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Dear Ítalo Gonçalves, 
 
We thank you for your time and effort reviewing the submitted manuscript, and are pleased that 
you appreciated our results. We have incorporated your suggestions into the revised manuscript, 
as detailed in the following pages. Please note that to facilitate the evaluation of our revision, the 
line numbers of the reviewers’ comments refer to the originally submitted manuscript while line 
numbers of our responses refer to our revised manuscript. 
 
Kindest regards, 
Akshay Kamath (on behalf of the authors) 
 
Q1) It would be interesting to point to the reference that coined the term "neural field". 

To the best of our knowledge, the paper that coined the term “neural field” for spatial neural 
networks is Xie et al (2022). The reference has been added to the text at L20. 

Q2) What was the activation function used in the network? How does it impact the results? 

That’s an excellent question. In our experiments with various activation functions, we observed 
that activations that have stable second (and higher order) derivatives tend to perform better. 
Commonly used activations (such as ReLU) fail to satisfy the C2 differentiability criteria necessary 
for multiple backpropagations through the same graph. This resulted in abruptly sharp edges in 
the interpolated field, reducing the model’s ability to fit the measured hessians. 

Furthermore, some of the activations with C2 differentiability were found to perform worse than 
others. For example, the Tanh() activation has extremely small second order derivatives which 
 



quickly get saturated (impacting the rate of convergence). In our studies, we used the Swish (SiLU) 
(Ramachandran et al., 2017) activation by default, but the Mish (Misra, 2019) activation also 
showed promising results. 

The details have been added in the text in Section 3.4, at L193: 

“The MLP block in our model uses non-linear activations for all layers except the output layer. As 
our framework involves computing second derivatives with AD, activation functions like ReLU 
(which do not satisfy the C2 differentiability criterion) resulted in abrupt edges within the 
resultant interpolation. Notably, even within the activations that satisfy the aforementioned 
criterion, some functions performed better than the others. For example, the Hyperbolic Tangent 
activation function has extremely small second order derivatives which tend to get saturated, 
impeding convergence. These activations are stable, but not ideal for our models. Among the 
various activation functions tested, Swish (Sigmoid Linear Unit, SiLU; Ramachandran et al., 2017) 
and Mish (Misra, 2019) activations provided the best results.”  

Q3) The constraints-as-data approach is effective in practice, but perhaps it would be more 
desirable to encode the Laplace constraint within the model itself. Any comments on how this 
could be accomplished? Perhaps with a physically derived activation function and/or constraints 
on the network's weights. The references below contain examples in the context of Gaussian 
processes. 

We agree with the reviewer that enforcing harmonicity “inside” the model—rather than only via a 
residual loss—would be desirable. A classical way to guarantee the solution satisfies Laplace’s 
equation is to represent it in a basis that already solves Laplace’s equation, and train only the 
coefficients. Examples include (i) harmonic polynomials/solid harmonics (e.g., rlYl

m on spherical 
domains) or other Trefftz-type trial spaces, and (ii) Method of Fundamental Solutions (MFS), which 
places sources outside the domain so that the interior field is harmonic by construction. These 
approaches are mathematically clean and enforce Laplace exactly, but they require 
geometry-aware bases (or source placement), and conditioning can deteriorate as the basis grows 
or the survey geometry becomes complex/draped. 

Furthermore, there are also works trying to develop a hard constraint on the harmonicity: 

On holomorphic/complex-analytic parameterizations in 2-D: 

In the plane any harmonic function is (locally) the real part of a holomorphic function. Recent 
works exploit this to bake in Laplace’s equation by construction: Physics-Informed Holomorphic 
Neural Networks (PIHNNs) build complex-valued networks whose outputs satisfy the 
Cauchy–Riemann conditions, so the (real/imaginary) components are harmonic; they demonstrate 
boundary-only training for 2D Laplace/linear elasticity. Harmonic Neural Networks similarly 

 



realize exact harmonic outputs on simply-connected 2D domains using holomorphic 
activations/layers, and propose extensions to multiply-connected domains. These approaches 
provide clean hard enforcement of harmonicity in 2D, but they do not directly generalize to 3D. 

PIHNNs can be found here:​
Calafà et al., 2024 ( https://doi.org/10.1016/j.cma.2024.117406) 

On “vector-potential + curl” formulations (divergence-free by construction): 

There is also a line of work that introduces an auxiliary vector potential A and sets the target field 
to curl(A), which guarantees divergence-free outputs (widely used in incompressible flow and 
electromagnetics). Within ML, Harmonic Neural Networks include a CurlNet variant that models 
the electric field as curl(A); outside that paper, several recent studies in computer graphics and 
scientific ML similarly maintain a vector potential on grids and take its curl to enforce 
incompressibility. These methods ensure div(F)=0 by construction (as F = curl(A)) but they do not 
make the field curl-free—hence they don’t by themselves yield a gradient field of a scalar potential 
unless additional constraints/potentials are introduced, constraints which are usually data-driven. 
This distinction is exactly the non-uniqueness in the Helmholtz–Hodge decomposition, where a 
field can be modified by a harmonic component (both div-free and curl-free) without changing 
those constraints. 

CurlNet can be found here:​
Ghosh et al., 2023 (https://proceedings.mlr.press/v202/ghosh23b/ghosh23b.pdf) ​
​
On “activation functions / weight constraints”. 

While linear combinations of harmonic functions are harmonic, compositions are not; thus simply 
choosing a special activation does not, in general, preserve harmonicity through a multilayer 
network. Put differently: enforcing Laplace’s equation is naturally handled by the function class 
(basis/parametrization) or by a projection operator, not by standard pointwise nonlinearities. In 
2D there is a helpful special case: the real and imaginary parts of a holomorphic function are 
harmonic, which motivates complex-analytic constructions on planar domains; however, this 
holomorphic machinery does not carry over directly to higher dimensions. This is also why other 
parametrisations to enforce harmonicity cannot be carried over into the mapping architecture, as 
non-linearities within the MLP block would potentially undo the harmonicity constraint in the high 
dimensional feature space. 

Why we used “constraints as data” in this paper: 

Our goal here was a reproducible FTG workflow on irregular survey geometries. Hard constraints 
via harmonic bases (solid harmonics/MFS) require domain tailoring and careful conditioning; 
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projection layers require a global Poisson solve per step; symbolic null-space constructions 
analogous to constrained GPs demand problem-specific algebra. Given these engineering costs, 
we opted for a data-centric enforcement with mapping that has harmonic elements 
(zero-trace/Laplace residuals plus cross-component consistency). 

To hint at these methods, we have added a paragraph into our manuscript in Section 5.1, starting 
at L363:​
​
“The Laplacian constraint is handled with an objective minimisation approach in our method. One 
could potentially enforce harmonicity by design, however this is challenging for 3D (i.e. 
geophysical potential) fields and difficult to enforce through the non-linear activation functions 
inherent to neural networks. In 2D, holomorphic functions (i.e., complex-differentiable functions 
of multiple variables) consist of real and imaginary parts that are harmonic functions, a fact that is 
utilised by Harmonic Neural Networks (e.g., PIHNNs; Calafà et al., 2024) to yield exactly harmonic 
outputs. These concepts do not directly extend to 3D, promoting an objective driven enforcement 
of the constraint. Vector potential based formulations (e.g. CurlNet; Ghosh et al., 2022) enforce 
divergence-free fields but fail to enforce the zero curl constraint. Furthermore, as our network 
consists of non-linear activations, and as non-linear compositions do not generally preserve 
harmonicity (Chen et al., 2010), we are further motivated to rely on our new mapping that has 
harmonic elements (see Section 3.2) and use an objective to constrain the Laplacian.” 

Q4) Regarding uncertainty estimation, perhaps it would be simpler to implement a Bayesian 
neural network, which would incorporate uncertainty by resampling the RFF weights at each 
iteration of training. The MLP weights could remain deterministic if desired. 

We also tested a Bayesian formulation for the Random Fourier Features, in the form suggested by 
the reviewer. The approach suggested by the reviewer failed due to the fact that the RFF matrices 
act as projection bases for our coordinates. If a new bank of weights for the RFF matrix is sampled 
at each iteration, the projective nature of the transformation results in completely different 
phases for the sinusoids that follow, resulting in the optimiser jumping around the ever changing 
loss surface. We also tested with various combinations of warmup periods for the training to 
capitalize on the data first, before the RFF reshuffling begins, but to no avail. Therefore, to utilise 
the inherent stochasticity present within the models due to the RFF mapping, we went with the 
ensemble approach coupled with fixed RFF matrices. This is also the reason why the weights for 
the RFF matrices are left frozen after initialization, and the length scales are made learnable 
(optionally), to allow more flexibility. 

Q5) In principle the Laplace constraint could be imposed to RBF as well, as the usual radial basis 
functions are differentiable. This would allow a fairer comparison of the models. Many works 
model conservative fields with RBF and Gaussian processes, but to my knowledge they only 

 



have gradient constraints. 

We agree that a radial basis function could be used to define the potential such that the 
derivatives are always harmonic. However we do not consider this as an appropriate benchmark 
as it would be a methodology development in its own right (as we are not aware of current 
implementations that do this). However, we do enforce tracelessness into the interpolated RBF 
results by interpolating only five independent components and computing Hzz = -(Hxx + Hyy). The 
main difference that we aim to highlight is the utilisation of multiple tensor components together 
improving the interpolation, something that the other interpolators do not do. RBF interpolation 
of potentials would be a possible avenue, but we have not any open source codes that can 
interpolate with second derivatives, and consider the development of such a tool to be outside the 
scope of this paper. 

Minor revisions: 

1.​ line 153 - missing parenthesis Rectified. 
2.​ line 303 - missing parenthesis Rectified. 
3.​ Figure 2 - figure shows (sin, cos) features instead of (sin + phase) as described in the text: 

The mathematical notation within the text has been modified to be clearer, and now 
matches Figure 2. Note that Figure 2 has been updated to show that the length of the 
feature vector is 2M (as both sine and cosine are considered). 

 


