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Abstract. Snow is an important freshwater resource that impacts the health and well-being of communities, the economy, and

sustains ecosystems of the cryosphere. This is why there is a need for a spaceborne Earth observation mission to monitor global

snow conditions. Environment and Climate Change Canada, in partnership with the Canadian Space Agency, is developing a

new Ku-band synthetic aperture radar mission to retrieve snow water equivalent (SWE) at a nominal resolution of 500 m,

and weekly coverage of the cryosphere. Here, we present the concept of the SWE retrieval algorithm for this proposed satellite5

mission. It is shown that by combining a priori knowledge of snow conditions from a land surface model, like the Canadian Soil

Vegetation Snow version 2 model (SVS-2), in a Bayesian model
::::::
Markov

:::::
Chain

::::::
Monte

:::::
Carlo

::::::::
(MCMC)

::::::::
Bayesian

:::::
model

:::::::
coupled

::::
with

:::
the

:::::
Snow

:::::::::
Microwave

::::::::
Radiative

:::::::
Transfer

::::::
model

:::::::
(SMRT), we can retrieve SWE with an RMSE of 15.8 mm (16.4 %) with

an
:::
and

::
a

::::::::::::::
MCMC-retrieved

:::::
SWE uncertainty of 23.4 mm (25.2 %). To achieve this accuracy, a larger uncertainty in the a priori

grain size estimation is required, since this variable is known to be underestimated within SVS-2 and has a considerable impact10

on the microwave scattering properties of snow. It is also shown that adding four observations from different incidence angles

improves the accuracy of the SWE retrieval because these observations are sensitive to different scattering mechanisms of the

snowpack. These results validate the mission concept of the proposed Canadian satellite mission.

1 Introduction

Yearly, snow can cover more than 50 % of the terrestrial northern hemisphere (Robinson et al., 2012) and is an important15

fresh water resource that impacts the health and well-being of communities, the economy, and sustains ecosystems (Meredith

et al., 2019). Snow extent and mass trends are forecasted to keep decreasing at a rate up to -50 x 106 km2 year−1 and -

5 Gt year−1, respectively (Mudryk et al., 2020). Yet, it is still the only component of the water cycle that, currently, does

not have a dedicated Earth Observation (EO) mission (Derksen et al., 2019). Monitoring snow water equivalent (SWE), i.e.

the amount of water stored in solid or liquid form in the snowpack, at high spatio-temporal resolution is critical for climate20

services, water resource management, and environment prediction (Garnaud et al., 2019; Kim et al., 2021; Cho et al., 2023).

Following the work done for the European Space Agency (ESA) Earth Explorer 7 Cold Regions Hydrology High-resolution
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Observatory (CoReH2O) mission (Rott et al., 2010), and recent work in the field of microwave snow remote sensing (Tsang

et al., 2022), Environment and Climate Change Canada (ECCC), in partnership with the Canadian Space Agency (CSA), are

developing a synthetic aperture radar (SAR) satellite mission that aims at imaging the Northern Hemisphere at a nominal25

resolution of 500 m on a weekly basis, currently named, the Terrestrial Snow Mass Mission (TSMM) (Derksen et al., 2019).

The international snow community has made considerable progress in the recent decade in demonstrating that Ku-Band

radar measurements provide the best option for future satellite missions to monitor snow as a water resource at sub-kilometer

:::::::::::
sub-kilometre

:
spatial resolution, due to its sensitivity to SWE via its volume scattering in dry snow and its sensitivity to its

phase (wet/dry) (Tsang et al., 2022). Even though passive microwave measurements show the same sensitivity to SWE and30

snow phase, the technology does not currently provide sub-kilometer
:::::::::::
sub-kilometre measurements (Galeazzi et al., 2023). It

is also known that, due to the sensitivity of the Ku-band radar backscatter (σ0) to the snow microstructure (King et al., 2018;

Picard et al., 2022b; Montpetit et al., 2024), retrieving SWE from a single microwave measurement can prove challenging

(Lemmetyinen et al., 2018; Pan et al., 2024). This is why TSMM presents a dual Ku-Band frequency (13.25 and 17.5 GHz),

dual polarization (VV/VH) concept to constrain a retrieval algorithm with more measurements, i.e. the higher Ku frequency35

being more sensitive to snow microstructure than the lower frequency and the cross-polarization signal being more sensitive

to interactions within the snow volume than the co-polarization (Ulaby and Ravaioli, 2020). The main objective of TSMM is

to retrieve SWE from these satellite observations with a seasonal root-mean-square error (RMSE) of 25 % in alpine regions

and 30 mm elsewhere (Derksen et al., 2019). These observations will then be ingested into the Canadian Land Data Assimi-

lation Scheme (CaLDAS) (Carrera et al., 2015; Garnaud et al., 2021) in order to improve ECCC’s numerical weather/climate40

prediction services. Assimilating TSMM retrievals will also help improve surface modeling
::::::::
modelling

:
like the Canadian Soil

Vegetation Snow (SVS) (Leonardini et al., 2021) model and other hydrological systems such as the Canadian Hydrological

Model (CHM) (Marsh et al., 2020). This study aims at developing the workflow that will be used to derive SWE from the

dual-frequency SAR measurements and also provide stratified snow information that will be crucial to improve hydrological

and land surface modeling
::::::::
modelling via data assimilation across all the various landscapes found in Canada.45

Many studies have developed Bayesian methods to retrieve SWE from SAR (Rott et al., 2012; Singh et al., 2024; Pan

et al., 2024).
:
It
:::

is
:::
key

:::
for

:::::
these

:::::::
methods

:::
to

::::::::
correctly

::::::
specify

:
SWE

:::::::::
uncertainty,

::::::
where

::
it

:::
was

::::::::
achieved

:::
by

:::::::::
specifying

:::::
layer

:::
and

::::::
density

::::::::::::
uncertainties. Rott et al. (2012) used a constrained minimization approach where SWE and effective snow grain

radius was optimized iteratively to match forward modeled
:::::::
modelled

:
and measured σ0. This method was intended to be

applied to X-band and Ku-band σ0 measurements for the CoReH2O mission. Singh et al. (2024) used a Bayesian inference50

model that seeks to estimate the joint probability of backscatter measurements and snow properties. Prior distributions of

snow parameters were necessary for this approach and were obtained from a multilayered snow hydrological model driven by

numerical weather prediction (NWP) forecasts. This method was also applied to X- and Ku-band SAR data and showed great

success rate to retrieve SWE over Grand Mesa, Colorado, USA. Pan et al. (2024) modified the Bayesian-based Algorithm for

SWE Estimation (Pan et al., 2017) to apply it to active microwave measurements. This methods relies on the Markov Chain55

Monte Carlo (MCMC) method to optimize multiple snow properties simultaneously to minimize a cost function between the
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measured and forward modeled
::::::::
modelled

:
σ0. They showed that an RMSE below 30 mm of SWE could be achieved when

applied to X- and Ku-band data.

This study uses a Bayesian approach on data acquired during the 2018/19 Trail Valley Creek (TVC) experiment , where

only single frequency Ku-band VV polarization data was acquired from an airborne platform (Montpetit et al., 2024). Since it60

has been largely documented that using a multi-layered snowpack approach considerably improves SWE retrievals compared

to single layer snowpack (Pan et al., 2024; Durand et al., 2024; Singh et al., 2024; Lemmetyinen et al., 2018), this study only

focuses on a multi-layered approach. We focus on the two dominant snow layers observed in an Arctic snowpack, i.e. a dense

wind compacted rounded grains (R) snow layer at the surface with a coarse depth hoar (DH) layer at the bottom (Montpetit

et al., 2024; Rutter et al., 2019; Derksen et al., 2009). The retrieval algorithm developed for this study was inspired by previous65

work using the MCMC method (Pan et al., 2024; Picard et al., 2022a; Pan et al., 2017). Section 3 details how the approach used

in this study differs from previous work. In the context of an EO algorithm development, emphasis will be given on the need

to include quality spatio-temporal information. Methods to improve computation efficiency, without compromising retrieval

accuracy will also be presented.

Section 2 briefly describes the 2018/19 TVC experiment. For a more detailed explanation, please refer to Montpetit et al.70

(2024). Section 3.5 details the SWE retrieval architecture as well as the processing applied to field measurements in order

to properly compare the outputs of the retrieved MCMC snow properties with surveyed properties in the field. Section 4.1

compares the Canadian land surface model Canadian Soil Vegetation Snow version 2 (SVS-2) outputs (Woolley et al., 2024)

:::::::::::::::::::::::::::::::::::
(Vionnet et al., 2025; Woolley et al., 2024) to field measurements, while section 4.2 shows the results to validate the MCMC

approach. Sections 4.3 and 4.4 show the comparisons of the MCMC retrieved SWE and vertical snow properties to the surveyed75

properties. The efficiency of the MCMC method to retrieve SWE is assessed in section 5. Considerations in order to estimate

both SWE and snow properties that are representative of actual snow conditions on the ground and the usage of SVS-2 and its

future improvements to be implemented are also discussed in section 5.

2 The Trail Valley Creek 2018/19 Snow Radar Experiment

The TVC 2018/19 experiment was designed by ECCC to advance science readiness activities for TSMM. The TVC wa-80

tershed, near Inuvik, Northwest Territories, Canada, was selected since many snow and hydrological research activities are

conducted there every year (e.g., Shi et al., 2015; Wilcox et al., 2022). Including the airborne SAR campaign for this study

(Siqueira et al., 2021), there has been other similar campaigns over TVC like the SnowSAR campaign of 2012/13 (King

et al., 2018) and more recently, in April 2024, the Cryospheric SAR (CryoSAR) instrument (Kelly et al., 2024) onboard

the Alfred Wagner Institute (AWI) Polar 5 (Haas et al., 2024) was flown with a dual L- and Ku-band SAR. Other work at85

TVC focused on improving land surface modeling
::::::::
modelling

:
of Arctic environments (Woolley et al., 2024) using the En-

semble System Crocus (ESCROC) model (Lafaysse et al., 2017), which was implemented in the SVS-2 land surface model

(Vionnet et al., 2022; Garnaud et al., 2019)
::::::::::::::::::::::::::::::::::::::::
(Vionnet et al., 2025, 2022; Garnaud et al., 2019).
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In a first step, Montpetit et al. (2024) has shown that the Ku-band radar instrument developed by the University of Mas-

sachusetts (UMASS) team (Siqueira et al., 2021) is sensitive to snow physical properties and that the Snow Radiative Transfer90

Model (SMRT) could be used to properly model the σ0 from surveyed snow properties. In this study, we will show that from

the same airborne σ0 measurements we can retrieve SWE using independent modeled
:::::::
modelled

:
data (SVS-2) as priors in the

retrieval algorithm.

Figure 1 shows a map of the study area and the surveyed sites.
:::
The

:::::
radar

:::::
image

::
in
::::::

Figure
::
1
:::::
(left)

::::::
consists

:::
in

:
a
::::::
mosaic

:::
of

:::
two

:::::::
different

:::::::
airborne

:::::::
passes,

:::::
flown

::
in

:::
the

::::
same

::::::::
direction,

::::::::
acquired

::
by

:::
the

:
UMASS

::::
radar

::::::
system

:::::::
(Section

::::
2.1),

::::::
where

:::
the

::::
near95

::::
range

::::::::::
acquisitions

:::::::
(higher

::::::::::
backscatter)

::
of

:::
the

:::
first

::::
pass,

:::::
done

::
at

::::::
steeper

::::::::
incidence

::::::
angles,

:::::
meets

:::
the

::
far

:::::
range

::::::::::
acquisitions

::::::
(lower

::::::::::
backscatter)

::
of

:::
the

::::::
second

::::
pass,

:::::
made

::
at

::::::::
shallower

::::::::
incidence

::::::
angles.

::
A

:::::
DEM

::::::
(center)

::::
from

:::
the

::::::::::
ArcticDEM

:::::::::::::::::
(Porter et al., 2023)

:::
and

:::
the

:::::::::
vegetation

::::::::::
classification

:::::::::::::::::::::::::::::
(right, Grünberg and Boike, 2019)

::
is

:::::
shown

:::
for

::::::
context

::::
with

:::
the

:::::
radar

:::::::
imagery.

:
For a detailed

description of the different dataset measured during this TVC experiment, please refer to Montpetit et al. (2024). Elements

relevant to this study will be presented here.100

Figure 1. Sites sampled during the January campaign of the TVC 2018/19 experiment. Squares correspond to a 100 m x 100 m

around the central surveyed snowpit (see Section 2.2). Background images are two overlapped UMASS Ku-Band radar images corre-

sponding to two different flight passes acquired November 14, 2018. The black grid lines represents the extent of a 2.5 km grid
::::
2018

:::::::::::::::::::
(left, Siqueira et al., 2021), similar to the Canadian grid (see Section

:
2 2.3)

::
m

:::::::::
ArcticDEM

::::::::::::::::::::
(center, Porter et al., 2023)

:
,
:::
and

:::
the

::::::::
vegetation

:::::::::
classification

::::::::::::::::::::::::::
(right, Grünberg and Boike, 2019).

2.1 Airborne SAR measurements

For this TVC experiment, the UMASS Ku-band SAR instrument was mounted on a Cessna-208. It flew at a nominal altitude

of 1000 m, and measured σ0 at 13.285 GHz in VV polarization over a 2 km swath, with a 2 m ground-range resolution and an

incidence angle range of ∼20-70°. Flight lines were planned to maximize repeat coverage of the SikSik sub-basin within the

TVC watershed. This enabled swath overlap between flight passes and measurements of the same targets in different viewing105

geometries. A total of 16 flight lines were planned, measuring selected targets within the area of interest (AOI) in four different
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look-directions. To compare measured σ0 to surveyed snow information, a 100 m x 100 m area was clipped around the surveyed

site, was filtered to reduce noise and artifacts, and averaged.

Due to challenging flight conditions in November 2018 and challenging snow conditions in March 2019, only the January

2019 σ0 measurements are used in this study to validate the SWE retrieval algorithm in dry snow conditions.110

2.2 Ground based snow and soil measurements

Within the AOI, six static sites were identified, in order to monitor the underlying ground conditions of the SikSik sub-basin

throughout the winter, and also monitor the evolution of snow conditions over contrasting land covers, representative of TVC

(Figure 1). Four HydroProbe soil sensors were installed horizontally in a soil pit at each of these static sites, where soil

temperature, moisture and permittivity were measured continuously during the campaign. This data enabled the retrieval of115

microwave background soil properties from TerraSAR-X and RADARSAT-2 satellite SAR measurements (Montpetit et al.,

2024).

Figure 2. Ground based snow measurements sampling scheme taken from Montpetit et al. (2024).
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A total of 20 surveyed sites, including the static sites (Figure 1), are used in this study to validate the SWE retrieval algorithm.

At the center of each of these sites, a snowpit was excavated, and a full snow profile was surveyed to use as reference snow

measurements for a given site using the standard methods (Fierz et al., 2009). For each snowpit, snow temperature, density,120

Specific Surface Area (SSA) were measured at the pit wall. Density was measured using a Taylor-LaChapelle style cutter and

a shielded digital scale. SSA was measured using the A2 Photonics IceCube instrument (Domine et al., 2007; Gallet et al.,

2009). Behind the pit wall, three Snow Micro Penetrometer (SMP) profiles were acquired (Proksch et al., 2015) in order to

calibrate the force measurements to the reference density and SSA measurements. To get a representative distribution of snow

microstructure at the airborne spatial scale, north-south and east-west transects were surveyed with the SMP (a total of 16 more125

profiles) covering an area of ∼100 m x 100 m. Snow depth measurements were surveyed every meter along these transects

with a MagnaProbe (Sturm and Holmgren, 2018) (∼290 measurements per site). Figure 2 shows the schematic of a typical

sampling done for a given site.
:::
All

:::::::
profiles

::::::::
(snowpits,

:
SMP

:::
and

:::::::::::
MagnaProbe

:::::::
profiles)

:::
per

::::
site

:::
are

::::
then

::::
used

:::
to

:::::::
generate

::
a

::::::::
statistical

:::::::::::
representation

:::
of

:::::
snow

::::::::
conditions

::::::
within

:::
the

:::::
radar

::::::::
footprint,

::::
with

::
a

::::::::
measured

:::::
snow

:::::::::
uncertainty

::::::::::
represented

:::
by

:::
the

:::::
spatial

:::::::::
variability

::::::
within

:::
the

::::::::
footprint.

::::::
Spatial

:::::::::
variability

:::::::
consists

::
in

:::
the

::::::
largest

::::::::::
uncertainty

:::::
within

:::
the

::::::::
footprint

:::::::::
compared

::
to130

::::
snow

:::::::::
parameter

:::::::::::
measurement

::::::::::
uncertainty,

:::
the

::::
latter

::::
can

:::
thus

:::
be

::::::::
neglected.

:

2.3 Soil Vegetation Snow version 2 model outputs

The SVS-2 model outputs used in this study are a subset of the dataset generated by Woolley et al. (2024). This dataset was

generated for the period of September 1991 to September 2023, but only the period of January 12 to 15, 2019 was used,

which corresponds to the three day window where the UMASS airborne SAR measurements were acquired during the January135

intensive campaign of this TVC experiment. These outputs were generated from point-scale simulations , mostly from weather

station data acquired
::::::
located

:
at the main meteorological site of TVC (SM site in Figure 1),

::::::
where

::::
most

::
of

:::
the

:::::::::::::
meteorological

::::::
forcing

::::
data

:::
was

::::::::
acquired,

::::
and

::::::::::::
complemented

:::
by

:::::::::::
neighbouring

::::::
stations

:::::
when

::::
data

::::
was

:::
not

::::::::
available. The multi-layered snow

information comes from the ESCROC model (Lafaysse et al., 2017). The one-dimensional, vertical snow profile outputs of

Crocus, consist in mass, density, temperature, liquid water content, age and snow microstructure properties (optical diameter,140

sphericity) for each layer. These outputs can then be translated into thickness, density and SSA for each layer. The maximum

number of layers was set to 20 for this dataset, in order to get detailed stratigraphic information. Vertical snowpack properties

were simulated at point scale with an hourly temporal resolution, using forcing data from neighboring weather stations.
::
A

::::
total

::
of

::::
120

:::::::
different

::::::::::
simulations

:::::
were

:::::::::
conducted

::::
with

::::::::
different

:::::::::::
combinations

:::
of

::::
wind

::::
and

:::::::
surface

:::::::::
vegetation

::::::
effects,

::::
and

::::::
thermal

:::::::::::
conductivity

:::::::::::::::
parameterizations.

:::::
These

:::::::::
ensembles

:::::
were

::::
used

::
to

:::::::
generate

:::
the

::::::
priors

::
for

:::
the

:
MCMC

::::::
retrieval

:::::::::
algorithm145

:::
(see

:::::::
Section

:::::
3.5.1).

::::
Test

:::::
were

:::
also

:::::::::
conducted

::
in

::::
this

::::
study

::::
with

:::
the

:::
30

::::::::
ensemble

::::::::
members

:::
that

::::
had

:::
the

:::
best

::::::::::
continuous

::::::
ranked

:::::::::
probability

:::::
score

:::::::::::::::::::::::::::
(CRPS, see Woolley et al., 2024).

:::::
Both

:::::::
versions

::::
used

::
in
:::
the

:::::
study

:::
of

::::::::::::::::::
Woolley et al. (2024)

::
are

:::::
tested

::
in

::::
this

:::::
study,

:::::
where

:::
an

::::::
Arctic

::::::
version

:::
of SVS-2

:::
was

:::::::::
developed

:::
to

:::::::
improve

:::
the

::::::
overall

:::::
snow

:::::::::
properties

:::
and

:::::::::::
stratigraphy

::
of

::::::
Arctic

:::::::::
snowpacks.

:
For a complete description of the dataset, please refer to Woolley et al. (2024).
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3 Methods150

In this section, the SWE retrieval workflow will be presented as well as the methodology to compare the retrieved SWE

data with measured data from the TVC 2018/19 experiment. In order to improve computation efficiency, the methodol-

ogy to reduce the surveyed snowpack stratigraphy to two layers, will be introduced. A different approach, more automated

(Meloche et al., 2024)
:::::::::::::::::
(Meloche et al., 2025), which is applied to the SVS-2 outputs will also be described. Finally, the Bayesian

MCMC methodology will be described in details in order to retrieved the SWE from the SVS-2 initial guess.155

3.1 SWE retrieval workflow

The workflow to retrieve SWE from Ku-Band SAR measurements is similar to what was presented by Pan et al. (2024),

where snowpack variables are optimized iteratively using a Markov Chain Monte Carlo (MCMC) model to minimize the error

between the simulated and measured σ0 (Section 3.5).

To initialize the snowpack variables, like the work of Singh et al. (2024), a land surface model was used to generate the160

prior distributions. In the context of an EO mission like TSMM, this allows for the prior distributions to evolve both spa-

tially and temporally. In this study, the SVS-2 outputs of Woolley et al. (2024) were used to generate these prior distribution

(Section 3.5.1). In order to improve computation efficiency, the multi-layered SVS-2 outputs were first reduce to two layers

(Section 3.3). Given that all surveyed sites except one are within a distance of 2.5 km from the SM site (Figure 1), these

outputs were considered to emulate the conditions of , where the outputs will be spatialized on a 2.5 km grid corresponding165

to the Canadian grid. Thus
::::
Since

:::
the

::::::::::
simulations

:::::
were

:::::
done

::
at

:::::::::
point-scale

:::
for

:::
the

:
TVC

::::::
domain,

:
all sites in Figure 1 were

optimized using the same prior snowpack variable distributions. Both the default and Arctic versions of SVS-2 published by

Woolley et al. (2024) will be investigated in this study, in order to determine the importance of defining more accurate snow

priors to retrieve SWE with MCMC.

The MCMC method iteratively samples the snow variables (Section 3.5.3) from these prior distributions and converts them170

into σ0 using the Snow Radiative Transfer Model (SMRT) (Picard et al., 2018) model (Section 3.4). The probability of the

sampled snow properties is then calculated using the likelihood function (Section 3.5.2) and the snow variable distributions are

then updated to generate the posterior snow variable distributions. The posterior distributions are then compared to surveyed

snow properties (Section 3.2) to assess the performance of the MCMC method. Since only single band and single polarization

σ0 measurements were acquired for this TVC experiment, retrievals were done with measurements closest to the optimal175

incidence angle of 35 o (King et al., 2018). An extra test including four measurements in the proposed incidence angle range

of TSMM (20o < θ < 50o) was conducted. Lower incidence angles being less sensitive to snow volume scattering and higher

incidence angles being more sensitive to snow volume scattering, this emulates, without exactly reproducing, the dual Ku-Band

frequency, dual polarization concept of TSMM.
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3.2 Reducing the in situ snow profiles to two layers180

The snow profiles used in this study were presented in (Montpetit et al., 2024)
::::::::::::::::::
Montpetit et al. (2024) where detailed stratigra-

phy was surveyed during the TVC experiment and the measured snow profiles were reduced to two layered snowpacks. The

methodology to obtain these reduced snowpacks is summarized here.

In order to have a representative snowpack at the 100 m spatial scale, scale at which the UMASS airborne Ku-Band SAR

data has been processed (section 2.1), all the MagnaProbe snow depths, SMP density and SSA profiles, and complete snowpit185

measurements (temperature, snow cutter density, IceCube SSA and visual profile inspection) were used. The ∼ 290 Mag-

naProbe measurements per site were used to generate a snow depth distribution and its median value was used as its total snow

depth. The SMP data measured behind the snowpit wall (2 to 3 measurements) with a vertical resolution of 2.5 mm was then

calibrated (Proksch et al., 2015; Montpetit et al., 2024) into density and SSA profiles using the surveyed measurements from

the density cutters and the IceCube instrument for SSA. Then, the 5 cm aggregated SMP profiles, thickness determined to190

be small enough to represent average snowpack layers (Sandells et al., 2022; Montpetit et al., 2024), were classified into two

grain types using the support vector machine methodology initially developed by King et al. (2020) and adapted to the 2018/19

TVC experiment by Montpetit et al. (2024): 1. rounded grains (R) or, 2. depth hoar (DH). From the classified SMP profiles,

distributions of density and SSA were generated for the two snow layers. The median value of these distribution was then

used as the density and SSA values for their corresponding snow layers. Finally, from the snowpit measurements, the median195

temperature measured for both snow layers was assigned to the representative snowpacks, even though temperature has little

impact in the modeled
:::::::
modelled

:
backscattered signal for dry snowpacks (Picard et al., 2018), and was not considered in the

MCMC optimization. Examples of representative snowpits are shown in section 4.1.

3.3 Reducing the SVS-2 snow profiles to two layers

SVS-2 can generate snow profiles of up to 50 layers. This considerably impacts the computation time of radiative transfer200

modeling
::::::::
modelling

:
using SMRT, thus increases the computation resources required to efficiently retrieve SWE using the

MCMC approach. Meloche et al. (2024)
::::::::::::::::::
Meloche et al. (2025) have developed an objective method using K-means clustering

in the extinction coefficient (ke) and layer height space, that generates a microwave equivalent snowpack from a multi-layered

snowpack, that preserves the snowpack radiative transfer properties while retaining the bulk physical snow properties of the

snowpack like SWE. They have shown that this approach can improve computation time up to 87 % when comparing SMRT205

simulations with a 50-layer snowpack and the equivalent 2-layer Microwave Equivalent Snowpack (MES).

For this study, all 120 ensemble members of both the default and Arctic version of the SVS-2 20-layer profiles were reduced

to 2-layer using the Meloche et al. (2024)
::::::::::::::::::
Meloche et al. (2025) method. To do so, the ke, calculated from the SVS-2 outputs

using sub-modules of SMRT, in addition to the layer heights were used to classify the multi-layered snowpacks into two-

layered microwave equivalent snowpacks. Examples of representative snowpits are shown in section 4.1. These two-layered210

snowpacks were then used to calculate the prior distributions used as first guesses for both snow layers into the MCMC method.

8



3.4 Radiative transfer modeling
:::::::::
modelling

To convert these snowpack variables into simulated σ0, the SMRT model is used (Picard et al., 2018). Similarly to Pan et al.

(2024), the Improved Born Approximation (IBA) model is used to calculate snow scattering, which is implemented in the

python open-source code of SMRT. The same radiative transfer modeling
::::::::
modelling

:
configuration used in Montpetit et al.215

(2024) is used in this study. Since the proposed TSMM SWE algorithm decouples the contributions to the measured σ0 from

the soil and snow in a two step process, the soil properties retrieved by Montpetit et al. (2024), using lower frequency satellite

SAR data, was used directly in SMRT. This is one of the difference with the methodology of Pan et al. (2024). Also, snow

temperature was not optimized in this retrieval since it is known to have little impact on simulated σ0 of dry snow (Picard et al.,

2018). The measured temperatures of both layers were assigned in SMRT since it is a required input to simulated σ0.220

3.5 Markov Chain Monte Carlo method

The Markov Chain Monte Carlo (MCMC) method used for this SWE retrieval algorithm is coded using the open-source PyMC

v5.16.2 python library (Salvatier et al., 2016; Abril-Pla et al., 2023), and was run on a high performance computing Linux

cluster, hosted at ECCC. The architecture of the MCMC method was inspired from the work of Pan et al. (2024), but many

aspects of the methodology used in this study are different and will be described in this section.225

The MCMC method was initially run for 15 000 iterations. A portion of these iterations were used as the burn-in period (a

maximum of 5 000 burn-in iterations was tested), e.g. these iterations are used to initialize the model and allow the sampling

of the different variables to stabilize to values more representative of the observations. This burn-in period is not included

in the iterations used to build the posterior distributions. Since MCMC tends to have correlated sampled variables between

iterations, usually a large number of iterations is needed. Here, a maximum of 10 000 iterations were used. The Equivalent230

Sample Size (ESS), is an index that determines the number of samples that are uncorrelated (Martin et al., 2021), and helps to

determine if the number of total iterations are sufficient. Additionally to the number of iterations, the MCMC method can use

chains that are run in parallel. This ensures that the final posterior distributions converge to a similar solution for all chains.

The chain convergence coefficient (R̂) is an index that calculate the between chain convergence of the posterior distributions

(Gelman and Rubin, 1992). Both indexes are thus used to calculate the optimal number of iterations and chains to use. Tests235

were conducted in order to determine the optimal number of burn-in iterations, total iterations and chains needed to converge

to proper solutions. These results are presented in section 4.2.

3.5.1 Prior distributions of snow properties

Similarly to the study of Pan et al. (2024), the initial prior distributions used as the first estimate of snow properties are

constrained normal distributions. In order to make a methodology that works for all climates and all seasons, in the context240

of a satellite mission like TSMM, the means and standard deviations used to initialize these priors come from an ensemble of

SVS-2 outputs. Since MCMC outputs are very sensitive to initial prior estimates, using a dynamic prior that changes through

time and space allows for a more precise prior, which will result in a more precise SWE posterior estimate from the MCMC

9



approach. This will be further discussed in section 5.2. Table 1 shows the means and standard deviations of all 120 members of

both the default and Arctic versions of the SVS-2 outputs (Woolley et al., 2024). For snow height (Hsnow), the minimum value245

was chosen as the thinnest representative thickness of a layer (Sandells et al., 2022; Montpetit et al., 2024) and the maximum

value was randomly put to 1 m even though no 1 m snowpack was measured at TVC during the campaign (e.g., see Figure 4

of Montpetit et al., 2024). The minimum and maximum values for snow density (ρsnow) and SSA were extrapolated from all

the measurements of the field campaign.
:::
The

:::::
values

:::
for

:
SWE

:::
are

::::
also

:::::
shown

::
in

:::::
Table

::
1

::
for

::::::::
reference

::::
and

:::::::::
discussion

::::::::
purposes,

::::
since

:
SWE

:
is

:::
the

::::::
desired

::::::::
retrieved

:::::::::
parameter

::
of

:::
the

:::::
study.

:
Examples of these priors are presented in section 4.1. In order to250

assess the importance of using the best possible source of data to generate these priors, means and standard deviations from

the top 30 ensemble members of the Woolley et al. (2024) datasets were used. The impacts of the accuracy of the initial snow

property estimates on SWE retrieval are shown in sections 4.3 and 5.2. Given the known higher uncertainty of the SVS-2

SSA outputs for both versions of the model (Woolley et al., 2024), compared to density and thickness, tests were conducted to

increase the standard deviation of SSA for both snow layers, to assess its impact on retrieved SWE.255

Table 1. Values used for the truncated normal distributions of the MCMC priors using the 120 and top 30 members of both SVS-2 versions

of Woolley et al. (2024). Min and max values were extracted from all surveys of the 2018/19 TVC experiment.
:::
For

:::::::
reference

:::
and

:::::::::
discussion,

::::
mean

:::
and

::::::
standard

:::::::
deviation

:::
for

:::
the

:::::
layered

:
SWE

::::::::
information

::
is

:::
also

:::::
given,

:::::
though

::::
these

:::::
values

:::
are

:::
not

:::
used

::
in
:::
the MCMC

::::
priors

:::::
since SWE

:
is
:::
not

::
an

::::::
explicit

::::
input

::
to

:::
the

:::::
model.

:::
Std

:::::
stands

::
for

:::::::
standard

:::::::
deviation.

. Std stands for standard deviation.

Snow Property Grain Type

All 120 members Top 30 members

Min MaxMean Std Mean Std

Default Arctic Default Arctic Default Arctic Default Arctic

Hsnow (cm)
R 29.8 27.1 7.7 1.0

:::
10.0

:
24.3 28.5 2.8 9.5 5.0 100.0

H 15.4 13.7 4.1 8.3 15.8 13.3 2.9 7.9 5.0 100.0

ρsnow (kg·m−3)
R 217.7 246.5 14.6 20.4 231.1 235.4 5.2 8.2 150.0 450.0

H 190.0 200.3 30.0 40.8 218.7 199.0 3.2 36.02
:::
36.0 100.0 350.0

SSA (m2·kg−1)
R 12.7 11.6 1.6 2.8 12.1 11.2 1.4 2.5 10.0 50.0

H 5.2 4.0 1.4 1.5 6.1 4.0 0.8 1.5 8.0 25.0

SWE (mm) ::
R

:::
64.2

: :::
66.2

:::
13.3

: :::
23.5

:::
56.1

: :::
67.2

::
6.7

::::
22.2

::
—

::
—

::
H

:::
29.6

: :::
30.6

:::
10.1

: :::
24.0

:::
34.7

: :::
29.0

::
6.6

::::
22.7

::
—

::
—

height

Finally, similarly to Pan et al. (2024) and Picard et al. (2022b), not knowing exactly the accuracy of the measured radar signal

and its uncertainty given the variability of snow/soil properties at the 100 m scale, an uncertainty parameter (σ
:
δ) was given

to the measured and simulated backscattered signals, which were described by a normal distribution centered at the measured

σ0 and σ
:
δ
:
as its standard deviation. This uncertainty parameter is then fed into the likelihood function. The σ

:
δ
:

prior was

initialized at the radiometric accuracy of the UMASS antenna of 1 dB, with an uncertainty of 0.5 dB.260

10



3.5.2 Likelihood function

In order to improve computation efficiency, the log-likelihood function was used between the measured and simulated σ0

(Leung, 2022), and is given by:

l(σ0
mes,σδ|σ0

sim) =−1

2

(
σ0
mes −σ0

sim

σ

)2

− ln(
√
2π)− ln(σδ) (1)

:::::
where

:::::::::::::
l(σ0

mes, δ|σ0
sim)

::
is

::
the

:::::::::
likelihood

:::::
metric

:::::::
between

:::
the

::::::::
measured

:
σ0

::::::
(σ0

mes)
:::
and

::::::::
simulated

:
σ0

::::::
(σ0

sim),
:::::
given

::
an

:::::::::
uncertainty265

::
on

:::
the

::::::::
measured

:
σ0

:::
(δ).

:
This likelihood function is then used to calculate the Metropolis-Hastings likelihood ratio, which de-

termines if the sampled snow parameters of the current iteration are accepted or rejected within the sampling strategy.

3.5.3 MCMC sampling

Given that the current version of SMRT uses the Discrete Ordinate Radiative Transfer (DORT) (Picard et al., 2018, 2013)

method to solve the radiative transfer equation, and this solver is not differentiable for all variables, more modern and efficient270

samplers, like the No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2011), could not be used. This is why the Adaptive

Differential Evolution Metropolis (DEMCZ) sampling (ter Braak and Vrugt, 2008) method, implemented in PyMC, was used in

this study. This method differs from the original differential evolution metropolis (DEMC) sampling method (ter Braak, 2006)

since it uses information from past iterations to generate future jumps in sampled snow properties. DEMCZ also requires a

lower number of chains (N ) to be run in parallel in order to converge to a solution compared to N = 2d, where d is the number275

of snow parameters to optimize, e.g. 3 snow parameters (Hsnow, ρsnow, SSA) per layer, for a total of 12 chains for our current

two-layer snowpack configuration. Also, for our specific SWE retrieval algorithm, N can be kept constant, where if we have

more or less snow layers, we do not need to adapt the number of chains to run, even though the number of snow properties

change. DEMCZ is also known to be more efficient than random walk samplers. In this study, different number of chains

were tested (a minimum of 4 and up to 12), and a total of 7 chains was chosen, in order to ensure proper sampling and good280

convergence (ESS and R̂), without compromising the computation efficiency of the algorithm. Similar results were obtained

using 4 chains, but the model was less stable. The maximum number of chains was chosen as computation efficiency was not

impacted, with the similar convergence, and model stability was preserved no matter the number of snow layers.

Also, since this experiment optimizes many snow variables and many combinations of these variables can provide the same

simulated σ0, constraints between layers for each variables were introduced, similarly to Picard et al. (2022a), where they285

constrained density profile to have a positive gradient with depth. Here, given the two-layer experiment, these constraints

were determined based on local and published knowledge of the vertical profiles (see Figure 3 to 5).
::::
Hard

:::::::::
constraints

:::::
were

:::
put

::
on

:::::::
density,

:
SSA

:::
and

::::::::
thickness

:::::::
between

:::
the

::::::
layers.

::
If
:::::
those

:::::::::
constraints

:::::
were

:::
not

::::
met,

:::
the

::::::::
sampled

:::::
values

:::
for

:::::
these

:::::
three

:::::::::
parameters

::::
were

::::::::
rejected. The density of the R layer had to be higher than for the DH layer. The thickness of the R layer was

also constrained to be lower than the DH layer. Finally the SSA of the R layer had to be higher than the DH layer. The impact290

of these constraints will be presented in Section 4.4 and discussed in Section 5.
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4 Results

In this section, the different sources of snow information will be presented in order to understand how the SWE retrieval

algorithm is impacted within the MCMC method. The results of the tests to determine the MCMC parameterization will then

be presented. Results of the SWE retrievals using the UMASS Ku-band SAR data will then be shown, and finally the snow295

posterior distributions will be compared to the measured in situ snow properties for different MCMC configurations.

4.1 Modeled
::::::::
Modelled

:
and measured snow properties

Figure 3 shows the layer thicknesses (Hsnow) distributions for both SVS-2 versions and the measured layer thicknesses for

the R (a) and DH (b) layers for all sites of the TVC experiment. The truncated normal distributions (Table 1) are overlaid

on top of the histograms and the normal distribution of the measurements is shown in red and would consist in the idealized300

posterior distribution that the MCMC method would retrieve. We see that both versions of SVS-2 overestimate the thickness

of the R layer and underestimate the thickness of the DH layer. That said, both versions show good overlap between their

normal distribution and the idealized posterior distribution, suggesting that the MCMC method could converge to the proper

thicknesses efficiently.

Figure 3. Measured snow thickness (Hsnow) distributions during the January TVC campaign, compared to the thickness distributions provided

but
::
by the 120 SVS-2 ensemble members (Woolley et al., 2024) for the two dominant snow grain type layers a) rounded grains, b) depth

hoar, and c) the total thickness, including both snow layers. Magenta lines represent the truncated normal distributions (Table 1) used as

priors, using the mean and standard deviations of the two different SVS-2 versions. The red line represents the normal distribution, using the

mean and standard deviation of the measurements, and consists in the desired posterior distributions obtained by the MCMC approach.
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Figure 4 shows the same distributions as figure 3, for densities. Both SVS-2 versions underestimate the density of the R305

layer, and the Arctic version shows a better overlap with the idealized posterior distribution. The distribution of both SVS-2

versions overlap well with the idealized posterior distribution for the DH layer even though there is a tendency to slightly

underestimate the density.

Figure 4. Same as Figure 3 for snow density (ρsnow).

Figure 5 shows the same distributions for SSA. Here, it is clear that SVS-2, no matter the version, underestimates the SSA

and even outputs values that are below the minimum values measured in the field. In order to achieve the overlap shown in310

Figure 5, the SVS-2 standard deviations had to be tripled.

:::::
Figure

::
6
::::::
shows

:::
the

:::::
same

:::::::::::
distributions

:::
for

:
SWE

:
.
:::
We

::::
see

::::
that SVS-2

::::
tends

::
to

:::::::::::
overestimate

:
SWE

:::
for

:::
the

:
R

::::
layer

::::
and

:::::::::::
underestimate

:
SWE

::
for

:::
the

:
DH

::::
layer.

:::::::::
Variability

:::
in

::::::::
modelled

::::::
layered

:
SWE

::
for

:::::
both

:::::::
versions

::
of

:
SVS-2

::
is

::::::
similar

::
to

:::::
what

:
is
::::::::
observed

::
in
:::

the
:::::

field.
::::
This

::::::
results

::
in
::

a
::::
very

::::::
narrow

::::::
range

::
of

::::::::
modelled

::::
bulk

:
SWE

:::
that

::
fit

::::
very

::::
well

::::
with

::::
the

:::::::::::
observations.

::::
This

::::
tends

::
to

:::::::
indicate

:::
that

:
SVS-2

:::::::::
reproduces

::
the

::::
bulk

:
SWE

::::::
properly

::::
over

:
TVC

:::
but

:::
has

::::
more

::::::::
difficulty

::
in

:::::::
properly

:::::::::::
representing315

SWE
::::::::::
stratigraphy.

::::::
Figure

::
6c

::::
also

:::::
shows

::::
that

:::
the

::::::
higher

::::::::::
uncertainties

::::
and

:::
the

:::::
over-

:::
and

::::::::::::::
underestimations

::
of

:::
the

:::::::
layered

:
SWE

:::
tend

::
to
::::::
cancel

:::
out

:::
for

:::
the

::::
bulk

:::::::::
properties.

::
It

:::::
should

:::
be

:::::
noted

:::
that

:::
the

:::::::::::
distributions

::
in

:::::
Figure

:::
6c

::
do

:::
not

::::::::::
realistically

::::::::
represent

:::
the

:::::
priors

:::
and

:::
the

:::::::::
uncertainty

:::
on SWE

::::
since

:
SWE

:
is

:::
not

::
an

:::::::
explicit

:::::::
variable

::::
used

::
in

:::
the MCMC

::::::
model.

Impacts of the different prior distributions shown in Figures 3, 4, and 5 will be discussed in section 5 in the context of the

SWE retrieval.320
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Figure 5. Same as Figures 3 and 4 for SSA. Since SSA is grain type specific, a bulk snowpack value is not shown, as in Figures 3 and 4.

Figure 6.
::::
Same

::
as

::::::
Figures

:
3
::::

and
:
4
::
for

:
SWE.
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4.2 MCMC algorithm parameterization

To determine the optimal MCMC parameterization, different tests with different numbers of iterations were run. It was deter-

mined (not shown) that beyond 1000 burn-in iterations (a total of 5000 burn-in iterations were tested), no significant improve-

ment was observed to converge to a proper solution. Below 1000 burn-in iterations, more chains in parallel and a larger number

of total iterations were needed for the method to converge, but a larger uncertainty on the posterior distributions was observed.325

With 1000 burn-in iterations, a test with 10 000 iterations was run over all sites to determine the optimal number of iterations

necessary. Figure 7 a) shows the R̂ (Gelman and Rubin, 1992) over all the iterations. The mean, minimum and maximum R̂ for

all the sites are shown in Figure 7 a), as well as the recommended acceptable threshold (Vehtari et al., 2021). It it shown that

after 4000 iterations, all R̂ values are below 1.1 and some start to be below the recommended threshold, which is considered

acceptable in certain contexts, where the ESS is large enough.330

Figure 7 b) shows the evolution of the ESS for the 10 000 iterations. We see that after 5000 iterations, all ESS values are

beyond the acceptable threshold of 100 and are five times greater on average. These results, with the results of Figure 7 a)

indicate that the optimal number of iterations is around 5000 iterations. Figure 7 c) shows the evolution of the SWE RMSE

over all the iterations. We see that after 4000 iterations, no considerable gain is achieved in retrieving SWE. With the results

shown in these three figures, 5000 iterations was selected in order to ensure optimal SWE retrieval and proper convergence335

of all the retrieved snow properties for all snow layers. All the results of the following sections were thus obtained after 5000

iterations.

4.3 MCMC retrieved snow water equivalent

The following results present the impact of using different priors in the MCMC method on the retrieved SWE. Figure 8 shows

the retrieved SWE from the MCMC method with priors coming from all 120 ensemble members of the default and Arctic340

SVS-2 versions (Woolley et al., 2024). The truncated normal distributions used for the priors were generated with the mean

values and the standard deviations (Table 1). The original modeled
::::::::
modelled SWE values from both SVS-2 versions are shown

in red,
::::
with

::::
the

::::::::
variability

:::
in

::::::::
modelled

::::
bulk

:
SWE

::::::
among

:::
the

::::
120

::::::::
ensemble

::::::::
members

::
is

::::::
shown

::
in

:::
the

:::
red

::::::
shaded

::::
area. The

expected SWE retrieval accuracy of the TSMM mission, for an Arctic snowpack (30 mm, see Derksen et al., 2019), is also

shown in this figure. Retrieved SWE from the default SVS-2 priors show larger RMSE (27.6 mm) than the ones retrieved345

with the Arctic SVS-2 priors (20.9 mm). These results are summarized in Table 2. Retrieved SWE uncertainty is also shown in

Table 2. Here, uncertainty is defined as quartile deviation instead of the usual standard deviation since the posterior distributions

are not strictly normal distributions. Little variability in the retrieved SWE from both SVS-2 versions can be observed. There

is also an offset between the retrieved SWE and the original SVS-2 modeled
:::::::
modelled

:
SWE. The uncertainty on the retrieved

SWE values (error bars) is slightly better for the default version of SVS-2 (11.9 mm mean quartile deviation) compared to350

its Arctic version (19.6 mm mean standard deviation). Nonetheless, the SWE estimates from the Arctic version show only

two points outside the TSMM expected accuracy compared to eight points for the default version. Since the expected TSMM

accuracy is on the RMSE criterion, both tests meet the requirement.
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Figure 7. Evolution of a) R̂ (Gelman and Rubin, 1992), b) Equivalent Sample Size (ESS) (Martin et al., 2021) for all variables, all sites, and

seven chains; and the SWE RMSE over the 10,000 iterations of the MCMC optimization. Acceptable R̂ threshold published by Vehtari et al.

(2021), and ESS threshold published by Kass et al. (1998) are shown in red.

We see that the initial modeled
::::::::
modelled SWE value of the Arctic version of SVS-2 is slightly better than the one from the

default version. The Arctic version also shows little variability (red shaded area) compared to the default version, in its initial355

SWE estimate. Both versions of the models do not represent the range of SWE values that were measured in the field. These
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observations will be discussed in section 5, supported by results shown in section 4.4. Knowing that many of the ensemble

members of both SVS-2 versions were not representative of the Arctic snowpack, the same test was processed using the top 30

ensemble members, which were determined to be more representative of snowpacks surveyed at TVC (Woolley et al., 2024).

Figure 8. Comparison of the retrieved SWE using the MCMC approach with priors coming from all 120 ensemble members of the a) default

and b) Arctic versions of SVS-2 (Woolley et al., 2024). The error bars show the 1st and 3rd quartiles of the measured (x-axis) and posterior

(y-axis) distributions.
:::
The

::
red

::::::
shaded

::::
areas

::::
show

:::
the

::
1st

::::
and

::
3rd

:::::::
quartiles

::
of

:::
the SVS-2

:::::::::
distributions

::::::
(Figure

:::
6c).

Figure 9 shows the retrieved SWE using the top 30 SVS-2 ensemble members as priors. The default version of SVS-2 seem360

to provide better results (RMSE = 17.9 mm) in terms of SWE retrieval. The values are in fact close to the original modeled

:::::::
modelled

:
SVS-2 SWE. There is still little variability compared to measured SWE values. The Arctic version shows lesser

performances (RMSE = 21.2 mm), with a similar offset shown in figure 8, but the retrieved SWE show a bit more spread.

The initial SVS-2 SWE values do not differ considerably from the previous test. One significant result compared to past tests

is the uncertainty of the retrieved SWE values (errors bars) for the default version are much narrower (6.9 mm mean quartile365

deviation). From the past two figures, the top 30 default SVS-2 ensemble members seem to perform best, where most points

and their uncertainty fit within the expected accuracy of TSMM. However, with results presented in section 4.4, the default

version was rejected for the following tests, due to the retrieved posterior snow properties (see section 4.4).

Figure 10 shows the results of the SWE retrieval when increasing the uncertainty on the SSA (δSSA), and when including

four radar observations from different angles. When comparing the impact of increased δSSA on priors, we see that the overall370

accuracy is improved, with an RMSE = 18.7 mm, compared to 20.9 mm (Figure 8). Similar spread can be observed, but one

observed improvement is the lower difference between the retrieved SWE values and the original SVS-2 modeled
::::::::
modelled
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Figure 9. Comparison of the retrieved SWE using the MCMC approach with priors coming from the top 30 ensemble members of the default

and Arctic versions of SVS-2 (Woolley et al., 2024). The error bars show the 1st and 3rd quartiles of the measured (x-axis) and posterior

(y-axis) distributions.
:::
The

::
red

::::::
shaded

::::
areas

::::
show

:::
the

::
1st

::::
and

::
3rd

:::::::
quartiles

::
of

:::
the SVS-2

:::::::::
distributions

::::::
(Figure

:::
6c).

SWE. One interesting result to note is that the uncertainty (22.5 mm quartile deviation) on the retrieved SWE values (errors

bars) are not considerably impacted compared to the original Arctic test (19.6 mm quartile deviation).

The greatest improvement can be observed when retrieving SWE using four σ0 measurements. The lowest RMSE was375

obtained (15.8 mm), out of all the tests, and all values are within the expected accuracy of the TSMM mission. Again, the

uncertainty (23.4 mm quartile deviation) on the retrieved SWE values (error bars) were not considerably impacted, though in

some cases, the uncertainties are slightly larger.

4.4 MCMC retrieved snow properties

In this section, the impacts of prior selection and constraining valid snowpack properties, between layers, within the MCMC380

method will be presented. The SM site (Figure 1) was chosen as an example for these results, and is typically what is observed

for all sites. Figure 11 shows posterior distributions of snow parameters from the MCMC method and the normal distribution of

the surveyed snow measurements (snowpits) and priors from the default SVS-2 version (column a), the Arctic SVS-2 version

(column b) and the default SVS-2 version without constraining the valid snow properties (column c). The evolution of the

MCMC sampling for all snow parameters are also shown throughout the 5000 iterations in Figure 12, for the three same385

scenarios.
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Figure 10. Comparison of the retrieved SWE using the MCMC approach with priors coming from
::
a) the top 30 ensemble members of the

Arctic versions of SVS-2 (Woolley et al., 2024) and a higher
::
b)

::::
using

:::
the

::::
same

:::
top

:::
30

:::::::
ensemble

:::::::
members

:::
of

::
the

:::::
Arctic

:
SVS-2,

::::::
tripled

prior uncertainty on the SSA (δSSA) and an adding three more
:::::::
additional σ0 observations (different incidence angles), emulating the number

of observations the TSMM would acquire. The error bars show the 1st and 3rd quartiles of the measured (x-axis) and posterior (y-axis)

distributions.
:::
The

::
red

::::::
shaded

::::
areas

::::
show

:::
the

::
1st

:::
and

:::
3rd

:::::::
quartiles

::
of

:::
the SVS-2

:::::::::
distributions

::::::
(Figure

:::
6c).

Table 2. Retrieved SWE RMSE and uncertainty, for different parameterizations of the MCMC method. Uncertainty is defined as the quartile

deviation,
:::
and

:::
the

:::::
values

:::::
consist

::
in
:::
the

::::
mean

:::::
value

:::
over

::
all

::::
sites. Percentages over the mean surveyed SWE values are given in parentheses.

Tests were conducted with the default SVS-2 version as priors and larger δSSA but due to MCMC convergence issues, results are not shown

here.

Parameterization
SWE RMSE (mm) SWE uncertainty (mm)

Default Arctic Default Arctic

120 ensemble members 27.6 (28.7%) 20.9 (21.7%) 11.9 (12.9%) 19.6 (21.1%)

Top 30 ensemble members 17.9 (18.7%) 21.2 (22.0%) 6.9 (7.4%) 18.8 (20.2%)

Larger δSSA — 18.7 (19.4%) — 22.5 (24.2%)

Larger δSSA + 4 obs — 15.8 (16.4%) — 23.4 (25.2%)

Figure 11 a) shows that, using the default version of SVS-2, SWE tends to be underestimated for this site compared to

its initial prior estimation, e.g. the bias between medians is 24.5 mm higher for the posterior than the prior, compared to the

snowpit distributions. Posterior thicknesses for both layers show improvement from their respective priors, i.e. an improvement
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of 14.4 cm and 3.8 cm for the R and DH layers respectively. Densities show little improvements even after 5000 iterations.390

Posterior and prior distributions tend to overlap well, without much convergence towards the snowpit distributions, with only a

difference of 4.9 kg · m−3and 0.1 kg · m−3difference between their medians for the R and DH snow layers respectively. SSA

for DH shows improvement where the posterior median is closer to prior median by 0.7 m2 · kg−3. There is an improvement of

the SSA for the R layer but tend to still be largely underestimated compared to measured SSA, with a bias of -20.4 m2 · kg−3.

Figure 11 b) shows that, using the Arctic version of SVS-2, SWE is slightly more underestimate by the posterior compared395

to the prior, i.e. the bias between medians is 24.7 mm higher for the posterior than its prior, which had a bias of 6.3 mm with

the snowpits measurements. SWE estimate is better than what was estimated using the default SVS-2 version, where a bias

of -18.5 mm is obtained for the Arctic SVS-2 prior compared to -36.1 mm for the default SVS-2 prior (Figure 11 a). Again,

thicknesses are well estimated by posteriors compared to priors, with 16.5 cm and 5.8 cm improvements on biases for the R

and DH snow layers respectively when compared to measurements. This shows that both sources of priors tend to perform well400

as first guesses for the MCMC method. Density posteriors still show some differences with measurements (-50.3 kg · m−3and

-31.1 kg · m−3biases for R and DH snow layers respectively) but the errors are considerably lower than the estimates from the

default SVS-2 version, where improvements of 74.0 kg · m−3and 10.8 kg · m−3on biases were observed for the R and DH

snow layers . The same observation can be made for the SSA posteriors, where an improvement of 11.8 m2 · kg−3and 4.7 m2

· kg−3is observed compared to results of figure 11 a.405

Figure 11 c) shows the same results when no constraints are given to the sampled snow parameters between layers, and is

mainly presented for discussion purposes in section 5. The best results in terms of SWE estimate is observed compared to

results of Figures 11 a) and 11 b), with a bias of -8.4 mm. Nonetheless, the thicknesses show the worst estimates (bias of

14.9 cm and -9.0 cm for R and DH grain layers) and do not deviate from the prior estimates (0.1 cm and 1.1 cm difference

between the posterior and prior medians for R and DH grain layers). The same observation is made for the density of the R410

layer with a bias of -127.6 kg · m−3for the posterior compared to -129.5 kg · m−3for the prior. The density of the DH layer is

well estimated though (bias=0.3 kg · m−3) and shows the best results out of all MCMC estimates. Similar observations can be

made for the SSA where only a slight improvement is seen for the R layer (bias=-188.2 m2 · kg−3), and excellent estimation

of the DH layer SSA is seen (bias=0.2 m2 · kg−3).

Figure 12 shows the sampling evolution of the MCMC method for the same three scenarios as in Figure 11. We see that with415

less observations (one observations for Figures 12 a and c, and four observations for Figure 12 b), the sampling converges more

rapidly and shows less variability, which is also shown in the spread of the retrieved parameters (Figure 11). One parameter

that does not show as much variability with more observations is the radar σ0 uncertainty (σ
:
δ). The variability of the σ0

measurement tends to converge around 1.1 dB ±0.3 dB, 1.2 ±0.2 dB and 1.2 ±0.4 dB for Figures 12 a), b) and c) respectively.

These results also show that with poor prior estimates (Figure 12 a) and an unconstrained optimization (Figure 12 c), some420

snow parameters, especially for the R layer quickly converge to a poorly estimated value, even though the SWE estimate is

close to measurements.

The differences in snow profile estimates between the different selected prior distributions and MCMC parameterizations

will be further discussed in the next section. The implication for different applications will also be discussed.
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5 Discussion425

5.1 Retrieving SWE with MCMC

Results of section 4 show that, like previous studies (Pan et al., 2024), the MCMC method is very powerful to fit, in this case,

SAR σ0 observations with modeled
:::::::
modelled

:
σ0, when many variables need to be optimized simultaneously. Figure 11 shows

that, without proper constraints, the MCMC method can use the σ0 information to optimize snow parameters and still achieve

great results when comparing to bulk SWE, but returns a snow profile that is not representative of what is found in the field430

(Figure 11 c). These results confirm that SAR σ0 is sensitive to SWE in the Ku-Band range, since, even with a poorly estimated

microstructure (Figures 11 a and c), which is an important parameter that drives snow volume scattering in that frequency range

(Montpetit et al., 2024; Picard et al., 2022b; King et al., 2018), other variables like thickness are tuned to fit the measured σ0

(Figure 12 c)
:
,
:::
and

:::
can

::::
still

::::::
achieve

:
a
:::::::::
reasonable

:
SWE

:::::::
estimate

::::::::
compared

::
to

::::::::::::
measurements. It should be noted that when SWE is

poorly estimated by the prior, the posterior SWE estimate has a higher error (Figure 9), where SWE estimates are concentrated435

around the initial modeled
::::::::
modelled SWE and do not diverge from that initial estimate.

::::
Also,

::::::
further

:::::
tests

::::
were

:::::
done

::::
(not

::::::
shown),

::::::
where

:::
the

:::::::::
uncertainty

:::
on

:::
the SWE

:::
was

::::::::
increased,

:::
by

:::::::::
increasing

:::::::::
uncertainty

:::
on

::::::::
thickness

:::
and

::::::
density

::::::::::
individually

::::
and

::::::::
separately.

::::::
Every

::::
tests

:::::::
resulted

::
in

:::::::::::::
underestimation

::
of

:
SWE,

:::::
most

:::::
likely

:::
due

::
to

:::
the

:::::::::::::
underestimation

:::
of SSA

::
in

:::
the

:::::
priors,

::::::
which

::::::
boosted

:::
the

:::::::
volume

::::::::
scattering

::
of

::::
both

::::::
layers.

:::
The

::::
most

::::::::
sensitive

::::::::
parameter

::
in

:::
the

:
MCMC

:::::
model

:::::
being

:::::::::
thickness,

:
it
:::::::
reduced

:::
the

::::
snow

::::::::
thickness

::
to

::::::
reduce

:::
the

:::::::
volume

::::::::
scattering

:::
and

::
fit

:::
the

::::::::
modelled

:
σ0

::::
with

:::
the

::::::::
measured

:
σ0,

::::::::
resulting

::
in

::
an

::::::::::::::
underestimation440

::
of SWE.

:
Figure 11 c) also confirms previous observations (King et al., 2018) that Ku-Band σ0 is most sensitive to the DH

layer rather than the R grain wind slab layer. Parameters from the DH layer show lower median biases than the R layer, and

the latter also tends to stick to its prior distribution, indicating lower sensitivity of the σ0 to the R layer. It explains why the

posterior SWE estimates are lower than the initial SVS-2 estimates for both versions (Figure 8), since σ0 is very sensitive to

both SWE and microstructure. The thickness of the R layer is properly estimated, i.e. MCMC reduces its thickness to lower the445

scattering caused by the low SSA estimation, and does not increase its density sufficiently to properly estimate SWE.
:::
The

::::
fact

::
the

:
SVS-2

::::::::::::
underestimates

:::
the R

::::
layer

::::::
density,

::::
and

:::
that

:::
the

:
MCMC

:::::
model

::::::::
struggles

::
to

::::::
sample

::::::
values

:::
that

:::
are

:::::
close

::
to

::::::::
measured

:::::::
densities,

::::::::::
aggravates

:::
the

:::::::::::::
underestimation

::
of

:
SWE

:
. This is why it is important to have some knowledge of stratigraphic snow

properties, e.g. number of snow layers, density and SSA gradients, to constrain the MCMC method to valid snow properties

without overfitting on the most sensitive parameters. Even with
:
,
:::
and

::
to

:::
not

::::::::
over-trust

:::
the

:::::
initial

:::::
prior

::::::::
estimates,

:::
i.e.

:::
not

:::
be

:::
too450

::::::::
restrictive

::
on

:::
the

:::::
prior

:::::::::::
uncertainties.

:::::
With inter-layer constraints

::::::
(Figure

:::
11

:
a
::::
and

::
b), it is possible to achieve SWE estimates

within desired errors, like the 30 mm RMSE determined for the TSMM mission (Derksen et al., 2019), and comparable to

the unconstrained MCMC method.
::
A

::::
way

::
to

:::::::::
potentially

:::::
solve

:::
the

:::::
issue

::
of

:::
the

:::::
high

::::::::
sensitivity

:::
to

::::
layer

::::::::
thickness

::::::
would

:::
be

::
to

:::
use SWE

::
as

::
a

::::
prior

:::::::
directly

:::
and

:::::
infer

::::
snow

:::::::
density

:::
and

::::::::
thickness

:::::
from

::::::::
published

:::::::::::
relationships

::::::::
between SSA

:::
and

:::::::
density

:::::::::::::::::
(Domine et al., 2007)

:
.
::::
This

:::
will

:::
be

::::::
further

:::::
tested

::
in

:::::
future

::::::::::
experiments

::
in
:::
the

:::::::
context

::
of TSMM

:
.455

The impact of the initial guess is also valid for other snow parameters. There is a very fine balance to identify between prior

estimates and their uncertainties. The farther the initial guess is from the ground truth, higher is the number of iterations needed

for MCMC to converge towards a final solution (Pan et al., 2024). Also, increasing the uncertainty on the priors tend to increase
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the uncertainty on the posteriors and a larger number of iterations is also needed to converge to a solution. Figure 10 shows that

by increasing the uncertainty on SSA, a known snow parameter to be highly underestimated by SVS-2 (Woolley et al., 2024),460

the accuracy of the retrieved SWE is improved. By allowing the method to sample SSA in a wider range of possible values,

closer to what was measured in the field, more weight is given to snow microstructure in the modeled
::::::::
modelled σ0. In this

case, increasing the uncertainty on SSA does not directly impact the uncertainty on retrieved SWE, since SWE is a function

of density and thickness. Nonetheless, it does have an impact on the σ0 measurement uncertainty (σ
:
δ), which indirectly adds

uncertainty to all snow variables.465

Similarly, when comparing the outputs from both SVS-2 versions, the prior density estimates for the R layer of the default

version (Figure 11 a), do not allow to sample values close to the measured ρsnow,
:::
due

::
to

:::
the

::::::
lower

::::
prior

::::::::::
uncertainty,

:
which

prevents the MCMC method to properly sample other variables, such as SSA for the same layer
:
,
::::
since

:::::::
volume

::::::::
scattering

::
in

:::
the

IBA
:::::
model

:::::::
depends

::
on

::::
both

:
SSA

:::
and

::::::
density. It should be noted from Figure 11 a), that a secondary peak had started to form,

for both ρsnow and SSA for the R layer, closer to the measured values after 5000 iterations. This indicates that with a higher470

number of iterations, it is possible that the method could have converged towards a better solution, even with a less accurate first

guess, showing the potential of MCMC to retrieve snow parameters. That said, a test was conducted to confirm this hypothesis

(not shown here), with 40,000 iterations and no significant improvement was observed compared to Figure 11 a). With the

initial estimate of ρsnow being closer to what was measured with the Arctic version of SVS-2, we clearly see that after 5000

iterations, the method converges towards a solution that is closer to the measurements for all snow parameters. Figure 7 c) also475

shows, that increasing the number of iterations does not improve SWE retrieval.

As shown in Figure 10, the largest gain in SWE accuracy comes from adding more observations to the retrieval method. In

this study, measurements at different incidence angles were available, which modified the sensitivity of the σ0 to the different

scattering mechanism (Tsang and Kong, 2001), thus modifying the importance of the different snow parameters in the retrieval

process. This could explain why the retrieved uncertainty on the radar σ0 (σ
:
δ) is less variable in Figure 12 b), since with four480

observations, that uncertainty is spread out over the snow parameters and less on the σ0 measurements. This result also shows

that, even though the lower Ku-Band frequency (13.5 GHz) is sensitive to SWE and snow volume scattering, it still has a high

sensitivity to surface scattering at the soil-snow interface. The ,
::::::
which

:::::
could

::::::
explain

::::
why

::::
there

::
is
:::
not

:::::::::
significant

::::::
spread

::::::
among

::
the

::::::::
retrieved SWE.

::::
The

:::
lack

::
of

::::::
spread

::
in

:::
the

:::::::
retrieved

:
SWE

:::
can

::::
also

::
be

::::::::
explained

:::
by

:::
the

:::
low

:::::::::
uncertainty

:::
on

:::
the

::::::::
thickness

:::::
priors

::
of

::::
both

::::::
layers,

:::::
which

:::
are

:::
the

::::
most

::::::::
sensitive

:::::::::
parameters

::
in

:::
the MCMC

::::::
model,

:::
but

:::
are

::::::::
restrained

::
to

::
a

::::::
narrow

:::::
range

::
of

::::::::
thickness485

::::::
values.

::::
Also,

:::
the

::::
fact

:::
that

:::::::
volume

::::::::
scattering

::
is

:::
less

::::::::
impacted

:::
by

:::::::
density,

:::
than

::
it
::
is

::
by

:
SSA,

:::::::
reduces

:::
the

:::::::
potential

::
of

::::::::
sampling

::
a

:::::
wider

::::
range

:::
of SWE

:::::
values,

::::::
which

::
is

:
a
:::::::
function

::
of

:::::
snow

::::::::
thickness

:::
and

:::::::
density.

::::
The higher error coming from using optimized

effective soil properties (increased RMSE of 0.4 dB) for all the TVC domain instead of site specific variables (see Fig.13 of

Montpetit et al., 2024), propagates in the uncertainty of the σ0 measurement and impacts the retrieved snow properties.
:::::
Since

::
the

::::::::::
uncertainty

::
on

:::
the

::::::::
modelled σ0

:::::
values

:::
(δ)

:::
are

::
of

:::
the

::::
order

::
of

:::
1.5

::::
dB,

::::::::
compared

::
to

:
a
::::::
change

::
in

::::::
RMSE

::
of

:::
0.4

:::
dB,

::
it
::
is

:::::::
unlikely490

:::
that

::::::::::
considering

:::
site

:::::::
specific

:::
soil

:::::::::
properties

:::
will

::::
have

::
a
:::::::::
significant

::::::
impact

::
on

:::
the

::::::::
retrieved SWE

:
in
::::
this

:::::
study.

::::
That

:::::
said,

:
it
::::
was

:::::
shown

:::
by

::::::::::::::::::::
(Montpetit et al., 2024)

:::
that

:::
soil

::::::
cannot

:::
be

::::::
neglect

:::
for

:
SWE

:::::::
retrievals

::
at

::::::::
Ku-band,

::::
and

:::
that

:::
its

:::::::::
properties

::::
must

:::
be

:::::::
properly

:::::::::
estimated. This result confirms the choice of the dual frequency, dual polarization concept for the TSMM mission,
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where four observations will be made available for each satellite pass. The higher Ku-band frequency (17.25 GHz) being more

sensitive to snow micro-structure, and the cross-polarization being more sensitive to volume scattering, especially from the495

DH layer (Ulaby and Ravaioli, 2020). This concept should allow the MCMC method to converge towards a good stratified

snow profile estimate, given that proper stratigraphic information is known, i.e. layering, DH fraction, vertical density SSA

gradients, etc. For this study, this knowledge was based on field observations, which is not possible to achieve operationally at

the continental scale. This is why, improved snow modeling
::::::::
modelling

:
for different landscapes, and improve data assimilation

schemes are necessary to enhance the predictability and assessment of these stratigraphic conditions.500

5.2 Current limitations of snow physical models

Results of section 4.3 show that properly estimating the initial guess for the different snow properties is crucial to accurately

retrieve SWE using the MCMC approach. In an operational context, computation efficiency is important. This is why a proper

prior is important (Figure 9) to improve the accuracy of SWE estimates but also reduce the number of iterations needed for the

MCMC method to converge to a solution. Again, in an operational context over various landscapes, as seen in Canada, it is505

important to rely on snow modeling
::::::::
modelling

:
such as what SVS-2 can provide, in order to spatialize the priors but also allow

them to evolve in time, thus adapting the priors in both space and time.

That said, we have seen that the higher uncertainty on the SSA estimates (Figure 5) makes it challenging to use directly

the SVS-2 estimates as priors. Same observation is true for the density of the R layer (Figure 4), where the density is strongly

underestimated, making it more difficult for MCMC to converge to a realistic solution. These higher uncertainties mainly510

come from the fact that Crocus, the snow physical model implemented in SVS-2, was originally developed to simulate alpine

snow. Ongoing work will implement new snow physical processes in Crocus, and improve the modeling
::::::::
modelling

:
of vertical

physical processes for the different climates observed in Canada.

This study has shown that, even though the priors may have higher uncertainties, it is still possible to retrieve SWE within

the 30 mm RMSE threshold (Figure 10) set for TSMM. The proposed improvements above, supported by results of section 4,515

should provide a more efficient and accurate retrieval algorithm that could be applied to a large and diverse landscape, such as

Canada. This study is the initial step to creating a SWE retrieval algorithm that can be applied both spatially and temporally.

The validation done here, in an Arctic environment, will be reproduced in other global climates, and will be used to further

enhance the SWE retrieval algorithm.

6 Conclusions520

This study uses the previously published Trail Valley Creek (TVC) experiment 2018/19 dataset (Montpetit et al., 2024) in

order to developed a snow water equivalent (SWE) retrieval method inspired by previous work using the Markov Chain

Monte Carlo (MCMC) method (Pan et al., 2024). The heart of the retrieval algorithm relies on the Snow Radiative Trans-

fer Model (SMRT) model (Picard et al., 2018) which allows to minimize a likelihood function between the measured and

modeled
:::::::
modelled

:
backscatter measurements at Ku-band (13.25 GHz). Here, the measured σ0 come from the University of525
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Massachusetts instrument mounted on board a Cessna-208. The retrieved SWE and layered snow properties from the MCMC

method were compared with field measurements surveyed during the 2018/19 TVC experiment.

Compared to previous studies retrieving SWE under dry snow conditions using the MCMC method, here we neglect certain

snow parameters like snow temperature, which do not have a significant impact on radar backscatter radiative transfer modeling

(Picard et al., 2018). This study focuses on retrieving snow properties and uses the retrieved underlying soil properties needed530

for radiative transfer modeling
::::::::
modelling

:
from Montpetit et al. (2024). We also show that, in order to create an efficient SWE

retrieval algorithm applicable to various climates and landscapes, the new version of the land surface model used in support

of environmental forecasting at Environment and Climate Change Canada, Canadian Soil Vegetation Snow version 2 (SVS-2)

(Woolley et al., 2024; Garnaud et al., 2021; Vionnet et al., 2022) can be used to generate prior distributions for the MCMC

method. This is crucial for future satellite missions such as the Terrestrial Snow Mass Mission (TSMM). We also show
:::::
Given535

::
the

::::::
results

::::::
shown

::
in

:::
this

:::::
study,

:::
we

::::::
should

:::
also

::::::
expect that by allowing the priors to evolve in time and space, given the dynamic

seasonal evolution of weather and snow conditions, a reduced number of iterations is
:::
will

:::
be needed for the MCMC method to

converge to a solution, thus improving computation efficiency. Since the SWE retrieval algorithm optimizes 3×N parameters

simultaneously, where N is the number of snow layers present in the snowpack, we also implemented the snowpack layer

reduction method published by Meloche et al. (2024) to improve computation efficiency, which reduces the number of layers540

to a relevant number, i.e. a rounded grains (R) wind slab snow layer with an underlying coarse depth hoar (DH) snow layer

(Montpetit et al., 2024).

Even though the SVS-2 outputs do not reflect perfectly the measured snow height (Hsnow), snow density (ρsnow) and Specific

Surface Area (SSA) during the 2018/19 TVC experiment (Section 4.1), it is possible to increase the uncertainty on the prior

distributions for the known snow properties to have higher errors in order to retrieve SWE accurately (Section 4.3). These are545

also known limitations of the Crocus model for Arctic snowpacks and work is ongoing to improve the model to better represent

modeled
:::::::
modelled

:
snow properties over various climates.

::::
This

:::::
work

:::
also

::::::::
indicates

::::
that

::::
land

::::::
surface

:::::::
models

:::
like

:
SVS-2

:::
and

::::
radar

::::::::::::
measurements

:::
can

:::::
work

:::::::
together

::
to

::::::::
mutually

:::::::
improve

::::
their

::::::::::
accuracies.

::::
This

:
is
::::
part

::
of

:::
the

:
TSMM

::::::
concept

::::::
where SVS-2

:::
and

:::
the

::::
radar

::::::::::::
measurements

::::
will

::::
work

:::::::
together

::::
with

:
a
::::
data

::::::::::
assimilation

::::::
scheme

::
to

::::::::
mutually

:::::::
improve

::::
their

::::::::
estimates,

::::::::::
particularly

::
in

::::::
remote

::::::
regions

::::
with

::::
little

:::::::::::
observations

::::::::::::::::::
(Derksen et al., 2019).

:
550

It was shown that it is important to have priors that reflect typical values observed in the field and to constrain the inter layer

valid properties (e.g. SSAR > SSADH ), since the MCMC tends to optimize parameters that influence the most the radar σ0

::
the

:::::
most. This can lead to a better SWE estimate (Table 2) but with a very different retrieved vertical snow profile compared

to measurements (Figure 11). This has significant impacts for many hydrological applications which require stratified snow

properties (Cristea et al., 2022), and could also impact numerical prediction systems which uses retrieve snow properties in555

their data assimilation scheme (Alonso-González et al., 2022).

It was also shown that the best improvement to SWE accuracy and uncertainty was to include more σ0 observations, where

the different observations are more or less sensitive to either surface or volume scattering. This was achieved here by including

observations at various incidence angles. A SWE RMSE of 15.8 mm was achieved when including four observations and a

larger uncertainty on SSA, allowing MCMC to more rapidly sample values included within the measured distributions. This560
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result confirms assumptions used to develop EO missions to retrieve SWE such as CoReH2O (Rott et al., 2010), and TSMM

(Derksen et al., 2019), where dual-frequency and dual-polarization concepts are put forward, giving four observations for a

single satellite pass. The higher frequency in the dual-frequencies and the cross-polarization term ensures a higher sensitivity

to snow volume where the lower frequency and the co-polarization term ensures a higher sensitivity to surface scattering

properties such as the snow-soil interface.565

Work is still required in order to operationalize SWE retrieval algorithms such as the one proposed in this study, but it

confirms, along with previous studies (Singh et al., 2024; Pan et al., 2024; Durand et al., 2024; Lemmetyinen et al., 2022), the

feasibility of such EO missions.
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Figure 11. Example from the SM site of prior distributions coming from the default (column a
:
,
::::
same

::::
prior

::::::::::::
parameterization

::
as

:::::
Figure

::
9a) and

Arctic (column b
:
,
::::
same

::::
prior

::::::::::
configuration

::
as

:::::
Figure

:::
10b) versions of SVS-2 and retrieved posterior distributions from the MCMC method,

for the different snow variables compared to the surveyed snow measurements. Column c) consists in the MCMC optimization using the

default version of SVS-2, where no vertical constraints on snow properties were applied. σ
:
δ
:
is the free parameter corresponding to the

uncertainty of the radar backscatter measurement and was not measured in the field.
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Figure 12. Evolution of the MCMC sampling for the 5000 iterations which correspond to the posterior distributions of Figure 11 for the

same three optimization scenarios. Horizontal
:::
Full

:::::::
horizontal

:
lines consist in median values from measurements (snowpits)

:::
and

::
the

::::::
dashed

:::::::
horizontal

::::
lines

::::::
consist

::
in

:::
the

::::
mean

::
of

:::
the

:::::
priors.

:::
The

:::::::
min/max

:::::
values

:::::
consist

::
in
:::
the

::::::::
minimum

:::
and

::::::::
maximum

:::::::
properties

:::::::
sampled

::
at

::::
each

::::::
iteration

::::::
between

:::
the

:::::
seven

:::::
parallel

:::::::
sampling

::::::
chains.
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