
Author Response RC1 - Ítalo Gonçalves

Tensorweave 1.0: Interpolating geophysical tensor fields
using spatial neural networks
Akshay V. Kamath1, Samuel T. Thiele1, Hernan Ugalde2, Bill Morris3, Raimon Tolosana-Delgado1,
Moritz Kirsch1, and Richard Gloaguen1

1Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany.
2DIP Geosciences, Hamilton, ON Canada
3Morris Magnetics Inc., Fonthill, ON Canada​

Correspondence: Akshay Kamath (a.kamath@hzdr.de)

Dear Ítalo Gonçalves,

We thank you for your time and effort reviewing the submitted manuscript, and are pleased that
you appreciated our results. We have incorporated your suggestions into the revised manuscript,
as detailed in the following pages. Please note that to facilitate the evaluation of our revision, the
line numbers of the reviewers’ comments refer to the originally submitted manuscript while line
numbers of our responses refer to our revised manuscript.

Kindest regards,
Akshay Kamath (on behalf of the authors)

Q1) It would be interesting to point to the reference that coined the term "neural field".

To the best of our knowledge, the paper that coined the term “neural field” for spatial neural
networks is Xie et al (2022). The reference has been added to the text at L20.

Q2) What was the activation function used in the network? How does it impact the results?

That’s an excellent question. In our experiments with various activation functions, we observed
that activations that have stable second (and higher order) derivatives tend to perform better.
Commonly used activations (such as ReLU) fail to satisfy the C2 differentiability criteria necessary
for multiple backpropagations through the same graph. This resulted in abruptly sharp edges in
the interpolated field, reducing the model’s ability to fit the measured hessians.

Furthermore, some of the activations with C2 differentiability were found to perform worse than
others. For example, the Tanh() activation has extremely small second order derivatives which

quickly get saturated (impacting the rate of convergence). In our studies, we used the Swish (SiLU)
(Ramachandran et al., 2017) activation by default, but the Mish (Misra, 2019) activation also
showed promising results.

The details have been added in the text in Section 3.4, at L193:

“The MLP block in our model uses non-linear activations for all layers except the output layer. As
our framework involves computing second derivatives with AD, activation functions like ReLU
(which do not satisfy the C2 differentiability criterion) resulted in abrupt edges within the
resultant interpolation. Notably, even within the activations that satisfy the aforementioned
criterion, some functions performed better than the others. For example, the Hyperbolic Tangent
activation function has extremely small second order derivatives which tend to get saturated,
impeding convergence. These activations are stable, but not ideal for our models. Among the
various activation functions tested, Swish (Sigmoid Linear Unit, SiLU; Ramachandran et al., 2017)
and Mish (Misra, 2019) activations provided the best results.”

Q3) The constraints-as-data approach is effective in practice, but perhaps it would be more
desirable to encode the Laplace constraint within the model itself. Any comments on how this
could be accomplished? Perhaps with a physically derived activation function and/or constraints
on the network's weights. The references below contain examples in the context of Gaussian
processes.

We agree with the reviewer that enforcing harmonicity “inside” the model—rather than only via a
residual loss—would be desirable. A classical way to guarantee the solution satisfies Laplace’s
equation is to represent it in a basis that already solves Laplace’s equation, and train only the
coefficients. Examples include (i) harmonic polynomials/solid harmonics (e.g., rlYl

m on spherical
domains) or other Trefftz-type trial spaces, and (ii) Method of Fundamental Solutions (MFS), which
places sources outside the domain so that the interior field is harmonic by construction. These
approaches are mathematically clean and enforce Laplace exactly, but they require
geometry-aware bases (or source placement), and conditioning can deteriorate as the basis grows
or the survey geometry becomes complex/draped.

Furthermore, there are also works trying to develop a hard constraint on the harmonicity:

On holomorphic/complex-analytic parameterizations in 2-D:

In the plane any harmonic function is (locally) the real part of a holomorphic function. Recent
works exploit this to bake in Laplace’s equation by construction: Physics-Informed Holomorphic
Neural Networks (PIHNNs) build complex-valued networks whose outputs satisfy the
Cauchy–Riemann conditions, so the (real/imaginary) components are harmonic; they demonstrate
boundary-only training for 2D Laplace/linear elasticity. Harmonic Neural Networks similarly

realize exact harmonic outputs on simply-connected 2D domains using holomorphic
activations/layers, and propose extensions to multiply-connected domains. These approaches
provide clean hard enforcement of harmonicity in 2D, but they do not directly generalize to 3D.

PIHNNs can be found here:​
Calafà et al., 2024 (https://doi.org/10.1016/j.cma.2024.117406)

On “vector-potential + curl” formulations (divergence-free by construction):

There is also a line of work that introduces an auxiliary vector potential A and sets the target field
to curl(A), which guarantees divergence-free outputs (widely used in incompressible flow and
electromagnetics). Within ML, Harmonic Neural Networks include a CurlNet variant that models
the electric field as curl(A); outside that paper, several recent studies in computer graphics and
scientific ML similarly maintain a vector potential on grids and take its curl to enforce
incompressibility. These methods ensure div(F)=0 by construction (as F = curl(A)) but they do not
make the field curl-free—hence they don’t by themselves yield a gradient field of a scalar potential
unless additional constraints/potentials are introduced, constraints which are usually data-driven.
This distinction is exactly the non-uniqueness in the Helmholtz–Hodge decomposition, where a
field can be modified by a harmonic component (both div-free and curl-free) without changing
those constraints.

CurlNet can be found here:​
Ghosh et al., 2023 (https://proceedings.mlr.press/v202/ghosh23b/ghosh23b.pdf) ​
​
On “activation functions / weight constraints”.

While linear combinations of harmonic functions are harmonic, compositions are not; thus simply
choosing a special activation does not, in general, preserve harmonicity through a multilayer
network. Put differently: enforcing Laplace’s equation is naturally handled by the function class
(basis/parametrization) or by a projection operator, not by standard pointwise nonlinearities. In
2D there is a helpful special case: the real and imaginary parts of a holomorphic function are
harmonic, which motivates complex-analytic constructions on planar domains; however, this
holomorphic machinery does not carry over directly to higher dimensions. This is also why other
parametrisations to enforce harmonicity cannot be carried over into the mapping architecture, as
non-linearities within the MLP block would potentially undo the harmonicity constraint in the high
dimensional feature space.

Why we used “constraints as data” in this paper:

Our goal here was a reproducible FTG workflow on irregular survey geometries. Hard constraints
via harmonic bases (solid harmonics/MFS) require domain tailoring and careful conditioning;

https://doi.org/10.1016/j.cma.2024.117406
https://proceedings.mlr.press/v202/ghosh23b/ghosh23b.pdf

projection layers require a global Poisson solve per step; symbolic null-space constructions
analogous to constrained GPs demand problem-specific algebra. Given these engineering costs,
we opted for a data-centric enforcement with mapping that has harmonic elements
(zero-trace/Laplace residuals plus cross-component consistency).

To hint at these methods, we have added a paragraph into our manuscript in Section 5.1, starting
at L363:​
​
“The Laplacian constraint is handled with an objective minimisation approach in our method. One
could potentially enforce harmonicity by design, however this is challenging for 3D (i.e.
geophysical potential) fields and difficult to enforce through the non-linear activation functions
inherent to neural networks. In 2D, holomorphic functions (i.e., complex-differentiable functions
of multiple variables) consist of real and imaginary parts that are harmonic functions, a fact that is
utilised by Harmonic Neural Networks (e.g., PIHNNs; Calafà et al., 2024) to yield exactly harmonic
outputs. These concepts do not directly extend to 3D, promoting an objective driven enforcement
of the constraint. Vector potential based formulations (e.g. CurlNet; Ghosh et al., 2022) enforce
divergence-free fields but fail to enforce the zero curl constraint. Furthermore, as our network
consists of non-linear activations, and as non-linear compositions do not generally preserve
harmonicity (Chen et al., 2010), we are further motivated to rely on our new mapping that has
harmonic elements (see Section 3.2) and use an objective to constrain the Laplacian.”

Q4) Regarding uncertainty estimation, perhaps it would be simpler to implement a Bayesian
neural network, which would incorporate uncertainty by resampling the RFF weights at each
iteration of training. The MLP weights could remain deterministic if desired.

We also tested a Bayesian formulation for the Random Fourier Features, in the form suggested by
the reviewer. The approach suggested by the reviewer failed due to the fact that the RFF matrices
act as projection bases for our coordinates. If a new bank of weights for the RFF matrix is sampled
at each iteration, the projective nature of the transformation results in completely different
phases for the sinusoids that follow, resulting in the optimiser jumping around the ever changing
loss surface. We also tested with various combinations of warmup periods for the training to
capitalize on the data first, before the RFF reshuffling begins, but to no avail. Therefore, to utilise
the inherent stochasticity present within the models due to the RFF mapping, we went with the
ensemble approach coupled with fixed RFF matrices. This is also the reason why the weights for
the RFF matrices are left frozen after initialization, and the length scales are made learnable
(optionally), to allow more flexibility.

Q5) In principle the Laplace constraint could be imposed to RBF as well, as the usual radial basis
functions are differentiable. This would allow a fairer comparison of the models. Many works
model conservative fields with RBF and Gaussian processes, but to my knowledge they only

have gradient constraints.

We agree that a radial basis function could be used to define the potential such that the
derivatives are always harmonic. However we do not consider this as an appropriate benchmark
as it would be a methodology development in its own right (as we are not aware of current
implementations that do this). However, we do enforce tracelessness into the interpolated RBF
results by interpolating only five independent components and computing Hzz = -(Hxx + Hyy). The
main difference that we aim to highlight is the utilisation of multiple tensor components together
improving the interpolation, something that the other interpolators do not do. RBF interpolation
of potentials would be a possible avenue, but we have not any open source codes that can
interpolate with second derivatives, and consider the development of such a tool to be outside the
scope of this paper.

Minor revisions:

1.​ line 153 - missing parenthesis Rectified.
2.​ line 303 - missing parenthesis Rectified.
3.​ Figure 2 - figure shows (sin, cos) features instead of (sin + phase) as described in the text:

The mathematical notation within the text has been modified to be clearer, and now
matches Figure 2. Note that Figure 2 has been updated to show that the length of the
feature vector is 2M (as both sine and cosine are considered).

Author Response RC2

Tensorweave 1.0: Interpolating geophysical tensor fields
using spatial neural networks
Akshay V. Kamath1, Samuel T. Thiele1, Hernan Ugalde2, Bill Morris3, Raimon Tolosana-Delgado1,
Moritz Kirsch1, and Richard Gloaguen1

1Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany.
2DIP Geosciences, Hamilton, ON Canada
3Morris Magnetics Inc., Fonthill, ON Canada​

Correspondence: Akshay Kamath (a.kamath@hzdr.de)

Dear Reviewer,

We thank you for your time and effort reviewing the submitted manuscript, and are pleased that
you appreciated our results. We have incorporated your suggestions into the revised manuscript,
as detailed in the following pages. Please note that to facilitate the evaluation of our revision, the
line numbers of the reviewers’ comments refer to the originally submitted manuscript while line
numbers of our responses refer to our revised manuscript.

Kindest regards,
Akshay Kamath (on behalf of the authors)

Q1) First: the comparison is done with fairly simple methods (e.g. RBFs), but it is common to use
equivalent sources for processing (e.g. this would be standard with a Falcon AGG survey). At a
minimum, equivalent sources should be discussed as an approach, but ideally, including a
comparison with equivalent-source-based interpolation would be valuable.

We agree that equivalent-source (EQL) methods are widely used in operational gravity and
gravity-gradiometry processing, and we have expanded the manuscript to include a focused
discussion of EQL approaches and their relevance to full-tensor gravity gradiometry (FTG)
[Section 2.2, L76]. We have added the following:​
​
“Another widely used approach for interpolating and transforming potential-field (and gradient)
data is the equivalent-source/equivalent-layer method: one replaces the true 3D distribution of
sources by a 2D layer of hypothetical monopoles or dipoles beneath the observation surface
whose field exactly reproduces the measured data on that surface (Dampney, 1969; Blakely,1995).

In practice the infinite layer is discretised into a finite set of sources and the corresponding dense
sensitivity matrix is solved—often with regularisation—to obtain source strengths that honour the
physical constraints of potential fields and enable stable continuation and derivative transforms
(Hansen and Miyazaki, 1984; Blakely, 1995; Oliveira Junior et al., 2023). This formulation is
powerful but computationally demanding for large surveys. Consequently, a substantial literature
focuses on accelerating the method by exploiting data geometry and matrix structure: scattered
equivalent-source gridding (Cordell, 1992); the “equivalent data” concept to reduce system size
(Mendonça and Silva, 1994); wavelet compression and adaptive meshing to sparsify sensitivities
(Li and Oldenburg, 2010; Davis and Li, 2011); fast iterative schemes in the space/wavenumber
domains (Xia and Sprowl, 1991; Siqueira et al., 2017); and scalable algorithms that leverage the
block-Toeplitz Toeplitz-block (BTTB) structure of the sensitivity matrix (Piauilino et al., 2025).
Recent machine-learning–inspired variants (e.g., gradient-boosted equivalent sources) further cut
memory and runtime for continental-scale datasets (Soler and Uieda, 2021). Open-source
implementations, notably Harmonica, provide practical tools for gravity and magnetic datasets
using these ideas (Fatiando a Terra Project et al., 2024).”

Regarding a direct comparison in our paper: at present we could not identify a maintained,
open-source, out-of-the-box implementation for joint FTG equivalent-source interpolation that
we could apply reproducibly to our dataset. The widely used open-source Harmonica library
provides EQL and a gradient-boosted variant, but its public API does not support joint inversion of
multiple data types (e.g., simultaneously fitting the FTG tensor components), which is required for
a fair apples-to-apples FTG comparison. Industrial implementations used in Falcon-style
processing are proprietary. Recent academic work on fast EQL for AGG and on
convolutional/FFT-based EQL for gravity/magnetics (and a 2025 multi-component FTG variant)
does not, to our knowledge, provide open code we can reuse directly. In the interest of
reproducibility, we therefore limited our quantitative baselines to well-established, openly
available interpolators (RBF, minimum curvature) and provided a detailed discussion of EQL (and
its limitations) instead.

Q2) In practice, the full tensor may not be measured in a survey. For example, it is common for
gravity gradiometry to only measure two components, e.g. the Falcon system only measures
Gne and Guv, and the rest of the tensor is computed from these values. How would you handle
this in your method?

We agree that the Falcon AGG system directly measures two horizontal curvature
components—Gne and Guv with Guv = (Gnn - Gee)/2—with a system called the Horizontal Partial Tensor
Gradiometer (HPTG) and that the remaining tensor components are reconstructed in processing.
However our contribution focuses on generic tensor gradiometry, and many sensors (including the
Lockheed Martin FTG System flown by Bell Geospace, and the SQUID Magnetic Gradiometers) do
measure all five independent components of the tensor to avoid additional assumptions that

reduce the degrees of freedom within the system. Both our synthetic and real examples use this
kind of dataset.

Q3) As a comment throughout, it would be helpful to have equation numbers to be able to
reference.

Equation numbers have been added to all equations throughout the manuscript.

Q4) The equations in sections 3.1 & 3.2 are confusing. The notation is mixed: I understand
lowercase bold as vectors, should v_i not be a vector? or is it meant to be an entry of v (in which
case the first term W*r is still a vector, so that would need to be indexed? What is the size of r? is
it 3N X 1 or N X 3 ?

We agree with the reviewer in that the equations jumping between vector notation and indexed
notation were reducing clarity and hindering a clear understanding of the mathematics underlying
our approach. Therefore, we have switched all the notations within the manuscript to a fully
vector based notation. Starting in Section 3.1, the RFF Mapping equation has been changed to:

For each individual length scale, with the subsequent line (L128) explaining the terms in the
equation. The size of r is 3×1, and the matrix W has a size of M×3. This acts on the position vector
to return a feature vector of size M×1 (2M×1 after it passes through both the element-wise sine
and cosine, and gets concatenated along the feature axis, which has now been clarified at L128).
Section 3.2 has been remedied in a similar way (see Q6).

Q5) Also, it would be helpful to clarify that the number of Fourier features (M) is the same as the
number of frequencies.

We agree with the reviewer, and have added the clarification in Section 3.1, L123.

Q6) These questions follow from the point about equations in sections 3.1 and 3.2. I don’t
understand how the sizes in the equation at line 127 work. Ws is size M x N, but now r is in R2,
does r only have 2 entries, or is it N x 2 ? I suspect you are treating it as N x 2. Do you then add
these together or take a dot product to collapse it to a vector? is N the total number of points? or
is N just 3 because it is a 3D vector. Clarifying this would help with the rest of the math in this
section.

The equations shown in the manuscript for the mapping correspond to the mapping acting on a
single position column vector, of dimensions N×1 where N corresponds to the spatial dimension. In

section 3.1, since the input is 3D and the mapping is applied to all the dimensions, r is 3×1 and the
W matrix is M×3, resulting in a M×1 feature vector. In Section 3.2, we split the input position
vector into the horizontal position rxy (which is now a 2×1 column vector) and a scalar vertical
coordinate (z). The W matrix now acts only on the horizontal coordinate vector. This has now been
clarified in Section 3.2, L151. Furthermore, to avoid any miscommunication about the norm of the
W matrix and the problems with the application of the decay to the features, we have defined a
new vector Ks, which is a M×1 vector, which is multiplied by the scalar z before being
exponentiated to acquire a decay vector of size M. The new equation for the harmonic embedding
is given at L158

Furthermore, we have also added a paragraph on the logic behind our embedding, from L139 -
L150. We hope that these improvements help in clarifying the underlying mathematics. We have
also upgraded the notations for all other equations, hopefully increasing readability and clarity.

Q7) Section 3.4 - Network architecture: are you using activation functions between the MLP
layers? If so, what are they?

We have added a paragraph about the activation functions used in Section 3.4, L193:​
​
“The MLP block in our model uses non-linear activations for all layers except the output layer. As
our framework involves computing second derivatives with AD, using activation functions like
ReLU (which do not satisfy the C2 differentiability criterion) resulted in abrupt edges within the
resultant interpolation. Notably, even within the activations that satisfy the aforementioned
criterion, some functions performed better than the others. For example, the Hyperbolic Tangent
activation function has extremely small second order derivatives which tend to get saturated,
impeding convergence. These activations are stable, but not ideal for our models. Among the
various activation functions tested, Swish (Sigmoid Linear Unit, SiLU; Ramachandran et al., 2017)
and Mish (Misra, 2019) activations provided the best results.”

Q6) It would be helpful to state the full training problem in section 3.4 – e.g. what are you
minimizing over, presumably the weights in W, and you are summing this over all available data
points.

We agree with the reviewer and have upgraded Section 3.4 with the necessary details about our
training regimen. Furthermore, we have also explained our hyperparameter tuning choice (starting
at L227), along with updates to the Loss equations (Eq 10, 11) to explain the logic we use to train
our models. We train the weights within the MLP block of our model, and keep the W matrix

frozen. This is because W acts as a projection matrix for our input vector and encodes the input
into the higher dimensional feature space, which then acts as the input for the neural network part
of our model. Optimising over the weights matrix W would amount to finding the perfect
projection that minimises the error between the output field and the measured hessians, which is
a much more difficult problem to solve. This has been clarified in the manuscript starting at L238,
along with the rest of the parameters used for training, as well as details about the learning rate
scheduler, and early stopping criterion.

“We train the MLP parameters (weights and biases) with Adam (Kingma and Ba, 2014), while
keeping the random Fourier feature (RFF) encoder fixed after initialisation. The initial learning
rate is set to 10−3 (occasionally 10−2 when the initial loss scale is large). We apply a plateau
scheduler that reduces the learning rate by a factor of 0.8 whenever the loss fails to improve for
20 epochs. Optionally, we also optimise a set of learnable length-scale parameters that modulate
the Fourier features; the log-values of these scales are stored as parameters and updated jointly
with the MLP. However, the learnable nature of these length scales did not help the model
convergence greatly, reproducing results explored by Tancik et al. (2020), which suggested that
neural fields fail to suitably optimise these length scale parameters.”

Q6) In section 4, it would be useful to show the loss curves and provide some discussion of the
training process – e.g. how many iterations? What do you use for an optimization algorithm?
What was the stopping criterion used? Was it the number of iterations or a threshold value for
the loss? What are the final values for each component of the loss (e.g. the data fit vs. Laplacian
loss – it would also be nice to see how these evolve as a function of iteration)

We agree with the reviewer in that the loss curves provide a visual understanding of the model’s
training process. Therefore, we have updated Figures 3 and 7 by adding an additional panel
showing all the components of our loss as a function of epochs of training. We trained the models
for a specified number of epochs (added in the text at L278 for the synthetic, L322 for the data
from Geyer) with an early stopping criterion based on the exponential moving average of the total
loss. This has been explained in the manuscript starting at L245. The Adam optimisation algorithm
was used (and has been specified in the text at L238), and the rest of the information about the
loss can be seen in the updated Figures as well.

Other details:

1.​ line 25: define Random Fourier Features before the acronym (RFF) Rectified, we removed
the mention of the acronym and now define it directly in Section 3.1.

2.​ The definition of equation 110 is a bit of abuse of notation in defining Ws; it would be
cleaner to state Ws = 1/l_s W. We agree and have updated the equations accordingly.

3.​ Equation at line 123, if you want to stick with vectors as boldface, I suggest bolding k-hat.

This equation is a bit odd, because rxy is in R2, and it implies that rz = [0, 0, rz] when you
add them together, so the sizes don’t match. I get what you mean, but you might be better
off stating r = [rxy, rz] or similar. We completely agree and hope that the updates
showcased earlier regarding the notation used solve this problem while increasing clarity
and readability.

Author Response RC3 - David Nathan

Tensorweave 1.0: Interpolating geophysical tensor fields
using spatial neural networks
Akshay V. Kamath1, Samuel T. Thiele1, Hernan Ugalde2, Bill Morris3, Raimon Tolosana-Delgado1,
Moritz Kirsch1, and Richard Gloaguen1

1Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany.
2DIP Geosciences, Hamilton, ON Canada
3Morris Magnetics Inc., Fonthill, ON Canada​

Correspondence: Akshay Kamath (a.kamath@hzdr.de)

Dear David Nathan,

We thank you for your time and effort reviewing the submitted manuscript, and are pleased that
you appreciated our results. We have incorporated your suggestions into the revised manuscript,
as detailed in the following pages. Please note that to facilitate the evaluation of our revision, the
line numbers of the reviewers’ comments refer to the originally submitted manuscript while line
numbers of our responses refer to our revised manuscript.

Kindest regards,
Akshay Kamath (on behalf of the authors)

Q1) Given that interpolated potential field data often serve as input for geophysical inversion,
further discussion of the ENF approach’s implications in this context would strengthen the
manuscript. Specifically, the observation noted in line 293 suggests potential limitations when
applying the method in ensemble-based inversion frameworks, such as the ensemble Kalman
inversion. These methods rely on statistical assumptions and error covariance structures that
could be influenced by interpolation artifacts or over-smoothing. A brief exploration of how
ENF interpolation might influence inversion performance and uncertainty propagation would
add valuable context for practitioners.

This is an excellent point raised by the reviewer. We agree with the reviewer in that the
uncertainty associated with the interpolation could potentially impact inversion results between
the flight lines. In general, all interpolation frameworks involve some sort of smoothing between
data points: The inversion of such interpolated datasets is therefore not recommended in general.
Instead, inversion results should only be compared at the points that have measurements, to avoid

this interpolation bias.

However, if e.g., numerical optimations require an inversion constrained by gridded data, then we
suggest that our ensemble uncertainties may serve as useful weights for each interpolated grid
cell. The propagation of uncertainties through inversion is outside the scope of this contribution,
but we have added the following text in Section 5.3, L413, to mention this.​
​
“Interpolated grids alter the observation error model: smoothing and continuation introduce
spatially correlated errors that, if ignored, can bias ensemble-based inversions (EnKF). Best
practice is naturally to invert at the real measurement locations, however when a grid is needed
we suggest that our ENF ensemble could provide a mean and a sample covariance for the
pseudo-observations. It is possible (although untested) that this might be used as the
observation-error covariance in the inversion.”

Minor revisions:

1.​ Line 123: \hat{k} needs to be defined. We have updated the notation for all equations,
eliminating the need for \hat{k}.

2.​ Line 388-389: Please update the reference Laloy et al., 2013. I was unable to find any
source for it. We have replaced the missing reference with appropriate papers for
ensemble gravity and magnetotelluric inversions (L263).

