
Author Response RC2

Tensorweave 1.0: Interpolating geophysical tensor fields
using spatial neural networks
Akshay V. Kamath1, Samuel T. Thiele1, Hernan Ugalde2, Bill Morris3, Raimon Tolosana-Delgado1,
Moritz Kirsch1, and Richard Gloaguen1

1Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany.
2DIP Geosciences, Hamilton, ON Canada
3Morris Magnetics Inc., Fonthill, ON Canada​

Correspondence: Akshay Kamath (a.kamath@hzdr.de)

Dear Reviewer,

We thank you for your time and effort reviewing the submitted manuscript, and are pleased that
you appreciated our results. We have incorporated your suggestions into the revised manuscript,
as detailed in the following pages. Please note that to facilitate the evaluation of our revision, the
line numbers of the reviewers’ comments refer to the originally submitted manuscript while line
numbers of our responses refer to our revised manuscript.

Kindest regards,
Akshay Kamath (on behalf of the authors)

Q1) First: the comparison is done with fairly simple methods (e.g. RBFs), but it is common to use
equivalent sources for processing (e.g. this would be standard with a Falcon AGG survey). At a
minimum, equivalent sources should be discussed as an approach, but ideally, including a
comparison with equivalent-source-based interpolation would be valuable.

We agree that equivalent-source (EQL) methods are widely used in operational gravity and
gravity-gradiometry processing, and we have expanded the manuscript to include a focused
discussion of EQL approaches and their relevance to full-tensor gravity gradiometry (FTG)
[Section 2.2, L76]. We have added the following:​
​
“Another widely used approach for interpolating and transforming potential-field (and gradient)
data is the equivalent-source/equivalent-layer method: one replaces the true 3D distribution of
sources by a 2D layer of hypothetical monopoles or dipoles beneath the observation surface
whose field exactly reproduces the measured data on that surface (Dampney, 1969; Blakely,1995).

In practice the infinite layer is discretised into a finite set of sources and the corresponding dense
sensitivity matrix is solved—often with regularisation—to obtain source strengths that honour the
physical constraints of potential fields and enable stable continuation and derivative transforms
(Hansen and Miyazaki, 1984; Blakely, 1995; Oliveira Junior et al., 2023). This formulation is
powerful but computationally demanding for large surveys. Consequently, a substantial literature
focuses on accelerating the method by exploiting data geometry and matrix structure: scattered
equivalent-source gridding (Cordell, 1992); the “equivalent data” concept to reduce system size
(Mendonça and Silva, 1994); wavelet compression and adaptive meshing to sparsify sensitivities
(Li and Oldenburg, 2010; Davis and Li, 2011); fast iterative schemes in the space/wavenumber
domains (Xia and Sprowl, 1991; Siqueira et al., 2017); and scalable algorithms that leverage the
block-Toeplitz Toeplitz-block (BTTB) structure of the sensitivity matrix (Piauilino et al., 2025).
Recent machine-learning–inspired variants (e.g., gradient-boosted equivalent sources) further cut
memory and runtime for continental-scale datasets (Soler and Uieda, 2021). Open-source
implementations, notably Harmonica, provide practical tools for gravity and magnetic datasets
using these ideas (Fatiando a Terra Project et al., 2024).”

Regarding a direct comparison in our paper: at present we could not identify a maintained,
open-source, out-of-the-box implementation for joint FTG equivalent-source interpolation that
we could apply reproducibly to our dataset. The widely used open-source Harmonica library
provides EQL and a gradient-boosted variant, but its public API does not support joint inversion of
multiple data types (e.g., simultaneously fitting the FTG tensor components), which is required for
a fair apples-to-apples FTG comparison. Industrial implementations used in Falcon-style
processing are proprietary. Recent academic work on fast EQL for AGG and on
convolutional/FFT-based EQL for gravity/magnetics (and a 2025 multi-component FTG variant)
does not, to our knowledge, provide open code we can reuse directly. In the interest of
reproducibility, we therefore limited our quantitative baselines to well-established, openly
available interpolators (RBF, minimum curvature) and provided a detailed discussion of EQL (and
its limitations) instead.

Q2) In practice, the full tensor may not be measured in a survey. For example, it is common for
gravity gradiometry to only measure two components, e.g. the Falcon system only measures
Gne and Guv, and the rest of the tensor is computed from these values. How would you handle
this in your method?

We agree that the Falcon AGG system directly measures two horizontal curvature
components—Gne and Guv with Guv = (Gnn - Gee)/2—with a system called the Horizontal Partial Tensor
Gradiometer (HPTG) and that the remaining tensor components are reconstructed in processing.
However our contribution focuses on generic tensor gradiometry, and many sensors (including the
Lockheed Martin FTG System flown by Bell Geospace, and the SQUID Magnetic Gradiometers) do
measure all five independent components of the tensor to avoid additional assumptions that

reduce the degrees of freedom within the system. Both our synthetic and real examples use this
kind of dataset.

Q3) As a comment throughout, it would be helpful to have equation numbers to be able to
reference.

Equation numbers have been added to all equations throughout the manuscript.

Q4) The equations in sections 3.1 & 3.2 are confusing. The notation is mixed: I understand
lowercase bold as vectors, should v_i not be a vector? or is it meant to be an entry of v (in which
case the first term W*r is still a vector, so that would need to be indexed? What is the size of r? is
it 3N X 1 or N X 3 ?

We agree with the reviewer in that the equations jumping between vector notation and indexed
notation were reducing clarity and hindering a clear understanding of the mathematics underlying
our approach. Therefore, we have switched all the notations within the manuscript to a fully
vector based notation. Starting in Section 3.1, the RFF Mapping equation has been changed to:

For each individual length scale, with the subsequent line (L128) explaining the terms in the
equation. The size of r is 3×1, and the matrix W has a size of M×3. This acts on the position vector
to return a feature vector of size M×1 (2M×1 after it passes through both the element-wise sine
and cosine, and gets concatenated along the feature axis, which has now been clarified at L128).
Section 3.2 has been remedied in a similar way (see Q6).

Q5) Also, it would be helpful to clarify that the number of Fourier features (M) is the same as the
number of frequencies.

We agree with the reviewer, and have added the clarification in Section 3.1, L123.

Q6) These questions follow from the point about equations in sections 3.1 and 3.2. I don’t
understand how the sizes in the equation at line 127 work. Ws is size M x N, but now r is in R2,
does r only have 2 entries, or is it N x 2 ? I suspect you are treating it as N x 2. Do you then add
these together or take a dot product to collapse it to a vector? is N the total number of points? or
is N just 3 because it is a 3D vector. Clarifying this would help with the rest of the math in this
section.

The equations shown in the manuscript for the mapping correspond to the mapping acting on a
single position column vector, of dimensions N×1 where N corresponds to the spatial dimension. In

section 3.1, since the input is 3D and the mapping is applied to all the dimensions, r is 3×1 and the
W matrix is M×3, resulting in a M×1 feature vector. In Section 3.2, we split the input position
vector into the horizontal position rxy (which is now a 2×1 column vector) and a scalar vertical
coordinate (z). The W matrix now acts only on the horizontal coordinate vector. This has now been
clarified in Section 3.2, L151. Furthermore, to avoid any miscommunication about the norm of the
W matrix and the problems with the application of the decay to the features, we have defined a
new vector Ks, which is a M×1 vector, which is multiplied by the scalar z before being
exponentiated to acquire a decay vector of size M. The new equation for the harmonic embedding
is given at L158

Furthermore, we have also added a paragraph on the logic behind our embedding, from L139 -
L150. We hope that these improvements help in clarifying the underlying mathematics. We have
also upgraded the notations for all other equations, hopefully increasing readability and clarity.

Q7) Section 3.4 - Network architecture: are you using activation functions between the MLP
layers? If so, what are they?

We have added a paragraph about the activation functions used in Section 3.4, L193:​
​
“The MLP block in our model uses non-linear activations for all layers except the output layer. As
our framework involves computing second derivatives with AD, using activation functions like
ReLU (which do not satisfy the C2 differentiability criterion) resulted in abrupt edges within the
resultant interpolation. Notably, even within the activations that satisfy the aforementioned
criterion, some functions performed better than the others. For example, the Hyperbolic Tangent
activation function has extremely small second order derivatives which tend to get saturated,
impeding convergence. These activations are stable, but not ideal for our models. Among the
various activation functions tested, Swish (Sigmoid Linear Unit, SiLU; Ramachandran et al., 2017)
and Mish (Misra, 2019) activations provided the best results.”

Q6) It would be helpful to state the full training problem in section 3.4 – e.g. what are you
minimizing over, presumably the weights in W, and you are summing this over all available data
points.

We agree with the reviewer and have upgraded Section 3.4 with the necessary details about our
training regimen. Furthermore, we have also explained our hyperparameter tuning choice (starting
at L227), along with updates to the Loss equations (Eq 10, 11) to explain the logic we use to train
our models. We train the weights within the MLP block of our model, and keep the W matrix

frozen. This is because W acts as a projection matrix for our input vector and encodes the input
into the higher dimensional feature space, which then acts as the input for the neural network part
of our model. Optimising over the weights matrix W would amount to finding the perfect
projection that minimises the error between the output field and the measured hessians, which is
a much more difficult problem to solve. This has been clarified in the manuscript starting at L238,
along with the rest of the parameters used for training, as well as details about the learning rate
scheduler, and early stopping criterion.

“We train the MLP parameters (weights and biases) with Adam (Kingma and Ba, 2014), while
keeping the random Fourier feature (RFF) encoder fixed after initialisation. The initial learning
rate is set to 10−3 (occasionally 10−2 when the initial loss scale is large). We apply a plateau
scheduler that reduces the learning rate by a factor of 0.8 whenever the loss fails to improve for
20 epochs. Optionally, we also optimise a set of learnable length-scale parameters that modulate
the Fourier features; the log-values of these scales are stored as parameters and updated jointly
with the MLP. However, the learnable nature of these length scales did not help the model
convergence greatly, reproducing results explored by Tancik et al. (2020), which suggested that
neural fields fail to suitably optimise these length scale parameters.”

Q6) In section 4, it would be useful to show the loss curves and provide some discussion of the
training process – e.g. how many iterations? What do you use for an optimization algorithm?
What was the stopping criterion used? Was it the number of iterations or a threshold value for
the loss? What are the final values for each component of the loss (e.g. the data fit vs. Laplacian
loss – it would also be nice to see how these evolve as a function of iteration)

We agree with the reviewer in that the loss curves provide a visual understanding of the model’s
training process. Therefore, we have updated Figures 3 and 7 by adding an additional panel
showing all the components of our loss as a function of epochs of training. We trained the models
for a specified number of epochs (added in the text at L278 for the synthetic, L322 for the data
from Geyer) with an early stopping criterion based on the exponential moving average of the total
loss. This has been explained in the manuscript starting at L245. The Adam optimisation algorithm
was used (and has been specified in the text at L238), and the rest of the information about the
loss can be seen in the updated Figures as well.

Other details:

1.​ line 25: define Random Fourier Features before the acronym (RFF) Rectified, we removed
the mention of the acronym and now define it directly in Section 3.1.

2.​ The definition of equation 110 is a bit of abuse of notation in defining Ws; it would be
cleaner to state Ws = 1/l_s W. We agree and have updated the equations accordingly.

3.​ Equation at line 123, if you want to stick with vectors as boldface, I suggest bolding k-hat.

This equation is a bit odd, because rxy is in R2, and it implies that rz = [0, 0, rz] when you
add them together, so the sizes don’t match. I get what you mean, but you might be better
off stating r = [rxy, rz] or similar. We completely agree and hope that the updates
showcased earlier regarding the notation used solve this problem while increasing clarity
and readability.

