1 Introduction

The authors thank the numerous reviewers for their time in reviewing and constructing helpful
comments, which will lead to a greatly improved manuscript. In general, the comments focused on
the wider applicability of the testing method, and the robustness of the results, each of which will be
addressed in the point by point responses. In these responses, we will focus on the major or specific
comments, as minor comments, language fluidity, and typos will be addressed after revisions.

2 Responses

2.1 Reviewer 1

o “I think it would be worth adding further explanation of the correction in section 2.2, as it is

a cruz of understanding the work. I had to read through a few times and revisit this section
to understand what is going on. I might also suggest modifying equation 2.2, as it currently
reads as the maximum of a set of booleans. Would argmax be a better fit? It would be helpful,
1 think, to give a plot of p(i) values and the calculated PFDR wvalue for the control ensemble at
least.”
This is an excellent point as it is the basis on which the rest of the paper is based,
we will further refine this section and the equation, as suggested here and by other
reviewers. We will also add an explanation figure which shows how the p-values
are corrected.

e “Does the estimate of p(i)’s and PFDR stay stable with different ensemble sizes? In other

words, how does one know that the 30-member ensemble is sufficient? A similar question
would apply to the estimates of the false positive rate and sensitivity. As a model changes, is
there a point where a different ensemble size is necessary, and how would one know?”
We expect the values of prpr to change for different ensemble sizes, and for larger
ensemble sizes to result in greater statistical power, up to a point (see figure 3 of
Mahajan [2021]). We will perform further bootstrap analyses, varying ensemble
size to show evidence for this hypothesis.

e [ think the information in Figure 1 is very interesting. It could be worth clarifying further. 1

read that description as meaning that for each modification, a base ensemble and a test ensem-
ble are created. Versus testing fastmath against the control?
The results presented in figure 1 are ensemble self-comparisons, i.e. for each 120
member ensemble generated, which includes the control ensemble, the perturbed
parameter ensembles, and the compiler optimization flag ensembles, it is boot-
strapped against itself. Meaning two random 30 member draws from the same
ensemble are compared against each other 1000 times, which we use to establish
a threshold defining the expected number of fields which can be rejected while
maintaining the same simulated climate.

o In table 2 I would include the PFDR values for each ensemble.
This information will be added to the table.

o [ found the use of the 95 percentile in Figure 2, and its description in the paragraph at line
215, to be confusing. For instance, with a 10% parameter change of GW Orog with MVK,
does this mean it would be possible 94% of bootstrapped tests don’t return a failure? Also, I
believe the horizontal lines might be mislabeled in the caption and legend. Why not just plot
the mean number of failed variables with bars for the std? Perhaps there is a good reason for



2.2

the percentile that I am missing, or perhaps there is some mismatch between the paragraph at
215 and what the plot is actually showing.

We will add further clarification to the text describing this, but the main point
of this figure is to show that 95% of the 1000 bootstrap comparisons between
the control and for example the 10% change to effgw_oro, have 12 of 117 output
fields rejected for MVK p-values, and 1 of 117 output fields rejected for BH-
FDR corrected p-values. The 95% level is chosen here as it is the inverse of our
significance level a = 0.05, and as such one could expect to see 5% of bootstrap
iterations failing the test on random chance, thus if fewer than 5% have passed, this
is a strong indicator that the two ensembles are significantly different. We use the
percentiles here and throughout the manuscript as they are robust and resistant
measures of the data when compared to mean / standard deviation [Wilks, 2019].

I find it interesting and might be worth discussing, in regard to Figure 5, that there doesn’t
seem to be any correlation of between the false positives for MVK and BH-FDR approaches.
On the one test day that fails BH-FDR the MVK approach is nowhere near failing.

We believe this to be caused by the MVK approach not taking into account the
value of p-values, only that there are enough below the threshold. The BH-FDR
approach can yield a failing overall result if one particular p-value is very small.

Reviewer 2

While the adoption of the MVK test is motivated by previous studies cited in this manuscript,
there are alternatives to the MVK test that could also be considered before applying an FDR
correction. For instance, the Anderson-Darling or Cramér-von Mises tests have advantages
over the Kolmogorov-Smirnov test, such as being more sensitive to repeated deviations from
the empirical distribution functions, detecting deviations in the tails of the distributions, and
effectively handling skewed distributions.

The MVK / Kolmogorov-Smirnov test was used here as it was used in the produc-
tion nightly testing environment, but this is an excellent point. Further analysis
will be performed using additional initial statistical tests, then performing the
correction on each set of p-values.

As I understand it, the MVK test is performed on two independent ensembles with N=30
members, comparing the distribution of annual global means for 120 output fields (local null
hypothesis). What is the rationale for choosing N=30 specifically, rather than other values of
N? The reported results may vary with different values of N. In addition to the caveat of using
a “low ultra-resolution model,” the reported statistical results are conditional on a very specific
value of N. It would be important to explore lower and higher N values to provide evidence of
the effect or perhaps non-effect of the FDR correction under different sample size scenarios.
The N = 30 choice was based on earlier results from Mahajan [2021] where an
ensemble of N=30 was found to balance statistical power and computational time.
We will explore this by varying this parameter during the boostrapping phase,
which is expected demonstrate that a larger ensemble size will exhibit greater
power, but that it is offset by the computational cost.

Furthermore, why are “annual global means” the only statistic of interest rather than regional
means or perhaps extreme value statistics, such as the maximum or minimum values over the
same time-period? Testing for equality of distributions of global means represents just one
focused statistical aspect of a set of climate ensembles with hundreds of output fields. I believe
that many other tests beyond those proposed in this paper could be considered and of interest,
potentially leading to different statistical assessments of the ensembles and a wide range of
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results. Even under a coarse spatial resolution, it is to be expected that tests of a local mean or
some other local statistic may lead to a different assessment than those resulting from a global
statistic. This raises the question of what does it mean to study and test “climate reproducibil-
ity”? That variations of the model simulations provide similar global means?

We appreciate this comment and agree that regional means, local diagnostics, and
extremes can provide valuable perspectives on ensemble behavior. In this work,
however, we focus on annual global means, following previous work [Baker et al.,
2015, Mahajan et al., 2017]. Atmospheric variability is highly heterogeneous in
space and time, with sharp gradients and short-term fluctuations that compli-
cate regional analyses. Global averaging suppresses this weather-driven noise and
reduces dimensionality, making it more suitable for applying the ensemble con-
sistency framework. For the ocean model component, where the ocean is more
homogeneous we have implemented a test that accounts for spatial variability as
well conducting tests at each grid point [Mahajan, 2021]. Baker et al. [2016] also
use a similar approach and note that while global averaging can obscure signals in
the ocean, it remains effective and appropriate for atmospheric applications. Fur-
ther, extremes require much larger ensembles to be reliably assessed. Mahajan
et al. [2017] demonstrated that with ensembles of about sixty members, extremes
of temperature and precipitation were often statistically indistinguishable even
when mean distributions diverged, underscoring their limited sensitivity in this
context.

The false positive rates and power analysis presented in the manuscript consider a one-at-a-
time variation of the tuning parameters. Should simultaneous variations be considered to study
interactions between the “effgw_oro” and “clubb-c1” parameters and understand how these
interactions impact the rates and power? I realize that considering all possible interactions
may create a large computational burden. However, selecting a few potential interactions of
interest could provide further evidence in the application of an FDR correction to assess the
reproducibility of climate simulations.

We have considered just two tuning parameters here out of hundreds of available
adjustments. Varying the two together may indeed yield interesting results, and
could be indicative of how the test responds to a variety of changes, but we feel this
is out of the scope of this work to investigate, and chose to vary them individually
for the sake of simplicity. Additionally, using the global mean as the test statistic
of interest makes the output of this test easier to understand at a glance by model
developers in an operational setting and if further understanding is needed then
additional tests can be performed.

Reviewer 3
Limited Generalizability: The study’s findings are highly specific to:

— A single model (E3SM v2.1) at ultra-low resolution ( 7.5° atmosphere)
— Annual global means of standard output variables

— A particular computational environment (Argonne’s Chrysalis machine with Intel com-
piler)

The authors acknowledge some limitations but do not adequately demonstrate that their ap-
proach generalizes beyond this narrow context. Testing at production resolutions, with other
models, or with different climate statistics (regional patterns, extremes, seasonal cycles) is es-
sential to support claims of broader applicability.

We acknowledge the limited scope of this work, as an iterative development on



existing operationally used tools. The applicability of these results to production
resolutions will be addressed by comparing two 30 member ensembles at the NE30
(1°) horizontal resolution. Testing this method in other Earth system models is
beyond the scope of this manuscript and as mentioned above, global means are
used to simplify and make the results accessible to model developers.

Statistical Assumptions and Dependencies: The paper inadequately addresses:

— The correlation structure among the 117 tested variables, which violates the independence
assumption of standard BH-FDR

— Whether the "theoretical” critical value of 1 for rejecting the global null hypothesis holds
beyond their specific ensemble configuration

— The choice of ¢* = a = 0.05 for FDR control without justification

It is an excellent point that the statistical dependence of the 117 output fields may
violate the assumptions of the BH-FDR correction, we will explore this possibility
in the updated manuscript. The BH-FDR correction is applied to the p-values
resulting from the comparison of the global annual mean of each field from two 30
member ensembles, thus the statistical independence of these random variables
is what will be tested, i.e. the correlations of the annual mean each output field
against each other output field.

We will add justification for using ¢* = o = 0.05, though this is the common practice
to assign the false discovery rate to be the same as o [Wilks, 2016, Ventura et al.,
2004].

Incomplete Methodological Comparisons: The manuscript lacks crucial comparisons with al-
ternative approaches:

— Permutation testing: While the authors mention that MVK “was found to give similar
results as compared to permutation testing” (citing Mahajan et al., 2019b), they do not
actually compare BH-FDR against permutation-based methods for their specific applica-
tion.

— Alternative multiple testing corrections: No comparison with other FDR methods (e.g.,
Benjamini- Yekutieli for dependent tests) or other approaches like the False Discovery
Ezceedance method.

Additional statistical tests will be performed, as mentioned in our responses to
other reviewers, and we expect that the results of a permutation based approach
will track well with the permutation based testing of the MVK (uncorrected)
method as the corrections operate on the p-values after the bootstrapping (or
permutation) takes place.

Text will be added to describe the previous examination of other correction meth-
ods, including Benjamini-Yekutieli and Bonferroni methods, which yielded lower
power than both the MVK and BH-FDR approaches for this set of experiments.
These results match with those of Ventura et al. [2004], finding that the assump-
tions in Benjamini and Yekutieli [2001] were too restrictive, while Benjamini and
Hochberg [1995] was simple to compute and held up for dependent data.

Limited Scope of Reproducibility Testing: Testing only annual global means represents a min-
imal assessment of climate reproducibility. Climate models are evaluated on their ability to
simulate regional patterns, variability, extremes, and trends. A model could pass this test while
having significant regional biases or incorrect variability patterns.

The global means as a test of climate reproducibility is intended a first-order test,
as mentioned above in response to Anonymous Reviewer 2.



e Minor Comments

2.4

— The power analysis covers only two parameters. Testing additional parameters with dif-
ferent sensitivities would strengthen the conclusions.
An additional tuning parameter from a third physical parameterization will be added to
the two parameters examined.

— The operational validation period (53 days) is quite short for drawing robust conclusions
about false positive rates.
This is true, the operational period was chosen as it was a period where the model code
base passed bit-for-bit testing for this configuration, and could not be expanded. It is
intended as a real-world operational example where code changes were applied rather
than a controlled experiment where tuning parameters were varied.

— The manuscript reads more as a technical note about an incremental improvement to
E35M’s testing infrastructure rather than a methodological advance in climate model eval-
uation
This point is well taken, we hope additional tuning parameters, simulation resolutions,
and statistical tests will highlight the broader applicability of the test as it is used.

Reviewer 4

o [ believe the paper effectively demonstrated that the false negative rate is lower while the false
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positive rate is nearly unchanged for BH-FDR compared to MVK in this specific use case.
My biggest issue with the manuscript is that it seems to largely be a method development paper
for ensuring statistical stability of a numerical model with an Earth system model used as the
exemplar. Even though this is for a special issue focused on ensemble design, I think the article
need more of an explicit relation to Earth System Dynamics. So, while I believe the paper has
strong merits for publication, I am not sure if this is the correct journal. Perhaps a more
statistics-oriented journal would be appropriate.

As highlighted in our response to Anonymous Reviewer 3, we feel the broader
applicability of this manuscript will be highlighted by the inclusion of different
resolutions, tuning parameters, and statistical tests.

It’s not clear to me what Section 4.4 is adding to the paper. They aren’t showing any meaningful
difference in the climate produced by two alternative compilers, but as they rightfully point out
this is likely influenced by the fact that they are running ultra-low resolution simulations. So,
they can’t really comment on the ultimate effect of these compilers on the mean state of the
climate outside of this specific configuration, which feels like a weak result.

The results in this section are from using different compiler optimization flags to
the same (Intel) compiler. It is intended as a way to introduce potential differences
to the ensembles without the use of tuning parameters as in Baker et al. [2015],
Mahajan et al. [2017]. In the updated manuscript, we will more carefully describe
the changes and their expected results.

Minor comments
The text corrections will be applied to the updated manuscript.

Reviewer 5

There were repeated comments regarding the potential limitations of a 120-member ensemble
in this work suggesting that this may not be enough simulations to fully represent the internal
variability of MVK. While I found the rest of the paper to be a compelling defense of the update,
this comment stuck with me and introduced a level of uncertainty into the conclusions that I



was uncomfortable with. I would like to see some justification or supplementary analysis that
suggests that this ensemble is sufficient for these results or at least can give some estimated
range of uncertainty.

This is an excellent point, and it will be addressed in the updated manuscript. An
Earth system model’s internal variability is difficult to diagnose, and to determine
where saturation is. We plan to add additional ensemble members to the control
ensemble to further evaluate if the range of variability is captured.

o Can you include a statement in your paper or in the results section that describes the improve-

ment in computational time with BH-FDR versus MVK? This would then defend the twofold
benefits of the BH-FDR that were described in the introduction of your paper.
We will more carefully describe this improvement, as the BH-FDR approach is not
an improvement in computational time over the traditional MVK approach, as it
is an additional step on top of the MVK approach. The improvement in computa-
tional time comes from not needing to perform the multi-ensemble bootstrapping
required to set the empirical threshold used to reject the global null hypothesis.

e Minor comments

— Corrections and suggestions will be applied to the update manuscript

— Line 177: While this method intuitively seems robust, is there justification for the 1000
times sample?
The 1000 bootstrap iterations was somewhat arbitrary, but chosen as a large enough to
have statistically significant results, based on earlier work in Mahajan et al. [2017], which
used 500 iterations.

— On the topic of detectability and mainly a question of personal interest: based on the

relative sensitivities, can you generalize the detectability of a parameter change based on
its sensitivity?
This is an interesting question, and we have not explored this possibility.
Based on the two parameters examined here, they do seem closely related. An
additional perturbed parameter ensemble, as mentioned in responses to other
reviewers, may offer additional insight into this, though further examination
would be left to future work.

2.6 Reviewer 6
Here we will respond to specific comments.

e the assumptions of the Benjamini—Hochberg False-Discovery-Rate should be explicitly stated
and checked
The general assumption of p-value independence will be examined, though the
work of Benjamini and Yekutieli [2001] broadens the assumptions to correlated
data, which was also tested in Ventura et al. [2004].

e the work should be put in a more general context, including
https://gmd.copernicus.org/articles/15/3183/2022/
and the previous work
https://dl.acm.org/doi/pdf/10.1145/3468267.3470572
The former work could, in particular, help to comment on some choices made (e.g. only
Kolmogorov-Smirnov and the choice of ultra-low resolution) even though the tests are different.
Adding the context of Zeman and Schér [2022] and Mahajan [2021], will enhance
the applicability of this technique to additional testing frameworks, as our scope
is currently limited to the E3SM Atmosphere Model.



o [t seems that FDR is also used in one of the author’s previous papers:

2.7

https://dl.acm.org/doi/pdf/10.1145/3468267.3470572

and it should be made clear how the current results differ from the one in the previous paper.
Further context will be added to the updated manuscript, but briefly, the FDR
correction in Mahajan [2021] was applied to the p-values computed at each grid
point in each 2- or 3-D output field, rather than the p-values of global means of
the output fields, and was designed specifically for the MPAS-Ocean model.

The case study s quite restricted. Possibly more cases could be considered. I also agree
with the other reviewers that sometimes more explanation could be given on the choice of
methods/parameters.

As mentioned in responses to other reviewers, further parameters, resolutions,
and statistical tests will be examined to further the broader applicability of the
manuscript.

Reviewer 7

There is a lot of jargon in the paper in the introductory sections, which makes it harder to
read for a non-statistician. Some of the definitions (like Type I errors) were not clear from
the text (even though the text refers to Sec. 4 for Type I error definition, there is no further
clarification in Sec. 4). I found some clarifications in Mahajan2017 and Mahajan2019, but I
think it is ok to repeat definitions of basic concepts in this paper.

In the updated manuscript we will take care to detail and reduce the level of
statistical jargon, especially in the introductory sections.

Equation 1 — maximum function has boolean input, instead of a number. Is there a typo? Also,
why does p-level there depend in an index (“i”) of a field to be tested? The authors list m=117
above, but in general m can be arbitrary large.

This equation will be clarified in the updated manuscript, it should indicate that
prpr is the maximum p-value for which the inequality is satisfied. The p-values
are indexed 1...m, indicating the field from which it is computed, then sorted from
smallest (i = 1) to largest (i =m).

It would be very interesting to see (if not in this publication, then maybe in future ones) which
stmulations in the new framework (and possibly the old one) are deemed climate-changing by
looking at their plots (standard latlon mean fields, zonal means, etc.), and evaluate them by
an eyeball norm. Would a human expert also consider these simulations “climate changing”
or not? Something similar is presented in Mahajan2017, but not exactly. There is an issue
that the current work was done with an ultralow res ESSM (ned for the atmosphere), and this
configuration of ESSM might not have established climatologies.

This is certainly possible, though the detectable differences here are statistically
significant, it may not be apparent on these maps, as the differences are relatively
small in the absolute sense. We will explore this, and the updated manuscript will
include an example figure if it is illustrative.
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