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Abstract. Simulating the Earth’s climate is an important and complex problem, thus climate models are similarly complex,
comprised of tens-to-hundreds-of-theusands-ef-millions of lines of code. In order to appropriately utilize the latest computa-
tional and software infrastructure advancements in Earth system models running on modern hybrid computing architectures to
improve their performance, precision, accuracy, or all three; it is important to ensure that model simulations are repeatable and
robust. This introduces the need for establishing statistical or non-bit-for-bit reproducibility, since bit-for-bit reproducibility
may not always be achievable. Here, we propose a short-simulation ensemble-based test for an atmosphere model to evaluate
the null hypothesis that modified model results are statistically equivalent to that of the original model. We implement this test
in version 2 of the US Department of Energy’s Energy Exascale Earth System Model (E3SM). The test evaluates a standard
set of output variables across the two simulation ensembles and uses a false discovery rate correction to account for multiple
testing. The false positive rates of the test are examined using re-sampling techniques on large simulation ensembles and are
found to be lower than the currently implemented bootstrapping-based testing approach in E3SM. We also evaluate the sta-
tistical power of the test using perturbed simulation ensemble suites, each with a progressively larger magnitude of change to
a tuning parameter. The new test is generally found to exhibit more statistical power than the current approach, being able to

detect smaller changes in parameter values with higher confidence.

1 Introduction

Thousands of scientists and engineers work tirelessly in efforts to better understand and model the Earth’s changing climate.
A large portion of this effort has come from the development of Earth system models at modeling centers around the globe,
which seek to simulate the atmosphere, ocean, cryosphere, land surface, and chemistry, among other components of the Earth
system. These models are comprised of many millions of lines of code and are enormously complex projects worked on by
many individuals, so the need arises to verify that contributions to the model code do not have unintended effects on answers

“This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-000R22725 with the U.S. Department
of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).




25

30

35

40

45

50

55

produced. Thorough testing of the output from these models is routinely conducted, assessing if the results are identical (bit-
for-bit) or not. If the results are indeed-not bit-for-bit identical, statistical checks are also conducted to ensure the simulated
climate of the model or component has not significantly changed, unless that is the intended effect. A variety of methods are
available (Milroy et al., 2018; Wan et al., 2017; Baker et al., 2015; Mahajan et al., 2017, 2019b), each of which performs a
statistical comparison between a reference ensemble and test simulation or ensembles. Here, an ensemble indicates a set of
model runs each initialized with similar but slightly perturbed initial conditions, generally only at machine-precision levels.

The Energy Exascale Earth System Model (E3SM, E3SMProject(2023)Golaz et al. (2022); E3SM Project (2023)) uses a
suite of tests which run the model under a variety of configurations and methods using the Common Infrastructure for Modeling
the Earth (CIME) software to setup, build, run, and analyze the model. The tests are run at varying frequencies from nightly to
weekly, testing the-both the latest science and performance updates and maintenance branches, which only receive compatibility
updates and should be bit-for-bit identical. A subset of these tests are statistical reproducibility tests (non-bit-for-bit tests),
which determine through a comparison of control and perturbed ensembles, whether or not the simulated climate has changed
as a result of modifications to the model code or infrastructure. These are the Time Step Convergence test (TSC, Wan et al.
(2017)), the Perturbation Growth New test (PGN, related to the work in Rosinski and Williamson (1997)), the multi-testing
Kolmogorov-Smirnov test (MVK, Mahajan et al. (2019b)), and the MVK-Ocean test (MVK-O, Mahajan (2021)). The first
three test the reproducibility of the E3SM Atmosphere Model, (EAM), and the last tests the Model for Prediction Across
Scales-Ocean (MPAS-0), the ocean component in E3SM.

The TSC test evaluates numerical convergence by comparing ensemble differences at two small time step sizes (i.e., +s
and-2sl sec and 2 sec) using a Student’s ¢-test on root mean squared difference (RMSD) values, under the assumption that
numerical solutions should converge as the time step decreases (Wan et al., 2017). The PGN test, in contrast, assesses stability
by comparing the state of the atmosphere after one time step across perturbed ensemble members, identifying whether small
initial differences grow inconsistently through individual physics parameterizations. Unlike the shert-duration-shorter duration
TSC and PGN tests, the MVK and MVK-O tests use year-long and two-year long simulation ensembles respectively, allowing
them to assess the cumulative impact of code or configuration changes on the model’s climatology after internal variability has
saturated, providing a more robust evaluation of long-term climate statistics.

MVK evaluates the null hypothesis that a modified model simulation ensemble is statistically equivalent to a baseline en-
semble. It applies a two-sample Kolmogorov-Smirnov test to over 100 output variables and counts how many show statistically
significant differences between the two ensembles. If this count exceeds a critical value threshold as expected from internal
variability and derived via bootstrapping, the two simulations are considered to have different simulated climates (Mahajan
et al., 2017). Further details on the MVK are provided in Section 2.1.

Here, we propose a new testing approach ;-improving-that improves on the MVK —that-and provides a two-fold benefit
over it. Firstly, from a human usability perspective, it is desirable for the usability-ef-a-test to reduce the number of false
positives (Type I error rates)-; where two simulations are erroneously labeled as statistically different), without affecting the

false negative rates (Type II error rates; where two simulation ensembles are erroneously labeled as statistically similar).
Operationally, MVK has been exhibiting a false positive rate of about 7.5%, despite the prescribed significance level of 5%,
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since its induction into the test suite (as discussed in Section 4.7). Previous-Other previous works suggest that implementing a
false discovery rate (FDR) correction (by adjusting significance thresholds based on the number and rank of p-values, discussed
in more detail in Section 2.3), reduces the false positive rate when multi-testing as compared to using bootstrapping-derived
critical value threshold for hypothesis testing (Ventura et al., 2004; Wilks, 2006, 2016; Mahajan, 2021);-whieh-. This is the

methodology used by MVK. The-Some frameworks, including those presented in Mahajan (2021); Zeman and Schir (2022)
seek to reduce false positive rates, and do so successfully, but at a greater computational cost, as they work with grid-box level
data. The work in Zeman and Schir (2022) compares larger sub-ensemble sizes which reduces the false positive rate lower

than an FDR correction, but adds to the computational cost, while Mahajan (2021) uses the same ensemble sizes, but applies
an FDR correction at each grid box in the ocean model. The new testing approach for the atmosphere model thus implements

an FDR correction when evaluating multiple variables in the atmosphere model output. Secondly, it will be useful to reduce
the computational cost and time of deriving the critical value thresholds for the MVK. The bootstrapping procedure is time-
consuming and computationally expensive because of its need for large control ensembles. And, it would need to be conducted
again after a significant enough departure from the original model code to establish a new critical value threshold. Substantial
model code changes to numerics and physics can alter internal variability and shift the distributional properties of output
fields. FDR correction theoretically asserts the critical value threshold for global null hypothesis evaluation (as discussed

in Section 2.3) is 1 or more rejected field, thus eliminating the need for conducting a large control ensemble simulation

to determine it—theugh-one-is—requiredto—demonstrate—thisthis threshold. A large control ensemble is required, though, to
demonstrate that the theoretical critical value is equivalent or better than the one arrived at by bootstrap sampling of the large

ensemble.
This paper thus seeks to answer two questions;—: can a testing framework using FDR correction reduce the number of false
positives in an operational setting as compared to the MVK without impacting its statistical power (false negative rates) and

can it eliminate the need for extensive and expensive analysis of large ensembles each time the model is updated significantly?

We also explore the impact of applying the BH-FDR correction to different underlying statistical test used to evaluate the

differences in distribution, using the Mann-Whitney U and Cramér-von Mises tests in addition to the K-S test.
The following section discusses the MVK test and its pitfalls in more detail and describes the FDR approach as implemented

here. Section 3 lists the simulation ensembles conducted to evaluate both the MVK and the new testing framework. And;
Section 4 discusses our results on the evaluation of the false positive and negative rates of these testing frameworks. Finally,

our results are summarized in Section 5 with a brief discussion of caveats of the study and future direction.

2  Methods
2.1 Multi-testing Kolmogorov-Smirnov Test

The multi-testing Kolmogorov-Smirnov (MVK) test, as implemented in the CIME for the atmosphere model of E3SM, com-
pares two independent N = 30 member ensembles. It is used in nightly testing, comparing a baseline ensemble, generated after

each approved “climate changing” code modification, and a test ensemble, newly generated each day. The baseline ensemble
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is generated following approvals from domain scientists who have expertise related to the newly introduced code. The E3SM
model is run at “ultra-low” resolution, (called nedpg2, ~ 7.5° atmosphere, 240-km-ocean;-for 14 months). The first two months

are discarded as the system reaches quasi-equilibrium. Annual global means of each of the 120 standard output fields of the
E3SM Atmosphere Model (EAM) are then computed for each ensemble member. Then, for each field, the null hypothesis (H,
also referred to as the local null hypothesis here) is evaluated. The local null hypothesis asserts that the sample distribution
function of the annual global mean of that field estimated from the baseline ensemble (estimated-from /N data points) is sta-
tistically similar to that of the new ensemble is evaluated. The two sample Kolmogorov-Smirnov (K-S) test at a significance
level of o =0.05 is used for testing H;. The K-S test is a non-parametric statistical test to compare cumulative or empirical
distribution functions. The larger null hypothesis (Hy, also referred to as the global null hypothesis here) that the two ensem-
bles have identical simulated climates is then evaluated for a significance level of «.. The test statistic, ¢, for testing this larger
null hypothesis is defined as the number of fields that reject H;. Hj is rejected if the number of fields rejecting H; is greater
than a critical value threshold (found to be 13, Mahajan et al. (2017)), and the test issues a “fail”. The null distribution of ¢, and
hence the critical value threshold at a significance level of a, was empirically derived by randomly sampling two N-member
ensembles from a 150-member control ensemble of an earlier version of E3SM, and computing ¢, 500 times (Mahajan et al.,

2017).
2.1.1 Potential pitfalls of multi-testing K-S Test

MVK requires a large control ensemble in order to capture the variability of the model and establish proper critical value
thresholds for the number of rejected local null hypotheses before rejection of the global null hypothesis is considered (Wilks,
2006). It also, as discussed in Wilks (2006), does not put weight onto fields rejected very strongly;-that-. That is those fields
with extremely small p-values. If a few fields are rejected with near certainty, this likely indicates global significance;-but-,
But if the total number of these fields does not exceed the predetermined threshold, the overall result is global null hypothesis
acceptance, which results in a lower power to detect differences. Finally, in practice this approach has a larger Type I (false
positive) error (see Sections 4.2, 4.7; Table 2) than desired. While possible to decrease the significance level « to reduce the

false positive rates, this in turn decreases the statistical power of the test to detect small changes which is not desirable.

2.2 Additional statistical tests

The Kolmogoroy-Smirnov test used in the MVK framework is just one non-parametric test available to ascertain differences
between distributions of random variables. To add robustness to the assessment of distributional differences, the Mann-Whitney
U (also called the Wilcoxon rank sum) and Cramér-von Mises tests were also performed to compare each set of ensembles. The
Mann-Whitney U test (M-W hereafter), ranks all samples from the two groups, and compares the sum of those ranks between

the two groups (Mann and Whitney, 1947). The Cramér-von Mises test (C-VM hereafter) used here compares two empirical

distributions using the quadratic distance between them (Anderson, 1962). These tests present an advantage in statistical power
Gentle, 2003)

over the K-S test, as more weight is given to the distribution tails resulting in higher sensitivity to extreme
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values, though at the cost of being more sensitive to outliers. Both additional tests are also non-parametric tests, meaning that
limited assumptions are asserted about the shape of the data.

2.3 False Discovery Rate Correction

When conducting simultaneous multiple null hypothesis tests as in the MVK above, Type I error rate inflation occurs, lead-

ing to a higher overall probability of false positives—, since the number of expected null hypothesis rejections increases with

each additional test (Benjamini and Hochberg, 1995). This means that increased false positives can occur when testing man
p-values at once. While a significance level (e.g., o = 0.05) controls the probability of a false positive for a single test, con-

ducting many tests increases the chance that at least one result will appear significant purely by chance s-even if all the null
hypotheses are true. This implies that the overall proportion of false discoveries can become unacceptably high, undermining
the reliability of the findings. MVK accounts for multi-testing by using a resamplingre-sampling strategy, which was found to
give similar results as compared to permutation testing (Mahajan et al., 2019b). In addition to permutation testing and bootstrap-
ping approaches, other approaches for correcting Type I error rate inflation associated with multi-testing include family wise
error rate correction (e.g. Bonferroni correction), and the false discovery rate (FDR) (Wilks, 2006; Ventura et al., 2004), the
latter of which is used here. The Bonferroni correction adjusts the significance level by dividing the desired significance level,
a, by the number of tests conducted, but is known to have reduced statistical power (Wilks, 2006; Ventura et al., 2004). Here,
we use the Benjamini-Hochberg (BH) FDR correction approach (Benjamini and Hochberg, 1995). The BH-FDR-approach
BH-FDR approach has been shown to effectively control for Type I error rate inflation while also exhibiting more power than
other approaches (Ventura et al., 2004; Wilks, 2006). It is widely used in Earth system studies for spatial analysis (Wilks, 2006;
Renard et al., 2008; Whan and Zwiers, 2017) and has also been applied to solution reproducibility testing of ocean models (Ma-

hajan, 2021). Other methods of false discovery rate correction (Benjamini and Yekutieli (2001), Bonferroni adjustment) were
also examined and found to have lower power than the BH-FDR method used here. These corrections remove more rejections

than the BH-FDR correction and result in fewer global null hypothesis rejections, so it is less sensitive to small parameter

changes. While the original BH-FDR (Benjamini and Hochberg, 1995) description asserted independence, it has been found

in more recent work (e.g. Benjamini and Yekutieli (2001); Ventura et al. (2004)) that the independence of the p-values is not a

Similar to MVK, we use the two sample &S—test-K-S, the two sample C-VM, and the two sample M-W tests to evaluate
the local null hypothesis (H;) for each field that their sample distribution functions are statistically identical across the two
ensembles. Also, similar to the MVK, the global null hypothesis (H) being tested is that the two ensembles are statistically
similar. We use the stat smodels (Seabold and Perktold, 2010) Python package for applying BH to reproducibility testing.

> &

threshold, o, the BH-FPR-constrains-the-eritical-vatue-thresheld-for-for evaluating local null hypothesis () testing-asfoHows:

7: *
Prpr = Max {pm <—q }
i=1..m m
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rejection with the k" sorted p-value, where k is defined in equation 1 (see Eq. 2 of Ventura et al, 2004) and Eqg. 3 of Wilks (2016

k= max {z 1Py < q*l} €8
=1...m m

is-satisfied—Where p(;) is the it" smallest p-value, ané-m is the total number of p-values (in-this-ease-m— s
testedequivalent to the number of hypothesis tests), and ¢* parameteris-the-controlis the chosen limit on the false detection
Sy S 2 d0) :

1
<< * = «. This ¢* is defined as the upper limit of the false positive rate using the
FDR-BH methods, and is chosen at the 5% level as it balances false negative and false positive rates. A decrease in ¢* would

decrease false positives, but it would be offset by an increase in false negative errors. The result of Eq. 1, &, is thus the index
of the largest p-value which is less than

rate;here-discovery rate, typically chosen to be 5 AS—6r;

-th

*3/m, and all p-values with an index less than k (e.g. are rejected. Now,

the global null hypothesis, Hy, that can be framed as all H; are true, is rejected at the global significance level of « if any H 1@)

is rejectedusing-prpras-the-eritieal-value-threshold (Renard et al., 2008; Wilks, 2006; Ventura et al., 2004). Thus, the global

null hypothesis is rejected if any p—<-prprp-value is rejected, said another way, if k > 1. In other words, the critical value
threshold for the test statistic, ¢, which is the number of fields rejecting H, is equal to one for Hy for BH-FDR. This theoretical

critical value threshold of one, when multi-testing with FDR corrections, has been used widely for field significance testing to
address the multiple comparisons problem inherent in spatial analyses in the climate and meteorological studies (Wilks, 2006;
Renard et al., 2008; Burrell et al., 2020). More details about the BH-FDR as applied to earth system science can also be found
in these studies.

This BH-FDR as applied to reproducibility testing will be deemed useful here if it performs at least as well at detecting
altered simulated climates (statistical power) as the MVK s—while-while also reducing the number of false positives. We in-
vestigate these charaeteristic-of-the-characteristics for each approach using suites of simulation ensembles with controlled

modifications in Section4— 4.

2.4 TIllustration of FDR approach with test cases

Figure 1 illustrates this using two example simulation ensemble comparisons, described later in section 3. At left, a control
comparison which each ensemble member differs by a machine precision perturbation (expected to globally pass, but have
local rejections), and at right a perturbed ensemble experiment compared to the control with known solution changes (expected
to be globally rejected). Note that several p-values in the control self comparison are below the threshold o, but none fall below.
aP", leading to an acceptance of the global null hypothesis for this experiment. However in the comparison between control

and perturbed ensembles, there are fewer p-values which fall below the corrected o' P than fall below the nominal ¢, the

lobal null hypothesis is still rejected, as at least one field is rejected. This is similar to Fig. 2 from Ventura et al. (2004), which

also illustrates the impact of a variable «.
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Figure 1. Sorted p-values for two selected experiments, shown in blue, orange and green for the Kolmogorov-Smirnov, Cramér-von Mises, and Mann-Whitne

U tests respectively. These lines are thicker where p-values are rejected based on BH-FDR correction. Dashed grey line shows the nominal o = 0.05, and the

dashed red line shows the FDR corrected af PR = ¢* i /m.

3 Simulation Ensembles

We conduct a suite of multi-member ensembles to evaluate the false positive and false negative rates of BH-FDR approach.
Additionally, having undergone significant updates to software (Golaz et al., 2022), we reassess the critical value threshold of
MVK at which two ensembles of E3SMv2.1 are statistically distinguishable (the critical value threshold having been previously
computed from a control ensemble of an earlier model version) using this ensemble suite. Each ensemble is generated by
varying the initial conditions by near-machine precision perturbations (O(10719)) to the temperature field at each grid point
for each ensemble member. One of these ensembles is the control ensemble which refers to the unmodified default E3SMv2.1
model with default values of all tuning parameters. Other generated ensembles are differentiated from the control ensemble by
varying the value of a tuning parameter from its default value by different magnitudes (see Table 1 for details). Here, we vary
twor-three tuning parameters separately. Version 1 of E3SM was found to be highly sensitive to a parameter termed clubb_c1,
somewhat sensitive to zmconv_c0_ocn, and weakly sensitive to the effgw_oro (Qian et al., 2018), similar parametric

sensitivity was found in the Community Atmosphere Model version 6 (CAMv6) (Eidhammer et al., 2024). clubb_c1 is

the constant associated with dissipation of variance of w'2 (where w is vertical wind speed), zmconv_c0_ocn is the deep

convection precipitation efficiency over ocean gridpoints, and effgw_oro is the gravity wave drag intensity (see Table 1

of Qian et al. (2018)). We choose these two-three parameters to generate ensembles to capture a range of sensitivities in version
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2 of E3SM. Fhe-As in the operational case described in 2.1, the simulation ensembles are run at “ultra-low” resolution with a
14-month simulation duration. A 120-member ensemble is generated for each tuning parameter change, along with the control

ensemble.

Parameter % Change Parameter value
effgw—eroeffgw_oro 0.0 0.375
1.0 0.3788
10.0 0.4125
20.0 0.4500
30.0 0.4875
40.0 0.5250
50.0 0.5625
ehibb—etclubb_cl 0.0 2.400
1.0 2424
3.0 2472
5.0 2.520
10.0 2.640
zmeonv, c0 0.0 0.0020
05, 000201
10 000202
30 000206
50 000210

Table 1. List of simulations for each tuning parameter

The effgw_oroand clubb_c1 ensembles were run on Argonne National Laboratory’s Chrysalis machine and built usin,
the Intel compiler v20.0.4, while the zmconv_c0_ocn ensembles were run on US Air Force HPC11 at Oak Ridge National
Laboratory’s Oak Ridge Leadershi i OLCF), compiled using the GNU compilers v13.2. An additional

control ensemble was also performed on HPC11.
To further evaluate the BH-FDR approach, we conduct two additional ensemble simulations on Chrysalis to test model

)

sensitivity to compiler optimization choices. AH-ensembles-arerun-on-Argonne National- aboratory’s-Chrysalis-machine-an

built-using-the-Intel-compiler+v20.0-4-The default optimization flag for E3SM is “-O3”, and is used to generate the control

and other ensembles with tuning parameter changes. The two different optimization test ensembles are titled opt-01 and

fastmath, and are compiled with optimization flags “~-O1” and “-O3 -fp-model=fast” respectively. Previous work suggests

that using optimization “-O1” is expected to not produce a significantly different simulated climate than the default (Baker
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et al., 2015; Mahajan et al., 2017). -Mahajan et al. (2017) found that using optimization flag “fast” with “Mvect” resulted in a
statistically different climate compared to the default, which used an optimization of “-O2” using the PGI compiler.

The “-O1” optimization turns off most of the aggressive optimizations used for the “-O3” level, including loop vectorization,
loop unrolling, and global register allocation, while enabling the “-fp-model=fast” fast floating point model allows the compiler
to be less strict in its handling of floating point arithmetic—Intel-Corporation;2023) (Intel Corporation, 2023). This means
using “-O1” in place of “-O3” ought to result in slower operation but similar results, while using “~fp-model=fast” could result
in different answers under specific conditions, including if there are “NaN” or not-a-number values present. Though in the case
of E3SM, it"“-fp-model=fast” is already used in the compilation of several source files, thus adding it as a global option only

changes those where it is not in use already.

4 Results
4.1 Estimating Critical Value Threshold for MVK

E3SMv2.1 has undergone several scientific feature changes as well as software infrastructure changes since the release of
E3SMv0 which was used to estimate the critical value threshold for null hypothesis testing using MVK (Golaz et al., 2022)
. Here, we estimate the null distribution of the test statistic of MVK which is more representative of E3SMv2.1. We use
a bootstrapping (resamplingre-sampling) strategy to derive the null distribution and the empirical critical value threshold of
the test statistic, ¢, which is the number of variables falsely rejecting the true null hypothesis H; at ov = 0.05, for the global
null hypothesis using for the MVK test for E3SMv2.1. For this analysis, two 30 member ensembles were drawn, without

replacement, from the 120 member control ensemble (with > 10'® possible ways of drawing a 30 member ensemble). By

drawing two ensembles from the same population, this establishes an expected value for how many fields would be rejected
by random chance when using two ensembles which have the same simulated climate. ¢ is computed for each such draws of

30-member ensemble pairs and then this procedure is repeated 1000 times. This procedure was then applied to each parameter
adjustment ensemble separately, comparing two random draws from each large ensemble, in an effort to expand the sample
size to estimate the null distribution. It is also applied to the ensembles with changes to compiler optimizations, thus the
empirical threshold for rejecting the global null hypothesis is computed from 2040 ensemble members. The null distribution
of ¢ is representative of the internal variability of the model as the drawn ensemble pairs are part of the same population with
ensemble members differing only in the initial conditions at machine precision level perturbations. Figure 2 illustrates the null
distribution of ¢ with a box and whiskers plot derived from each 120-member ensemble using the K-S test. The critical value
threshold is also estimated as the 95th percentile of ¢, which ranges from 10 to 13 for different ensembles. We thus set the

critical value threshold for MVK (K-S) at o = 0.05 as the median of those values, found to be 11. Bex-plot-of-number-of
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Figure 2. Box plot of number of rejected output fields using the K-S test for each ensemble self-comparison. The solid center line of each box represents the
median, the box represents the inter-quartile range 25th_75th ercentiles), the whiskers are plotted at the 5th_95th percentiles, and outliers marked beyond
that range. The dashed vertical line is the median of all 95th percentiles which is 11 fields.

This procedure was repeated using the other two statistical tests with similar results, though the thresholds for C-VM and
M-W were both found to be larger, at 16.

4.2 False positive rates: MVK-Uncorrected and BH-FDR approach

The bootstrapping method described above in Sec. 4.1 to determine the critical value threshold for global null hypothesis testing
for MVK can also be used to estimate the false positive rates. Since ensemble pairs are drawn from the same population, each
drawn pair that rejects the null hypothesis is a false positive. For-the- MV K-test-the-eritical-value-thresheld-of The thresholds for
global rejection are set at K-S: 11, estimated-above-isused-C-VM: 16, and M-W: 16 for null hypothesis testing at oo = 0.05. For
the BH-FDR approach applied to each statistical test, any field rejecting the null hypothesis after false discovery rate correction
implies a rejection of the larger null hypothesis.

For each of the thirteen 120-member ensembles conducted (control, tuning parameter changes and optimization change
ensembles), a 1000 iteration bootstrapping analysis is performed separately, and the false positive rates are computed for each
under beth-MVK—each statistical test and the BH-FDR testing approachesapproach. Table 2 details the false positive rates
derived from each analysis. The mean of these 43-17 values for the MVK is 6:050.046, which can be expected to be near

the prescribed « since the critical value threshold was estimated from the same population (set of ensembles), although with

10
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StmulationEnsemble- Statistical Test ‘ MVEK-  Kolmogorov-Smirnov (K-S) Mann-Whitney (M-W) Cramér-von Mises (C

Method ‘ Uncorrected BH-FDR Corrected  Uncorrected ~ BH-FDR Corrected  Uncorrected

ARAANAAAL AN AL A A A A A AN AN

BH-FDR

AAAAAAA

Simulation Ensemble

Control 0.049 0.028 0.049 0.029 0.046
GW orog 1.0% 0.054 0.032 0.036 0.025 0.034
GW orog 10.0% 0.044 0.022 0.048 0.033 0.051
GW orog 20.0% 0.061 0.039 0.051 0.033 0.055
GW orog 30.0% 0.048 0.032 0.046 0.031_ 0.054
GW orog 40.0% 0.035 0.031 0.050 0.044 0.051
GW orog 50.0% 0.053 0.028 0.049 0.040 0.046
clubb ¢ 1.0% 0.041 0.049 0.040_ 0.029 0.043
clubb ¢l 3.0% 0.053 0.034 0.058 0.045_ 0.056
clubb ¢l 5.0% 0.049 0.031 0.050 0.036_ 0.054
clubb c1 10.0% 0.044 0.029 0.046 0.032. 0.048
zmeony ¢0 ocn 0.5% 0.041 0029 0.049 0.042 0.050_
zmceony ¢0 ocn 1.0% 0.045 0046 0.063 0.038_ 0.05L
zmeony ¢0 ocn 3.0% 0032 0028 0.045 0.030 0.047
zmeony ¢0 ocn 5.0% 0040 0040, 0041 0.034 0.046
opt-O1 0.060 0.032 0.053 0.036_ 0.058
fastmath 0.059 0.034 0.043 0.030 0.043
Mean 0:050-0.048 0:032.0.033 0.048 0.035 0.049
95th %tile 0.060 0:039-0.047 0.059_ 0.044 0.056

Table 2. False positive rates for self-comparison bootstraps (per 1000 iterations for each ensemble) at a=0.05, and the mean and 95"

percentile false-positive rate over all self-comparison bootstraps.

different bootstrap samples:
similarly for M-W and C-VM tests, the mean false positive rate are 0.048 and 0.049 respectively. The mean false positive rate
under the BH-FDR approach is lower for all tests at 0.032, 0.035, and 0.040 for MVK, M-W, and C-VM respectively. Also, the
95th percentile of false positive rates of-the-13-values-is-0-06-for-the MV and-isreduced-to-0:039-for-the-for the 17 ensemble
comparisons are also reduced BH-FDR approach for all statistical tests. The above indicate that the application of the FDR

correction works as intended and based on the Lemma of Theorem 1 in Benjamini and Hochberg (1995), the FDR puts an
upper limit to the level of false discovery at ¢* (which here is chosen as ¢* = a = 0.05), thus false positive rates lower than o

are expected.
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4.3 False Negative Rates and Statistical Power: MVK and BH-FDR

To evaluate the magnitude of change that the tests can detect confidently, we again rely on bootstrapping following previous
work (Mahajan et al., 2019b, a; Mahajan, 2021). For each tuning parameter change, 30 ensemble members each are drawn
from the control and that tuning parameter change ensemble. The test statistic, ¢, is then computed for beth-MVK-and-each
(three uncorrected, three BH-FDR corrected) tests are conducted on the ensemble pair. This procedure is then repeated 1000
times. To illustrate the impact of progressively increasing the tuning parameter on the model climate, Fig. 3 shows the 95th
percentile of ¢ from the 1000 hypothesis tests for each tuning parameter change for beth-effgw—ero-and-ecluibb—eleffgw_oro,
clubb_cl,and zmconv_c0_ocn. As the magnitude of the tuning parameter change to the model increases, ¢ increases for
both MVK-uncorrected and BH-FDR appreachcorrected approaches. To reiterate, an increase in ¢ indicates an increase in the
number of fields rejecting the local null hypothesis, H;. Fig. 3 also re-iterates the lower sensitivity of E3SM to the orographic
gravity wave drag parameter than both the C1 parameter from the CLUBB cloud parameterization scheme, and C0 over ocean

in the ZM convection scheme. Smaller percentage changes in etubb—et-clubb_c1l and zmconv_c0_ocn result in large

changes to t as compared to effgw—oree £ £qw_oro, where larger percentage changes are needed for similar changes in ¢. The

K-S test, as expected from the control threshold estimation, rejects the fewest number of fields at each level, while the C-VM
and M-W tests reject nearly the same number. However, the number of rejected fields above each test’s respective control

threshold appears similar.
Fig. 3 also points towards the detectability of modifications to the model by the tests. For both-the effgw_oro and

clubb_cl parameters, a 1% change in their value --does not result in a change in the simulated climate that is easily detectable

by the two-tests—tests since >95% of the bootstrapped ensemble pairshave-, ¢ is less than the critical value threshold of the tests

(11 for MVK-and-ene K-S, 16 for BB-FDR)Inereasing-effgw_oro-M-W and C-VM. and one for BH-FDR). This indicates
that that 95% of the 1000 bootstrap comparisons between the control and for example the 10% change to ef£fgw_oro, have
13 or fewer of the 117 output fields rejected for the K-S test, 19 or fewer fields for the C-VM test, and 20 or fewer for the M-W.
test, and 1, 2. and 2 of 117 output fields rejected for BH-FDR corrected versions for each. The 95% level is chosen here as it is
the inverse of our significance level o = 0.05, and as such one could expect to see 5% of bootstrap iterations failing the test on

random chance, thus if fewer than 5% have passed, this is a strong indicator that the two ensembles are significantly different.
Increasing effgw_oro to 10%and-chibb-elto2:5, clubb _c1 to 3%, and zmconv,_c0_ocn to 1% results in some of

the bootstrap iterations having exceeded or met the critical value threshold for both MVK and BH-FDR. As the magnitude of
tuning parameter change increases, the number of bootstrap iterations crossing the critical value threshold also increases.

A formal estimate of the statistical power (P, rate of correctly rejecting a false null hypothesis), also representative of the
false negative rates {+—=>}(1 — P, incorrectly accepting a false null hypothesis), of these tests is illustrated in Fig. 4. It shows
the number of bootstrap iterations where the tests correctly reject Hy at a significance level of o = 0.05 and is indicative of
the likelihood of the tests detecting a modification to the model. P can be computed by dividing the ordinate (y-axis) values

by the total number of bootstrap iterations (1000). Similar to Fig. 3, Fig. 4 shows that as the magnitude of a tuning parameter
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Figure 3. 95th percentile of the number of fields with statistically significant differences from the control ensemble (reject the local null

hypothesis, H; at the o = 0.05 significance level) on the

blue, and orange lines represent K-S, C-VM, and M-W tests respectively, dashed represents BH-FDR versions of each in the same color. The

dashed horizontal lines represent global null hypothesis critical value thresholds for K-S, C-VM, and M-W tests (green, orange respectivel
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is increased, the number of bootstrap iterations rejecting Hj also increases. For a 1% change to effgw—ere-or-clubb—elonly
about30-effgw_oroor clubb_cl only about 3040 bootstrap iterations reject #qf, which implies that there is only a 36
3040 out of a 1000 (33—4%) chance that a change of this magnitude could be detected by the tests. fnereasingeffgew—ore-At a

0.5% change to zmconv_c0_ocn, about 60—70 bootstrap iterations reject Hy, implying a 6—7% chance of detecting a change

of this magnitude using these tests. At the o = 0.05 significance level it is expected that & 5% of the tests will be rejected
by random chance. Increasing ef fgw_oro to 10% results in more than 50 bootstrap iterations (5%) rejecting Hy, indicating

that it unlikely to be caused by random chance at the 0.05 significance level, it still exhibits a low likelihood of being detected
by the tests (about 60 and 80 out of a 1000 chance for MVK and BH-FDR tests respectively). As the magnitude of change
to effew—ero-effgw_oxro is increased, the likelihood of detecting a change by the tests increases. For a change of 40% to
effew—ero-effgw_oro there is a >90% chance of being detected by both the tests and it reaches nearly a 100% for a larger
change. Similarly, for elabb—etclubb_c1, a change of 5% results in greater than 80% (90%) chance of being detected by the
MVK (BH-FDR) test, and nearly a 100% chance of detection for a change of about 10% change to its magnitude.

Overall, BH-FDR approach exhibits greater statistical power than MVK for almost all tuning parameter changes, allowing
increased confidence in detecting changes, adding to its advantages. This is consistent with previous works (Benjamini and

Hochberg, 1995; Wilks, 2006), that suggest that BH-FDR approach generally exhibits greater power than bootstrapping meth-

ods. For-the-smatlest parameter-ehange-to-effgw_oroFigure 5 shows the power difference between uncorrected and BH-FDR
corrected approaches. For the clubb_c1 and zmconv_c0_ocn parameters, there is an increase in power for all tests at all
parameter changes, apart from the very smallest and largest percent changes (at the largest no power increase is possible as the
uncorrected approach already rejects all iterations). Both the C-VM and M-W tests have power increases for the e£fwg,_oro

arameter changes, but the K-S test has near O or power losses except at largest parameter changes.
For the smallest parameter change to effgw_oro, where MVK test exhibits greater power than the BH-FDR approach, it

is possible that at the 1% change to effgw—eroe f fgw_oro, the simulated climate is not different in a meaningful way. This

means that the spread of simulated climates (measured by global averages of the output fields) generated by adding a random

erturbation to the temperature field does not differ significantly from the spread of the simulated climates with a 1% change
to effgw_oro. Sampling errors may also be playing a role, given the small magnitude of change. Increasing the ensemble

sizes can significantly increase the power of the tests as shown for MVK (Mahajan et al., 2019b), but operationally add to
the computational cost. This trade-off between false negative rates and ensemble sizes is a decision left to model developers
and code integrators. The power analysis here -provides them with some reference to interpret the test results. For instance,
if a non-bit-for-bit change passes the test (with the ensemble size of say, 30), developers can infer that its impact is likely
smaller than a 5% change in C1 parameter of CLUBB, which can be detected at a high confidence by the tests. This contextual
comparison helps determine whether to accept or investigate a change further and guides the selection of ensemble size needed
to detect changes of interest. In the future, we will expand our power analysis to include other tuning parameter changes to

better inform developers, integrators and domain scientists using the tests.
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4.4 Optimization changes

Two simulation ensembles (“opt-O1” and “fastmath”) were performed to apply the MVi-uncorrected and BH-FDR approach
approaches to evaluate sensitivity of model results to compiler optimization flags, which are involved in the optimization of the
underlying mathematics rather than model tuning parameters designed to account for varying physical processes. Bootstrapping
procedures, similar to those described in the last section indicate that these optimizations do not have a significant impact on
solution reproducibility (Figure 6). Only-28-and-22-out-Between 10 - 31 out of the 1000 bootstrap iterations reject Hy using the
MVEAforuncorrected statistical tests for both “opt-O1” and “fastmath” respeetively-at the significance level of 0.05. Even-After

application of the BH-FDR approach, even fewer bootstrap iterations reject Hyusing-the BH-EDR-test, exhibiting a 0.5-0.7%
chance to detect a change to “O1” and a 2.3-2.9% chance to detect a change in the “fastmath” flag. Reducing optimizations

has been shown to yield climate reproducibility in previous studies as well (Baker et al., 2015; Mahajan et al., 2017), similar
to our result that the simulated climate of “opt-O1” is statistically indistinguishable from that of the control ensemble that uses

“-03” optimizations.

Flag = opt-O1 Flag = fastmath
31
30 A Method 29
I Uncor.
I FDR-BH
254
20 A

Tests with global significance [p < 0.05]

K-S C-VM M-W K-S C-VM M-W
Statistical test Statistical test

Figure 6. Number of bootstrap iterations that reject the global null hypothesis (Hy) for opt-O1 (left), and fastmath (right) ensembles, when
compared to the control ensemble, out of 1000 bootstrap iterations for each statistical test, uncorrected in blue and B-H FDR (orange).

The aggressive optimizations enabled by “-fp-model=fast” are expected to decrease solution accuracy (Mielikainen et al.,
2016; Biittner et al., 2024), however, in this set of ensembles they do not significantly alter the simulated climate. As previously
mentioned, the “-fp-model=fast” option is already a default for several source files, thus this simulation ensemble tests its use
only for those additional source files in EAM. This is different from testing the impact of using it across the model as a whole as

in Mahajan et al. (2017). Acceptance of H by the tests indicate that including the option for all of EAM, instead of selectively

17



355

360

365

370

375

Statistical test  Uncorrected rejections ~ BH-FDR corrected rejections

K 9. 2
MW 2 27
C-VM 35 25

Table 3. Number of rejected fields in the “standard resolution” ensemble comparison for each statistical test, for uncorrected and BH-FDR

corrected methods.

as is the default, does not result in statistically distinguishable solutions. This indicates that the “-fp-model=fast” optimization
could be applied more generally throughout EAM code base. However, for higher resolutions or fully-coupled ensembles, this
result may not apply as these configurations may respond to perturbations differently than ultra-low resolution model used

here. Thus, further examination of its applicability may be required.

4.5 Standard resolution test

A test was also conducted using the USAF HPC11 using the same model version (E3SM v2.1), but at a higher resolution, called
“standard-resolution” (called ne30pg2, ~ 1.0° atmosphere) Two ensembles of 30 members each were constructed, a control
ensemble with no parameter modification from default, and an ensemble where the clubb_c1 parameter had been increased
by 5% from 2.4 to 2.52. Table 3 details the number of output fields which are rejected at @ = 0.05 level for both uncorrected
and BH-FDR corrected methods for each statistical test. Though a large ensemble was not conducted to determine an empirical
global rejection threshold for the uncorrected tests, it is reasonable to assume that following the BH-FDR correction, that any.
field rejection results in a global null hypothesis rejection as in the “ultra-low” resolution ensembles. This means that for all
tests, the two simulated climates are determined to be significantly different. Figure 7 shows that the map of grid box averaged
cloud liquid amount is visually different on the order of 1 x 10_% kg kg ", only one order of magnitude smaller than the field
itself, in the ensemble mean depending on the location. The largest differences appear mainly over the northern hemisphere,
though smaller differences are noticeable in the Southern Ocean. Grid box-wise statistical tests are not conducted for this
framework, but the field appears visaully different in the mean sense, and is statistically distinct as confirmed by the statistical
tests used.

The annual global means for each ensemble member are plotted against one another in figure 8. This visualizes differences
in the distributions of the cloud liquid amount field which are used by the statistical tests to generate p-values. For a field which
has no statistically significant differences in distributions between experiment (cLubb_c1 + 5.0%) and Control, the quantiles

would fall along the 1:1 line in the lot, as would the probabilities along the same line in the P-P plot, the histogram bars

would be of similar heights, and the cumulative distribution functions would have little distance between them. This is not the
case for the cloud liquid amount, and its local null hypothesis is rejected based on all tests and methods.
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Figure 8. Cumulative distribution function for the cloud liquid amount field, as in Fig. 7. Both control and test ensemble annual global means
are normalized together.

The size of the sub-ensemble selected of 30 was chosen based on the previous results of Mahajan et al. (2022, 2019b) as a

380  balance between statistical power and computational efficiency. Figure 9 shows an increasing power for larger sub-ensemble
size selections, with the BH-FDR corrected approaches exhibiting larger power than the uncorrected counterparts. Here, the
choice of 30 ensemble member comparisons appears an appropriate balance between statistical power and computational time.
In the other figures of this study, the results are presented with an ensemble size of 30, to match the operational constraints so
results are directly applicable on the nightly testing.
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gach test,

385 4.7 Operational results

Fig. 10 shows the time series of ¢, or the number of variables rejecting H;, for MVK and BH-FDR, for a period of a few

weeks after BH-FDR was implemented and included in nightly testing in late September last year. The additional statistical

tests were not performed on these ensembles, and are thus not able to be included here, as the nightly testing output is not

archived. The model maintained bit-for-bit reproducibility during these weeks. Bit-for-bit reproducibility is ascertained by a
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390 suite of bit-for-bit tests that are run each night, testing the model under a variety of conditions. When these pass, the model is
bit-for-bit with previous results, and a test fail by MVK and BH-FDR on these days is thus known to be a false positive. Fig. 10
shows that operationally BH-FDR has a reduced false positive rate of 1.9% (1 of 53 tests) as compared to 7.5% (4 of 53 tests)
for MVK. t varies between 0 to a maximum of 15 (on two individual days) for MVK, while ¢ is either 0 or 1 (on one occasion)
for BH-FDR. This solitary global null hypothesis rejection using BH-FDR does not occur at the same time as a global rejection

395 using uncorrected p-values, indicating that a systematic change in its statistics may not have occurred;-n-. In which case both

tests may be expected to fail. The BH-FDR approach yields a failing overall result when one particular p-value is very small. In

this case the soa_al SRF, a secondary organic aerosol field, was rejected very strongly, which meant the BH-FDR method
rejected the global null hypothesis. The rate of global rejections using MVK (7.5%) is higher than the targeted 5%, which is

reduced to under 2% using eorrected-p-valaesthe FDR corrected p-value threshold, as is expected as the correction controls for
400 the false discovery rate when using BH-FDR. The higher false positive rate of MVK can be associated with the small sample

size (53 days of testing). H

ell-In the future, we plan to expand the ensemble size

of the control ensembles to derive the null distribution and evaluate its impact on operational false positive rates of MVK.

— MVK r
14 - —-—- MVK threshold

= B-H FDR

Rejected variable count

2024-10-01 2024-10-15 2024-11-01 2024-11-15

Figure 10. Number of rejected variables (of 120) for nightly tests of E3SM. The teal line shows rejection based on MVK p-values, orange
shows number of rejections based on B-H FDR p-valuesp-value thresholds.

Operationally, the MVK test has recently been successful in identifying two bugs committed to the model’s code, which were

405 thought by developers to be non bit-for-bit, but not climate changing. The test returned a “fail” result following both changes,
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and the changes were reverted and eventually re-worked into non climate changing code alterations. This unintentional cli-
mate changing update was also captured by the BH-FDR approach and indicates its ability to capture erroneous alterations in
addition to its ability to capture tuning parameter changes. In the first case, developers introduced changes related to aqueous-
phase chemistry, specifically involving reactions tied to cloud water and trace gases. These updates were considered minor
adjustments to internal model behavior and were not expected to alter the simulated climate. However, the tests flagged the
update as a baseline failure, revealing statistically significant differences across many atmospheric variables. Further investi-
gation showed that the change affected cloud-aerosol interactions and subsequently altered radiative balance, demonstrating
how a seemingly minor, but non-bit-for-bit change in chemical processes led to broader simulated climate impacts. In the
second case, ozone chemistry configuration changes were merged, aiming to improve numerical consistency in offline and
online chemistry calculations and were also expected to be non-climate changing. However, MVK and BH-FDR detected a
statistically significant difference, which was traced to elevated tropospheric ozone concentrations resulting from the changes.

The alteration impacted radiative forcing enough to shift the ensemble mean state, and was also subsequently corrected. These

examples illustrate that the BH-FDR method has statistical power in the event of erroneous code changes in addition to its
ower in detecting perturbed parameters as does the MVK, thus its usefulness is not degraded.

5 Summary and Discussion

This study presents a new approach, BH-FDR, to evaluate statistical solution reproducibility of EAM after unintended non-
bit-for-bit changes are introduced. BH-FDR imprevises-improves on the existing MVK test and applies a false discovery rate
correction to control Type I error inflation in multi-testing scenarios. While the original MVK approach relies on computation-

ally expensive bootstrapping to determine critical value thresholds, BH-FDR offers a theoretically grounded and operationally

simpler alternative. This computationally expensive threshold finding, where the ensembles represent 3700 node hours of
computation time for ensemble generation, is demonstrated to be effectively eliminated, as the BH-FDR approach for all
statistical tests can use a threshold of 1, while maintaining nearly the same, or improving statistical power.

Our evaluation using a comprehensive suite of ensembles, including both parameter perturbations and compiler optimization
changes, demonstrates that BH-FDR approach maintains or improves the statistical power of the MVK test, while significantly
reducing false positive rates. Notably, the BH-FDR approach eliminates the need for re-calibrating critical value thresholds
after major model revisions. Operational implementation of this method in nightly E3SM testing has further validated its
utility, showing a reduction in false positives from 7.5% to 1.9%. Overall, the BH-FDR approach enhances the robustness,

accuracy, and efficiency of statistical testing for climate model reproducibility.

Additional tests were performed with the Cramér-von Mises and Mann-Whitney U tests to add a broader perspective on
the applicability of the BH-FDR method. For uncorrected methods, the K-S test had the highest power and equivalent false
positive rates to the C-VM and M-W tests, but in using the BH-FDR method, the power of those tests increased beyond that of
the K-S test. Primarily, this indicates that the BH-FDR method works well for multiple different statistical tests and is valid so
long as the underlying statistical test is valid for the data being examined. We plan to add these additional statistical tests to the
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nightly suite and continue to examine ways to usefully combine the results of these different tests to evaluate if two simulation
ensembles are statistically similar.

We also examined the sensitivity of the results to ensemble size selection. Part of the procedure applied here to find the
power of the various tests involves comparing two sub-ensembles each drawn from two larger ensembles at random. The
power of all three statistical tests both for uncorrected and BH-FDR corrected methods scales with sub-ensemble size. There
is, however, a trade-off between computational efficiency and statistical power. As an example, in this configuration with
“ultra-low” resolution on the Chrysalis machine, one ensemble member runs on a single node in approximately 15 wall-seconds
permodel day or about 1 hour 45 minutes per 14-month simulation. Each additional ensemble member then adds a node to the
computational requirements, so a 30 member ensemble uses 30 nodes for 1 hour 45 minutes, or approximately 53 node-hours.
We believe that an ensemble size of 30 strikes the right balance between statistical power and computational costs for routine
nightly testing, but a developer is able to choose to increase this size to enhance the statstical power as needed.

A caveat of our study here is that BH-FDR (and MVK as well) has been rigorously applied to and evaluated for the ultra-low
resolution version of the model, which is not used in practical applications—Further-exploration-isrequired-to-examine-the-, and
only a single test was performed at a higher resolution. The consistency of test results across modelreselutions-and-evaluateif
two different model resolutions provides evidence that the test results with the ultra-low resolution model hold for standard and
high resolution model configurations used for production runs. Higher resolution models resolve finer scale processes, which
can effect numerical sensitivity, internal variability and process feedbacks of the model. In the future, we plan to identify
the underlying reasons and scenarios in which test results may or may not remain consistent across resolutions. Nonetheless,
an earlier unpublished work found that the results of MVK applied to ultra-low resolution ensembles and MVK applied to
standard resolution ensembles were consistent when evaluating a port of an earlier version of E3SM to a new machine at the
National Energy Research Scientific Computing Center (NERSC). Further, we will explore enhancing computational feasibility
of the tests by using shorter run times of simulation ensembles (Milroy et al., 2018), allowing for routine testing with higher
resolution models.

In addition to its application in traditional Earth system models, the BH-FDR-based statistical testing framework has po-
tential for assessing the reproducibility of Al-based climate models, which are rapidly gaining prominence in climate sci-
ence. Recent developments such as ClimateBench (Watson-Parris et al., 2022), FourCastNet (Pathak et al., 2022), and Pangu-
Weather (Bi et al., 2022) demonstrate the capabilities of deep learning models to emulate or replace components of physics-
based models with significant computational advantages allowing the generation of very large ensembles at very low computa-
tional costs. However, verifying the reliability and reproducibility of these models presents unique challenges. Al models often
involve stochastic elements in training, sensitivity to floating-point precision, and reliance on hardware-specific optimizations,
all of which can lead to variability in output across runs. Standard bit-for-bit reproducibility tests are inadequate in this con-
text, and statistical frameworks like MVK or BH-FDR could serve as robust alternatives to assess whether differences in Al
model outputs are statistically meaningful or within expected variability. Prior work has highlighted the need for principled
evaluation methods tailored to the probabilistic nature of machine learning in scientific applications (Rasp et al., 2020; Dueben

et al., 2021), and integrating ensemble-based hypothesis testing into AI model workflows could be a step toward more rigorous,
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interpretable, and trustworthy deployment of Al systems in operational climate modeling. Ultra-low resolution models, like
the one used here, can also be used to create very large ensembles at low computational cost allowing comparisons with their

Al surrogate large ensembles. We plan to conduct such evaluations in the near future.
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