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Abstract. Tensor fields, as spatial derivatives of scalar or vector potentials, offer powerful insight into subsurface structures

in geophysics. However, accurately interpolating these measurements—such
:::::::::::::::::
measurements–such as those from full-tensor

potential field gradiometry—remains
:::::::::::::::::
gradiometry–remains difficult, especially when data are sparse or irregularly sampled. We

present a physics-informed spatial neural network that treats tensors according to their nature as derivatives of an underlying

scalar field, enabling consistent, high-fidelity interpolation across the entire domain. By leveraging the differentiable nature5

of neural networks, our method not only honours the physical constraints inherent to potential fields but also reconstructs the

scalar and vector fields that generate the observed tensors. We demonstrate the approach on synthetic gravity gradiometry data

and real full-tensor magnetic data from Geyer, Germany. Results show significant improvements in interpolation accuracy,

structural continuity, and uncertainty quantification compared to conventional methods.
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1 Introduction10

Full-tensor gravity and magnetic gradiometry measurements capture the spatial derivatives of potential fields, offering rich

detail about subsurface density and magnetization
:::::::::::
magnetisation

:
variations. These tensor fields enhance geological imaging

by encoding directional and gradient information that scalar fields do not straightforwardly provide (Brewster, 2011; Ugalde

et al., 2024). However, gradiometry data are typically sparse and anisotropically sampled—often along sub-parallel flight

lines—posing significant challenges for downstream analysis, which relies on gridded representations.15

Interpolating these tensor fields accurately is far from trivial. Conventional methods often treat tensor components

as independent scalar fields, leading to noise amplification, loss of directional trends, and violations of physical

constraints like symmetry and harmonicity. More advanced approaches, such as eigen-decomposition-based interpolation

(Satheesh et al., 2023)
::::::::::::::::::::::::::::::::::::
(Fitzgerald et al., 2012; Satheesh et al., 2023), attempt to preserve tensor structure, but remain limited

in generalisability and scalability.20

Recent advances in neural fields
:::::
neural

:::::
fields

:::::::::::::::
(Xie et al., 2022)—also known as coordinate-based or implicit neural

representations—offer a promising alternative. These models learn continuous functions that map spatial coordinates to

field values, and crucially, they are differentiable. This .
::::::

Their
:::::::::::
differentiable

::::::
nature

:
allows them to incorporate gradient

information directly into training—a key advantage for geophysical applications where tensor data often represents derivatives

of an underlying field (Raissi et al., 2019). However, standard multilayer perceptron (MLP) architectures suffer from25

spectral bias
:::::::::::::::::::
(Rahaman et al., 2019), meaning they struggle to capture high-frequency features common in geophysical

signals(Rahaman et al., 2019). To address this, techniques like random Fourier feature (RFF) mapping and
:::::::
Random

:::::::
Fourier

::::::
Feature

:::::::
mapping

:::::::::::::::::
(Tancik et al., 2020),

:
periodic activation functions (e.g., SIREN, Wavelet)

:::::::::::::::::::::::::::::
(e.g. SiREN, Sitzmann et al., 2020)

:
,
:::
and

:::::::
wavelet

:::::::::
activations

:::::::::::::::::::::
(Saragadam et al., 2023) have been introduced, enabling neural fields to model fine-scale spatial

variations more effectively(Sitzmann et al., 2020; Saragadam et al., 2023).30

In this paper, we introduce a physics-informed neural field approach tailored for interpolating geophysical tensor data. Our

model learns a single scalar potential field from sparse tensor measurements, leveraging RFF mappings and embedded physical

constraints (e.g., symmetry, Laplacian properties) to reconstruct consistent, physically meaningful tensor fields. We further

introduce an ensemble strategy to quantify uncertainty in the interpolations, offering insights into data sensitivity and model

confidence. We demonstrate this framework on both synthetic gravity
::::::::::
gradiometry

:
data and real airborne magnetic gradiometry35

from Geyer, Germany, highlighting clear improvements over traditional methods in accuracy and structural continuity, as well

as opening the door to uncertainty quantification.

2 Background

A tensor is an algebraic object that encodes multilinear relationships between sets of vectors and linear functionals (Lee, 2012).

A tensor field assigns a tensor to every point in space, allowing
:::::::::
describing the local structure of a vector field or scalar potential40
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to be described throughout a region. In geophysical applications, tensors naturally arise as derivatives of vector and scalar

fields, extending classical multivariable calculus into field-based formulations.

2.1 Potential fields

Many measured geophysical quantities, such as gravitational acceleration g and the magnetic field b, are conservative vector

fields—i.e., they are gradients of scalar potential fields (Blakely, 1995). Within R3, a conservative vector field v is irrotational45

at all points (given by the position vector r), satisfying

v =∇ϕ ↔ ∇×v = 0

v =∇ϕ ↔ ∇×v = 0
:::::::::::::::::::::

(1)

Where ∇=
[

∂
∂rx

, ∂
∂ry

, ∂
∂rz

]
is the gradient operator. For instance, the magnetic field can be expressed as the gradient of a50

scalar magnetic potential in regions free of electric currents—a condition typically met outside source distributions. Taking the

gradient of v yields the Hessian tensor H, a second-order tensor that captures the local curvature of the scalar potential

H=∇v =∇(∇ϕ) =
∂2ϕ

∂ri∂rj
≡ ∂i∂jϕ ∀ i, j =1,2,3

H=∇v =∇(∇ϕ) =
∂2ϕ

∂ri∂rj
≡ ∂i∂jϕ ∀ i, j =

:::::::::::::::::::::::::::::::::::::::

1,2,3
::::

(2)55

In source-free regions, these fields are not only irrotational but also solenoidal—i.e., divergence-free. The divergence of v

corresponds to the trace of the Hessian, which reflects the Laplace equation

∇2ϕ≡ tr(H) = 0

∇2ϕ≡ tr(H) = 0
::::::::::::::

(3)60

This implies that, outside source regions, scalar potentials are harmonic functions, and their Hessians are traceless.

Additionally, since mixed partial derivatives commute (by Schwarz’s theorem), the Hessians are symmetric and thus comprise

five independent components.

2.2 Full Tensor Gradiometry

Direct measurements of second-order Hessian tensors—particularly gravity and magnetic gradient tensors—represent the65

current frontier in potential field surveying (Rudd et al., 2022; Stolz et al., 2021). Access to the full tensor enables

characterization
:::::::::::::
characterisation of scalar field curvature, aiding in tasks such as edge detection, structure delineation (Zuo and
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Hu, 2015), and magnetic remanence characterization
::::::::::::
characterisation

:
(Ugalde et al., 2024). These measurements are typically

acquired via airborne surveys, which are highly anisotropic in their sampling: dense along flight lines and sparse across them.

Vector fields are frequently reconstructed from tensor components using Fourier-domain transfer functions, which integrate70

the measured gradients into vector components while suppressing noise (Vassiliou, 1986). Since most downstream analyses,

including Fourier-based reconstructions, require gridded tensor and vector fields, interpolation is a critical preprocessing step.

Rudd et al. (2022) note that, in practice, tensor components are often treated as separate scalar fields and interpolated using

standard methods like minimum curvature or radial basis functions (RBFs). Several alternative approaches have been proposed

to enforce physical or geometric constraints during interpolation. For example, Brewster (2011) uses iterative Fourier-domain75

transformations, while Fitzgerald et al. (2012) suggest interpolating eigenvalues and eigenvectors separately.

:
,
::::
using

::
a
::::::::::::::
quaternion-based

:::::::::::
interpolation

:::::::::
technique. In essence, the quaternion interpolation algorithm decomposes the process

into two parts: interpolating the eigenvalues and the corresponding eigenvectors. Two of the three eigenvalues are interpolated

using standard schemes (e.g., RBF or minimum curvature), with the third computed such that their sum is zero—a direct

consequence of the Hessian’s traceless-ness. The eigenvector matrix of any symmetric real matrix is guaranteed to be real and80

orthogonal, allowing it to be represented as a 3D orientation and encoded as a quaternion (Hamilton, 1844), provided some

constraints on ordering and sign convention are imposed (Satheesh et al., 2023). These quaternions are then interpolated using

Spherical Linear Interpolation or SLERP (Shoemake, 1985), which ensures smooth variation of orientation across space. While

SLERP works for two quaternions, Markley et al. (2007) devised a scheme that works across a set of weighted quaternions.

:::::::
Another

::::::
widely

::::
used

::::::::
approach

:::
for

:::::::::::
interpolating

:::
and

:::::::::::
transforming

::::::::::::
potential-field

::::
(and

::::::::
gradient)

::::
data

::
is

:::
the

:::::::::::::::
equivalent-source85

:
/
::::::::::::::

equivalent-layer
::::::::

method:
:::::

one
::::::::

replaces
::::

the
:::::

true
::::

3D
::::::::::

distribution
::::

of
:::::::

sources
::::

by
::

a
::::

2D
::::::

layer
:::

of
::::::::::::

hypothetical

:::::::::
monopoles

:::
or

:::::::
dipoles

:::::::
beneath

::::
the

:::::::::::
observation

:::::::
surface

::::::
whose

:::::
field

:::::::
exactly

::::::::::
reproduces

::::
the

:::::::::
measured

::::
data

:::
on

:::::
that

::::::
surface

::::::::::::::::::::::::::::
(Dampney, 1969; Blakely, 1995).

:::
In

::::::::
practice

::::
the

:::::::
infinite

:::::
layer

:::
is

::::::::::
discretised

:::::
into

::
a
::::::

finite
:::
set

:::
of

::::::::
sources

:::
and

::::
the

:::::::::::::
corresponding

::::::
dense

:::::::::
sensitivity

:::::::
matrix

:::
is

:::::::::::::
solved—often

:::::
with

::::::::::::::::
regularisation—to

::::::
obtain

:::::::
source

:::::::::
strengths

:::
that

:::::::
honour

::::
the

::::::::
physical

::::::::::
constraints

:::
of

::::::::
potential

::::::
fields

::::
and

:::::::
enable

::::::
stable

:::::::::::
continuation

:::::
and

:::::::::
derivative

::::::::::
transforms90

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hansen and Miyazaki, 1984; Blakely, 1995; Oliveira Junior et al., 2023)

:
.
::::
This

:::::::::::
formulation

::
is

::::::::
powerful

:::
but

::::::::::::::
computationally

:::::::::
demanding

:::
for

:::::
large

::::::::
surveys.

::::::::::::
Consequently,

::
a
::::::::::

substantial
::::::::
literature

:::::::
focuses

:::
on

:::::::::::
accelerating

:::
the

::::::::
method

:::
by

:::::::::
exploiting

:::
data

:::::::::
geometry

:::::
and

:::::::
matrix

:::::::::
structure:

:::::::::
scattered

:::::::::::::::
equivalent-source

:::::::::
gridding

::::::::::::::
(Cordell, 1992);

::::
the

:::::::::::
“equivalent

::::::
data”

::::::
concept

:::
to

:::::::
reduce

::::::
system

:::::
size

::::::::::::::::::::::::
(Mendonça and Silva, 1994);

::::::::
wavelet

:::::::::::
compression

::::
and

::::::::
adaptive

::::::::
meshing

:::
to

::::::::
sparsify

:::::::::
sensitivities

:::::::::::::::::::::::::::::::::::::::
(Li and Oldenburg, 2010; Davis and Li, 2011);

:::::
fast

::::::::
iterative

::::::::
schemes

:::
in

::::
the

::::::::::::::::
space/wavenumber

:::::::::
domains95

::::::::::::::::::::::::::::::::::::
(Xia and Sprowl, 1991; Siqueira et al., 2017)

:
;
:::
and

:::::::
scalable

:::::::::
algorithms

:::
that

::::::::
leverage

:::
the

::::::::::::
block-Toeplitz

::::::::::::
Toeplitz-block

:::::::
(BTTB)

:::::::
structure

::
of

::::
the

::::::::
sensitivity

::::::
matrix

:::::::::::::::::::
(Piauilino et al., 2025).

:::::::
Recent

::::::::::::::::::::::
machine-learning–inspired

:::::::
variants

:::::
(e.g.,

::::::::::::::
gradient-boosted

::::::::
equivalent

::::::::
sources)

::::::
further

::::
cut

:::::::
memory

::::
and

:::::::
runtime

:::
for

:::::::::::::::
continental-scale

:::::::
datasets

::::::::::::::::::::
(Soler and Uieda, 2021)

:
.
:::::::::::
Open-source

::::::::::::::
implementations,

:::::::
notably

:::::::::::
Harmonica,

::::::::
provide

::::::::
practical

:::::
tools

::::
for

:::::::
gravity

::::
and

::::::::
magnetic

::::::::
datasets

::::::
using

:::::
these

::::::
ideas

::::::::::::::::::::::::::::::
(Fatiando a Terra Project et al., 2024).

:
100
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However, these methods still have limitations: component-wise methods can be insensitive to the true shape of the tensor,

whereas full-tensor schemes involve complex handling of 3D rotations, which are complicated due to the existence of

indeterminate points and the need for shifting reference frames due to non-uniqueness of 3D rotations.
:::::::::
Equivalent

::::::
source

:::::::
methods

::::
offer

:
a
:::::::::
physically

::::::::
consistent

:::::::::
approach,

:::
but

:::::
suffer

::::
from

:::
the

:::::::
trade-off

::::::::
between

:::::::::::
computational

:::::::
expense

::::
and

::::::
fidelity

::
of

:::
the

::::::::::
interpolated

::::
result

:::::::::::::::::::::::
(e.g., Piauilino et al., 2025).

:
In this contribution, we propose a neural field method that interpolates the scalar105

potential field directly—constrained by physical laws and Hessian measurements—to produce consistent, noise-minimizing

::::::::::::::
noise-minimising

:
tensor and vector fields that respect observations and preserve geologically meaningful structures.

2.3 Neural fields

Neural fields—also known as implicit neural representations, or spatial neural networks—are models that represent continuous

spatial functions using neural networks. Unlike traditional methods that store information in discrete grids or meshes, neural110

fields encode spatial structure within the weights and biases of a neural network, enabling resolution-independent, continuous

representations of complex signals.

The application of spatial neural networks in geoscience dates back to Openshaw (1993), who used them for interpolating

sparse spatial data and found their performance competitive with fuzzy logic and genetic algorithms, a conclusion also reached

by Hewitson et al. (1994). More recently, neural fields have gained traction in computer vision—for example, in volumetric115

radiance field modelling (Mildenhall et al., 2020)—and in geoscience applications such as 3D geological modelling (Hillier

et al., 2023) and potential field representation (Smith et al., 2025).

A key advantage of neural fields is their differentiability: they allow access not only to predicted signals but also to their spatial

derivatives via automatic differentiation. This is especially useful when the scalar field itself is unobservable
::::::::::::
unmeasurable or

physically arbitrary, but its gradients are measurable—as is often the case in geological modelling using structural orientation120

data (Kamath et al., 2025; Thiele et al., 2025), or in reconstructing potential fields from tensor gradiometry data.

3 Methodology

This section outlines the key components of our proposed framework, including the use of random Fourier features, a harmonic

feature embedding, model architecture,
::::::
training

:::::::
regimen,

:
and loss function. We also describe the methodology used to generate

the synthetic dataset used in our study.125

3.1 Random Fourier Feature mapping

A common challenge in implicit neural representations is the mismatch between low-dimensional input coordinates and the

complex, high-frequency structure of the target signal. To address this, we employ Random Fourier Feature(RFF) mapping

:::::
(RFF)

:::::::
mapping—a kernel approximation technique introduced by Rahimi and Recht (2007) and adapted to deep learning by
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Tancik et al. (2020). RFF mapping projects spatial coordinates into a higher-dimensional space, making it easier for the network130

to learn fine-scale spatial variation.

Given the position vector r ∈ RN , we define a frequency (also called weights) matrix W, of the dimension M×N , with every

component sampled from a standard Gaussian distribution

Wij ∼N (0,1)

Where M
:
,
:::::
where

:::
M is the number of Fourier features . Furthermore, to

::::
(i.e.,

::::::::::
frequencies).

:::
To encode known signal frequency135

characteristics (e.g., the maximum possible frequency based on sampling resolution), we rescale the weights matrix using

different length scales. For every length scale ℓs ∀ s= 1 . . .L, we map the position vector onto
::::::::
Therefore,

:::
for

::
a

:::
3D

:::::
input,

:::
we

::
get

:
a 2M dimensional feature space, giving us a feature vector ν with the components given by

νi = sin
(
2πWsr + δi

π

2

)
∀ i= 1 . . .2M, where Ws =

W

ℓs
, δi =

0, i is even

1, i is odd

::
νs:::

for
:::::
every

:::::
length

:::::
scale

::
ℓs:::::

given
::
by

:
140

νs = [sin(2πWsr) , cos(2πWsr)] , whereWs = ℓ−1
s WM×3

:::::::::::::::::::::::::::::::::::::::::::::::::::
(4)

:::::
Where

:::::::::::::
r = [x, y, z]

T ,
:::::::::::::
Wij ∼N (0,1),

:::::::::::::::::
sin(x) := [sin(xi)]i,::::

and
:::
[:, :]

:::::::::
represents

::::::::::::
concatenation

:::::
along

:::
the

::::::
feature

:::::
axis.

::::::
Hence,

::
for

::
L
::::::
length

::::::
scales,

::
as

:::
the

::::::
feature

::::::
vectors

:::
are

::::::::::::
concatenated,

:::
we

:::
get

:
a
::::::::::::::::
2ML-dimensional

::::::
feature

::::::
vector.

::::
This

::::::
feature

::::::
vector

::
is

:::
then

:::
fed

::::
into

:::
the

:::::::::
subsequent

::::::::::
multi-layer

:::::::::
perceptron

::
to

:::
get

:::
the

:::::
scalar

:::::::
potential

::
at
:::
the

:::::
input

:::::::::
coordinate.

:

The transformation enables the model to capture high-frequency details more effectively, while the random sampling of145

frequencies introduces a useful stochastic component. When followed by a linear MLP with no non-linear activations, the

resulting mapping approximates a full Fourier reconstruction of the signal (Bracewell and Kahn, 1966). Non-linear activations

help the model fit sparse data more flexibly (LeCun et al., 2015), albeit at the cost of simplicity, interpretability, and gradient

stability.

3.2 Harmonic feature embedding150

Applying Fourier features uniformly in all dimensions can lead to poor
:::::
hinder

:
convergence when modelling harmonic

functions.
::::
fields.

:::
By

:
Liouville’s Theorem (Axler et al., 2001)states that any bounded , periodic, harmonic function in ,

::::
any

:::::::
bounded

::::::::
harmonic

:::::::
function

::
on

:
RN must be constant. This can cause the network to collapse onto

:
is

::::::::
constant,

::
so

:::::
naive

:::::::
periodic

::::::::::
embeddings

:::
can

::::
bias

:::
the

:::::::
network

::::::
toward

:
trivial solutions. To avoid this, we partition the position vector into horizontal and

vertical components155

r = rxy + rz k̂ where rxy ∈ R2
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We apply the RFF mapping
:::
We

::::::::
therefore

::::::::
introduce

:
a
:::::::::
harmonic

::::::
Fourier

::::::::
mapping

:::
that

::::
uses

:::::::
Fourier

:::::::
features in the horizontal

(xy) plane and encode a decaying term in the vertical (z) direction, to replicate the observed decay of scalar potentials and to

encourage harmonicity . The modified feature vector ν therefore has its components given by

νi = sin
(
2πWsrxy + δi

π

2

)
⊙ e−∥Ws∥2rz ∀ i= 1 . . .2M, whereWs =

W

ℓs
, δi =

0, i is even

1, i is odd
160

::::
plane

::::
and

::
an

::::::::::
analytically

::::::::
motivated

:::::::
vertical

:::::
decay.

:::::
Since

:::
our

::::::
model

::::::::::
reconstructs

:::
the

::::::
spatial

::::::
domain

:::::
signal

:::::
from

:
a
:::::::::::
combination

::
of

::::::::
sinusoids,

:::
we

:::
use

:::
the

::::::::::
frequencies

::
of

:::
the

::::::::
sinusoids

::
to

::::::
encode

:::
the

::::::::::
harmonicity

::::::::
condition

::::
into

::
the

::::::::
mapping.

:::::::::::
Specifically,

::
in

:::
the

::::::
Fourier

:::::::
domain,

::
if

::
we

::::::
couple

:::::::::
Laplace’s

:::::::
equation

::::
with

:::
the

:::::::
standard

:::::::::::::::::::
separation-of-variables

:::::::
method

:::
for

:
a
:::::
scalar

::::::::
potential

::
ϕ,

:::
we

::
get

:::
an

:::::::
ordinary

:::::::::
differential

::::::::
equation

::
of

:::
the

::::
form

:

(k2z −∥kh∥22)Fx,y (ϕ) = 0
:::::::::::::::::::::

(5)165

Where W is now an M × 2 dimensional weights matrix, ∥Ws∥2 denotes the row-wise Euclidean norm of the weights matrix,

and ⊙ denotes element-wise multiplication. This formulation helps the network respect the expected vertical decay of scalar

potentials, aligning the embedding with
::::::
Fx,y(·) :

is
::::

the
:::
2D

::::::
Fourier

::::::::
transform

::::::::
operator,

:::::::::::
kh = [kx,ky]:::::::::

represents
:::
the

:::::::::
horizontal

:::::::::::
wavenumbers

::::
(i.e.,

:::::::::::
frequencies),

:::
and

:::
kz ::

is
:::
the

::::::
vertical

:::::::::::
wavenumber

::::::::::::
(Lacava, 2022)

:
.
::::
This

::::::
implies

::::
that

:::
the

::::::
vertical

:::::::::::
wavenumber

:
is
::::::::::
constrained

:::
by

:::::::::::
k2z = k2x + k2y ,

:::::::
making

:::
the

::::::
vertical

::::::::::
dependence

:::::::::
evanescent

::::
and

:::
not

:::::::::
oscillatory.

::::
This

::
is

:::
the

:::::::
classical

:::::::::
half-space170

::::::
solution

:::
of Laplace’s equation . While the network output remains a non-linear combination of the features, this decay-aware

encoding enhances generalization in under-sampled regions and theoretically supports
:::
and

:::::::::
underpins

::::::::::::::::
upward/downward

::::::::::
continuation

::
in

::::::::::::
potential-field

::::::::::
geophysics

::::::::::::::::::::::::
(Blakely, 1995; Parker, 1973)

:
.
::::
Our

::::::::
harmonic

:::::::::
embedding

:::::::
scheme

::::::
simply

:::::
bakes

:::
in

::
the

:::::
same

:::::::
physics

::
at

::
a
:::::::::::
feature-level,

:::::::
helping

::::
with

:::::::::::
convergence

:::::
while

:::::::
training

:::
on

::::::
mostly

::::::::
co-planar

::::::::
datasets,

:::
and

::::::::::
potentially

:::::::
allowing

:::::
robust

:
upward/downward continuation—though that is outside the scope of this study.175

:::
For

::
a

:::
3D

:::::
input

:::::::::::::
r = [x, y, z]

T ,
:::
we

::::::
extract

:::
the

::::::::::
horizontal

::::::::::
coordinates

::::::::::::
rxy = [x, y]

T .
:::

As
:::::::

defined
:::
in

:::
the

::::::::
previous

:::::::
section,

::
we

::::::::
generate

::
a

:::::::
random

:::::::
weights

::::::
matrix

:::::::
WM×2

::::
with

:::
the

::::::
entries

:::::::::::::
independently

:::::
drawn

:::::
from

::
a

:::::::
standard

:::::::
normal

::::::::::
distribution

:::::::::::::
Wij ∼N (0, 1),

::::
and

::::
scale

::
it
:::::
with

:::
the

:::::
length

:::::
scale

:::
ℓs ::

to
::::::
acquire

::
a
::::::
scaled

::::::
matrix

::::::::::::
Ws = ℓ−1

s W.
::::
For

:::::
every

:::::
length

::::::
scale,

:::
we

:::::
define

:
a
::::
new

::::::
vector,

:::
κs,

::::
such

::::
that

(κs)m = ∥Ws,m:∥2, κs ∈ RM

:::::::::::::::::::::::::::
(6)180

:::::
Where

:::
m

:::::
refers

::
to

:::
the

::::
mth

::::
row

::
of

:::
the

::::
Ws ::::::

matrix,
::::::
giving

::
us

:
a
::::::
vector

::
of

::::::
length

:::
M

:::
i.e.,

::::
one

::::
norm

:::
per

::::
row

::::
(per

:::::::
feature).

:::::
With

:::::::::::
element-wise

:::::::::
sine/cosine

:::
and

:::::::::
Hadamard

:::::::
product

::
⊙,

:::
the

::::
new

::::::
feature

::::::
vector

::
νs:::

for
:::
the

:::::
scale

::
ℓs ::

is

νs =
[
sin

(
2πWsrxy

)
⊙ e−κs z, cos

(
2πWsrxy

)
⊙ e−κs z

]
::::::::::::::::::::::::::::::::::::::::::::::::

(7)

:::::
where

::
z
::
is
::::

the
:::::::
vertical

::::::::::
coordinate,

::::
and

:::
the

::::::::::
exponential

:::
is

:::::::
applied

::::::::::::
element-wise,

:::::::::
producing

::
a
::::::::::::::
2M -dimensional

:::::::
vector.

::::::::::::
Concatenating

:::::
across

::
L
::::::

scales
::::::
yields

:
a
::::::::::::::::
2ML-dimensional

::::::::::
embedding

:::
that

::::::::
encodes

:::::::::
horizontal

:::::::::
oscillations

:::::
with

:::::::::
physically185
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::::::::
consistent

:::::::
vertical

::::::
decay,

::::::::
aligning

:::
the

::::::::
features

::::
with

:::::::::
solutions

:::
of

::::::::
Laplace’s

::::::::
equation

::::
and

::::::::::
improving

::::::::::::
generalisation

:::
in

::::::::::::
under-sampled

:::::::
regions.

3.3 Synthetic dataset

To evaluate our method, we generated a synthetic gravity gradiometry dataset (Fig. 1) using SimPEG (Cockett et al., 2015).

The model consists of three density-contrast anomalies within a zero-density half-space:190

1. Torus: +1 gcm−3, semi-major axis 450m, semi-minor axis 220m, cross-section radius 40m, lying in the xy plane and

rotated 12◦ CCW from the y-axis.

2. Dyke: +0.15 gcm−3, 60m aperture, striking at 45◦ to the y-axis.

3. Cube: –0.2 gcm−3, 400m side length, rotated 45◦ about the vertical (z) axis.

The simulation mesh has a voxel size of 20m. This geometry offers a challenging mix of sharp discontinuities and smooth195

curvature for testing interpolation. We generated a high-resolution ground truth dataset sampled at 25m spacing both along and

across the lines, as well as a low-resolution airborne-style dataset with flight lines 200m apart in the y direction (perpendicular

to the flight line), and sampled densely (15m) along the x direction (Fig. 1B-F). Gaussian noise was added to simulate

measurement uncertainty
::::
b-f).

:::::::::::
Furthermore,

::
to

:::::
make

:::
the

::::
data

::::
more

::::::::
realistic,

:::
We

::::::
corrupt

:::
the

:::::::::
full-tensor

:::::::::::
gradiometry

::::
data

::::
with

::::::
additive

:::::
white

:::::::::
Gaussian

::::
noise

:::
at

:
a
:::::::::
prescribed

:::::::::::::
signal-to-noise

::::
ratio

::::::
(SNR).

::::
For

::::
each

:::::::::::
independent

:::::::::
component

:::
of

:::
the

:::::::
Hessian200

:::
Hk ::::::

(where
:::::::::::::::::::::::
k ∈ {xx, xy, xz, yy, yz}),

::
we

::::::::
estimate

:::
the

:::::
power

::::::::
spectrum

::::::::::
Pk = ⟨H2

k⟩,::::::
convert

:::
the

:::::
target

::::
SNR

:::::
from

:::
dB

::
to

:::::
linear

::::
units

:::
as:

SNRk = 10SNRk,dB/10

::::::::::::::::::
(8)

:::::
Using

:::
this

:::::
SNR,

:::
we

:::
set

:::
the

:::::
noise

:::::::
variance

::
of

:::
the

:::::
signal

:::
as

:::::::::::
σ2
k =

P 2
k

SNRk
.
::::::::::
Independent

:::::::
samples

:::::::::::::
εi,k ∼N (0,σ2

k):::
are

::::
then

::::::
added

::
to

::::
each

::::::
datum,

::
to

::::::
acquire

::
a

::::
noisy

::::::::
synthetic

::::::
dataset

:::::
(H̃),

::::
given

:::
by:

:
205

H̃i,k =Hi,k + εi,k ∀ i= 1...P
:::::::::::::::::::::::::

(9)

:::::
Where

::
P
::
is
:::
the

:::::::
number

::
of

:::::
points

::
in
:::
the

::::::
dataset.

To test robustness to data sparsity, we also computed 10 versions of the low-resolution dataset with line spacings varying

from 80m to 560m. These were used to benchmark interpolation quality and information loss under varying acquisition

densities. Comparisons were made with a truncated RBF interpolator (250 nearest neighbours, smoothing factor 100), as well210

as results from the quaternion interpolation (QUAT, Fitzgerald et al. (2012)),
:::::::::::::::::::::::::
(QUAT; Fitzgerald et al., 2012)

:
, combining RBF-

interpolated eigenvalues with SLERP-interpolated quaternions. All results were evaluated on the same high-resolution grid

using the R2 (coefficient of determination), MSE (Mean Squared Error), and SSIM (Structural Similarity Index Measure).
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3.4 Model architecture,
::::::::
training

::::::::
regimen, and loss function

::::::::
functions

Our model has two main components: a RFF mapping block followed by a sequence of fully-connected feed-forward layers215

that together produce a continuous scalar field representation (Fig. 2. We found that the best performing model for our usage

used
:
).
:::

In
:::
our

:::::
tests,

:::
we

:::::
varied

:::
the

:::::::
number

::
of

:::::::
Fourier

::::::
features

:::::
from

::::::::
anywhere

::::::::
between

::
16

::
to

:
64RFFs and three hidden layers

with 1024, 512, and 512 neurons each.
:
,
::::::::
depending

:::
on

:::
the

:::::::::
complexity

::
of

::::::::::
underlying

::::
field.

::::
The

:::::::::::
specifications

::
of

::::
each

:::::::::
individual

:::::
model

::::::::::
showcased

::
in

::::
this

::::::::::
contribution

:::
can

::
be

::::::
found

::
in

:::
the

::::::::
following

:::::::
sections.

:

:::
The

:::::
MLP

:::::
block

::
in

::::
our

:::::
model

::::
uses

:::::::::
non-linear

::::::::::
activations

:::
for

::
all

::::::
layers

::::::
except

:::
the

::::::
output

:::::
layer.

:::
As

:::
our

:::::::::
framework

::::::::
involves220

:::::::::
computing

::::::
second

::::::::::
derivatives

::::
with

:::::
AD,

:::::::::
activation

::::::::
functions

::::
like

::::::
ReLU

:::::
(which

:::
do

::::
not

::::::
satisfy

::::
the

:::
C2

::::::::::::::
differentiability

:::::::
criterion)

::::::::
resulted

::
in
:::::::

abrupt
:::::
edges

::::::
within

::::
the

::::::::
resultant

::::::::::::
interpolation.

:::::::
Notably,

:::::
even

::::::
within

::::
the

:::::::::
activations

::::
that

:::::::
satisfy

::
the

::::::::::::::
aforementioned

::::::::
criterion,

::::::
some

::::::::
functions

::::::::::
performed

:::::
better

:::::
than

:::
the

:::::::
others.

:::
For

:::::::::
example,

:::
the

::::::::::
Hyperbolic

::::::::
Tangent

::::::::
activation

::::::::
function

:::
has

:::::::::
extremely

::::::
small

::::::
second

::::::
order

:::::::::
derivatives

::::::
which

:::::
tend

::
to

::::
get

:::::::::
saturated,

::::::::
impeding

::::::::::::
convergence.

:::::
These

::::::::::
activations

:::
are

:::::::
stable,

::::
but

:::
not

:::::
ideal

::::
for

::::
our

::::::::
models.

:::::::
Among

::::
the

:::::::
various

:::::::::
activation

::::::::
functions

:::::::
tested,

::::::
Swish225

::::::::::::::::::::::::::::::::::::::::::::::
(Sigmoid Linear Unit, SiLU; Ramachandran et al., 2017)

:::
and

:::::
Mish

::::::::::::
(Misra, 2019)

::::::::
activations

::::::::
provided

:::
the

:::
best

:::::::
results.

The loss function used to train our model involves two types of losses - a data loss and a Laplacian loss. The data loss is

computed at the points of measurement between the measured tensor components and the hessians
:::::::
Hessians acquired from

the predicted scalar field through automatic differentiation (AD) (Margossian, 2019). Since the model is built with pytorch

(Paszke et al., 2019)
:::::::
PyTorch

:::::::::::::::::::::::
(v2.8.0; Paszke et al., 2019), we use the inbuilt torch.autograd

::::::::
autograd engine to compute230

hessians
:::::::
Hessians

:
from the scalar field output. For the predicted scalar field

:
ϕ, the data loss term is given by

Ld = |∂i∂jϕ−Hij | ∀ i, j = 1,2,3

Ld =
1

P

P∑
p=1

∣∣∂i∂jϕp −Hp
ij

∣∣ ∀ i, j = 1,2,3

:::::::::::::::::::::::::::::::::::

(10)

Where ∂i(·) :::
∂iϕ

p
:

refers to the partial derivative with the respect to the ith input computed with AD , and H is the
::
at

:::
the235

:
p
::
th

:::::::
location,

::::
and

:::
Hp

::
is

:::
the

::::::::::::
corresponding

:
measured hessian tensor. Note that this reconstruction loss is computed using all

the measurement points.
:::
The

:::::
first,

::::::
second,

::::
and

::::
third

::::::
indices

::::::::::
correspond

::
to

::
x

::::::::::
(East-West),

::
y

::::::::::::
(North-South)

:::
and

::
z
::::::::::
(Up-Down)

::::
axes

::::::::::
respectively.

::::
Only

:::
the

::::::::::::::
upper-triangular

:::
part

:::
of

::
the

:::::::
Hessian

::
is

::::
used

:::
for

::::
loss

::::::::::
computation

::::
i.e.,

::
the

::::::
losses

::
for

:::
the

:::::::::::
off-diagonal

::::::::::
components

:::
are

::::
only

:::::::::
considered

::::
once

:::
per

:::::::::::
measurement.

::::::
Hence

:::
we

:::
get

:
a
::::::::::::
six-component

::::
data

:::
loss

::::::
vector,

:::::::::
consisting

::
of

:::
the

:::::
misfit

:::::::
between

:::
the

::::::::::::::::
xx, xy, xz, yy, yz

::::
and

::
zz

:::::::::::
components.240

The second term in the loss function is derived to encourage the predicted scalar field to conform with a partial differential

equation defined across the whole domain of interest. Since the predicted field has to be harmonic not only at the points

of measurement, but everywhere, we thus penalise non-zero traces of the predicted Hessian tensors, hereafter referred to as

the Laplacian loss. During every training epoch, hessians are computed for randomly sampled points within the domain of
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interest(with the number of points usually set to be equal to the number of measurement points). The Laplacian loss for these245

predicted tensors is then computed as

Ll = |tr(∇(∇ϕ))|= |∂i∂iϕ|

::
we

::::
use

:
a
:::::::
Poisson

::::
disk

::::::::
sampling

::::::
routine

:::::
based

:::
on

:
a
::::::::::
hierarchical

::::
dart

::::::::
throwing

::::::::
approach

::::::::::::::::
(White et al., 2007)

:
,
::
to

:::::
select

::::::
evenly

:::::
spaced

::::::
points

::::::
within

::
a

:::::::::
predefined

::::
grid

::::
that

:::::
covers

::::
the

::::
area

::
of

:::::::
interest.

::::
The

:::::::
spacing

:::
for

:::::
these

::::::
points

::
is

::::::::
evaluated

:::::
using

:::
an

:::::::::::
exponentially

::::::::
decaying

:::::::
function

::::
that

::::
goes

:::::
from

::
a

::::
user

:::::::
specified

:::::
large

:::::::
spacing

:::
(at

:::
the

::::
start

::
of

::::::::
training)

::
to

::
a
::::::
tighter

:::::::
spacing250

:::::::
(towards

:::
the

::::
final

:::::::
epochs).

:::
For

:::
the

::
Q
::::::::
sampled

:::::
points

::
in

:::
any

::::::
epoch,

:::
the

::::::::
Laplacian

::::
loss

::
is

:::::
given

:::
by:

Ll =
1

Q

Q∑
q=1

|tr(∇(∇ϕq))|= 1

Q

Q∑
q=1

|∂i∂iϕq|

:::::::::::::::::::::::::::::::::::

(11)

Here, the Einstein summation convention is used
:
to
::::::::
represent

:::
the

:::::::::
Laplacian,

:::
and

:::
the

:::::::::
superscript

:::::
refers

::
to

:::
the

:::::
point

::
of

::::::::
evaluation.

This loss penalises high values of the trace of the predicted hessian tensor outside the measured points, thereby encouraging

harmonicity on the underlying scalar field within the domain of interest.
::::::
Hence,

:::
for

:::::
every

::::::
epoch,

:::
we

:::
get

:
a
:::::
seven

::::::::::
component255

::::::::
combined

::::
loss

:::::
vector,

::::
with

:::
the

::::
first

:::
six

::::::::::
components

::::::::::::
corresponding

::
to

:::
the

::::
data

::::
loss,

:::
and

:::
the

:::::::
seventh

:::::::::
component

::::::::
referring

::
to

:::
the

:::::
global

:::::::::
Laplacian

::::
loss.

:

When combined, the total loss that is optimised is thus

L= αdLd +αlLl

:::::::
acquired

::::
from

::::::::
equations

:::
10

:::
and

:::
11

::
is

:::
thus

:
260

Ltotal =

7∑
i=1

αiLi

::::::::::::::

(12)

The hyper-parameters αd and αl are (optionally) initialised as fractions of the respective initial losses, in order to help find an

appropriately balanced weighting of the different lossterms.
:::::
Where

::
Li::

is
:::
the

:
i
::
th

:::::::::
component

::
of

:::
the

::::::::
combined

::::
loss

:::::
vector,

::::
[αi]:::

are

::
the

::::::::::::
corresponding

:::::::::::::::
hyperparameters.

::::::
Instead

::
of

::::::::
manually

::::::::::
fine-tuning

::::
these

:::::::::::::::
hyperparameters,

::
we

::::::
tested

::::::
various

:::::::::::::
multi-objective

::::::::::
optimisation

:::::::
schemes

:::
for

:::
our

::::::::::
framework.

::::
The

:::::::::::::
best-performing

:::::::
scheme

:::::::
involved

:::::::::::
dynamically

:::::::
updating

:::::::::::::::
hyperparameters,

::::
such265

:::
that

:::::
every

::::
loss

:::::::
function

::::
was

:::::
scaled

:::
by

:::
the

::::::::
real-time

:::::::::
magnitude

::
of

:::
the

:::::
loss.

:::::::::::::
Mathematically,

:::
we

:::::::
replace

:::
the

:::
[αi]::

in
::::

Eq.
::
12

:::
as

:::::::
follows:

Ltotal =

7∑
i=1

Li

L̃i
::::::::::::

(13)

:::::
Where

:::
L̃i:::::

refers
:::
to

:::
the

:::::::::
magnitude

::
of

:::
the

::::
loss,

::::::::
detached

:::::
from

:::
the

::::::::::::
computational

::::::
graph.

::::
This

:::::::
ensures

:::
that

:::
the

::::::::
gradients

:::::
only

::::
flow

::::::
through

:::
the

:::::::::
numerator

::
of
::::

the
:::::
scaled

::::
loss,

:::::
even

:::::
when

:::
the

::::::::
real-time

::::
value

:::
of

:::
the

:::
loss

::
is
:::::::
always

::::
equal

:::
to

::
1.

::::
This

::::::::
real-time270
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:::::::::::
normalisation

:::::
yields

::
a
::::::::::::
scale-invariant

::::::::
objective

::::::
whose

::::::
update

::
is

::::::::::::
approximately

:::::::::::
∇θ

∑
i logLi::::::

(where
:::
∇θ::

is
:::
the

::::::::
gradient

::::
with

::::::
respect

::
to

:::
the

:::::::
network

::::::::::
parameters),

::::::::::
encouraging

:::::::::::
proportional

:::::::::::
improvements

::::::
across

:::::
terms.

:::::::
Similar

::
in

::::
spirit

::
to

:::::::::::::::
uncertainty-based

::::::::
weighting

::::::::::::::::::
(Kendall et al., 2017),

:::::::::
GradNorm

:::::::::::::::
(Chen et al., 2017),

::::
and

:::::::
Density

::::::
Weight

:::::::::
Averaging

::::::::::::::
(Liu et al., 2019),

::::
this

::::::
variant

::::::
requires

:::
no

::::
extra

::::::::::
parameters

::
or

::::::::::::
gradient-norm

:::::::::::
computations

:::
and

:::::::
worked

:::::::
reliably

::
in

:::
our

::::::
setting.

:

:::
We

::::
train

:::
the

:::::
MLP

:::::::::
parameters

:::::::
(weights

::::
and

::::::
biases)

::::
with

:::::
Adam

:::::::::::::::::::
(Kingma and Ba, 2014),

:::::
while

:::::::
keeping

:::
the

::::
RFF

:::::::
encoder

:::::
fixed275

::::
after

:::::::::::
initialisation.

:::
The

::::::
initial

:::::::
learning

:::
rate

::
is
:::
set

::
to

:::::
10−3

:::::::::::
(occasionally

:::::
10−2

:::::
when

:::
the

:::::
initial

::::
loss

::::
scale

::
is
::::::
large).

:::
We

:::::
apply

::
a

::::::
plateau

::::::::
scheduler

:::
that

:::::::
reduces

:::
the

:::::::
learning

:::
rate

:::
by

:
a
::::::
factor

::
of

:::
0.8

::::::::
whenever

:::
the

:::
loss

::::
fails

::
to

:::::::
improve

:::
for

:::
20

::::::
epochs.

::::::::::
Optionally,

::
we

::::
also

::::::::
optimise

:
a
:::
set

::
of

::::::::
learnable

::::::::::
length-scale

::::::::::
parameters

:::
that

::::::::
modulate

:::
the

:::::::
Fourier

:::::::
features;

:::
the

:::::::::
log-values

:::
of

::::
these

::::::
scales

::
are

::::::
stored

::
as

::::::::::
parameters

:::
and

:::::::
updated

::::::
jointly

::::
with

:::
the

:::::
MLP.

::::::::
However,

:::
the

::::::::
learnable

::::::
nature

::
of

::::
these

::::::
length

:::::
scales

::::
did

:::
not

::::
help

::
the

::::::
model

::::::::::
convergence

:::::::
greatly,

::::::::::
reproducing

::::::
results

:::::::
explored

:::
by

::::::::::::::::
Tancik et al. (2020)

:
,
:::::
which

::::::::
suggested

::::
that

::::::
neural

::::
fields

::::
fail

::
to280

::::::
suitably

::::::::
optimise

::::
these

::::::
length

::::
scale

::::::::::
parameters.

:

::
To

:::::
make

:::
the

:::::::
stopping

:::::::
criterion

::::::
robust

::
to

::::
small

::::::::::
oscillations,

:::
we

:::::::
monitor

::
an

::::::::::
exponential

::::::
moving

:::::::
average

::::::
(EMA)

::
of

:::
the

:::::::::
pre-scaled

::::
loss:

L̂n = βL̂n−1 +(1−β)Ln β ∈ (0,1)
:::::::::::::::::::::::::::::::

(14)

:::::
Where

::::
L̂n::::::::

denotes
:::
the

:::::::::
smoothed

:::::
loss

:::
on

::::
the

::
n
::
th

::::::
epoch.

:::::
This

:::::::::::::
combination—

:::::
Adam

:::
for

::::
fast,

:::::::::::
well-scaled

::::::::
updates,285

:::::::::::
plateau-based

::::::::::::
learning-rate

::::::
decay,

::::
and

::::::::::::::
EMA-stabilised

:::::
early

::::::::::::::::
stopping—follows

:::::::::
common

::::
best

:::::::::
practices

:::
for

::::::::
training

::::::
smooth

::::::::
function

:::::::::::::
approximators

:::::
and

::::
has

:::::
been

:::::::
shown

:::
to

:::::
curb

::::::::::
overfitting

::::::
while

:::::::::::
maintaining

::::::::::::
convergence

::::::
speed

::::::::::::::::::::::::::::::::::::::::::::
(Goodfellow et al., 2016; Prechelt, 1998; Bottou, 2012)

:
.

3.5 Uncertainty estimation

A key benefit of using RFF embeddings is that their stochastic nature allows for ensemble-based uncertainty estimation. As290

a result of the stochasticity, each initialisation of the RFF mapping induces a unique basis in the feature space, causing the

neural network to converge on a solution that represents a random sample from a broader distribution of plausible scalar fields

conditioned on the training data.

To exploit this property for uncertainty quantification, we generate an ensemble of model outputs by varying the random seed

used to sample the RFF projection matrix. Ensemble-based uncertainty quantification has a long and successful history in295

geophysics, particularly in subsurface modelling and inversion. In seismic full waveform inversion (FWI), ensembles have

been used to assess the variability and reliability of recovered velocity models under data noise and model ambiguities

(Fichtner et al., 2011). In reservoir geophysics, the Ensemble Kalman Filter (EnKF) has become a widely used tool to propagate

uncertainty in dynamic reservoir simulation and history matching (Evensen, 2009). More recently, ensemble-based methods

have also been applied to probabilistic gravity and magnetotelluric inversion (?)
:::::::::::::::::::::::::::::::
(Tveit et al., 2020; Giraud et al., 2023),300

demonstrating their utility in quantifying non-uniqueness and guiding data acquisition strategies.

11



In our implementation, each ensemble member corresponds to a different realization
:::::::::
realisation of the frequency space, leading

to stochastically independent function approximations that depend, largely, on the degree to which the solution is constrained by

the available data. This ensemble-based approach provides a Monte Carlo-style estimate of the model’s epistemic uncertainty.

Furthermore, because the scalar field is modelled continuously, we can propagate this ensemble approach to the field’s305

derivatives, helping us quantify uncertainty in derived physical quantities. Therefore, we showcase our results as the Ensemble

Neural Field (ENF) method, which corresponds to the average prediction from an ensemble of 100 models.
:::::::
models.

:::
We

::::
also

:::::::
compute

::::::
results

::::
from

:::
the

:::::::::
individual

:::::::
models

:::::
within

::::
the

::::::::
ensemble

::::::
(shown

:::
as

:::
the

::::::
Neural

:::::
Field

::
or

:::
NF

:::::::
result),

::
to

::::::::
ascertain

:::
the

:::::
effect

::
of

::::::::
averaging

::::
over

:::::::
multiple

::::::::::
predictions.

:

4 Results310

4.1 Synthetic Data

We first evaluate the Ensemble Neural Field (ENF) method on the synthetic gravity gradiometry dataset, comparing it against

a Truncated Radial Basis Function (RBF) interpolator (Fig. 3). Panels A and B
:::
The

::::::::
ensemble

:::::::::
showcased

::::
here

:::
has

:::
25

:::::::
models,

::::
each

::::
with

:::
16

::::::
Fourier

::::::::
features,

::::
three

::::::
length

:::::
scales

:::
of

:::::::::::::::
[200, 400, 1000],

:::
and

::::
two

::::::
hidden

:::::
layers

:::::
with

:::
256

:::::::
neurons

:::::
each.

:::::
Each

:::::
model

::::::
within

:::
the

::::::::
ensemble

:::
was

::::::
trained

:::
for

::::
400

::::::
epochs.

::
A

:::::::::
predefined

::::
grid

::::
with

:
a
:::::::
cell-size

:::
of

::::
25m

::::
was

:::::::
provided

:::
for

:::::::::
evaluating315

::
the

:::::::::
Laplacian

::::
loss,

::::
with

:::
the

:::::::
Poisson

::::::::
sampling

:::::
radius

:::::
going

::::
from

::::::
250m

::
to

:::::
80m.

:::::
Panels

:::
(a)

:::
and

:::
(b)

:
show the residuals between

predicted and true Hxy values for the RBF and ENF methods, respectively. The RBF output exhibits high-amplitude residuals

(MSE = 4.698
:::
4.60

:
eotvos) between flight lines, indicating overfitting to sampled regions and poor generalisation across them.

It also fails to preserve continuity in linear trends that lie at high angles to the flight direction. In contrast, the ENF method

yields spatially smoother residuals with significantly lower error (MSE = 0.825 eotvos
:::
0.30

::::::
eotvos;

::::::::::::
improvement

::
of

::
≈

::::::
93.4%320

:::
over

::::
the

::::
RBF), suggesting homogeneous improved performance across the domain. Insets in both panels show 1:1 scatter

:::::
kernel

::::::
density

:
plots, where the ENF predictions cluster more tightly along the identity line—further confirming its accuracy.

Panel C summarises
:::
For

:
a
::::::::::

quantitative
::::::::

measure
::
of

:::
the

:::::::::::
improvement

:::::::
offered

::
by

::::
our

:::::::
method,

:::
we

::::
plot

:::
the R2 scores for each

tensor component across four
::::
three

:
interpolation methods: RBF, and two neural field-based (NF and ENF) .

:::
(Fig.

::::
3c).

:
The NF

method reflects the mean R2 from 100
::
25

:
independently trained models, with error bars showing standard deviation. The ENF325

method, by contrast, uses the averaged prediction across those same models. Both neural field approaches outperform classical

methods, with ENF showing a slight edge—demonstrating that ensemble averaging reduces variance and enhances prediction

stability.
:::
Fig.

:::
3d

:::::
shows

:::
the

::::
loss

:::::
curves

:::
for

:::
the

::::::
various

:::::
losses

:::
for

::::
one

::
of

::
the

:::::::
models

:::::
within

:::
the

:::::::::
ensemble,

::
as

:
a
:::::::
function

::
of

:::::::
epochs.

:::
The

::::
data

::::
loss

::::
terms

::::::::::
reasonably

::::::
plateau

::::
after

:::::::
reaching

::::::
values

::
of

::::
≈ 1

::::::
eotvos,

:::::
while

:::
the

:::::::
real-time

::::::::
updating

::::::::::::::
hyperparameters

::::
help

::::
avoid

:::::::::
overfitting

::
to
::

a
:::::
single

::::::::::
component.

::::
The

:::::::::
Laplacian

:::
loss

:::::::
(dotted

::::
pink

::::
line;

:::
Ll):::::

keeps
:::::::

steadily
:::::::::
decreasing

:::
as

:::
the

::::::::
sampling330

:::
gets

::::::
tighter

:::
and

::::
ever

:::::
more

:::::
points

:::
are

:::::::
sampled

:::::
from

:::
the

::::
grid.

To further evaluate structural accuracy, we compute the Structural Similarity Index Measure (SSIM) between predicted and

true tensor fields (Fig. 4). The ENF method achieves higher SSIM scores across all three components—0.89
::::
0.95 (Hxx), 0.90
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::::
0.97 (Hxy), and 0.87

::::
0.96

:
(Hxz)—compared to 0.79, 0.63, and 0.79

::::
0.78,

::::
0.64,

::::
and

::::
0.76 for RBF. The greatest improvement

is seen in Hxy ::::::::::::
(improvement

::
of

::
≈

:::::::
50.46%), where RBF results show structural distortion, over-smoothing, and “boudinage”335

artefacts along flight lines (Naprstek and Smith, 2019). ENF, on the other hand, preserves coherent anomalies and directional

continuity even across sparsely sampled regions.

4.2 Rate of information loss

To assess robustness under sparse sampling, we compare the interpolation results for varying line spacings from 80m to 560m

(Fig. 5). Classical methods (RBF and quaternion-based interpolation, or QUAT) show sharp drops in accuracy beyond 200m340

spacing. For example, the RBF method’s average
:::::::::::::::
root-mean-squared

:
R2

:::::::::
(computed

::::
over

:::
the

::::::::::
components)

:::::
drops

::
to

:::::
0.54,

:::
and

:::
the

:::::::::::::::
root-mean-squared

:::::
SSIM

:
plummets to 0.43 and SSIM to 0.21

:::
0.26

:
at 560m. In contrast, NF interpolation maintains relatively

stable performance up to ≈ 400m spacing, with a much gentler decline at wider gaps. At 560m, the NF model still achieves

an
:
a
::::::::::::::::
root-mean-squared R2 of 0.87

::::
0.91 and an SSIM of 0.58

::::
0.65.

The MSE trends mirror this behaviour: classical methods exhibit steep error increases with sparser lines, while the NF345

model degrades more gracefully. QUAT offers minor improvements over component-wise interpolation but follows a similar

performance trajectory. This suggests that the main bottleneck in full tensor interpolation lies in the eigenvalue interpolation

step, which—like the component-wise case—relies on RBF methods.

4.3 Magnetic gradiometry from Geyer

Finally, we validated the method on real airborne magnetic gradiometry data from Geyer, located in Germany’s Erzgebirge350

region—part of the Central European Variscides. The area features high- and medium-pressure metamorphic units, orthogneiss

domes, and post-orogenic granites (Kroner and Romer, 2013), with abundant ore-forming skarns containing magnetic minerals

(Burisch et al., 2019; Lefebvre et al., 2019) as well as magnetite-rich quartzites and amphibolites that occur as intercalations

within the metamorphic rocks. These rocks contribute to complex magnetic anomalies ideal for real-world evaluation.

We test the ENF method on a real airborne magnetic gradiometry dataset from Geyer (Fig. 6), acquired by Supracon AG in355

2016 as part of the E3 (ErzExploration Erzgebirge) project. As in the synthetic case, we compare ENF to RBF interpolation.

:::
Due

:::
to

:::
the

:::::::
complex

::::::
nature

::
of

::::
the

::::::
signal,

:::
we

:::
run

::
a

::
50

::::::
model

::::::::
ensemble

:::
for

::::
the

:::::
Geyer

:::::::
dataset.

:::::
Each

:::::
model

::::
uses

:::
64

:::::::
Fourier

:::::::
features,

::::
with

::::
four

::::::
length

:::::
scales

:::
of

::::::::::::::::::::
[220,400,1000,100000].

::::
The

:::::::
number

::
of

::::::
hidden

::::::
layers

::
is

::::::::
increased

::
to

:::::
three,

:::::
with

:::::
1024,

:::
512

:::
and

::::
256

:::::::
neurons

:::::::::::
respectively.

::::
Each

::::::
model

::
is

::::::
trained

:::
for

:::
600

:::::::
epochs,

::::
with

:::::
early

:::::::
stopping

::::::::
triggered

::::
after

:::
30

::::::
epochs

::
of

:::
no

:::::::::::
improvement.

::
A

:::::::::
predefined

:::
grid

::::
with

::
a
:::::::
cell-size

::
of

::::
20m

::
is

::::
used

::
to

:::::::
evaluate

:::
the

::::::::
Laplacian

::::
loss,

::::
with

:::
the

:::::::
Poisson

:::::::
sampling

::::::
radius360

::::::
starting

::
at

::::::
500m,

:::
and

:::::
going

::
to

::::::
200m. Every fourth flight line is used for training, with the others reserved for validation

::::::
testing

::
the

:::::::::::
interpolation. Since ground-truth grids are unavailable, we assess accuracy using residual analysis and R2 scores computed

along
::
for

::::::
points

::
in the withheld lines.

We plot the residual maps for Hxy on test lines (Fig. 7). While absolute R2 scores are lower than in the synthetic case—owing

to added geological complexity and noise—ENF still achieves 10–20
::::
more

::::
than

:::
30% better performance than RBF across most365
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tensor components.
:
,
::::
with

:
a
:::::::::
whopping

:::::::
increase

::
of

::
≈

:::::
157%

::
in

:::
the

:::
R2

:::::
score

:::
for

::::
Hyy ,

:::
and

:::
an

::::::
average

:::::::
increase

:::
of

::::::::::::
approximately

:::::::
57.27%.

::::
Both

:::
NF

::::
and

::::
ENF

::::::
results

:::
are

:::::
better

::::
than

:::
the

::::
RBF

::::::
across

::
all

:::::::::::
components. Residuals show that ENF

::::
(Fig.

:::
7a)

:
reduces

systematic bias between lines and preserves anomaly shapes more faithfully. RBF
::::
(Fig.

:::
7b), by contrast, displays patchy

behaviour with abrupt shifts between lines—a well-known artifact of interpolating sparse or anisotropically sampled data

(Hillier et al., 2014; Wittwer, 2009).
:::
The

::::
loss

::::::
curves

::::
(Fig.

::::
7d)

:::::
show

:
a
::::::
similar

:::::
trend

::
to

:::
the

::::::::
synthetic

:::::
case,

::::
with

:::
the

::::
data

::::
loss370

::::
terms

:::::::::
plateauing

::::::
around

:::
0.1

::::::::
nTm−1,

:::
and

:::
the

:::::::::
Laplacian

:::
loss

:::::::
steadily

::::::::::
decreasing.

To get a qualitative overview of the overall result, we plot the histogram-equalized, gridded visualisations of the Hxx, Hxy ,

and Hxz tensor components (Fig. 7). Panels A-C show the
::
8).

:::
We

::::
also

:::::::
compute

::
a result from using all of the flight lines with

an RBF interpolator
::::
(Fig.

::::
8a-c), serving as our ground-truth. The RBF results from using every fourth line (Panels D–F

:::
Fig.

:::
8d-f) reveal strong aliasing and inconsistent behaviour between flight lines—hallmarks of inadequate cross-line interpolation.375

In contrast, the ENF interpolations (Panels G–I
:::
Fig.

::::
8g-i) exhibit smoother transitions and clearer structural trends, especially in

directions orthogonal to flight lines. The ENF model successfully mitigates high-frequency striping and captures geologically

meaningful features.

5 Discussion

5.1 Accurately reconstructing tensor fields380

The proposed Neural Field (NF) Interpolator has shown remarkable success in interpolating tensor gradiometry data. Our

results show that the additional information contained within the hessian tensor can help derive a more accurate reconstruction

of the entire field as sampling gets sparser (Fig. 5), provided the interpolation algorithm can access the full tensor constraints.

For equivalent inputs, the NF interpolation recovers a signal that better fits all the tensor components, while maintaining the

integrability and physical properties inherent to a hessian tensor field.385

We also see equivalent results from all methods when line spacings are tight (i.e., for line spacings of 80m, 100m and 120m

in our synthetic tests). This suggests an oversampling with respect to the spatial frequencies in the signal, such that all the

interpolation methods converge to the same (correct) result to yield high accuracy metrics. Results then diverge as line spacing

increases to 200m, indicating the neural field interpolation is able to leverage information in the shape of the tensors to continue

to derive accurate reconstructions, while the RBF and quaternion methods cannot.390

The reason that the results converge with close spatial sampling could be attributed to the equivalence of SLERP and standard

linear interpolation as the angle between the quaternions describing the orientations of the input data points goes to zero.

Since a tighter line spacing ensures a smoother graduation of the eigenvector orientations (i.e., a smaller change in the angle

between the corresponding quaternions), the resulting interpolation is closer to what one would achieve with standard linear

interpolation of the components. But, under sparse sampling conditions, the differences seen in the results indicate that an395
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interpolation using neural field formulation better preserves the shape of interpolated tensors, without the need for cumbersome

quaternion formalisms.

The interpolated tensor components for Geyer (Fig. 8) also showcase significant improvements over the component-wise

interpolation of these tensors. The extension and continuation of the trend from the centre of the grid, towards the north-

east is preserved in the ENF result, but is completely absent in the RBF result. Any interpretation of these grids would400

thus result in significantly different geological structures, highlighting the necessity for appropriate interpolation methods.

:::
The

:::::::::
Laplacian

::::::::
constraint

::
is
:::::::
handled

::::
with

:::
an

::::::::
objective

:::::::::::
minimisation

::::::::
approach

::
in

::::
our

:::::::
method.

::::
One

:::::
could

:::::::::
potentially

:::::::
enforce

::::::::::
harmonicity

::
by

:::::::
design,

:::::::
however

::::
this

:
is
::::::::::

challenging
:::

for
:::

3D
::::

(i.e.
::::::::::
geophysical

:::::::::
potential)

:::::
fields

:::
and

:::::::
difficult

::
to

:::::::
enforce

:::::::
through

::
the

:::::::::
non-linear

:::::::::
activation

::::::::
functions

:::::::
inherent

:::
to

::::::
neural

::::::::
networks.

::
In
::::

2D,
:::::::::::
holomorphic

::::::::
functions

:::::
(i.e.,

:::::::::::::::::::
complex-differentiable

:::::::
functions

:::
of

:::::::
multiple

:::::::::
variables)

::::::
consist

:::
of

::::
real

:::
and

:::::::::
imaginary

:::::
parts

::::
that

:::
are

::::::::
harmonic

:::::::::
functions,

::
a

:::
fact

::::
that

::
is
:::::::

utilised
:::
by405

::::::::
Harmonic

::::::
Neural

:::::::::
Networks

:::::::::::::::::::::::::::::
(e.g., PIHNNs; Calafà et al., 2024)

::
to

:::::
yield

::::::
exactly

:::::::::
harmonic

:::::::
outputs.

::::::
These

:::::::
concepts

:::
do

::::
not

::::::
directly

::::::
extend

:::
to

:::
3D,

::::::::::
promoting

::
an

:::::::::
objective

:::::
driven

:::::::::::
enforcement

:::
of

:::
the

:::::::::
constraint.

::::::
Vector

::::::::
potential

::::::
based

:::::::::::
formulations

:::::::::::::::::::::::::::
(e.g. CurlNet; Ghosh et al., 2022)

::::::
enforce

:::::::::::::
divergence-free

:::::
fields

::::
but

:::
fail

::
to

:::::::
enforce

:::
the

::::
zero

::::
curl

:::::::::
constraint.

:::::::::::
Furthermore,

:::
as

:::
our

:::::::
network

:::::::
consists

::
of

:::::::::
non-linear

::::::::::
activations,

:::
and

::
as
:::::::::

non-linear
::::::::::::
compositions

::
do

:::
not

:::::::::
generally

:::::::
preserve

::::::::::
harmonicity

::::::
(Chen

:
et
::::

al.,
:::::
2010),

:::
we

:::
are

::::::
further

:::::::::
motivated

::
to

::::
rely

::
on

::::
our

::::
new

:::::::
mapping

::::
that

:::
has

::::::::
harmonic

::::::::
elements

::::
(see

:::::::
Section

:::
3.2)

::::
and

:::
use

:::
an410

:::::::
objective

::
to

::::::::
constrain

:::
the

:::::::::
Laplacian.

5.2 Recovery of vector fields

Many analysis methods applied to tensor gradiometry data require a domain-wide integral to estimate the underlying vector

field. The simplest way of computing this integral is by ignoring everything but the last row of the gradiometry tensor, and

using the Hxz , Hyz , and Hzz components to get vector components. Due to the Fourier domain properties, vector components415

are defined as a vertical integral in the Fourier domain (Mickus and Hinojosa, 2001). Similarly, the power spectrum of these

signals can also be used to generate vector components, using transfer functions that fit all of the signals while minimising noise

(Vassiliou, 1986). However, in our method, we can completely avoid this potentially complex integral. We can use automatic

differentiation to acquire the vector field components from the predicted scalar potential as the neural field predicts scalar

potential and not the gradiometry tensor itself. Importantly, we thus estimate the vector field components exclusively from real420

measurements, rather than from an integral over a regularly spaced (i.e. interpolated) grid that is already one-step removed

from the data.

To test the recovery of vector components from our model, we compared it to the benchmark generated using the RBF

interpolation on all flight lines and then applying Fourier domain transfer functions to compute the integral. We also use

the transfer functions on the RBF interpolation results for our training data for a baseline comparison (Fig. 9). Comparing425

the resulting bx
::
bx:

(Fig. 9, Panels A, D, and G
:
a,
::
d,
::
g) components, we see that features present in both the ground truth and

the ENF results are completely erased from the RBF result. Similarly, the shape of the anomaly at the top-right corner of the

grid is distorted in the RBF result, but completely preserved within the ENF grid. Slight changes in trend directions (i.e., the
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shift of the strike of the anomalies to having a smaller azimuth) also cannot be seen in the RBF results, which has prominent

“boudinage” artefacts along the flight lines that cause a loss of trend and directional information perpendicular to the flight line.430

We suggest that these results highlight the ability of the neural field interpolation to extract sensible information (resembling

the ground truth) from data acquired at four times the line spacing.

5.3 Uncertainty analysis and ensemble models

We also used the stochastic nature of our feature embeddings to do a preliminary uncertainty analysis for the results from our

interpolator for the Geyer dataset (Fig. 10). The standard deviation plot shows higher variability in model predictions across435

regions without data points (i.e., between the flight lines), which could be interpreted as an uncertainty measure. Interestingly,

the variance between flight lines seems to scale with the value of the underlying tensor component, leading to heteroscedasticity

in the predictions. This might need correction in future developments of our methodology. It is also worth noting that the NF

approach has parallels to the turning bands and spectral methods to simulate random fields (Mantoglou and Wilson, 1982),

suggesting that a deeper stochastic link to other Gaussian process methods may be possible. This link could be exploited to440

better understand the variance of neural field ensembles or consider future modifications of the present NF algorithms towards

tuned frequency matrix distributions(Equation ??).

The variance of our ensemble model is generally higher for the components with two derivatives in the same dimension (i.e.,

Hxx, Hyy, and Hzz), and for the derivatives involving the z component (i.e., Hxy seems to be the least uncertain). High same-

dimension double derivative uncertainties might reflect the propagation of uncertainty through differentiation, as uncertainties445

in two variables have a chance of cancelling out, but are only amplified with multiple passes through the same derivative

operator Li and Oldenburg (1998)
:::::::::::::::::::::
(Li and Oldenburg, 1998). The high uncertainty in the z components likely reflects the lack

of information in the z direction, as all of our training data are close to coplanar
::::::::
co-planar. Furthermore, we also see that

the uncertainty in the recovered vector components (Fig. 10, Panels G, H, I
:
g,

::
h,
::

i) never goes to zero (even where we have

measurements of the tensor), reflecting the lack of information on the constant of integration.450

::::::::::
Interpolated

::::
grids

::::
alter

::::
the

:::::::::
observation

:::::
error

::::::
model:

:::::::::
smoothing

::::
and

::::::::::
continuation

::::::::
introduce

::::::::
spatially

::::::::
correlated

::::::
errors

::::
that,

::
if

:::::::
ignored,

:::
can

::::
bias

:::::::::::::
ensemble-based

:::::::::
inversions

::::::::
(EnKF).

::::
Best

:::::::
practice

::
is

::::::::
naturally

::
to

:::::
invert

::
at

:::
the

::::
real

:::::::::::
measurement

:::::::::
locations,

:::::::
however

:::::
when

:
a
::::

grid
::
is
:::::::

needed
:::
we

::::::
suggest

::::
that

:::
our

:::::
ENF

::::::::
ensemble

:::::
could

:::::::
provide

::
a
:::::
mean

:::
and

::
a
::::::
sample

::::::::::
covariance

:::
for

:::
the

:::::::::::::::::
pseudo-observations.

::
It

::
is

:::::::
possible

:::::::::
(although

::::::::
untested)

::::
that

::::
this

:::::
might

:::
be

::::
used

:::
as

:::
the

:::::::::::::::
observation-error

:::::::::
covariance

::
in
::::

the

::::::::
inversion.455

5.4 Challenges and future directions

We suggest that the proposed approach opens the door to using neural fields for potential field geophysics, and broader

applications involving tensor quantities (e.g., stresses and strains). However, further work and research is needed in several

areas. Firstly, our model is highly sensitive to the length scales chosen for the Fourier encoding, and the hyper-parameters
:
.

::
As

::::::
shown

:::
by

::::::::::::::::
Tancik et al. (2020),

:::::::::::
optimisation

:::::::::
algorithms

::::
fail

::
to

:::::
tweak

:::::
these

::::::
scales,

:::::::
meaning

::::
they

:::::
need

::
to

::
be

::::::::
selected

::::
with460
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::::::
careful

::::::::
empirical

::::::
tuning.

:::::::::::
Furthermore,

:::::
while

:::
we

::::
have

::::::
utilised

::
a

:::::::
real-time

::::::::
updating

:::::::::::::
hyperparameter

:::::
based

:::
on

:::
the

:::::::::
magnitude of

the lossfunction. This requires a lot of empirical tuning. Automatising
:
,
:::::::
research

::::
into

::::
other

::::::::
possible

:::::::
avenues

::
of

:::::::::::
automatising

hyper-parameter tuning would
:::::
could

:
boost the usability of our method and help to ensure robust results. Furthermore, the

inclusion of features with multiple length scales, while tested within our synthetic dataset, needs confirmation for effectiveness

in larger areas.465

In addition, while the recovery of integrated vector fields is a big advantage of our approach, these have arbitrary integration

constants. This ambiguity means that, for every vector component, there is a constant that is unbounded in the other two

dimensions. The same problem occurs when we use the Fourier domain transfer functions, as a fundamental lack on long

wavelength information leads us to misrepresenting the baseline for the recovered vector field (Ugalde et al., 2024). However,

in our methodology, this could be resolved with a few measurements of the vector components included as constraints on470

the neural field. Therefore, one additional future direction would be to include multiple datasets (e.g., TMI measurements for

magnetic gradiometry, satellite or ground gravity measurements for gravity gradiometry) during the training process.
::::::
Further

:::::::
research

::
on

:::
the

::::::::::
propagation

:::
of

::::::::::
uncertainties

:::::::
through

:::
our

::::::
model,

:::
as

::::
well

::
as

::::::
impact

::
of

:::::::::
ensembles

::::::
during

::::::::
inversion,

::::::
would

::::
help

::
in

::::::::
improving

:::
the

:::::::::
robustness

::
of

::::
our

:::::::
proposed

::::::::::
framework.

:

Finally, the inclusion of a harmonic decaying term in the feature mapping makes our method a possible contender for an475

innovative downward continuation scheme, and thus help with the problem of noise amplification in
::
the

::::::::
ill-posed downward

continuation of potential field anomalies. This application needs further research, with proper tuning of the weight matrices

and data acquired at multiple elevations for validation.

6 Conclusion

We introduce an innovative Neural Field (NF) interpolation method tailored to tensor gradiometry data in potential field480

geophysics. This approach leverages the inherent physical relationships among tensor components by representing them as

derivatives of an underlying scalar potential field. Our method clearly demonstrates advantages over conventional interpolation

techniques, particularly in scenarios involving sparse and anisotropic data coverage, as are typical during aerial surveys.

Our method has shown substantial improvements in interpolation accuracy, structural fidelity, and robustness against data

sparsity during evaluations on both synthetic gravity gradiometry data and a real-world magnetic gradiometry dataset from485

Geyer, Germany. Quantitative comparisons using metrics such as R2 scores and Structural Similarity Index Measure (SSIM)

highlights the NF interpolator’s performance across all tensor components, a preservation of geological trends that are typically

used during interpretation, and a reduction of common artifacts
:::::::
artefacts caused by line-to-line inconsistencies.

Furthermore, by incorporating stochastic random Fourier features, our model likely opens the possibility to quantify

uncertainty. Our analysis reveals heteroscedastic behaviour in the interpolations, and also highlights regions that require further490

data acquisition or refinement. Additionally, our approach seamlessly integrates vector and scalar field reconstructions through

automatic differentiation, simplifying subsequent geophysical analyses and interpretations.
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Overall, we argue that the proposed NF
:::::
neural

::::
field interpolation method represents a significant advancement in processing

tensor gradiometry data. Future developments should focus on larger scale applications, better understanding uncertainty of

the model predictions, extended vertical interpolation capabilities (e.g., up- and downward continuations), and the integration495

of this approach into broader geophysical inversion
:::
and

::::::::::::
interpretation frameworks.
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Figures

Figure 1. Synthetic subsurface model and corresponding gravity gradiometry data. (A
:
a) Horizontal cross-section of the synthetic geological

model at a depth of 140m, with high-resolution observation points shown as black dots. (B–F) The five independent components of the

gravity gradiometry tensor generated via forward modelling using SimPEG
::
are

::::
also

:::::
shown

:::
(b-f). Each panel displays both the high-resolution

dataset (greyscale
:::
grey

::::
scale; cell size of 25m) and the low-resolution dataset (colour; 200m cross-line spacing and 15m inline spacing) for

the corresponding tensor component.
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Figure 2. Neural field
:::::
Fourier

::::
Field

:
model architecture. The orange

:::
blue

:
block projects the input position vector into a feature space and

passes it through the fully-connected layers
::::::
(orange

:::::
block)

:
to acquire the scalar potential.

:::
The

:::
red

:::::
arrows

::::::
signify

:::
the

:::
use

::
of

::::::::
automatic

::::::::::
differentiation

::
to

::::::
acquire

:::
the

:::
first

:::::::
(gradient)

:::
and

::::::
second

::::::::
(curvature)

:::::
spatial

:::::::::
derivatives

:
of
:::

the
:::::::
potential.
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Figure 3. Quantitative comparison of interpolation performance for the synthetic dataset. (A–B) Spatial distribution of residuals between

the true and predicted Hxy tensor component using (A
:
a) the Truncated Radial Basis Function (RBF) method and (B

:
b) the Ensemble Neural

Field (ENF) approach
::::
(with

:::
25

:::::
models

::
in

:::
the

::::::::
ensemble). Insets show 1:1 parity kernel density estimate plots comparing predicted and true

values. (C
:
c) R2 scores for each tensor component (Hxx, Hxy , Hxz , Hyy , Hyz , Hzz) across three interpolation methods: RBF, the mean of

the individual Neural Field (NF) scores from the models within the ensemble, and ENF. The ENF and NF models consistently achieve higher

accuracy across all components, while RBF exhibits reduced performance, particularly .
::::
The

:::
loss

:::::
curves

:::
(d) for off-diagonal terms

::::::
various

:::::::::
components

::
of

:::
the

:::
loss

::::
show

:::
the

::::
data

:::::
fitting

::::
parts

:::::
(solid

::::
lines)

::::::
plateau

:::::
while

:::
the

:::::::
Laplacian

::::
part

::::::
(dotted

::::
line)

::::
keeps

:::::::::
decreasing

:::::
owing

::
to

:::::::
increased

:::::::
sampling

:::
with

::::
each

:::::::::
progressive

:::::
epoch.
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Figure 4. Comparison of gravity gradiometry tensor components derived from two interpolation methods applied to the synthetic dataset.

(A–C) Gridded, histogram-equalised
::
The

::::::
ground

::::
truth

:
Hxx, Hxy , and Hxz components generated using a

:::
(a-c)

:::
are

::::::::
compared

::::
with

:::
the

:::::
results

::::
from

:::
the Truncated Radial Basis Function (RBF)

::::
(d-f) interpolation with 250 nearest neighbours and a smoothing factor of 100.

(D–F) Corresponding
:::
100,

::::
and

:::::::::::
corresponding results produced by the Ensemble Neural Field (ENF) method

:::
(g-i)

::::
with

::
25

::::::
models

::
in

:::
the

:::::::
ensemble. All values range from 0 to 1. Black lines in panel

::::::::
interpolated

:::::
results

:
(E

::
d-i) indicate the input flight lines used for interpolation.
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Figure 5. Accuracy metrics as a function of increasing line spacing for the synthetic dataset. (A) R2 Score and (Ba),
:
Structural Similarity

Index Measure (SSIM) (C
:
b),

:::
and

:
Mean Squared Error (MSE)

::
(c)

:
were computed between the ground truth and the gridded results from

the interpolation methods. The Radial Basis Function (RBF) used 250 nearest neighbours, with a smoothing factor of 100, and the Neural

Field (NF) model used the same architecture as discussed in Section 3.3. The full tensor interpolation algorithm from Fitzgerald et al. (2012)

(QUAT)
:::::::::::::::::::::::
(QUAT; Fitzgerald et al., 2012) was also included for comparison, using the aforementioned RBF for the eigenvalue interpolation,

and SLERP for rotational interpolation.
::
The

::::::
shaded

::::::
regions

::::
show

:::
the

::::::::
minimum

:::
and

::::::::
maximum

:::::
metric

:::::
across

::
all

:::
the

::::::::::
components,

:::
and

:::
the

:::::
plotted

:::
line

:::::
shows

:::
the

::::::::::::::
root-mean-squared

:::::
metric

:::::::
computed

:::::
across

:::
the

::::::::::
components.
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Figure 6. Case study site near Geyer, Erzgebirge, Germany. (A) Flight lines from a subset of the airborne magnetic gradiometry survey
::
(a),

with every fourth line (red) used as input for interpolation and the remaining lines (black) reserved for validation. (B
:
b) Spatial distribution

of the measured zz-component of the magnetic gradiometry tensor across the survey region.
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Figure 7. Quantitative comparison of interpolation performance for the Geyer dataset. (A–B) Spatial distribution of residuals between the

true and predicted Hxy tensor component along the test flight lines using (A) the Truncated Radial Basis Function (RBF) method and

(B
:
a)

:::::
method

:::
and

:
the Ensemble Neural Field (ENF)

::
(b)

:
approach

::::
(with

::
50

::::::
models

::
in

:::
the

::::::::
ensemble). Insets show 1:1 parity kernel density

estimate plots comparing predicted and true values. (C
:
c) R2 scores for each tensor component (Hxx, Hxy , Hxz , Hyy , Hyz , Hzz) across

three interpolation methods: RBF, mean of the individual Neural Field (NF) scores from the models within the ensemble, and ENF. The ENF

and NF models consistently achieve higher scores across all components, while RBF exhibits reduced performance, particularly .
:::
The

::::
loss

:::::
curves

::
(d)

:
for off-diagonal terms

:::::
various

:::::::::
components

::
of

:::
the

:::
loss

::::
show

:::::
similar

:::::::::::
characteristics

::
to

:::
the

:::::::
synthetic

:::
loss

::::
curve.
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Figure 8. Comparison of magnetic gradient tensor components interpolated onto a uniform grid (cell size = 25m
:::::
= 20m) using two

methods. (A–C) Gridded , histogram-equalised Hxx, Hxy , and Hxz components obtained using the Truncated Radial Basis Function (RBF)

interpolation method, with 250 nearest neighbours and a smoothing factor of 100 for all of the flight lines , (D-F
:::
a-c) Corresponding

::
are

::::
used

:
as
:::

the
::::::
ground

::::
truth.

:::
We

:::::::
compare

:::
the

:::::
ground

::::
truth

::::
with

:::
the

::::::::::
corresponding

:
components interpolated with RBF using every fourth flight line

, (G-I
::
d-f)Corresponding

:
,
:::
and

::
the

:::::::::::
corresponding

:
components interpolated using the Ensemble Neural Field (ENF) approach

::::
(g-i)

:::
with

:::
50

:::::
models

::
in

:::
the

:::::::
ensemble. Each column visualizes

:::::::
visualises

:
a distinct tensor component of the tensor. All values range from 0 to 1. Black

lines in panels B, E and H
:::::
within

::
the

::::
plots

:
indicate the locations of the input flight lines used in the interpolation process.
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Figure 9. Comparison of recovered vector magnetic field components from two interpolation methods, evaluated against a high-resolution

reference model. (A–C) Reference
::
We

:::
use vector components bx, by , and bz computed using Fourier domain transfer functions applied to

magnetic tensor components gridded via the Truncated Radial Basis Function (RBF) from all available flight lines . (D–F
::
a-c) Reconstructed

:
as
:::

our
::::::::

reference.
::::::
Fourier

::::::
domain

:::::::::::
reconstruction

::
of

::
the

:
vector components obtained using the RBF method on tensor data from the training

set of flight lines . (G–I
::
d-f)Corresponding ,

:::
and

:::
the

:::::::::::
corresponding results computed from the spatial derivatives of the scalar field predicted

by the Ensemble Neural Field (ENF) model
:::
(g-i)

:::
are

:::::
shown. The black lines in each panel represent the flight lines used to generate the

corresponding component. Each panel shows the histogram-equalised spatial distribution of the respective vector component across the

subset of the Geyer survey area, mapped from 0 to 1.
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Figure 10. Uncertainty maps for the 100-model
:::::::
50-model ensemble. The standard deviation computed across 100

::
50 models for the A) Hxx

, B
:
(a)Hxy , C

::::
Hxy ::

(b)Hxz , D
:::
Hxz ::

(c)Hyy , E
::::
Hyy :

(d)
:
, Hyz ::

(e), and F) Hzz ::
(f)

:::::
tensor components, and the recovered G)

::::::::
components

:
bx , H

::
(g)

:
,

by ::
(h), and I) bz ::

(i) vector components
::::::
magnetic

::::
field.
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