
Snow Water Equivalent from airborne Ku-band data: The Trail
Valley Creek 2018/19 Snow Experiment
Benoit Montpetit1, Julien Meloche1, Vincent Vionnet2, Chris Derksen1, Georgina Woolley3, Nicolas R.
Leroux2, Paul Siqueira4, J. Max Adam4, and Mike Brady1

1Climate Research Division, Environment and Climate Change Canada, Ontario, Canada
2Meteorological Research Division, Environment and Climate Change Canada, Quebec, Canada
3Northumbria University, Newcastle upon Tyne, United Kingdom
4College of Engineering, University of Massachusetts Amherst, MA, United States

Correspondence: Benoit Montpetit (benoit.montpetit@ec.gc.ca)

Abstract. Snow is an important freshwater resource that impacts the health and well-being of communities, the economy, and

sustains ecosystems of the cryosphere. This is why there is a need for a spaceborne Earth observation mission to monitor global

snow conditions. Environment and Climate Change Canada, in partnership with the Canadian Space Agency, is developing a

new Ku-band synthetic aperture radar mission to retrieve snow water equivalent (SWE) at a nominal resolution of 500 m, and

weekly coverage of the cryosphere. Here, we present the concept of the SWE retrieval algorithm for this proposed satellite5

mission. It is shown that by combining a priori knowledge of snow conditions from a land surface model, like the Canadian

Soil Vegetation Snow version 2 model (SVS-2), in a Markov Chain Monte Carlo (MCMC) Bayesian model coupled with

the Snow Microwave Radiative Transfer model (SMRT), we can retrieve SWE with an RMSE of 15.8 mm (16.4 %) and a

MCMC-retrieved SWE uncertainty of 23.4 mm (25.2 %). To achieve this accuracy, a larger uncertainty in the a priori grain

size estimation is required, since this variable is known to be underestimated within SVS-2 and has a considerable impact on10

the microwave scattering properties of snow. It is also shown that adding four observations from different incidence angles

improves the accuracy of the SWE retrieval because these observations are sensitive to different scattering mechanisms of the

snowpack. These results validate the mission concept of the proposed Canadian satellite mission.

1 Introduction

Yearly, snow can cover more than 50 % of the terrestrial northern hemisphere (Robinson et al., 2012) and is an important15

fresh water resource that impacts the health and well-being of communities, the economy, and sustains ecosystems (Meredith

et al., 2019). Snow extent and mass trends are forecasted to keep decreasing at a rate up to -50 x 106 km2 year−1 and -

5 Gt year−1, respectively (Mudryk et al., 2020). Yet, it is still the only component of the water cycle that, currently, does

not have a dedicated Earth Observation (EO) mission (Derksen et al., 2019). Monitoring snow water equivalent (SWE), i.e.

the amount of water stored in solid or liquid form in the snowpack, at high spatio-temporal resolution is critical for climate20

services, water resource management, and environment prediction (Garnaud et al., 2019; Kim et al., 2021; Cho et al., 2023).

Following the work done for the European Space Agency (ESA) Earth Explorer 7 Cold Regions Hydrology High-resolution
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Observatory (CoReH2O) mission (Rott et al., 2010), and recent work in the field of microwave snow remote sensing (Tsang

et al., 2022), Environment and Climate Change Canada (ECCC), in partnership with the Canadian Space Agency (CSA), are

developing a synthetic aperture radar (SAR) satellite mission that aims at imaging the Northern Hemisphere at a nominal25

resolution of 500 m on a weekly basis, currently named, the Terrestrial Snow Mass Mission (TSMM) (Derksen et al., 2019).

The international snow community has made considerable progress in the recent decade in demonstrating that Ku-Band radar

measurements provide the best option for future satellite missions to monitor snow as a water resource at sub-kilometre spatial

resolution, due to its sensitivity to SWE via its volume scattering in dry snow and its sensitivity to its phase (wet/dry) (Tsang

et al., 2022). Even though passive microwave measurements show the same sensitivity to SWE and snow phase, the technology30

does not currently provide sub-kilometre measurements (Galeazzi et al., 2023). It is also known that, due to the sensitivity of

the Ku-band radar backscatter (σ0) to the snow microstructure (King et al., 2018; Picard et al., 2022b; Montpetit et al., 2024),

retrieving SWE from a single microwave measurement can prove challenging (Lemmetyinen et al., 2018; Pan et al., 2024).

This is why TSMM presents a dual Ku-Band frequency (13.25 and 17.5 GHz), dual polarization (VV/VH) concept to constrain

a retrieval algorithm with more measurements, i.e. the higher Ku frequency being more sensitive to snow microstructure than35

the lower frequency and the cross-polarization signal being more sensitive to interactions within the snow volume than the

co-polarization (Ulaby and Ravaioli, 2020). The main objective of TSMM is to retrieve SWE from these satellite observations

with a seasonal root-mean-square error (RMSE) of 25 % in alpine regions and 30 mm elsewhere (Derksen et al., 2019). These

observations will then be ingested into the Canadian Land Data Assimilation Scheme (CaLDAS) (Carrera et al., 2015; Garnaud

et al., 2021) in order to improve ECCC’s numerical weather/climate prediction services. Assimilating TSMM retrievals will40

also help improve surface modelling like the Canadian Soil Vegetation Snow (SVS) (Leonardini et al., 2021) model and other

hydrological systems such as the Canadian Hydrological Model (CHM) (Marsh et al., 2020). This study aims at developing

the workflow that will be used to derive SWE from the dual-frequency SAR measurements and also provide stratified snow

information that will be crucial to improve hydrological and land surface modelling via data assimilation across all the various

landscapes found in Canada.45

Many studies have developed Bayesian methods to retrieve SWE from SAR (Rott et al., 2012; Singh et al., 2024; Pan et al.,

2024). It is key for these methods to correctly specify SWE uncertainty, where it was achieved by specifying layer and density

uncertainties. Rott et al. (2012) used a constrained minimization approach where SWE and effective snow grain radius was

optimized iteratively to match forward modelled and measured σ0. This method was intended to be applied to X-band and Ku-

band σ0 measurements for the CoReH2O mission. Singh et al. (2024) used a Bayesian inference model that seeks to estimate the50

joint probability of backscatter measurements and snow properties. Prior distributions of snow parameters were necessary for

this approach and were obtained from a multilayered snow hydrological model driven by numerical weather prediction (NWP)

forecasts. This method was also applied to X- and Ku-band SAR data and showed great success rate to retrieve SWE over

Grand Mesa, Colorado, USA. Pan et al. (2024) modified the Bayesian-based Algorithm for SWE Estimation (Pan et al., 2017)

to apply it to active microwave measurements. This methods relies on the Markov Chain Monte Carlo (MCMC) method to55

optimize multiple snow properties simultaneously to minimize a cost function between the measured and forward modelled

σ0. They showed that an RMSE below 30 mm of SWE could be achieved when applied to X- and Ku-band data.
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This study uses a Bayesian approach on data acquired during the 2018/19 Trail Valley Creek (TVC) experiment , where

only single frequency Ku-band VV polarization data was acquired from an airborne platform (Montpetit et al., 2024). Since it

has been largely documented that using a multi-layered snowpack approach considerably improves SWE retrievals compared60

to single layer snowpack (Pan et al., 2024; Durand et al., 2024; Singh et al., 2024; Lemmetyinen et al., 2018), this study only

focuses on a multi-layered approach. We focus on the two dominant snow layers observed in an Arctic snowpack, i.e. a dense

wind compacted rounded grains (R) snow layer at the surface with a coarse depth hoar (DH) layer at the bottom (Montpetit

et al., 2024; Rutter et al., 2019; Derksen et al., 2009). The retrieval algorithm developed for this study was inspired by previous

work using the MCMC method (Pan et al., 2024; Picard et al., 2022a; Pan et al., 2017). Section 3 details how the approach used65

in this study differs from previous work. In the context of an EO algorithm development, emphasis will be given on the need

to include quality spatio-temporal information. Methods to improve computation efficiency, without compromising retrieval

accuracy will also be presented.

Section 2 briefly describes the 2018/19 TVC experiment. For a more detailed explanation, please refer to Montpetit et al.

(2024). Section 3.5 details the SWE retrieval architecture as well as the processing applied to field measurements in order70

to properly compare the outputs of the retrieved MCMC snow properties with surveyed properties in the field. Section 4.1

compares the Canadian land surface model Canadian Soil Vegetation Snow version 2 (SVS-2) outputs (Vionnet et al., 2025;

Woolley et al., 2024) to field measurements, while section 4.2 shows the results to validate the MCMC approach. Sections 4.3

and 4.4 show the comparisons of the MCMC retrieved SWE and vertical snow properties to the surveyed properties. The

efficiency of the MCMC method to retrieve SWE is assessed in section 5. Considerations in order to estimate both SWE75

and snow properties that are representative of actual snow conditions on the ground and the usage of SVS-2 and its future

improvements to be implemented are also discussed in section 5.

2 The Trail Valley Creek 2018/19 Snow Radar Experiment

The TVC 2018/19 experiment was designed by ECCC to advance science readiness activities for TSMM. The TVC watershed,

near Inuvik, Northwest Territories, Canada, was selected since many snow and hydrological research activities are conducted80

there every year (e.g., Shi et al., 2015; Wilcox et al., 2022). Including the airborne SAR campaign for this study (Siqueira

et al., 2021), there has been other similar campaigns over TVC like the SnowSAR campaign of 2012/13 (King et al., 2018)

and more recently, in April 2024, the Cryospheric SAR (CryoSAR) instrument (Kelly et al., 2024) onboard the Alfred Wagner

Institute (AWI) Polar 5 (Haas et al., 2024) was flown with a dual L- and Ku-band SAR. Other work at TVC focused on

improving land surface modelling of Arctic environments (Woolley et al., 2024) using the Ensemble System Crocus (ESCROC)85

model (Lafaysse et al., 2017), which was implemented in the SVS-2 land surface model (Vionnet et al., 2025, 2022; Garnaud

et al., 2019).

In a first step, Montpetit et al. (2024) has shown that the Ku-band radar instrument developed by the University of Mas-

sachusetts (UMASS) team (Siqueira et al., 2021) is sensitive to snow physical properties and that the Snow Radiative Transfer

Model (SMRT) could be used to properly model the σ0 from surveyed snow properties. In this study, we will show that from90
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the same airborne σ0 measurements we can retrieve SWE using independent modelled data (SVS-2) as priors in the retrieval

algorithm.

Figure 1 shows a map of the study area and the surveyed sites. The radar image in Figure 1 (left) consists in a mosaic of

two different airborne passes, flown in the same direction, acquired by the UMASS radar system (Section 2.1), where the near

range acquisitions (higher backscatter) of the first pass, done at steeper incidence angles, meets the far range acquisitions (lower95

backscatter) of the second pass, made at shallower incidence angles. A DEM (center) from the ArcticDEM (Porter et al., 2023)

and the vegetation classification (right, Grünberg and Boike, 2019) is shown for context with the radar imagery. For a detailed

description of the different dataset measured during this TVC experiment, please refer to Montpetit et al. (2024). Elements

relevant to this study will be presented here.

Figure 1. Sites sampled during the January campaign of the TVC 2018/19 experiment. Squares correspond to a 100 m x 100 m around the

central surveyed snowpit (see Section 2.2). Background images are two overlapped UMASS Ku-Band radar images corresponding to two

different flight passes acquired November 14, 2018 (left, Siqueira et al., 2021), the 2 m ArcticDEM (center, Porter et al., 2023), and the

vegetation classification (right, Grünberg and Boike, 2019).

2.1 Airborne SAR measurements100

For this TVC experiment, the UMASS Ku-band SAR instrument was mounted on a Cessna-208. It flew at a nominal altitude

of 1000 m, and measured σ0 at 13.285 GHz in VV polarization over a 2 km swath, with a 2 m ground-range resolution and an

incidence angle range of ∼20-70°. Flight lines were planned to maximize repeat coverage of the SikSik sub-basin within the

TVC watershed. This enabled swath overlap between flight passes and measurements of the same targets in different viewing

geometries. A total of 16 flight lines were planned, measuring selected targets within the area of interest (AOI) in four different105

look-directions. To compare measured σ0 to surveyed snow information, a 100 m x 100 m area was clipped around the surveyed

site, was filtered to reduce noise and artifacts, and averaged.

Due to challenging flight conditions in November 2018 and challenging snow conditions in March 2019, only the January

2019 σ0 measurements are used in this study to validate the SWE retrieval algorithm in dry snow conditions.
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2.2 Ground based snow and soil measurements110

Within the AOI, six static sites were identified, in order to monitor the underlying ground conditions of the SikSik sub-basin

throughout the winter, and also monitor the evolution of snow conditions over contrasting land covers, representative of TVC

(Figure 1). Four HydroProbe soil sensors were installed horizontally in a soil pit at each of these static sites, where soil

temperature, moisture and permittivity were measured continuously during the campaign. This data enabled the retrieval of

microwave background soil properties from TerraSAR-X and RADARSAT-2 satellite SAR measurements (Montpetit et al.,115

2024).

Figure 2. Ground based snow measurements sampling scheme taken from Montpetit et al. (2024).

A total of 20 surveyed sites, including the static sites (Figure 1), are used in this study to validate the SWE retrieval algorithm.

At the center of each of these sites, a snowpit was excavated, and a full snow profile was surveyed to use as reference snow

measurements for a given site using the standard methods (Fierz et al., 2009). For each snowpit, snow temperature, density,

Specific Surface Area (SSA) were measured at the pit wall. Density was measured using a Taylor-LaChapelle style cutter and120

a shielded digital scale. SSA was measured using the A2 Photonics IceCube instrument (Domine et al., 2007; Gallet et al.,
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2009). Behind the pit wall, three Snow Micro Penetrometer (SMP) profiles were acquired (Proksch et al., 2015) in order to

calibrate the force measurements to the reference density and SSA measurements. To get a representative distribution of snow

microstructure at the airborne spatial scale, north-south and east-west transects were surveyed with the SMP (a total of 16 more

profiles) covering an area of ∼100 m x 100 m. Snow depth measurements were surveyed every meter along these transects125

with a MagnaProbe (Sturm and Holmgren, 2018) (∼290 measurements per site). Figure 2 shows the schematic of a typical

sampling done for a given site. All profiles (snowpits, SMP and MagnaProbe profiles) per site are then used to generate a

statistical representation of snow conditions within the radar footprint, with a measured snow uncertainty represented by the

spatial variability within the footprint. Spatial variability consists in the largest uncertainty within the footprint compared to

snow parameter measurement uncertainty, the latter can thus be neglected.130

2.3 Soil Vegetation Snow version 2 model outputs

The SVS-2 model outputs used in this study are a subset of the dataset generated by Woolley et al. (2024). This dataset

was generated for the period of September 1991 to September 2023, but only the period of January 12 to 15, 2019 was

used, which corresponds to the three day window where the UMASS airborne SAR measurements were acquired during the

January intensive campaign of this TVC experiment. These outputs were generated from point-scale simulations located at135

the main meteorological site of TVC (SM site in Figure 1), where most of the meteorological forcing data was acquired,

and complemented by neighbouring stations when data was not available. The multi-layered snow information comes from

the ESCROC model (Lafaysse et al., 2017). The one-dimensional, vertical snow profile outputs of Crocus, consist in mass,

density, temperature, liquid water content, age and snow microstructure properties (optical diameter, sphericity) for each layer.

These outputs can then be translated into thickness, density and SSA for each layer. The maximum number of layers was set to140

20 for this dataset, in order to get detailed stratigraphic information. A total of 120 different simulations were conducted with

different combinations of wind and surface vegetation effects, and thermal conductivity parameterizations. These ensembles

were used to generate the priors for the MCMC retrieval algorithm (see Section 3.5.1). Test were also conducted in this study

with the 30 ensemble members that had the best continuous ranked probability score (CRPS, see Woolley et al., 2024). Both

versions used in the study of Woolley et al. (2024) are tested in this study, where an Arctic version of SVS-2 was developed145

to improve the overall snow properties and stratigraphy of Arctic snowpacks. For a complete description of the dataset, please

refer to Woolley et al. (2024).

3 Methods

In this section, the SWE retrieval workflow will be presented as well as the methodology to compare the retrieved SWE

data with measured data from the TVC 2018/19 experiment. In order to improve computation efficiency, the methodology to150

reduce the surveyed snowpack stratigraphy to two layers, will be introduced. A different approach, more automated (Meloche

et al., 2025), which is applied to the SVS-2 outputs will also be described. Finally, the Bayesian MCMC methodology will be

described in details in order to retrieved the SWE from the SVS-2 initial guess.
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3.1 SWE retrieval workflow

The workflow to retrieve SWE from Ku-Band SAR measurements is similar to what was presented by Pan et al. (2024),155

where snowpack variables are optimized iteratively using a Markov Chain Monte Carlo (MCMC) model to minimize the error

between the simulated and measured σ0 (Section 3.5).

To initialize the snowpack variables, like the work of Singh et al. (2024), a land surface model was used to generate the

prior distributions. In the context of an EO mission like TSMM, this allows for the prior distributions to evolve both spa-

tially and temporally. In this study, the SVS-2 outputs of Woolley et al. (2024) were used to generate these prior distribution160

(Section 3.5.1). In order to improve computation efficiency, the multi-layered SVS-2 outputs were first reduce to two layers

(Section 3.3). Since the simulations were done at point-scale for the TVC domain, all sites in Figure 1 were optimized using the

same prior snowpack variable distributions. Both the default and Arctic versions of SVS-2 published by Woolley et al. (2024)

will be investigated in this study, in order to determine the importance of defining more accurate snow priors to retrieve SWE

with MCMC.165

The MCMC method iteratively samples the snow variables (Section 3.5.3) from these prior distributions and converts them

into σ0 using the Snow Radiative Transfer Model (SMRT) (Picard et al., 2018) model (Section 3.4). The probability of the

sampled snow properties is then calculated using the likelihood function (Section 3.5.2) and the snow variable distributions are

then updated to generate the posterior snow variable distributions. The posterior distributions are then compared to surveyed

snow properties (Section 3.2) to assess the performance of the MCMC method. Since only single band and single polarization170

σ0 measurements were acquired for this TVC experiment, retrievals were done with measurements closest to the optimal

incidence angle of 35 o (King et al., 2018). An extra test including four measurements in the proposed incidence angle range

of TSMM (20o < θ < 50o) was conducted. Lower incidence angles being less sensitive to snow volume scattering and higher

incidence angles being more sensitive to snow volume scattering, this emulates, without exactly reproducing, the dual Ku-Band

frequency, dual polarization concept of TSMM.175

3.2 Reducing the in situ snow profiles to two layers

The snow profiles used in this study were presented in Montpetit et al. (2024) where detailed stratigraphy was surveyed during

the TVC experiment and the measured snow profiles were reduced to two layered snowpacks. The methodology to obtain these

reduced snowpacks is summarized here.

In order to have a representative snowpack at the 100 m spatial scale, scale at which the UMASS airborne Ku-Band SAR180

data has been processed (section 2.1), all the MagnaProbe snow depths, SMP density and SSA profiles, and complete snowpit

measurements (temperature, snow cutter density, IceCube SSA and visual profile inspection) were used. The ∼ 290 Mag-

naProbe measurements per site were used to generate a snow depth distribution and its median value was used as its total snow

depth. The SMP data measured behind the snowpit wall (2 to 3 measurements) with a vertical resolution of 2.5 mm was then

calibrated (Proksch et al., 2015; Montpetit et al., 2024) into density and SSA profiles using the surveyed measurements from185

the density cutters and the IceCube instrument for SSA. Then, the 5 cm aggregated SMP profiles, thickness determined to
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be small enough to represent average snowpack layers (Sandells et al., 2022; Montpetit et al., 2024), were classified into two

grain types using the support vector machine methodology initially developed by King et al. (2020) and adapted to the 2018/19

TVC experiment by Montpetit et al. (2024): 1. rounded grains (R) or, 2. depth hoar (DH). From the classified SMP profiles,

distributions of density and SSA were generated for the two snow layers. The median value of these distribution was then190

used as the density and SSA values for their corresponding snow layers. Finally, from the snowpit measurements, the median

temperature measured for both snow layers was assigned to the representative snowpacks, even though temperature has little

impact in the modelled backscattered signal for dry snowpacks (Picard et al., 2018), and was not considered in the MCMC

optimization. Examples of representative snowpits are shown in section 4.1.

3.3 Reducing the SVS-2 snow profiles to two layers195

SVS-2 can generate snow profiles of up to 50 layers. This considerably impacts the computation time of radiative transfer mod-

elling using SMRT, thus increases the computation resources required to efficiently retrieve SWE using the MCMC approach.

Meloche et al. (2025) have developed an objective method using K-means clustering in the extinction coefficient (ke) and layer

height space, that generates a microwave equivalent snowpack from a multi-layered snowpack, that preserves the snowpack

radiative transfer properties while retaining the bulk physical snow properties of the snowpack like SWE. They have shown200

that this approach can improve computation time up to 87 % when comparing SMRT simulations with a 50-layer snowpack

and the equivalent 2-layer Microwave Equivalent Snowpack (MES).

For this study, all 120 ensemble members of both the default and Arctic version of the SVS-2 20-layer profiles were reduced

to 2-layer using the Meloche et al. (2025) method. To do so, the ke, calculated from the SVS-2 outputs using sub-modules

of SMRT, in addition to the layer heights were used to classify the multi-layered snowpacks into two-layered microwave205

equivalent snowpacks. Examples of representative snowpits are shown in section 4.1. These two-layered snowpacks were then

used to calculate the prior distributions used as first guesses for both snow layers into the MCMC method.

3.4 Radiative transfer modelling

To convert these snowpack variables into simulated σ0, the SMRT model is used (Picard et al., 2018). Similarly to Pan et al.

(2024), the Improved Born Approximation (IBA) model is used to calculate snow scattering, which is implemented in the210

python open-source code of SMRT. The same radiative transfer modelling configuration used in Montpetit et al. (2024) is used

in this study. Since the proposed TSMM SWE algorithm decouples the contributions to the measured σ0 from the soil and

snow in a two step process, the soil properties retrieved by Montpetit et al. (2024), using lower frequency satellite SAR data,

was used directly in SMRT. This is one of the difference with the methodology of Pan et al. (2024). Also, snow temperature

was not optimized in this retrieval since it is known to have little impact on simulated σ0 of dry snow (Picard et al., 2018). The215

measured temperatures of both layers were assigned in SMRT since it is a required input to simulated σ0.

8



3.5 Markov Chain Monte Carlo method

The Markov Chain Monte Carlo (MCMC) method used for this SWE retrieval algorithm is coded using the open-source PyMC

v5.16.2 python library (Salvatier et al., 2016; Abril-Pla et al., 2023), and was run on a high performance computing Linux

cluster, hosted at ECCC. The architecture of the MCMC method was inspired from the work of Pan et al. (2024), but many220

aspects of the methodology used in this study are different and will be described in this section.

The MCMC method was initially run for 15 000 iterations. A portion of these iterations were used as the burn-in period (a

maximum of 5 000 burn-in iterations was tested), e.g. these iterations are used to initialize the model and allow the sampling

of the different variables to stabilize to values more representative of the observations. This burn-in period is not included

in the iterations used to build the posterior distributions. Since MCMC tends to have correlated sampled variables between225

iterations, usually a large number of iterations is needed. Here, a maximum of 10 000 iterations were used. The Equivalent

Sample Size (ESS), is an index that determines the number of samples that are uncorrelated (Martin et al., 2021), and helps to

determine if the number of total iterations are sufficient. Additionally to the number of iterations, the MCMC method can use

chains that are run in parallel. This ensures that the final posterior distributions converge to a similar solution for all chains.

The chain convergence coefficient (R̂) is an index that calculate the between chain convergence of the posterior distributions230

(Gelman and Rubin, 1992). Both indexes are thus used to calculate the optimal number of iterations and chains to use. Tests

were conducted in order to determine the optimal number of burn-in iterations, total iterations and chains needed to converge

to proper solutions. These results are presented in section 4.2.

3.5.1 Prior distributions of snow properties

Similarly to the study of Pan et al. (2024), the initial prior distributions used as the first estimate of snow properties are235

constrained normal distributions. In order to make a methodology that works for all climates and all seasons, in the context

of a satellite mission like TSMM, the means and standard deviations used to initialize these priors come from an ensemble of

SVS-2 outputs. Since MCMC outputs are very sensitive to initial prior estimates, using a dynamic prior that changes through

time and space allows for a more precise prior, which will result in a more precise SWE posterior estimate from the MCMC

approach. This will be further discussed in section 5.2. Table 1 shows the means and standard deviations of all 120 members of240

both the default and Arctic versions of the SVS-2 outputs (Woolley et al., 2024). For snow height (Hsnow), the minimum value

was chosen as the thinnest representative thickness of a layer (Sandells et al., 2022; Montpetit et al., 2024) and the maximum

value was randomly put to 1 m even though no 1 m snowpack was measured at TVC during the campaign (e.g., see Figure 4

of Montpetit et al., 2024). The minimum and maximum values for snow density (ρsnow) and SSA were extrapolated from all

the measurements of the field campaign. The values for SWE are also shown in Table 1 for reference and discussion purposes,245

since SWE is the desired retrieved parameter of the study. Examples of these priors are presented in section 4.1. In order to

assess the importance of using the best possible source of data to generate these priors, means and standard deviations from

the top 30 ensemble members of the Woolley et al. (2024) datasets were used. The impacts of the accuracy of the initial snow

property estimates on SWE retrieval are shown in sections 4.3 and 5.2. Given the known higher uncertainty of the SVS-2
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SSA outputs for both versions of the model (Woolley et al., 2024), compared to density and thickness, tests were conducted to250

increase the standard deviation of SSA for both snow layers, to assess its impact on retrieved SWE.

Table 1. Values used for the truncated normal distributions of the MCMC priors using the 120 and top 30 members of both SVS-2 versions

of Woolley et al. (2024). Min and max values were extracted from all surveys of the 2018/19 TVC experiment. For reference and discussion,

mean and standard deviation for the layered SWE information is also given, though these values are not used in the MCMC priors since SWE

is not an explicit input to the model. Std stands for standard deviation.

Snow Property Grain Type

All 120 members Top 30 members

Min MaxMean Std Mean Std

Default Arctic Default Arctic Default Arctic Default Arctic

Hsnow (cm)
R 29.8 27.1 7.7 10.0 24.3 28.5 2.8 9.5 5.0 100.0

H 15.4 13.7 4.1 8.3 15.8 13.3 2.9 7.9 5.0 100.0

ρsnow (kg·m−3)
R 217.7 246.5 14.6 20.4 231.1 235.4 5.2 8.2 150.0 450.0

H 190.0 200.3 30.0 40.8 218.7 199.0 3.2 36.0 100.0 350.0

SSA (m2·kg−1)
R 12.7 11.6 1.6 2.8 12.1 11.2 1.4 2.5 10.0 50.0

H 5.2 4.0 1.4 1.5 6.1 4.0 0.8 1.5 8.0 25.0

SWE (mm)
R 64.2 66.2 13.3 23.5 56.1 67.2 6.7 22.2 — —

H 29.6 30.6 10.1 24.0 34.7 29.0 6.6 22.7 — —

Finally, similarly to Pan et al. (2024) and Picard et al. (2022b), not knowing exactly the accuracy of the measured radar signal

and its uncertainty given the variability of snow/soil properties at the 100 m scale, an uncertainty parameter (δ) was given to

the measured and simulated backscattered signals, which were described by a normal distribution centered at the measured σ0

and δ as its standard deviation. This uncertainty parameter is then fed into the likelihood function. The δ prior was initialized255

at the radiometric accuracy of the UMASS antenna of 1 dB, with an uncertainty of 0.5 dB.

3.5.2 Likelihood function

In order to improve computation efficiency, the log-likelihood function was used between the measured and simulated σ0

(Leung, 2022), and is given by:

l(σ0
mes, δ|σ0

sim) =−1

2

(
σ0
mes −σ0

sim

σ

)2

− ln(
√
2π)− ln(δ) (1)260

where l(σ0
mes, δ|σ0

sim) is the likelihood metric between the measured σ0 (σ0
mes) and simulated σ0 (σ0

sim), given an uncer-

tainty on the measured σ0 (δ). This likelihood function is then used to calculate the Metropolis-Hastings likelihood ratio, which

determines if the sampled snow parameters of the current iteration are accepted or rejected within the sampling strategy.
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3.5.3 MCMC sampling

Given that the current version of SMRT uses the Discrete Ordinate Radiative Transfer (DORT) (Picard et al., 2018, 2013)265

method to solve the radiative transfer equation, and this solver is not differentiable for all variables, more modern and efficient

samplers, like the No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2011), could not be used. This is why the Adaptive

Differential Evolution Metropolis (DEMCZ) sampling (ter Braak and Vrugt, 2008) method, implemented in PyMC, was used in

this study. This method differs from the original differential evolution metropolis (DEMC) sampling method (ter Braak, 2006)

since it uses information from past iterations to generate future jumps in sampled snow properties. DEMCZ also requires a270

lower number of chains (N ) to be run in parallel in order to converge to a solution compared to N = 2d, where d is the number

of snow parameters to optimize, e.g. 3 snow parameters (Hsnow, ρsnow, SSA) per layer, for a total of 12 chains for our current

two-layer snowpack configuration. Also, for our specific SWE retrieval algorithm, N can be kept constant, where if we have

more or less snow layers, we do not need to adapt the number of chains to run, even though the number of snow properties

change. DEMCZ is also known to be more efficient than random walk samplers. In this study, different number of chains275

were tested (a minimum of 4 and up to 12), and a total of 7 chains was chosen, in order to ensure proper sampling and good

convergence (ESS and R̂), without compromising the computation efficiency of the algorithm. Similar results were obtained

using 4 chains, but the model was less stable. The maximum number of chains was chosen as computation efficiency was not

impacted, with the similar convergence, and model stability was preserved no matter the number of snow layers.

Also, since this experiment optimizes many snow variables and many combinations of these variables can provide the same280

simulated σ0, constraints between layers for each variables were introduced, similarly to Picard et al. (2022a), where they

constrained density profile to have a positive gradient with depth. Here, given the two-layer experiment, these constraints

were determined based on local and published knowledge of the vertical profiles (see Figure 3 to 5). Hard constraints were

put on density, SSA and thickness between the layers. If those constraints were not met, the sampled values for these three

parameters were rejected. The density of the R layer had to be higher than for the DH layer. The thickness of the R layer was285

also constrained to be lower than the DH layer. Finally the SSA of the R layer had to be higher than the DH layer. The impact

of these constraints will be presented in Section 4.4 and discussed in Section 5.

4 Results

In this section, the different sources of snow information will be presented in order to understand how the SWE retrieval

algorithm is impacted within the MCMC method. The results of the tests to determine the MCMC parameterization will then290

be presented. Results of the SWE retrievals using the UMASS Ku-band SAR data will then be shown, and finally the snow

posterior distributions will be compared to the measured in situ snow properties for different MCMC configurations.
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4.1 Modelled and measured snow properties

Figure 3 shows the layer thicknesses (Hsnow) distributions for both SVS-2 versions and the measured layer thicknesses for

the R (a) and DH (b) layers for all sites of the TVC experiment. The truncated normal distributions (Table 1) are overlaid295

on top of the histograms and the normal distribution of the measurements is shown in red and would consist in the idealized

posterior distribution that the MCMC method would retrieve. We see that both versions of SVS-2 overestimate the thickness

of the R layer and underestimate the thickness of the DH layer. That said, both versions show good overlap between their

normal distribution and the idealized posterior distribution, suggesting that the MCMC method could converge to the proper

thicknesses efficiently.300

Figure 3. Measured snow thickness (Hsnow) distributions during the January TVC campaign, compared to the thickness distributions provided

by the 120 SVS-2 ensemble members (Woolley et al., 2024) for the two dominant snow grain type layers a) rounded grains, b) depth hoar,

and c) the total thickness, including both snow layers. Magenta lines represent the truncated normal distributions (Table 1) used as priors,

using the mean and standard deviations of the two different SVS-2 versions. The red line represents the normal distribution, using the mean

and standard deviation of the measurements, and consists in the desired posterior distributions obtained by the MCMC approach.

Figure 4 shows the same distributions as figure 3, for densities. Both SVS-2 versions underestimate the density of the R

layer, and the Arctic version shows a better overlap with the idealized posterior distribution. The distribution of both SVS-2

versions overlap well with the idealized posterior distribution for the DH layer even though there is a tendency to slightly

underestimate the density.
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Figure 4. Same as Figure 3 for snow density (ρsnow).

Figure 5 shows the same distributions for SSA. Here, it is clear that SVS-2, no matter the version, underestimates the SSA305

and even outputs values that are below the minimum values measured in the field. In order to achieve the overlap shown in

Figure 5, the SVS-2 standard deviations had to be tripled.

Figure 6 shows the same distributions for SWE. We see that SVS-2 tends to overestimate SWE for the R layer and underes-

timate SWE for the DH layer. Variability in modelled layered SWE for both versions of SVS-2 is similar to what is observed

in the field. This results in a very narrow range of modelled bulk SWE that fit very well with the observations. This tends310

to indicate that SVS-2 reproduces the bulk SWE properly over TVC but has more difficulty in properly representing SWE

stratigraphy. Figure 6c also shows that the higher uncertainties and the over- and underestimations of the layered SWE tend to

cancel out for the bulk properties. It should be noted that the distributions in Figure 6c do not realistically represent the priors

and the uncertainty on SWE since SWE is not an explicit variable used in the MCMC model.

Impacts of the different prior distributions shown in Figures 3, 4, and 5 will be discussed in section 5 in the context of the315

SWE retrieval.

4.2 MCMC algorithm parameterization

To determine the optimal MCMC parameterization, different tests with different numbers of iterations were run. It was deter-

mined (not shown) that beyond 1000 burn-in iterations (a total of 5000 burn-in iterations were tested), no significant improve-

ment was observed to converge to a proper solution. Below 1000 burn-in iterations, more chains in parallel and a larger number320

of total iterations were needed for the method to converge, but a larger uncertainty on the posterior distributions was observed.
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Figure 5. Same as Figures 3 and 4 for SSA. Since SSA is grain type specific, a bulk snowpack value is not shown, as in Figures 3 and 4.

Figure 6. Same as Figures 3 and 4 for SWE.

With 1000 burn-in iterations, a test with 10 000 iterations was run over all sites to determine the optimal number of iterations

necessary. Figure 7 a) shows the R̂ (Gelman and Rubin, 1992) over all the iterations. The mean, minimum and maximum R̂ for
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all the sites are shown in Figure 7 a), as well as the recommended acceptable threshold (Vehtari et al., 2021). It it shown that

after 4000 iterations, all R̂ values are below 1.1 and some start to be below the recommended threshold, which is considered325

acceptable in certain contexts, where the ESS is large enough.

Figure 7 b) shows the evolution of the ESS for the 10 000 iterations. We see that after 5000 iterations, all ESS values are

beyond the acceptable threshold of 100 and are five times greater on average. These results, with the results of Figure 7 a)

indicate that the optimal number of iterations is around 5000 iterations. Figure 7 c) shows the evolution of the SWE RMSE

over all the iterations. We see that after 4000 iterations, no considerable gain is achieved in retrieving SWE. With the results330

shown in these three figures, 5000 iterations was selected in order to ensure optimal SWE retrieval and proper convergence

of all the retrieved snow properties for all snow layers. All the results of the following sections were thus obtained after 5000

iterations.

4.3 MCMC retrieved snow water equivalent

The following results present the impact of using different priors in the MCMC method on the retrieved SWE. Figure 8 shows335

the retrieved SWE from the MCMC method with priors coming from all 120 ensemble members of the default and Arctic

SVS-2 versions (Woolley et al., 2024). The truncated normal distributions used for the priors were generated with the mean

values and the standard deviations (Table 1). The original modelled SWE values from both SVS-2 versions are shown in red,

with the variability in modelled bulk SWE among the 120 ensemble members is shown in the red shaded area. The expected

SWE retrieval accuracy of the TSMM mission, for an Arctic snowpack (30 mm, see Derksen et al., 2019), is also shown340

in this figure. Retrieved SWE from the default SVS-2 priors show larger RMSE (27.6 mm) than the ones retrieved with the

Arctic SVS-2 priors (20.9 mm). These results are summarized in Table 2. Retrieved SWE uncertainty is also shown in Table 2.

Here, uncertainty is defined as quartile deviation instead of the usual standard deviation since the posterior distributions are

not strictly normal distributions. Little variability in the retrieved SWE from both SVS-2 versions can be observed. There is

also an offset between the retrieved SWE and the original SVS-2 modelled SWE. The uncertainty on the retrieved SWE values345

(error bars) is slightly better for the default version of SVS-2 (11.9 mm mean quartile deviation) compared to its Arctic version

(19.6 mm mean standard deviation). Nonetheless, the SWE estimates from the Arctic version show only two points outside

the TSMM expected accuracy compared to eight points for the default version. Since the expected TSMM accuracy is on the

RMSE criterion, both tests meet the requirement.

We see that the initial modelled SWE value of the Arctic version of SVS-2 is slightly better than the one from the default350

version. The Arctic version also shows little variability (red shaded area) compared to the default version, in its initial SWE

estimate. Both versions of the models do not represent the range of SWE values that were measured in the field. These obser-

vations will be discussed in section 5, supported by results shown in section 4.4. Knowing that many of the ensemble members

of both SVS-2 versions were not representative of the Arctic snowpack, the same test was processed using the top 30 ensemble

members, which were determined to be more representative of snowpacks surveyed at TVC (Woolley et al., 2024).355

Figure 9 shows the retrieved SWE using the top 30 SVS-2 ensemble members as priors. The default version of SVS-2 seem

to provide better results (RMSE = 17.9 mm) in terms of SWE retrieval. The values are in fact close to the original modelled
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Figure 7. Evolution of a) R̂ (Gelman and Rubin, 1992), b) Equivalent Sample Size (ESS) (Martin et al., 2021) for all variables, all sites, and

seven chains; and the SWE RMSE over the 10,000 iterations of the MCMC optimization. Acceptable R̂ threshold published by Vehtari et al.

(2021), and ESS threshold published by Kass et al. (1998) are shown in red.

SVS-2 SWE. There is still little variability compared to measured SWE values. The Arctic version shows lesser performances

(RMSE = 21.2 mm), with a similar offset shown in figure 8, but the retrieved SWE show a bit more spread. The initial SVS-2

SWE values do not differ considerably from the previous test. One significant result compared to past tests is the uncertainty of360
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Figure 8. Comparison of the retrieved SWE using the MCMC approach with priors coming from all 120 ensemble members of the a) default

and b) Arctic versions of SVS-2 (Woolley et al., 2024). The error bars show the 1st and 3rd quartiles of the measured (x-axis) and posterior

(y-axis) distributions. The red shaded areas show the 1st and 3rd quartiles of the SVS-2 distributions (Figure 6c).

the retrieved SWE values (errors bars) for the default version are much narrower (6.9 mm mean quartile deviation). From the

past two figures, the top 30 default SVS-2 ensemble members seem to perform best, where most points and their uncertainty

fit within the expected accuracy of TSMM. However, with results presented in section 4.4, the default version was rejected for

the following tests, due to the retrieved posterior snow properties (see section 4.4).

Figure 10 shows the results of the SWE retrieval when increasing the uncertainty on the SSA (δSSA), and when including365

four radar observations from different angles. When comparing the impact of increased δSSA on priors, we see that the overall

accuracy is improved, with an RMSE = 18.7 mm, compared to 20.9 mm (Figure 8). Similar spread can be observed, but one

observed improvement is the lower difference between the retrieved SWE values and the original SVS-2 modelled SWE. One

interesting result to note is that the uncertainty (22.5 mm quartile deviation) on the retrieved SWE values (errors bars) are not

considerably impacted compared to the original Arctic test (19.6 mm quartile deviation).370

The greatest improvement can be observed when retrieving SWE using four σ0 measurements. The lowest RMSE was

obtained (15.8 mm), out of all the tests, and all values are within the expected accuracy of the TSMM mission. Again, the

uncertainty (23.4 mm quartile deviation) on the retrieved SWE values (error bars) were not considerably impacted, though in

some cases, the uncertainties are slightly larger.
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Figure 9. Comparison of the retrieved SWE using the MCMC approach with priors coming from the top 30 ensemble members of the default

and Arctic versions of SVS-2 (Woolley et al., 2024). The error bars show the 1st and 3rd quartiles of the measured (x-axis) and posterior

(y-axis) distributions. The red shaded areas show the 1st and 3rd quartiles of the SVS-2 distributions (Figure 6c).

Table 2. Retrieved SWE RMSE and uncertainty, for different parameterizations of the MCMC method. Uncertainty is defined as the quartile

deviation, and the values consist in the mean value over all sites. Percentages over the mean surveyed SWE values are given in parentheses.

Tests were conducted with the default SVS-2 version as priors and larger δSSA but due to MCMC convergence issues, results are not shown

here.

Parameterization
SWE RMSE (mm) SWE uncertainty (mm)

Default Arctic Default Arctic

120 ensemble members 27.6 (28.7%) 20.9 (21.7%) 11.9 (12.9%) 19.6 (21.1%)

Top 30 ensemble members 17.9 (18.7%) 21.2 (22.0%) 6.9 (7.4%) 18.8 (20.2%)

Larger δSSA — 18.7 (19.4%) — 22.5 (24.2%)

Larger δSSA + 4 obs — 15.8 (16.4%) — 23.4 (25.2%)

4.4 MCMC retrieved snow properties375

In this section, the impacts of prior selection and constraining valid snowpack properties, between layers, within the MCMC

method will be presented. The SM site (Figure 1) was chosen as an example for these results, and is typically what is observed

for all sites. Figure 11 shows posterior distributions of snow parameters from the MCMC method and the normal distribution of

the surveyed snow measurements (snowpits) and priors from the default SVS-2 version (column a), the Arctic SVS-2 version
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Figure 10. Comparison of the retrieved SWE using the MCMC approach with priors coming from a) the top 30 ensemble members of the

Arctic versions of SVS-2 (Woolley et al., 2024) and b) using the same top 30 ensemble members of the Arctic SVS-2, tripled prior uncertainty

on the SSA (δSSA) and three additional σ0 observations (different incidence angles), emulating the number of observations the TSMM would

acquire. The error bars show the 1st and 3rd quartiles of the measured (x-axis) and posterior (y-axis) distributions. The red shaded areas show

the 1st and 3rd quartiles of the SVS-2 distributions (Figure 6c).

(column b) and the default SVS-2 version without constraining the valid snow properties (column c). The evolution of the380

MCMC sampling for all snow parameters are also shown throughout the 5000 iterations in Figure 12, for the three same

scenarios.

Figure 11 a) shows that, using the default version of SVS-2, SWE tends to be underestimated for this site compared to

its initial prior estimation, e.g. the bias between medians is 24.5 mm higher for the posterior than the prior, compared to the

snowpit distributions. Posterior thicknesses for both layers show improvement from their respective priors, i.e. an improvement385

of 14.4 cm and 3.8 cm for the R and DH layers respectively. Densities show little improvements even after 5000 iterations.

Posterior and prior distributions tend to overlap well, without much convergence towards the snowpit distributions, with only a

difference of 4.9 kg · m−3and 0.1 kg · m−3difference between their medians for the R and DH snow layers respectively. SSA

for DH shows improvement where the posterior median is closer to prior median by 0.7 m2 · kg−3. There is an improvement of

the SSA for the R layer but tend to still be largely underestimated compared to measured SSA, with a bias of -20.4 m2 · kg−3.390

Figure 11 b) shows that, using the Arctic version of SVS-2, SWE is slightly more underestimate by the posterior compared

to the prior, i.e. the bias between medians is 24.7 mm higher for the posterior than its prior, which had a bias of 6.3 mm with

the snowpits measurements. SWE estimate is better than what was estimated using the default SVS-2 version, where a bias

of -18.5 mm is obtained for the Arctic SVS-2 prior compared to -36.1 mm for the default SVS-2 prior (Figure 11 a). Again,
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thicknesses are well estimated by posteriors compared to priors, with 16.5 cm and 5.8 cm improvements on biases for the R395

and DH snow layers respectively when compared to measurements. This shows that both sources of priors tend to perform well

as first guesses for the MCMC method. Density posteriors still show some differences with measurements (-50.3 kg · m−3and

-31.1 kg · m−3biases for R and DH snow layers respectively) but the errors are considerably lower than the estimates from the

default SVS-2 version, where improvements of 74.0 kg · m−3and 10.8 kg · m−3on biases were observed for the R and DH

snow layers . The same observation can be made for the SSA posteriors, where an improvement of 11.8 m2 · kg−3and 4.7 m2400

· kg−3is observed compared to results of figure 11 a.

Figure 11 c) shows the same results when no constraints are given to the sampled snow parameters between layers, and is

mainly presented for discussion purposes in section 5. The best results in terms of SWE estimate is observed compared to

results of Figures 11 a) and 11 b), with a bias of -8.4 mm. Nonetheless, the thicknesses show the worst estimates (bias of

14.9 cm and -9.0 cm for R and DH grain layers) and do not deviate from the prior estimates (0.1 cm and 1.1 cm difference405

between the posterior and prior medians for R and DH grain layers). The same observation is made for the density of the R

layer with a bias of -127.6 kg · m−3for the posterior compared to -129.5 kg · m−3for the prior. The density of the DH layer is

well estimated though (bias=0.3 kg · m−3) and shows the best results out of all MCMC estimates. Similar observations can be

made for the SSA where only a slight improvement is seen for the R layer (bias=-188.2 m2 · kg−3), and excellent estimation

of the DH layer SSA is seen (bias=0.2 m2 · kg−3).410

Figure 12 shows the sampling evolution of the MCMC method for the same three scenarios as in Figure 11. We see that with

less observations (one observations for Figures 12 a and c, and four observations for Figure 12 b), the sampling converges more

rapidly and shows less variability, which is also shown in the spread of the retrieved parameters (Figure 11). One parameter that

does not show as much variability with more observations is the radar σ0 uncertainty (δ). The variability of the σ0 measurement

tends to converge around 1.1 dB ±0.3 dB, 1.2 ±0.2 dB and 1.2 ±0.4 dB for Figures 12 a), b) and c) respectively. These results415

also show that with poor prior estimates (Figure 12 a) and an unconstrained optimization (Figure 12 c), some snow parameters,

especially for the R layer quickly converge to a poorly estimated value, even though the SWE estimate is close to measurements.

The differences in snow profile estimates between the different selected prior distributions and MCMC parameterizations

will be further discussed in the next section. The implication for different applications will also be discussed.

5 Discussion420

5.1 Retrieving SWE with MCMC

Results of section 4 show that, like previous studies (Pan et al., 2024), the MCMC method is very powerful to fit, in this

case, SAR σ0 observations with modelled σ0, when many variables need to be optimized simultaneously. Figure 11 shows

that, without proper constraints, the MCMC method can use the σ0 information to optimize snow parameters and still achieve

great results when comparing to bulk SWE, but returns a snow profile that is not representative of what is found in the field425

(Figure 11 c). These results confirm that SAR σ0 is sensitive to SWE in the Ku-Band range, since, even with a poorly estimated

microstructure (Figures 11 a and c), which is an important parameter that drives snow volume scattering in that frequency range
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(Montpetit et al., 2024; Picard et al., 2022b; King et al., 2018), other variables like thickness are tuned to fit the measured σ0

(Figure 12 c), and can still achieve a reasonable SWE estimate compared to measurements. It should be noted that when

SWE is poorly estimated by the prior, the posterior SWE estimate has a higher error (Figure 9), where SWE estimates are430

concentrated around the initial modelled SWE and do not diverge from that initial estimate. Also, further tests were done (not

shown), where the uncertainty on the SWE was increased, by increasing uncertainty on thickness and density individually and

separately. Every tests resulted in underestimation of SWE, most likely due to the underestimation of SSA in the priors, which

boosted the volume scattering of both layers. The most sensitive parameter in the MCMC model being thickness, it reduced the

snow thickness to reduce the volume scattering and fit the modelled σ0 with the measured σ0, resulting in an underestimation435

of SWE. Figure 11 c) also confirms previous observations (King et al., 2018) that Ku-Band σ0 is most sensitive to the DH

layer rather than the R grain wind slab layer. Parameters from the DH layer show lower median biases than the R layer, and

the latter also tends to stick to its prior distribution, indicating lower sensitivity of the σ0 to the R layer. It explains why the

posterior SWE estimates are lower than the initial SVS-2 estimates for both versions (Figure 8), since σ0 is very sensitive to

both SWE and microstructure. The thickness of the R layer is properly estimated, i.e. MCMC reduces its thickness to lower the440

scattering caused by the low SSA estimation, and does not increase its density sufficiently to properly estimate SWE. The fact

the SVS-2 underestimates the R layer density, and that the MCMC model struggles to sample values that are close to measured

densities, aggravates the underestimation of SWE. This is why it is important to have some knowledge of stratigraphic snow

properties, e.g. number of snow layers, density and SSA gradients, to constrain the MCMC method to valid snow properties

without overfitting on the most sensitive parameters, and to not over-trust the initial prior estimates, i.e. not be too restrictive on445

the prior uncertainties. With inter-layer constraints (Figure 11 a and b), it is possible to achieve SWE estimates within desired

errors, like the 30 mm RMSE determined for the TSMM mission (Derksen et al., 2019), and comparable to the unconstrained

MCMC method. A way to potentially solve the issue of the high sensitivity to layer thickness would be to use SWE as a prior

directly and infer snow density and thickness from published relationships between SSA and density (Domine et al., 2007).

This will be further tested in future experiments in the context of TSMM.450

The impact of the initial guess is also valid for other snow parameters. There is a very fine balance to identify between prior

estimates and their uncertainties. The farther the initial guess is from the ground truth, higher is the number of iterations needed

for MCMC to converge towards a final solution (Pan et al., 2024). Also, increasing the uncertainty on the priors tend to increase

the uncertainty on the posteriors and a larger number of iterations is also needed to converge to a solution. Figure 10 shows

that by increasing the uncertainty on SSA, a known snow parameter to be highly underestimated by SVS-2 (Woolley et al.,455

2024), the accuracy of the retrieved SWE is improved. By allowing the method to sample SSA in a wider range of possible

values, closer to what was measured in the field, more weight is given to snow microstructure in the modelled σ0. In this

case, increasing the uncertainty on SSA does not directly impact the uncertainty on retrieved SWE, since SWE is a function

of density and thickness. Nonetheless, it does have an impact on the σ0 measurement uncertainty (δ), which indirectly adds

uncertainty to all snow variables.460

Similarly, when comparing the outputs from both SVS-2 versions, the prior density estimates for the R layer of the default

version (Figure 11 a), do not allow to sample values close to the measured ρsnow, due to the lower prior uncertainty, which
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prevents the MCMC method to properly sample other variables, such as SSA for the same layer, since volume scattering in the

IBA model depends on both SSA and density. It should be noted from Figure 11 a), that a secondary peak had started to form,

for both ρsnow and SSA for the R layer, closer to the measured values after 5000 iterations. This indicates that with a higher465

number of iterations, it is possible that the method could have converged towards a better solution, even with a less accurate first

guess, showing the potential of MCMC to retrieve snow parameters. That said, a test was conducted to confirm this hypothesis

(not shown here), with 40,000 iterations and no significant improvement was observed compared to Figure 11 a). With the

initial estimate of ρsnow being closer to what was measured with the Arctic version of SVS-2, we clearly see that after 5000

iterations, the method converges towards a solution that is closer to the measurements for all snow parameters. Figure 7 c) also470

shows, that increasing the number of iterations does not improve SWE retrieval.

As shown in Figure 10, the largest gain in SWE accuracy comes from adding more observations to the retrieval method. In

this study, measurements at different incidence angles were available, which modified the sensitivity of the σ0 to the different

scattering mechanism (Tsang and Kong, 2001), thus modifying the importance of the different snow parameters in the retrieval

process. This could explain why the retrieved uncertainty on the radar σ0 (δ) is less variable in Figure 12 b), since with four475

observations, that uncertainty is spread out over the snow parameters and less on the σ0 measurements. This result also shows

that, even though the lower Ku-Band frequency (13.5 GHz) is sensitive to SWE and snow volume scattering, it still has a high

sensitivity to surface scattering at the soil-snow interface, which could explain why there is not significant spread among the

retrieved SWE. The lack of spread in the retrieved SWE can also be explained by the low uncertainty on the thickness priors

of both layers, which are the most sensitive parameters in the MCMC model, but are restrained to a narrow range of thickness480

values. Also, the fact that volume scattering is less impacted by density, than it is by SSA, reduces the potential of sampling a

wider range of SWE values, which is a function of snow thickness and density. The higher error coming from using optimized

effective soil properties (increased RMSE of 0.4 dB) for all the TVC domain instead of site specific variables (see Fig.13 of

Montpetit et al., 2024), propagates in the uncertainty of the σ0 measurement and impacts the retrieved snow properties. Since

the uncertainty on the modelled σ0 values (δ) are of the order of 1.5 dB, compared to a change in RMSE of 0.4 dB, it is unlikely485

that considering site specific soil properties will have a significant impact on the retrieved SWE in this study. That said, it was

shown by (Montpetit et al., 2024) that soil cannot be neglect for SWE retrievals at Ku-band, and that its properties must be

properly estimated. This result confirms the choice of the dual frequency, dual polarization concept for the TSMM mission,

where four observations will be made available for each satellite pass. The higher Ku-band frequency (17.25 GHz) being more

sensitive to snow micro-structure, and the cross-polarization being more sensitive to volume scattering, especially from the490

DH layer (Ulaby and Ravaioli, 2020). This concept should allow the MCMC method to converge towards a good stratified

snow profile estimate, given that proper stratigraphic information is known, i.e. layering, DH fraction, vertical density SSA

gradients, etc. For this study, this knowledge was based on field observations, which is not possible to achieve operationally at

the continental scale. This is why, improved snow modelling for different landscapes, and improve data assimilation schemes

are necessary to enhance the predictability and assessment of these stratigraphic conditions.495
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5.2 Current limitations of snow physical models

Results of section 4.3 show that properly estimating the initial guess for the different snow properties is crucial to accurately

retrieve SWE using the MCMC approach. In an operational context, computation efficiency is important. This is why a proper

prior is important (Figure 9) to improve the accuracy of SWE estimates but also reduce the number of iterations needed for

the MCMC method to converge to a solution. Again, in an operational context over various landscapes, as seen in Canada, it500

is important to rely on snow modelling such as what SVS-2 can provide, in order to spatialize the priors but also allow them to

evolve in time, thus adapting the priors in both space and time.

That said, we have seen that the higher uncertainty on the SSA estimates (Figure 5) makes it challenging to use directly

the SVS-2 estimates as priors. Same observation is true for the density of the R layer (Figure 4), where the density is strongly

underestimated, making it more difficult for MCMC to converge to a realistic solution. These higher uncertainties mainly505

come from the fact that Crocus, the snow physical model implemented in SVS-2, was originally developed to simulate alpine

snow. Ongoing work will implement new snow physical processes in Crocus, and improve the modelling of vertical physical

processes for the different climates observed in Canada.

This study has shown that, even though the priors may have higher uncertainties, it is still possible to retrieve SWE within

the 30 mm RMSE threshold (Figure 10) set for TSMM. The proposed improvements above, supported by results of section 4,510

should provide a more efficient and accurate retrieval algorithm that could be applied to a large and diverse landscape, such as

Canada. This study is the initial step to creating a SWE retrieval algorithm that can be applied both spatially and temporally.

The validation done here, in an Arctic environment, will be reproduced in other global climates, and will be used to further

enhance the SWE retrieval algorithm.

6 Conclusions515

This study uses the previously published Trail Valley Creek (TVC) experiment 2018/19 dataset (Montpetit et al., 2024) in order

to developed a snow water equivalent (SWE) retrieval method inspired by previous work using the Markov Chain Monte Carlo

(MCMC) method (Pan et al., 2024). The heart of the retrieval algorithm relies on the Snow Radiative Transfer Model (SMRT)

model (Picard et al., 2018) which allows to minimize a likelihood function between the measured and modelled backscatter

measurements at Ku-band (13.25 GHz). Here, the measured σ0 come from the University of Massachusetts instrument mounted520

on board a Cessna-208. The retrieved SWE and layered snow properties from the MCMC method were compared with field

measurements surveyed during the 2018/19 TVC experiment.

Compared to previous studies retrieving SWE under dry snow conditions using the MCMC method, here we neglect certain

snow parameters like snow temperature, which do not have a significant impact on radar backscatter radiative transfer modeling

(Picard et al., 2018). This study focuses on retrieving snow properties and uses the retrieved underlying soil properties needed525

for radiative transfer modelling from Montpetit et al. (2024). We also show that, in order to create an efficient SWE retrieval

algorithm applicable to various climates and landscapes, the new version of the land surface model used in support of environ-

mental forecasting at Environment and Climate Change Canada, Canadian Soil Vegetation Snow version 2 (SVS-2) (Woolley
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et al., 2024; Garnaud et al., 2021; Vionnet et al., 2022) can be used to generate prior distributions for the MCMC method. This

is crucial for future satellite missions such as the Terrestrial Snow Mass Mission (TSMM). Given the results shown in this530

study, we should also expect that by allowing the priors to evolve in time and space, given the dynamic seasonal evolution of

weather and snow conditions, a reduced number of iterations will be needed for the MCMC method to converge to a solution,

thus improving computation efficiency. Since the SWE retrieval algorithm optimizes 3×N parameters simultaneously, where

N is the number of snow layers present in the snowpack, we also implemented the snowpack layer reduction method published

by Meloche et al. (2024) to improve computation efficiency, which reduces the number of layers to a relevant number, i.e. a535

rounded grains (R) wind slab snow layer with an underlying coarse depth hoar (DH) snow layer (Montpetit et al., 2024).

Even though the SVS-2 outputs do not reflect perfectly the measured snow height (Hsnow), snow density (ρsnow) and Specific

Surface Area (SSA) during the 2018/19 TVC experiment (Section 4.1), it is possible to increase the uncertainty on the prior

distributions for the known snow properties to have higher errors in order to retrieve SWE accurately (Section 4.3). These are

also known limitations of the Crocus model for Arctic snowpacks and work is ongoing to improve the model to better represent540

modelled snow properties over various climates. This work also indicates that land surface models like SVS-2 and radar

measurements can work together to mutually improve their accuracies. This is part of the TSMM concept where SVS-2 and

the radar measurements will work together with a data assimilation scheme to mutually improve their estimates, particularly in

remote regions with little observations (Derksen et al., 2019).

It was shown that it is important to have priors that reflect typical values observed in the field and to constrain the inter545

layer valid properties (e.g. SSAR > SSADH ), since the MCMC tends to optimize parameters that influence the radar σ0 the

most. This can lead to a better SWE estimate (Table 2) but with a very different retrieved vertical snow profile compared

to measurements (Figure 11). This has significant impacts for many hydrological applications which require stratified snow

properties (Cristea et al., 2022), and could also impact numerical prediction systems which uses retrieve snow properties in

their data assimilation scheme (Alonso-González et al., 2022).550

It was also shown that the best improvement to SWE accuracy and uncertainty was to include more σ0 observations, where

the different observations are more or less sensitive to either surface or volume scattering. This was achieved here by including

observations at various incidence angles. A SWE RMSE of 15.8 mm was achieved when including four observations and a

larger uncertainty on SSA, allowing MCMC to more rapidly sample values included within the measured distributions. This

result confirms assumptions used to develop EO missions to retrieve SWE such as CoReH2O (Rott et al., 2010), and TSMM555

(Derksen et al., 2019), where dual-frequency and dual-polarization concepts are put forward, giving four observations for a

single satellite pass. The higher frequency in the dual-frequencies and the cross-polarization term ensures a higher sensitivity

to snow volume where the lower frequency and the co-polarization term ensures a higher sensitivity to surface scattering

properties such as the snow-soil interface.

Work is still required in order to operationalize SWE retrieval algorithms such as the one proposed in this study, but it560

confirms, along with previous studies (Singh et al., 2024; Pan et al., 2024; Durand et al., 2024; Lemmetyinen et al., 2022), the

feasibility of such EO missions.
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Figure 11. Example from the SM site of prior distributions coming from the default (column a, same prior parameterization as Figure 9a)

and Arctic (column b, same prior configuration as Figure 10b) versions of SVS-2 and retrieved posterior distributions from the MCMC

method, for the different snow variables compared to the surveyed snow measurements. Column c) consists in the MCMC optimization

using the default version of SVS-2, where no vertical constraints on snow properties were applied. δ is the free parameter corresponding to

the uncertainty of the radar backscatter measurement and was not measured in the field.
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Figure 12. Evolution of the MCMC sampling for the 5000 iterations which correspond to the posterior distributions of Figure 11 for the same

three optimization scenarios. Full horizontal lines consist in median values from measurements (snowpits) and the dashed horizontal lines

consist in the mean of the priors. The min/max values consist in the minimum and maximum properties sampled at each iteration between

the seven parallel sampling chains.
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