the gradients onl
flow through the numerator of the scaled loss, even when the real-time value of the loss is always equal to 1. This real-time

10
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normalisation yields a scale-invariant objective whose update is a

JogL;
respect to the network parameters), encouraging proportional improvements across terms. Similar in spirit to uncertainty-based
weighting (Kendall et al., 2017), GradNorm (Chen et al.. 2017), and Density Weight Averaging (Liu et al., 2019), this variant
requires no extra parameters or gradient-norm computations and worked reliably in our setting.

We train the MLP parameters (weights and biases) with Adam (Kingma and Ba, 2014), while keeping the RFF encoder fixed
|

where Vg is the gradient with

after initialisation. The initial learning rate is set to 103 (occasionally 102 when the initial loss scale is large). We a

plateau scheduler that reduces the learning rate by a factor of 0.8 whenever the loss fails to improve for 20 epochs. Optionally,
we also optimise a set of learnable length-scale parameters that modulate the Fourier features; the log-values of these scales
are stored as parameters and updated jointly with the MLP. However, the learnable nature of these length scales did not help
the model convergence greatly, reproducing results explored by Tancik et al. (2020). which suggested that neural fields fail to
suitably optimise these length scale parameters.

To make the stopping criterion robust to small oscillations, we monitor an exponential moving average (EMA) of the pre-scaled

loss:

Lo=Blua tA=PLy B (O1) %

plateau-based learning-rate decay, and EMA-stabilised early stopping—follows common best practices for training
smooth _function approximators _and has been shown to curb overfitting while maintaining convergence speed
(Goodfellow et al., 2016; Prechelt, 1998; Bottou, 2012).

3.5 Uncertainty estimation

A key benefit of using RFF embeddings is that their stochastic nature allows for ensemble-based uncertainty estimation. As
a result of the stochasticity, each initialisation of the RFF mapping induces a unique basis in the feature space, causing the
neural network to converge on a solution that represents a random sample from a broader distribution of plausible scalar fields

conditioned on the training data.

To exploit this property for uncertainty quantification, we generate an ensemble of model outputs by varying the random seed
used to sample the RFF projection matrix. Ensemble-based uncertainty quantification has a long and successful history in
geophysics, particularly in subsurface modelling and inversion. In seismic full waveform inversion (FWI), ensembles have
been used to assess the variability and reliability of recovered velocity models under data noise and model ambiguities
(Fichtner et al., 2011). In reservoir geophysics, the Ensemble Kalman Filter (EnKF) has become a widely used tool to propagate
uncertainty in dynamic reservoir simulation and history matching (Evensen, 2009). More recently, ensemble-based methods
have also been applied to probabilistic gravity and magnetotelluric inversion (2)(Tveit et al., 2020; Giraud et al., 2023),

demonstrating their utility in quantifying non-uniqueness and guiding data acquisition strategies.

11
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In our implementation, each ensemble member corresponds to a different realizationrealisation of the frequency space, leading
to stochastically independent function approximations that depend, largely, on the degree to which the solution is constrained by
the available data. This ensemble-based approach provides a Monte Carlo-style estimate of the model’s epistemic uncertainty.
Furthermore, because the scalar field is modelled continuously, we can propagate this ensemble approach to the field’s
derivatives, helping us quantify uncertainty in derived physical quantities. Therefore, we showcase our results as the Ensemble

Neural Field (ENF) method, which corresponds to the average prediction from an ensemble of +06-medels-—models. We also

compute results from the individual models within the ensemble (shown as the Neural Field or NF result), to ascertain the
effect of averaging over multiple predictions.

4 Results
4.1 Synthetic Data

We first evaluate the Ensemble Neural Field (ENF) method on the synthetic gravity gradiometry dataset, comparing it against
a Truncated Radial Basis Function (RBF) interpolator (Fig. 3). Panels-A—and-B-The ensemble showcased here has 25 models

P A NAV AN A A S AN D N N AN A 3
each with 16 Fourier features, three length scales of {200, 400, 1000]|, and two hidden layers with 256 neurons each. Each
model within the ensemble was trained for 400 epochs. A predefined grid with a cell-size of 25 m was provided for evaluatin

the Laplacian loss, with the Poisson sampling radius going from 250 m to 80 m. Panels (a) and (b) show the residuals between
predicted and true H,, values for the RBF and ENF methods, respectively. The RBF output exhibits high-amplitude residuals

(MSE = 4-698-4.60 eotvos) between flight lines, indicating overfitting to sampled regions and poor generalisation across them.
It also fails to preserve continuity in linear trends that lie at high angles to the flight direction. In contrast, the ENF method
yields spatially smoother residuals with significantly lower error (MSE = 6:825-eotv0s0.30 eotvos; improvement of ~ 93.4%
over the RBF), suggesting homogeneous improved performance across the domain. Insets in both panels show 1:1 seatter

kernel density plots, where the ENF predictions cluster more tightly along the identity line—further confirming its accuracy.

Panel-CsummarisesFor a quantitative measure of the improvement offered by our method, we plot the R? scores for each
tensor component across four-three interpolation methods: RBF, and two neural field-based (NF and ENF) —(Fig. 3c). The NF

method reflects the mean R? from +00-25 independently trained models, with error bars showing standard deviation. The ENF
method, by contrast, uses the averaged prediction across those same models. Both neural field approaches outperform classical

methods, with ENF showing a slight edge—demonstrating that ensemble averaging reduces variance and enhances prediction

stability. Fig. 3d shows the loss curves for the various losses for one of the models within the ensemble, as a function of epochs.
The data loss terms reasonably plateau after reaching values of ~ 1 eotvos, while the real-time updating hyperparameters hel

avoid overfitting to a single component, The Laplacian loss (dotted pink line; £;) keeps steadily decreasing as

ets tighter and ever more points are sampled from the grid.

the samplin

To further evaluate structural accuracy, we compute the Structural Similarity Index Measure (SSIM) between predicted and
true tensor fields (Fig. 4). The ENF method achieves higher SSIM scores across all three components—06-89-0.95 (H,,), 690
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0.97 (Hgy), and 0:87-0.96 (H,)—compared to 6:79:-6-63;-and-6:79-0.78, 0.64, and 0.76 for RBF. The greatest improvement
is seen in H ., (improvement of &~ 50.46%), where RBF results show structural distortion, over-smoothing, and “boudinage”
artefacts along flight lines (Naprstek and Smith, 2019). ENF, on the other hand, preserves coherent anomalies and directional

continuity even across sparsely sampled regions.
4.2 Rate of information loss

To assess robustness under sparse sampling, we compare the interpolation results for varying line spacings from 80m to 560 m
(Fig. 5). Classical methods (RBF and quaternion-based interpolation, or QUAT) show sharp drops in accuracy beyond 200m
spacing. For example, the RBF method’s average root-mean-squared R? (computed over the components) drops to 0.54, and the
root-mean-squared SSIM plummets to 0-43-and-SSHM-te-0-21-0.26 at 560m. In contrast, NF interpolation maintains relatively
stable performance up to ~ 400m spacing, with a much gentler decline at wider gaps. At 560m, the NF model still achieves

an-a root-mean-squared R? of 6:87-0.91 and an SSIM of 6:580.65.

The MSE trends mirror this behaviour: classical methods exhibit steep error increases with sparser lines, while the NF
model degrades more gracefully. QUAT offers minor improvements over component-wise interpolation but follows a similar
performance trajectory. This suggests that the main bottleneck in full tensor interpolation lies in the eigenvalue interpolation

step, which—Ilike the component-wise case—relies on RBF methods.
4.3 Magnetic gradiometry from Geyer

Finally, we validated the method on real airborne magnetic gradiometry data from Geyer, located in Germany’s Erzgebirge
region—part of the Central European Variscides. The area features high- and medium-pressure metamorphic units, orthogneiss
domes, and post-orogenic granites (Kroner and Romer, 2013), with abundant ore-forming skarns containing magnetic minerals
(Burisch et al., 2019; Lefebvre et al., 2019) as well as magnetite-rich quartzites and amphibolites that occur as intercalations

within the metamorphic rocks. These rocks contribute to complex magnetic anomalies ideal for real-world evaluation.

We test the ENF method on a real airborne magnetic gradiometry dataset from Geyer (Fig. 6), acquired by Supracon AG in
2016 as part of the E3 (ErzExploration Erzgebirge) project. As in the synthetic case, we compare ENF to RBF interpolation.

Due to the complex nature of the signal, we run a 50 model ensemble for the Geyer dataset. Each model uses 64 Fourier
features, with four length scales of (220,400, 1000, 100000]. The number of hidden layers is increased to three, with 1024
512 and 256 neurons respectively. Each model is trained for 600 epochs, with early stopping triggered after 30 epochs of no

improvement. A predefined grid with a cell-size of 201 is used to evaluate the Laplacian loss, with the Poisson sampling radius
starting at 500m, and going to 200 m. Every fourth flight line is used for training, with the others reserved for validationtesting

the interpolation. Since ground-truth grids are unavailable, we assess accuracy using residual analysis and R? scores computed

ateng-for points in the withheld lines.

We plot the residual maps for H.,, on test lines (Fig. 7). While absolute R? scores are lower than in the synthetic case—owing

to added geological complexity and noise—ENTF still achieves +6—20more than 30% better performance than RBF across most
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tensor components—, with a whopping increase of =~ 157% in the R? score for H,,, and an average increase of approximatel

57.27%. Both NF and ENF results are better than the RBF across all components. Residuals show that ENF (Fig. 7a) reduces
systematic bias between lines and preserves anomaly shapes more faithfully. RBF (Fig. 7b), by contrast, displays patchy

behaviour with abrupt shifts between lines—a well-known artifact of interpolating sparse or anisotropically sampled data

(Hillier et al., 2014; Wittwer, 2009). The loss curves (Fig. 7d) show a similar trend to the synthetic case, with the data loss
terms plateauing around 0.1 nTm ™!, and the Laplacian loss steadily decreasing.

To get a qualitative overview of the overall result, we plot the histogram-equatized;-gridded visualisations of the H,,, H,,
and H,, tensor components (Fig. 7)-—Panels-A-C-show-the-8). We also compute a result from using all of the flight lines with
an RBF interpolator (Fig. 8a-c), serving as our ground-truth. The RBF results from using every fourth line (Panels-D—FFig,
8d-f) reveal strong aliasing and inconsistent behaviour between flight lines—hallmarks of inadequate cross-line interpolation.
In contrast, the ENF interpolations (Panets-G—tFig. 8g-i) exhibit smoother transitions and clearer structural trends, especially in
directions orthogonal to flight lines. The ENF model successfully mitigates high-frequency striping and captures geologically

meaningful features.

S Discussion
5.1 Accurately reconstructing tensor fields

The proposed Neural Field (NF) Interpolator has shown remarkable success in interpolating tensor gradiometry data. Our
results show that the additional information contained within the hessian tensor can help derive a more accurate reconstruction
of the entire field as sampling gets sparser (Fig. 5), provided the interpolation algorithm can access the full tensor constraints.
For equivalent inputs, the NF interpolation recovers a signal that better fits all the tensor components, while maintaining the

integrability and physical properties inherent to a hessian tensor field.

We also see equivalent results from all methods when line spacings are tight (i.e., for line spacings of 80m, 100m and 120m
in our synthetic tests). This suggests an oversampling with respect to the spatial frequencies in the signal, such that all the
interpolation methods converge to the same (correct) result to yield high accuracy metrics. Results then diverge as line spacing
increases to 200 m, indicating the neural field interpolation is able to leverage information in the shape of the tensors to continue

to derive accurate reconstructions, while the RBF and quaternion methods cannot.

The reason that the results converge with close spatial sampling could be attributed to the equivalence of SLERP and standard
linear interpolation as the angle between the quaternions describing the orientations of the input data points goes to zero.
Since a tighter line spacing ensures a smoother graduation of the eigenvector orientations (i.e., a smaller change in the angle
between the corresponding quaternions), the resulting interpolation is closer to what one would achieve with standard linear

interpolation of the components. But, under sparse sampling conditions, the differences seen in the results indicate that an
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interpolation using neural field formulation better preserves the shape of interpolated tensors, without the need for cumbersome

quaternion formalisms.

The interpolated tensor components for Geyer (Fig. 8) also showcase significant improvements over the component-wise
interpolation of these tensors. The extension and continuation of the trend from the centre of the grid, towards the north-
east is preserved in the ENF result, but is completely absent in the RBF result. Any interpretation of these grids would

thus result in significantly different geological structures, highlighting the necessity for appropriate interpolation methods.

The Laplacian constraint is handled with an objective minimisation approach in our method. One could potentially enforce
harmonicity by design, however this is challenging for 3D (i.e. geophysical potential) fields and difficult to enforce through
the non-linear activation functions inherent to neural networks. In 2D, holomorphic functions (i.., complex-differentiable
Harmonic Neural Networks (e.g., PIHNNs; Calafa et al., 2024) to yield exactly harmonic outputs. These concepts do not
directly extend to 3D, promoting an objective driven enforcement of the constraint. Vector potential based formulations
(e.g. CurlNet; Ghosh et al., 2022) enforce divergence-free fields but fail to enforce the zero curl constraint. Furthermore, as
our network consists of non-linear activations, and as non-linear compositions do not generall Chen
et al., 2010), we are further motivated to rely on our new mapping that has harmonic elements (see Section 3.2) and use an

reserve harmonicit

5.2 Recovery of vector fields

Many analysis methods applied to tensor gradiometry data require a domain-wide integral to estimate the underlying vector
field. The simplest way of computing this integral is by ignoring everything but the last row of the gradiometry tensor, and
using the H,,, H,., and H,, components to get vector components. Due to the Fourier domain properties, vector components
are defined as a vertical integral in the Fourier domain (Mickus and Hinojosa, 2001). Similarly, the power spectrum of these
signals can also be used to generate vector components, using transfer functions that fit all of the signals while minimising noise
(Vassiliou, 1986). However, in our method, we can completely avoid this potentially complex integral. We can use automatic
differentiation to acquire the vector field components from the predicted scalar potential as the neural field predicts scalar
potential and not the gradiometry tensor itself. Importantly, we thus estimate the vector field components exclusively from real
measurements, rather than from an integral over a regularly spaced (i.e. interpolated) grid that is already one-step removed

from the data.

To test the recovery of vector components from our model, we compared it to the benchmark generated using the RBF
interpolation on all flight lines and then applying Fourier domain transfer functions to compute the integral. We also use
the transfer functions on the RBF interpolation results for our training data for a baseline comparison (Fig. 9). Comparing
the resulting bx-b, (Fig. 9, Panels A-D;-and-Ga, d, g) components, we see that features present in both the ground truth and
the ENF results are completely erased from the RBF result. Similarly, the shape of the anomaly at the top-right corner of the
grid is distorted in the RBF result, but completely preserved within the ENF grid. Slight changes in trend directions (i.e., the
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shift of the strike of the anomalies to having a smaller azimuth) also cannot be seen in the RBF results, which has prominent
“boudinage” artefacts along the flight lines that cause a loss of trend and directional information perpendicular to the flight line.
We suggest that these results highlight the ability of the neural field interpolation to extract sensible information (resembling

the ground truth) from data acquired at four times the line spacing.
5.3 Uncertainty analysis and ensemble models

We also used the stochastic nature of our feature embeddings to do a preliminary uncertainty analysis for the results from our
interpolator for the Geyer dataset (Fig. 10). The standard deviation plot shows higher variability in model predictions across
regions without data points (i.e., between the flight lines), which could be interpreted as an uncertainty measure. Interestingly,
the variance between flight lines seems to scale with the value of the underlying tensor component, leading to heteroscedasticity
in the predictions. This might need correction in future developments of our methodology. It is also worth noting that the NF
approach has parallels to the turning bands and spectral methods to simulate random fields (Mantoglou and Wilson, 1982),
suggesting that a deeper stochastic link to other Gaussian process methods may be possible. This link could be exploited to
better understand the variance of neural field ensembles or consider future modifications of the present NF algorithms towards
tuned frequency matrix distributionstEquation—22).

The variance of our ensemble model is generally higher for the components with two derivatives in the same dimension (i.e.,
H,., Hyy, and H ), and for the derivatives involving the z component (i.e., H,, seems to be the least uncertain). High same-
dimension double derivative uncertainties might reflect the propagation of uncertainty through differentiation, as uncertainties
in two variables have a chance of cancelling out, but are only amplified with multiple passes through the same derivative
operator Li-and-Oldenburg(+998)(Li and Oldenburg, 1998). The high uncertainty in the z components likely reflects the lack
of information in the z direction, as all of our training data are close to eoplanarco-planar. Furthermore, we also see that
the uncertainty in the recovered vector components (Fig. 10, Panels G;-H;-1g, h, i) never goes to zero (even where we have

measurements of the tensor), reflecting the lack of information on the constant of integration.

Interpolated grids alter the observation error model: smoothing and continuation introduce spatially correlated errors that, if
ignored, can bias ensemble-based inversions (EnKF). Best practice is naturally to invert at the real measurement locations,
however when a grid is needed we suggest that our ENF ensemble could provide a mean and a sample covariance for the
pseudo-observations. It is possible (although untested) that this might be used as the observation-error covariance in the

5.4 Challenges and future directions

We suggest that the proposed approach opens the door to using neural fields for potential field geophysics, and broader
applications involving tensor quantities (e.g., stresses and strains). However, further work and research is needed in several

areas. Firstly, our model is highly sensitive to the length scales chosen for the Fourier encoding;-and-the-hyper-parameters—,
As shown by Tancik et al. (2020), optimisation algorithms fail to tweak these scales, meaning they need to be selected with
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careful empirical tuning. Furthermore, while we have utilised a real-time updating hyperparameter based on the magnitude of

the loss , research into other possible avenues of automatisin
hyper-parameter tuning weutd-—could boost the usability of our method and help to ensure robust results. Furthermore,—the

In addition, while the recovery of integrated vector fields is a big advantage of our approach, these have arbitrary integration
constants. This ambiguity means that, for every vector component, there is a constant that is unbounded in the other two
dimensions. The same problem occurs when we use the Fourier domain transfer functions, as a fundamental lack on long
wavelength information leads us to misrepresenting the baseline for the recovered vector field (Ugalde et al., 2024). However,
in our methodology, this could be resolved with a few measurements of the vector components included as constraints on
the neural field. Therefore, one additional future direction would be to include multiple datasets (e.g., TMI measurements for

magnetic gradiometry, satellite or ground gravity measurements for gravity gradiometry) during the training process. Further

research on the propagation of uncertainties through our model, as well as impact of ensembles during inversion, would hel
in improving the robustness of our proposed framework.

Finally, the inclusion of a harmonic decaying term in the feature mapping makes our method a possible contender for an
innovative downward continuation scheme, and thus help with the problem of noise amplification in the ill-posed downward
continuation of potential field anomalies. This application needs further research, with proper tuning of the weight matrices

and data acquired at multiple elevations for validation.

6 Conclusion

We introduce an innovative Neural-Field-(INF)-interpolation method tailored to tensor gradiometry data in potential field
geophysics. This approach leverages the inherent physical relationships among tensor components by representing them as
derivatives of an underlying scalar potential field. Our method clearly demonstrates advantages over conventional interpolation

techniques, particularly in scenarios involving sparse and anisotropic data coverage, as are typical during aerial surveys.

Our method has shown substantial improvements in interpolation accuracy, structural fidelity, and robustness against data
sparsity during evaluations on both synthetic gravity gradiometry data and a real-world magnetic gradiometry dataset from
Geyer, Germany. Quantitative comparisons using metrics such as R? scores and Structural Similarity Index Measure (SSIM)
highlights the NF interpolator’s performance across all tensor components, a preservation of geological trends that are typically

used during interpretation, and a reduction of common artifacts-artefacts caused by line-to-line inconsistencies.

Furthermore, by incorporating stochastic random Fourier features, our model likely opens the possibility to quantify
uncertainty. Our analysis reveals heteroscedastic behaviour in the interpolations, and also highlights regions that require further
data acquisition or refinement. Additionally, our approach seamlessly integrates vector and scalar field reconstructions through

automatic differentiation, simplifying subsequent geophysical analyses and interpretations.
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Overall, we argue that the proposed NF-neural field interpolation method represents a significant advancement in processing
tensor gradiometry data. Future developments should focus on larger scale applications, better understanding uncertainty of
the model predictions, extended vertical interpolation capabilities (e.g., up- and downward continuations), and the integration

of this approach into broader geophysical inversion and interpretation frameworks.
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Figure 1. Synthetic subsurface model and corresponding gravity gradiometry data. (Aa) Horizontal cross-section of the synthetic geological
model at a depth of 140m, with high-resolution observation points shown as black dots. (B—F)-The five independent components of the
gravity gradiometry tensor generated via forward modelling using SimPEG are also shown (b-f). Each panel displays both the high-resolution
dataset (greyseategrey scale; cell size of 25m) and the low-resolution dataset (colour; 200 m cross-line spacing and 15m inline spacing) for

the corresponding tensor component.
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Figure 2. Neural field-Fourier Field model architecture. The erange-blue block projects the input position vector into a feature space and

passes it through the fully-connected layers (orange block) to acquire the scalar potential. The red arrows signify the use of automatic

differentiation to acquire the first (gradient) and second (curvature) spatial derivatives of the potential.
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Figure 3. Quantitative comparison of interpolation performance for the synthetic dataset. {A—B)-Spatial distribution of residuals between
the true and predicted H.;, tensor component using (Aa) the Truncated Radial Basis Function (RBF) method and (Bb) the Ensemble Neural
Field (ENF) approach (with 25 models in the ensemble). Insets show 1:1 parity kernel density estimate-plots comparing predicted and true
values. (€c) R? scores for each tensor component (Hy, Hyy, Hy., Hyy, Hy., H.) across three interpolation methods: RBF, the mean of
the individual Neural Field (NF) scores from the models within the ensemble, and ENF. The ENF and NF models consistently achieve higher
accuracy across all components, while RBF exhibits reduced performances-particutarty—, The loss curves (d) for eff-diagenat-termsvarious
components of the loss show the data fitting parts (solid lines) plateau while the Laplacian part (dotted line) keeps decreasing owing to
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Figure 4. Comparison of gravity gradiometry tensor components derived from two interpolation methods applied to the synthetic dataset
A—C)-Gridded;-histogram-equalised-The ground truth H., H.y, and H,. components generated-using—a—(a-c) are compared with the
results from the Truncated Radial Basis Function (RBF) (d-f) interpolation with 250 nearest neighbours and a smoothing factor of +66-
b-F)-Cerresponding-100, and corresponding results produced by the Ensemble Neural Field (ENF) method (g-i) with 25 models in the
ensemble. Adt-valuesrangefrom-0-to-+-Black lines in panetinterpolated results (Ed-i) indicate the input flight lines used for interpolation.
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Figure 5. Accuracy metrics as a function of increasing line spacing for the synthetic dataset. (A>-R? Score and-(Ba), Structural Similarity
Index Measure (SSIM) (€b), and Mean Squared Error (MSE) (c) were computed between the ground truth and the gridded results from
the interpolation methods. The Radial Basis Function (RBF) used 250 nearest neighbours, with a smoothing factor of 100, and the Neural
Field (NF) model used the same architecture as discussed in Section 3.3. The full tensor interpolation algorithm fromFitzgerald-et-al-2012)
{QUAT)-(QUAT; Fitzgerald et al., 2012) was also included for comparison, using the aforementioned RBF for the eigenvalue interpolation,

and SLERP for rotational interpolation. The shaded regions show the minimum and maximum metric across all the components, and the
lotted line shows the root-mean-squared metric computed across the components.
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Figure 6. Case study site near Geyer, Erzgebirge, Germany. (A)-Flight lines from a subset of the airborne magnetic gradiometry survey (a),
with every fourth line (red) used as input for interpolation and the remaining lines (black) reserved for validation. (Bb) Spatial distribution

of the measured zz-component of the magnetic gradiometry tensor across the survey region.
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Figure 7. Quantitative comparison of interpolation performance for the Geyer dataset. {A—B)-Spatial distribution of residuals between the
true and predicted H,, tensor component along the test flight lines using {A)-the Truncated Radial Basis Function (RBF) method-and
(Ba) method and the Ensemble Neural Field (ENF) (b) approach (with 50 models in the ensemble). Insets show 1:1 parity kernel density
estimate-plots comparing predicted and true values. (E€c) R? scores for each tensor component (Hyy, Hyy, Hyzy Hyy, Hyz, H..) across
three interpolation methods: RBF, mean of the individual Neural Field (NF) scores from the models within the ensemble, and ENF. The ENF
and NF models consistently achieve higher scores across all components, while RBF exhibits reduced performance;partiettarty—. The loss

curves (d) for eff-diagonat-termsvarious components of the loss show similar characteristics to the synthetic loss curve.
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Figure 8. Comparison of magnetic gradient tensor components interpolated onto a uniform grid (cell size =25mm= 20m) using two

methods. (A—€)-Gridded histegram-equalised-H ., Hzy, and H,. components obtained using the Truncated Radial Basis Function (RBF)
interpolation method, with 250 nearest neighbours and a smoothing factor of 100 for all of the flight lines --(B-Fa-c) Corresponding-are used

as the ground truth. We compare the ground truth with the corresponding components interpolated with RBF using every fourth flight line
+(6-1d-NE€erresponding-, and the corresponding components interpolated using the Ensemble Neural Field (ENF) approach (g-i) with 50
models in the ensemble. Each column vistatizes-visualises a distinct tenser-component of the tensor. Ad-vatuesrange-from-0-to—+-Black
lines #n-panelsBE-and-H-within the plots indicate the locations of the input flight lines used in the interpolation process.
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Figure 9. Comparison of recovered vector magnetic field components from two interpolation methods, evaluated against a high-resolution
reference model. (A—€)Reference-We use vector components by, by, and b, computed using Fourier domain transfer functions applied to
magnetic tensor components gridded via the Truncated Radial Basis Function (RBF) from all available flight lines —«(B—Fa-c) Reconstructed
as our reference. Fourier domain reconstruction of the vector components obtained using the RBF method on tensor data from the training
set of flight lines —(G-1d-f)E€erresponding-, and the corresponding results computed from the spatial derivatives of the scalar field predicted
by the Ensemble Neural Field (ENF) model (g-i) are shown. The black lines in each panel represent the flight lines used to generate the

corresponding component. Each panel shows the histogram-equalised spatial distribution of the respective vector component across the

subset of the Geyer survey area, mapped from O to 1.
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Figure 10. Uncertainty maps for the +06-medel-50-model ensemble. The standard deviation computed across +06-50 models for the A)-H ;.

B@)Hy, €Hyy (D) Haz, BPHy, (O)Hyy, EHyy (d), Hy- (e), and F)-H.. , (f) tensor components, and the recovered G)-components b.. - H(g),
by (h), and H-b. (i) vector eomponentsmagnetic field.

33



