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Abstract. Seasonal snow is a critical resource for society by providing water for billions, supporting agriculture, clean energy,

and tourism, and is an important element within the climate system by influencing the global energy balance. However, accu-

rately quantifying snow mass, particularly in mountainous regions, remains a challenge due to substantial observational and

modeling limitations. As such, data assimilation (DA) offers a powerful solution by integrating observations with physically-

based models to improve estimates of the snowpack. Previous snow DA studies have employed an Ensemble Kalman Filter5

(EnKF) to assimilate Sentinel-1 satellite-based snow depth retrievals, demonstrating improved accuracy in modeled snow

depth, mass, and streamflow when evaluated against in-situ measurements. In those studies, the uncertainty of the assimilated

retrievals was assumed to be static in time and space, likely leading to a suboptimal use of the observational information. Here,

we present several advances in snow DA. Using an EnKF, we assimilate novel snow depth retrievals derived from a machine

learning product that leverages Sentinel-1 backscatter observations, land cover, and topographic information over the European10

Alps. We also incorporate a spatiotemporally dynamic observation error, whereby the uncertainty of the assimilated snow depth

retrieval varies in space and time with snow depth
::::::
(DAvar ::::::::::

experiment). The machine learning snow depth retrieval product is

assimilated into the Noah-MP land surface model over the entire European Alps at 1 km resolution for the years 2015-2023

and snow depth, snow water equivalent, and snow cover are evaluated against independent in-situ data and satellite obser-

vations.
:::
The

::::::
DAvar:::::::::

experiment
::::::

offers
:::::
small,

:::
but

:::::::::
significant

::::::::::::
improvements

::
to
:::::

snow
:::::
depth

::::
and

:::::
snow

:::::
water

:::::::::
equivalent

::::::
(SWE)15

::::
mean

:::::::
absolute

:::::
errors

:::::::
(MAE),

:::
and

:::::::
slightly

::::::
reduces

:::::
snow

:::::
cover,

:::::::
thereby

:::::
better

:::::::
matching

::::::::::::
satellite-based

:::::
snow

:::::
cover

:::::::::::
observations.

::::::::
Compared

::
to
:::
an

::::
open

::::
loop

::::
(no

::::
DA)

:::::::::
experiment

:::::
(OL),

::::
and

::
an

::::::::::
experiment

::::
with

::
an

::::::::
assumed

::::
static

::::::::::
observation

:::::
error

:::::::::
(DAconst),

:::::
DAvar:::::::

reduces
:::::
SWE

:::::
MAE

::
by

::::
25%

::::
and

:::::
13%,

::::::::::
respectively,

:::::::::
compared

::::
with

::::
over

::::
8000

:::::::
manual

::::
SWE

:::::::::::::
measurements.

:
This work

demonstrates the benefits of machine learning based snow depth retrievals and
:::
the

:::::
impact

:::
of

:::::::::::
incorporating dynamic observation

errors in EnKF-based snow DA.20

1 Introduction

Snow is a valuable natural resource, integral for societal needs and in the climate system. The runoff from seasonal snow

serves as a water source for billions of people (Barnett et al., 2005; Mankin et al., 2015), supports clean hydroelectric energy

generation (Wasti et al., 2022), and sustains irrigated agriculture (Qin et al., 2020). Snow is also necessary for the multi-billion
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dollar winter tourism industry (Outdoor Industry Association, 2017; Parthum and Christensen, 2022; Steiger et al., 2019). The25

total economic value of snow is estimated to be in the trillions of dollars (Sturm et al., 2017). Furthermore, snow has a high

albedo and therefore plays an important role within the climate system by exerting a large-scale cooling effect. Variability in

snow cover therefore impacts the Earth’s surface energy balance and has been shown to potentially affect Northern Hemisphere

atmospheric circulation (Henderson et al., 2018). Significant changes including a decline in snow-covered area, particularly at

low elevations (Bormann et al., 2018; Estilow et al., 2015), shifts in the timing of snow melt (Musselman et al., 2021; Vorkauf30

et al., 2021), and an increasing transition from snowfall to rainfall at lower elevations (Safeeq et al., 2016) have been observed

in recent decades, with these changes projected to intensify throughout the 21st century (IPCC, 2021).

Despite the importance of snow within Earth’s climate and as a natural resource, accurately quantifying snow mass (or snow

water equivalent, SWE) in mountainous, complex terrain remains a challenge. Because SWE is difficult and costly to directly

quantify (Dozier et al., 2016), measurements and retrieval algorithms more commonly focus on snow depth, which is related35

to SWE via snow density. In-situ observation stations provide point-based snow depth measurements with good temporal

frequency, but fail to capture spatial snow variability, which can be great even in a small area (López-Moreno et al., 2015;

Miller et al., 2022). Airborne surveys provide accurate snow depth maps at a fine spatial resolution (Deems et al., 2013), but

their high costs and logistical constraints limit the frequency and spatial coverage of these measurements. Snow depth has also

been retrieved using satellite observations, which have the benefit of providing frequent, global coverage (Lievens et al., 2019).40

One approach estimates snow depth by comparing digital elevation models (DEMs) from snow-on and snow-off conditions.

These DEMs can be generated from satellite laser altimetry such as ICESat-2 (Enderlin et al., 2022; Deschamps-Berger et al.,

2023; Besso et al., 2024) or from very-high-resolution stereoscopic satellite imagery via photogrammetric methods (Marti

et al., 2016; Shaw et al., 2020; Deschamps-Berger et al., 2020). Globally, passive microwave and synthetic aperture radar

(SAR) observations are more commonly used to estimate snow depth. (Kelly et al., 2019; Luojus et al., 2021; Lievens et al.,45

2022). However, passive microwave imagery has a coarse spatial resolution (∼25 km) and saturates above 1 m snow depth

(Tedesco and Narvekar, 2010; Vander Jagt et al., 2013), while SAR observations are challenged by wet snow, shallow snow,

and forest cover (Broxton et al., 2024; Hoppinen et al., 2024; Lievens et al., 2022). Although recent work has utilized machine

learning (ML) techniques to enhance SAR-based snow depth retrievals (Daudt et al., 2023; Broxton et al., 2024; Dunmire et al.,

2024), there is still some way to go for accurate global SWE estimation.50

Ultimately, complex feedbacks between changes in snow and other components of the global climate system are currently

best studied using physics-based models (Girotto et al., 2020). Since in-situ SWE observations are far sparser than snow depth

measurements (Dunmire et al., 2024), snow mass estimates also rely primarily on modeling approaches. However, these models

are limited by uncertainties in mountain precipitation and low-quality forcing data (Günther et al., 2019; Raleigh et al., 2016;

Terzago et al., 2020). In light of these observational and modeling challenges, data assimilation (DA) offers a way to overcome55

shortcomings of both the model and observations by integrating in-situ and remote satellite observations with physics-based

models to improve modeled snow variables (Helmert et al., 2018; Smyth et al., 2020, 2022).

One method for assimilating observations into a physical model is via direct insertion, whereby the model’s state vari-

ables are directly replaced with observations without any statistical blending or error weighting (Rodell and Houser, 2004;
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Toure et al., 2018). Increasing in sophistication, optimal interpolation methods, which consider model and observational un-60

certainty to blend the model and observations using statistically optimal weights (Liston and Hiemstra, 2008), are commonly

used at operational centers (Helmert et al., 2018). Also common among operational centers (Helmert et al., 2018), and one

of the most used DA techniques within the land surface modeling community, is the Ensemble Kalman Filter (EnKF; Re-

ichle et al. (2002)). With an EnKF, the background-error covariance is not explicitly computed, but instead estimated using

an ensemble of model trajectories. While this ensemble approach is advantageous for high-dimensional, nonlinear systems65

where an exact computation of the background-error covariance is impractical, the assumption of unbiased, normally dis-

tributed model-state errors is often violated for cumulative state variables like snow depth. Despite its reliance on Gaus-

sian assumptions, the EnKF has been extensively used in previous snow data assimilation work (Slater and Clark, 2006;

Durand and Margulis, 2006; De Lannoy et al., 2012; Huang et al., 2017; Pflug et al., 2024). An alternative solution that

is commonly used in snow DA, particle batch filters and smoothers are capable of handling non-Gaussian noise and com-70

plex posterior distributions. In particular, particle batch smoothers have been commonly applied to create snow reconstruc-

tions (Margulis et al., 2015; Baldo and Margulis, 2018; Girotto et al., 2024)
:::::::::::::::::::::::::::::::::::::::::
(Margulis et al., 2015; Baldo and Margulis, 2018)

::
or

::
to

:::::::::
downscale

:::::
model

::::::::
variables

::::
such

::
as

:::::::::::
precipitation

::::::::::::::::::::::::::::::::::
(Girotto et al., 2024; Bachand et al., 2025).

Recent studies have used both particle batch smoothers and the EnKF to assimilate SAR-based snow depth retrievals from

Sentinel-1 (S1), thereby improving modeled snow depth, SWE and streamflow compared to in-situ measurements (De Lannoy et al., 2024; Brangers et al., 2024; Girotto et al., 2024)75

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(De Lannoy et al., 2024; Brangers et al., 2024; Girotto et al., 2024; Mirza et al., 2025). However, these previous snow DA stud-

ies make the simplifying assumption that the observation uncertainty is constant in space and time, meaning that a 10 cm

snowpack is assumed to have the same absolute uncertainty as a 400 cm snowpack, contributing to a suboptimal use of the

observational information.

Here, we present several advances in snow DA. First, we assimilate snow depth retrievals from an ML product that uses S180

observations, land cover, and topographic information to estimate snow depth in the European Alps (Dunmire et al., 2024).

These ML-based snow depth retrievals have a higher accuracy and lower bias compared to previous S1-based retrievals from

a conceptual model (Lievens et al., 2022), when validated against in-situ observations and airborne snow depth maps from the

European Alps. For instance, compared to 798 Alps-wide in-situ measurement sites, the ML model has an average site mean

absolute error (MAE) of 0.18 m and an average site bias of -8 mm, compared to an MAE of 0.22 m and a bias of -99 mm for85

the conceptual model, respectively. We assimilate these ML-based snow depth retrievals within a land surface model over the

entire European Alps, a domain much larger than most previous snow DA efforts which focus primarily on smaller, regional

scales. Finally, we incorporate a dynamic observation error, whereby the uncertainty of the assimilated snow depth observation

varies in space and time, reflecting the more realistic dynamics of uncertainty in snowpack observations. The primary goal of

this work is to assess the utility of incorporating dynamic observation errors versus commonly used static observation errors in90

EnKF-based snow DA.
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2 Materials and methodology

In this work, we utilized the NASA Land Information System (LIS; Kumar et al. (2006); Peters-Lidard et al. (2007)) version

7.5.0 to assimilate snow depth retrievals in the Noah-MP land surface model (Niu et al., 2011; Yang et al., 2011) version 4.0.1.

The snow depth retrievals, land surface model, DA experiments, and evaluation data and methods are further described below.95

2.1 Noah-MP land surface model
:::::
Model

:::::
setup

::::
and

::::
data

2.1.1
::::::::
Noah-MP

:::::
land

::::::
surface

::::::
model

To simulate snow processes over the European Alps (3.9945◦E–17.0175◦E, 42.9945◦N–48.6195◦N), we ran Noah-MP on

a regular latitude-longitude grid with a spatial resolution of 0.009◦. The
::
In

::::::::
Noah-MP,

:::::
snow

::
is
:::::::::

simulated
::
in

:::
up

::
to

::
3

::::::
layers,

::::::::
depending

:::
on

:::
the

::::
total

::::
snow

::::::
depth.

:::::
Snow

::::::::
processes

:::
and

:::::::::
properties

::::
such

::
as

::::
melt

:::::::::::::
metamorphism,

::::::
canopy

:::::::::::
interception,

:::
and

:::::
snow100

::::
cover

:::::::
fraction

:::
are

::::::::::
represented

::
by

:::::::
detailed

::::::::::::::
physically-based

:::::::::::::::
parameterizations

::::::::::::::
(Niu et al., 2011)

:
.
:::
For

::::
snow

:::::::
albedo,

:::
we

::::
used

:::
the

::::::::
Canadian

::::
Land

:::::::
Surface

::::::
Scheme

::::::::
(CLASS;

::::::::::::::
Verseghy (1991)

:
).

:::
For

::::
other

::::::::::::::
parameterization

:::::::
options,

:::
we

:::::::
followed

::::::::::::::::::
Brangers et al. (2024)

:
.

:::::
Before

:::::::::
beginning

:::
our

:::
DA

:::::::::::
experiments,

::
we

:::::::::
performed

:
a
:::::::
15-year model

::::::
spin-up

::::::::::
(2000-2015).

::::
The

::::::::::
experiments

::::
were

:::::::::
conducted

:::
over

:::
the

::::::
period

::::::::
spanning

:::::::
October

::
1,

::::
2015

::
–
:::::
April

:::
30,

::::
2023

::
(8

:::::
snow

::::::::
seasons).

::::::::
Noah-MP

::::
was

:::
run

::::
with

::
a

::
15

::::::
minute

::::::
model

::::
time105

:::
step

::::
and

::::
daily

::::::::
averages

::
of

::::
state

::::::::
variables

::::
were

::::::
written

::
to

::::::
output.

:

2.1.2
:::::::::::
Atmospheric

:::::::
forcing

:::
for

::::::::
Noah-MP

:::
The

::::::
model was forced with atmospheric forcing from the ECMWF Reanalysis, version 5 (ERA5; Hersbach et al. (2020)). The

ERA5 data were downscaled from their native resolution (31 km) to the domain grid through bilinear spatial interpolation and

by applying a topographic lapse-rate correction to correct the air-temperature forcing. ERA5 has previously been used as atmo-110

spheric forcing in other snow DA studies (Pflug et al., 2024; De Lannoy et al., 2024)
:::::::::::::::::::::::::::::::::::::::::::::::::
(Pflug et al., 2024; De Lannoy et al., 2024; Mirza et al., 2025)

, and Brangers et al. (2024) additionally demonstrated that ERA5 forcing leads to superior modeled snow depth, compared with

simulations forced with The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2; Gelaro

et al. (2017)), and MERRA-2 gauge-corrected precipitation (M2CORR; Reichle et al. (2017)). From Figure 10 of Brangers

et al. (2024), the ERA5, MERRA-2, and M2CORR atmospheric forcing led to average modeled snow depth MAEs of 0.367 m,115

0.404 m, and 0.434 m, and average snow depth biases of -0.07 m, +0.138 m, and -0.363 m, respectively, compared to in-situ

measurement stations in the Western European Alps.

In Noah-MP, snow is simulated in up to 3 layers, depending on the total snow depth. Snow processes and properties such as

melt metamorphism, canopy interception, and snow cover fraction are represented by detailed physically-based parameterizations

(Niu et al., 2011). For snow albedo, we used the Canadian Land Surface Scheme (CLASS; Verseghy (1991)). For other parameterization120

options, we followed Brangers et al. (2024).
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Before beginning our DA experiments, we performed a 15-year model spin-up (2000-2015). The experiments were conducted

over the period spanning October 1, 2015 – April 30, 2023 (8 snow seasons). Noah-MP was run with a 15 minute model time

step and daily averages of state variables were written to output.

2.2 Machine learning snow depth retrieval125

Previous work has assimilated snow depths retrieved from the S1 satellite constellation
:::
over

::::
the

::::::::
European

:::::
Alps

:
(SDS1;

Brangers et al. (2024); De Lannoy et al. (2024)). Here, we assimilated snow depth estimates from Dunmire et al. (2024)

(SDML), which uses machine learning to enhance S1-based snow depth retrievals. Dunmire et al. (2024) use an eXtreme

Gradient Boosting (XGBoost) model that incorporates 12 input features (elevation, slope, aspect angle, topographical posi-

tion index, snow class, forest cover fraction, day of snow season, snow cover fraction, cumulative snow cover fraction, local130

incidence angle of the S1 observation, S1 VV backscatter, and S1 cross-polarization ratio) to estimate snow depth across the

European Alps at 100 m resolution. When compared to in-situ snow depth stations and airborne photogrammetry snow depth

maps, SDML is shown to reduce MAE and improve bias compared to SDS1 (MAE reduction from 0.22 m for SDS1 to 0.18 m

for SDML, bias improvement from -99 mm for SDS1 to -8 mm for SDML) (Dunmire et al., 2024; Lievens et al., 2022).

We spatially averaged the SDML retrievals to the 0.009◦ model resolution and masked pixels with a glacier fraction above135

50%, according to version 7 of the Randolph Glacier Inventory (Pfeffer et al., 2014; RGI 7.0 Consortium, 2023). We also

temporally averaged the SDML retrievals every 7 days and assimilated these estimates weekly, in the center of the 7-day

averaging window. This step was taken to avoid assimilating outlier snow depths (the SDML retrievals can be noisy in time)

and to avoid negative consequences (e.g. spurious temporal trends) associated with a changing assimilation frequency (Dee,

2005).140

2.3 Data assimilation approach and experiments

We conducted 3 different experiments: (1) an open loop, model-only experiment (OL) which serves as a benchmark to evaluate

the added value of assimilating SDML retrievals, (2) a DA experiment with an assumed constant observation error (DAconst),

and (3) a DA experiment with a dynamic observation error that varies spatially and temporally (DAvar). For all experiments,

we utilized 12 ensemble members, created by perturbing forcing variables (precipitation, 2 m air temperature, and incident145

longwave and shortwave radiation) and the total forecasted snow depth (with the total snow depth perturbations distributed

over the snow layers). Although a larger ensemble size is more optimal, our choice of 12 ensembles is reasonable as the

control vector used in the assimilation consists of just total snow depth (Pflug et al., 2024). The perturbation parameters are

summarized in Table 1 and follow Modanesi et al. (2022), Bechtold et al. (2023), and Pflug et al. (2024).

For the DA experiments, we used a one-dimensional EnKF to assimilate the SDML retrievals into Noah-MP. The Kalman150

gain matrix determines the strength of the model corrections at each location (x) and timestep (t), and is given by Equation 1

below:

5



Table 1. Perturbation parameters applied for the OL and DA runs. ∗ We perturb the total snow depth and propagate these perturbations into

the different snow layers.

Variable Perturbation type Standard deviation Cross-correlation

Forcing variables SW LW P T

SW: Incident shortwave (Wm−2) multiplicative 0.6 1 -0.5 -0.5 0.3

LW: Incident longwave (Wm−2) additive 50.0 0.5 1 0.5 0.6

P: Precipitation (kgm−2 s−2) multiplicative 0.5 -0.5 0.5 1 -0.1

T: 2 m air temperature (K) additive 1.0 0.3 0.6 -0.1 1

Forecast variable∗

Snow depth (m) multiplicative 0.0005

K(x,t) =
σ2
f (x,t)

σ2
f (x,t)+σ2

obs

(1)

where σf is the standard deviation of the forecast error and represents the uncertainty in the forecast’s total snow, and

σobs is the standard deviation of the observation error and represents the uncertainty in the observations. The EnKF extends a155

traditional Kalman Filter by estimating σf using forecast ensembles, while σobs is a user-defined parameter. Here, we tested

two different approaches for σobs, one that is constant (DAconst) and one that varies in space and time (DAvar).

As per De Lannoy et al. (2024), the DAconst experiment assumes a constant value of σobs = 0.3 m. The multiplicative factor

for the snow depth state perturbations (Table 1) was determined experimentally through trial and error, with the optimal value

selected based on its performance compared to in-situ snow depth observations over a subset region (Brangers et al. (2024),160

personal communication, Isis Brangers).

The DAvar experiment expands upon DAconst by varying σobs throughout space (x) and time (t) following Equation 2

below:

σobs(x,t) =


0.05, SDML(x,t)≤ 0.167,

m ∗SDML(x,t), 0.167< SDML(x,t)< 3.5,

1.05, SDML(x,t)≥ 3.5.

(2)

where SDML(x,t) is the assimilated observation at location x and time t and m is a user-defined multiplier. We calibrated165

m experimentally by selecting the optimal value when comparing modeled snow depth with in-situ observations in a subset

region (6-8 ◦E, 45-46 ◦N). Here, we used m= 0.3. Equation 2 assumes that σobs varies linearly as a function of assimilated

snow depth. Supplemental Figure 1 demonstrates that this assumption is valid at independent in-situ measurement sites. For

SDML below 0.25 m, the average error of the SDML product compared to in-situ measurements is 0.05 (Supplemental Figure

1), and as such we chose this as a minimum threshold value for σobs (Equation 2). Setting this minimum threshold also avoids170
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Figure 1. Assumed observation error standard deviation (σobs) as a function of the assimilated snow depth (SDML) for the two DA experi-

ments.

issues when SDML(i,t) = 0 m. We can see from Supplemental Figure 1 that there are no assimilated snow depths above 3 m at

these in-situ measurement sites, making it difficult to characterize the observation error for deeper assimilated snow depths. As

such, we also defined an upper threshold for σobs of 1.05 m, corresponding to an assimilated snow depth of 3.5 m (Equation

2). This value was also chosen as an upper threshold because we observed that σf , which represents the uncertainty in the

model-only (OL) simulated snow depth, given by the standard deviation of the model ensembles, levels off above 3.5 m snow175

depth (Supplemental Figure 2). We chose to reflect this feature of the forecast error in our characterization of the observation

error. Figure 1 compares σobs from DAconst and DAvar as a function of the assimilated snow depth observation (SDML).

For both DA experiments, the snow updates were applied following the methodology of Brangers et al. (2024), whereby

the increments applied to the total forecasted snow depth are divided over the different snow layers, proportionate to each

layer’s forecasted share of the total snowpack, and SWE is updated accordingly assuming snow density remains unchanged180

during each update. The compaction and redistribution of snow layers is done during the model propagation. This approach

circumvents the need to compute dynamic error covariances between total snow depth and a varying number of snow state

variables in varying numbers of layers. We assimilated SDML estimates weekly each year from September 1 through March

31, excluding assimilation further into the ablation period when wet snow complicates the S1 signal. Due to limitations of

using S1 observations to estimate snow depth in forested terrain, and the unsuitability of the ML SD retrieval over glaciated185

terrain, we do not assimilate over forested areas or glaciers. Following De Lannoy et al. (2024), we also do not assimilate when

the soil or vegetation temperature is above 5◦C.
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2.4 Evaluation

For each of our three experiments (OL, DAconst, DAvar), we utilized a variety of in-situ and satellite-based products to evaluate

1) snow depth, 2) SWE, and 3) snow cover fraction (SCF) and snow disappearance date (SDD). We also compared our results190

with those from De Lannoy et al. (2024), in which the SDS1 retrieval was assimilated with a static observation uncertainty.

2.4.1 Snow depth evaluation

Snow depth estimates from each experiment (OL, DAconst, DAvar) were compared with in-situ snow depth observations from

across the European Alps. For comparing the performance of our DA experiments against the OL experiment, we utilized

independent in-situ observations that were not included in the training for the ML model from Dunmire et al. (2024), and sites195

located in places where the SDML retrievals were assimilated (i.e. not in dense forest, over glaciers). In total, we utilized

snow depth data from 588 measurement sites, which report for varying parts of the 8 year study period. We obtained these

point-scale snow depth measurements from the WSL – Institute for Snow and Avalanche Research SLF (Switzerland, 220

sites), Météo-France (France, 57 sites), GeoSphere Austria (Austria, 108 sites), the International Center for Environmental

Monitoring CIMA Research Foundation (Italy, 10 sites), Provincia autonoma di Trento (Italy, 48 sites), Provincia autonoma200

di Bolzano - Alto Adige (Italy, 19 sites), Valle d’Aosta (Italy, 27 sites), the Agenzia Regionale per la Protezione Ambientale

- Piemonte (Italy, 28 sites), the European Centre for Medium-Range Weather Forecasts’ SYNOP snow depth measurement

network (Global, 35 sites; de Rosnay et al. (2015)), and Global Historical Climatology Network (Global, 36 sites). For each

experiment, we computed the mean absolute error (MAE), bias, and Pearson correlation coefficient (R) of the modeled snow

depth compared with the in-situ observations obtained at these sites. To investigate how well the model captures spatial and205

temporal anomalies in snow depth patterns, we also computed spatial and temporal anomaly correlation coefficients (ACC).

The spatial ACC was computed for each day throughout the snow season with more than 10 in-situ snow depth measurements

available. Spatial anomalies were computed for each site by subtracting the spatial mean snow depth recorded across all

measurement sites on that day. The temporal ACC was computed for each measurement site with 5 or more years of in-situ

observations. Temporal anomalies were calculated at each site by subtracting the site’s multi-year climatology (2015-2023)210

with a 10-day moving mean smoothing function applied. In order to utilize more sites with a longer time series of observations,

we also included sites that were used in the ML training. Thus, for this metric, we only compared the two DA experiments,

which both assimilated the same SDML retrievals.

2.4.2 SWE evaluation

Next, we evaluated modeled SWE, with in-situ measurements of SWE located (1) in places where DA was applied, and215

(2) not on a glacier, according to the Noah-MP glacier land cover class and the Randolph Glacier Inventory (Pfeffer et al.,

2014; RGI 7.0 Consortium, 2023). We consolidated 8211 manual SWE measurements from the Bundesministerium für Land-

und Forstwirtschaft, Regionen und Wasserwirtschaft (Austria, 676 measurements), The Climate Data Center of the German

Weather Service (Germany, 2311 measurements), the WSL – Institute for Snow and Avalanche Research SLF (Switzerland,
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1546 measurements), Provincia autonoma di Trento (Italy, 944 measurements), and Valle d’Aosta (Italy, 2793 measurements).220

As with snow depth, we compared MAE, bias, and R for the different experiments.

2.4.3 SCF and SDD evaluation

We further evaluated the impact of the DA on the timing of snow disappearance and modeled SCF. We first compared the SDD

of the model experiments at the in-situ snow measurement sites. We defined the SDD as the first day of five consecutive days

with less than 0.1 mm snow depth, following the date of peak snow. For in-situ SDD, the day of peak snow was computed using225

the in-situ snow depth and for model SDD, the day of peak snow was computed using snow depth output from the appropriate

model experiment. We also, in the same manner, computed SDD using the Interactive Multisensor Snow and Ice Mapping

System (IMS) product. IMS is a 1 km horizontal resolution binary snow cover dataset that is derived from a variety of satellite

and in-situ data.

We also compared SCF and total snow covered area from our three model experiments with both the IMS product and the230

Copernicus Fractional Snow Cover product. The Copernicus product is available at a 20 m spatial resolution and is computed

from Sentinel-2 Level-1C imagery. The product is not gap-filled, thus data gaps exist when clouds are present. We regridded

both snow cover products to our model domain grid using nearest neighbor interpolation for IMS, and averaging for the

Copernicus product. For comparison with the IMS product, we converted modeled SCF to a binary value: SCF< 50% = 0,

SCF≥ 50% = 1. For comparison with the Copernicus product, we ignored areas with data gaps.235

2.4.4 Comparison to SDS1 DA

To compare with previous work that assimilates snow depth retrievals from the S1 change detection algorithm (SDS1; Lievens

et al. (2022)), we compared output from our two DA experiments with DA output from De Lannoy et al. (2024) (experiment

DAS1). This DAS1 experiment utilized the same DA setup as in DAconst, with a static observation uncertainty (σobs = 0.3m),

but assimilates SDS1 retrievals instead of SDML. Here, we utilized 4548 manual SWE measurements collected within the Po240

River basin (the study domain of De Lannoy et al. (2024)) to compare SWE MAE between the DAconst, DAvar, and DAS1

experiments.

3 Results

3.1 Snow depth

The practical impact of the DAvar and DAconst experiments on snow depth estimates is illustrated in Figure 2. When the245

assimilated snow depth retrieval is 1 m, the observation uncertainty is equivalent for both experiments (Fig. 1). The variable

observation uncertainty approach in DAvar dynamically adapts to assimilated snow depth, resulting in stronger corrections for

shallow depths while DAconst provides stronger corrections at higher depths (Fig. 2). For assimilated snow depths below 1 m,

the observation uncertainty is smaller in DAvar than in DAconst, resulting in a lower observation error covariance (σobs) in the
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Figure 2. Snow depth estimates and independent in-situ measurements at two example sites. (a) Snow depth from DAconst (red, left) and

DAvar (orange, right) compared with the OL (navy) from a measurement station in Austria (∼13.6228 ◦E, 47.0944 ◦N , 1050 m elevation).

The shading represents ±1 standard deviation in the model ensembles. The sage green dots represent the assimilated SDML retrievals, with

error bars for the assumed observation error standard deviation (σobs, Equation 2). (b) Same as (a), but for a different measurement station in

Switzerland (∼7.7836 ◦E, 45.9872 ◦N , 2948 m elevation). These two sites were chosen due to a lack of gaps in the in-situ measurements

and their general representativeness of locations where the DA removes and adds snow.

EnKF (Equation 1) and stronger corrections of the posterior state toward the observations in DAvar (Fig. 2a). In contrast, the250

constant σobs of 0.3 m in DAconst is relatively large for shallow snow depths and results in minimal corrections of the posterior

state.

A measurement site with assimilated snow depths substantially greater than 1 m is demonstrated in Figure 2b. In this case,

the observation uncertainty is smaller for DAconst than for DAvar, resulting in stronger posterior state adjustments in DAconst.

At this measurement site we see that the OL experiment is closer to the in-situ snow depth than the assimilated observations,255

leading to a deterioration in model performance when the DA is applied (both with DAvar and DAconst). For DAvar, this

phenomenon occurs at ∼16% of all measurement site (Fig. 3a), with only 1% experiencing a deterioration in SD MAE greater

than 125 mm.
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Across the 588 in-situ snow depth measurement sites used for evaluation, the corrections applied in DAvar result in snow

depth estimates that align more closely with in-situ observations (Fig. 3). The OL experiment yields a site-average MAE of260

0.244 m, a RMSE of of 0.300 m, a bias of 0.113 m and a Pearson correlation coefficient of 0.75. Both the DAconst and

DAvar experiments show improved performance
::::::
improve

:::::
these

::::::
metrics, with site-average MAE values of 0.237 m and 0.215 m

:::::::
(median

:::::
values

:::
of

:::::
0.207

:
m

:::
and

::::::
0.185 m

:
), RMSE values of 0.292 m and 0.268 m, and biases of 0.106 m and 0.055 m,

respectively. These improvements are illustrated in Figure 3, which compares MAE from the DAvar experiment with the OL

experiment (Fig. 3a) and DAconst (Fig. 3b). Relative to the OL, MAE is reduced in DAvar by more than 25 mm at 245 sites265

(42%), while 92 sites (16%) have an MAE increase exceeding 25 mm. Comparing DAvar to DAconst, we find that MAE is

reduced in DAvar by more than 15 mm at 297 sites (51%), while 71 sites (12%) experience a deterioration greater than 15 mm.

While improvement in MAE from the OL experiment is not significant for DAconst ,
::::::::::::
(Mann-Whitney

::
U
::::

test
::::::
p-value

::
=
:::::
0.59,

:::::::::
median-test

:::::::
p-value

:
=
:::::
0.68),

:
the MAE improvement is

:::::
small,

:::
but significant for DAvar (p

::::::::::::
Mann-Whitney

::
U

:::
test

:::::::
p-value = 0.001

:
,

:::::::::
median-test

:::::::
p-value

::
=

::::
0.03). The site-average Pearson correlation coefficient slightly deteriorated for DAconst and improved270

for DAvar to 0.75 and 0.76, respectively.

While the OL experiment already does a good job at representing spatial snow depth patterns (spatial ACC = 0.71), Figure

3c highlights that, for most of the snow season, the DAvar experiment offers slight improvements in the representation of these

spatial patterns. Averaged across the entire year, the spatial ACC increases from 0.71 for the OL experiment to 0.72 for DAconst

and to 0.73 for DAvar. The greatest improvement in spatial ACC for DAvar occurs during the early snow season (November),275

with values exceeding those of the OL and DAconst experiments by 0.058 and 0.047, respectively. From December through

April, the spatial ACC for DAvar remains approximately 0.021 greater than that of the OL experiment. By mid-April, all three

experiments exhibit similar performance in capturing spatial snow depth patterns. Additionally, both DAconst and DAvar well-

capture temporal snow depth patterns, with average temporal ACC values of 0.68 and 0.72, respectively
:::::::
(median

::::::::
temporal

::::
ACC

::::::
values

::
of

::::
0.73

:::
and

:::::
0.76,

:::::::::::
respectively). The improvement in temporal ACC for DAvar from both the OL and DAconst is280

statistically significant (p < 0.01
:::
for

::::
both

:
a
:::::::::::::
Mann-Whitney

:
U
::::
test

:::
and

::::::::::
median-test, Fig. 3d). Across the 948 sites evaluated, 491

sites (52%) have an improved temporal ACC in DAvar (> +0.02 compared to DAconst), while only 103 sites (11%) experience

a deterioration in temporal ACC (< -0.02 compared to DAconst).

The OL experiment has an elevation-dependent snow depth bias, characterized by an overestimation of snow depth at lower

elevations and early in the snow season, and an underestimation at higher elevations during peak snow accumulation (Fig.285

4a). Both of these issues are mitigated in the DAvar experiment, which brings seasonal biases closer to zero across all eleva-

tion bands (Fig. 4c). In contrast, the DAconst experiment minimally corrects snow depth overestimation in the early season

and at low elevations, due to the relatively higher assumed observation uncertainty for shallow snow (e.g., Fig. 2a). From

September 1 through January 31, the DAvar experiment reduces the average bias across all sites by 46%, while the DAconst

experiment achieves only a 10% reduction over the same period. These improvements are particularly notable at mid-elevations290

(1000–2000 m), where DAvar reduces model bias by 54% throughout the season, compared to a 13% reduction in model bias

at these same sites in DAconst.
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Figure 3. Experiment evaluation at in-situ snow depth measurement sites. (a) Change in MAE at each measurement site from the OL

experiment to DAvar. Green colors indicate an improvement in MAE in the DAvar experiment. On the color bar, the number of sites that fall

within each color range is indicated and points within the white color are not plotted on the map. (b) Change in MAE at each measurement

site from the DAconst experiment to DAvar. (c) Change in the spatial anomaly correlation coefficient (ACC) for each DA experiment from

the OL experiment. The spatial ACC is averaged over all snow seasons (2015/16 - 2022/23). (d) Change in the temporal ACC from the

DAconst experiment to DAvar. Green colors indicate an improvement in temporal ACC in the DAvar experiment.
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Figure 4. Seasonal evolution of bias and mean absolute error (MAE) stratified by elevation. Panels (a)-(d) show the seasonal snow depth

bias for the (a) OL, (b) DAconst, and (c) DAvar experiments, and for (d) the assimilated observations (SDML). Bias is computed relative

to in-situ snow depth measurements and is grouped by elevation bands (indicated by different colors). Panels (e)–(f) show the change in

MAE between the OL and DAvar experiments (e) and between the DAconst and DAvar experiments (f). Negative values in (e)–(f) indicate

improved performance (decreased MAE). Statistics are computed for each day, averaged over the entire 8-year period (2015–2023). A 14-day

smoothing is applied to each timeseries and the number of in-situ measurement sites (n) within each elevation band is provided in the legend.

The MAE is also reduced by DAvar across most elevation bands and throughout much of the season. The difference in

MAE between the OL and DAvar experiments (Fig. 4e) indicate that the largest MAE improvements occur from early winter

through peak accumulation. However, an increase in MAE at high elevations during the melt season (March onwards) suggests295

a tendency for the DA experiments to retain snow for too long, which could be due to limitations in the modeled melt processes

or biases introduced by the assimilated observations at higher elevations (e.g., Figure 4d).

3.2 SWE

Compared with 8,211 manual SWE measurements from 231 different measurement sites across the Alps, the DAvar experiment

also significantly improves the MAE of SWE estimates
:::::
offers

:::::
small,

:::
but

:::::::::
significant

::::::::::::
improvements

:::
for

::::
SWE

:::::
MAE

:
compared to300

both the OL and DAconst experiments (p<<0.001
:::
for

:::
both

::
a
::::::::::::
Mann-Whitney

::
U
:::
test

::::
and

:::::::::
median-test). Relative to the OL, DAvar
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reduces SWE MAE by at least 15 mm at a majority of these sites (57%), while only 23% of sites experience a deterioration

in SWE MAE of more than 15 mm (Fig. 5a). Similar improvements are observed when comparing DAvar to DAconst, with

DAvar outperforming DAconst at 56% of measurement sites (Fig. 5b).

In the OL experiment, we observe a positive bias for low observed SWE and a negative bias for high observed SWE (Fig.305

5c), similar to the bias patterns seen for snow depth. The DAvar experiment effectively reduces both biases, with the most

substantial improvement
::::::
largest

::::::::::::
improvements occurring for low observed SWE values.

::
For

::::::::
instance,

:::
for

::::::
in-situ

::::
SWE

::::::
below

:::
200

::::
mm,

:::
the

::::
bias

::
is

:::::::
reduced

::
by

::::
52%

::
in

::::::
DAvar:::::::::

compared
::
to

:::
the

:::
OL

::::
(OL

:::
bias

::
=
:::::
+166

::::
mm,

::::::
DAvar :::

bias
::
=
::::
+80

::::
mm),

::::::::::
meanwhile

::
the

::::
bias

::::::
in-situ

:::::
SWE

:::::::::::
measurements

::::::
above

:::
600

::::
mm

::
is

:::::::
reduced

::
by

:::
7%

::
in

::::::
DAvar::::

(OL
::::
bias

:
=
::::
-362

:::::
mm,

:::::
DAvar::::

bias
::
=

::::
-335

:::::
mm).

As a result, the overall average SWE bias decreases from +81 mm in the OL to +18 mm in DAvar. This bias reduction is310

significantly greater than that for
:
In

:::::::::::
comparison,

:::
the

:::
bias

:::::::::
reduction

::
for

:::
the

:
DAconst (+76 mm bias) , which only

:::::::::
experiment

::
is

::::::
limited,

:::::::
because

:::::::
DAconst:

marginally corrects the positive bias for low observed SWE, due to minimal model adjustments for

shallow assimilated snow depths (e.g., Fig. 2a). Both DAconst and DAvar also substantially improve the Pearson correlation

coefficient (R = 0.60 for OL, R = 0.72 for DAconst, R = 0.71 for DAvar), indicating a stronger correlation with measured SWE.

Across all experiments, SWE typically peaks during the first week of March (March 1–7). The 2016/
::::
Water

:::::
Year 2017 snow315

season recorded the lowest modeled SWE in our OL experiment, and correspondingly saw the largest SWE increases in DAvar

prior to early March, particularly in the Central Alps and Austrian Alps (Fig. 6a). However, DAvar SWE improvements were

mixed during this year. Of the 41 manual measurements taken between March 1 and March 7, 2017, only 24% demonstrated

improved SWE
::::
MAE

:
of more than 15 mm in DAvar. While the data assimilation

:::
DA

:
led to more accurately estimated SWE

at some sites (e.g., Supplemental Fig. S1b
:::
S3b,d), it resulted in an overestimation of SWE at others (e.g., Supplemental Fig.320

S1c
:::
S3c,e,f).

:::
For

::::::::
example,

:::::
three

:::::::::::
measurement

:::::
sites

::
in

::::
Italy

:::::
(dark

:::::
pink

::::
dots

::
in

::::
Fig.

:::
6a)

:::::::::::
experienced

::
an

:::::::
average

:::::::
increase

:::
of

:::
101

::::
mm

::
in

:::::
added

:::::
SWE

::
in

::::::
DAvar:::::::

relative
::
to

:::
the

::::
OL.

:::
The

:::::::
average

:::::
SWE

:::::
MAE

::
at

:::::
these

::::
sites

::::::::
increased

:::
by

:::
134

::::
mm

::
in
:::::::
DAvar,

::::::::
indicating

::::
that

:::
the

::::::::::
assimilated

::::::
SDML:::::::::::

observations
:::::::::::
overestimate

:::::
snow

::
at

::::
these

:::::::::
locations.

::::
The

::::::::::
degradation

::
is

::::
even

:::::
larger

:::
in

:::::::
DAconst,::::::

where
:::
the

:::::
SWE

:::::
MAE

::::::::
increases

::
by

::::
193

:::
mm

:::::::::
compared

::
to

:::
the

::::
OL.

::::
This

:::::::
stronger

:::::::::::
deterioration

:::::
arises

:::::
from

:::
the

:::::
lower

:::::::
assumed

::::
σobs::

in
::::::::
DAconst::

at
:::::
these

::::::::
locations,

::::::
which

:::::
leads

::
to

:::::::
stronger

::::::::::
corrections

::::::
toward

:::
the

::::::::::::
observations.

::
A

::::
time

:::::
series

:::
of325

:::::::
modeled

:::
and

::::::::
observed

:::::
SWE

::
at

:::
one

::
of

:::::
these

::::
sites

::
is

:::::
shown

::
in
::::::::::::
Supplemental

::::
Fig.

::::
S3e.

The most significant reductions of the positive SWE bias from the
:::
The

::::::
largest

:::::
SWE

:::::::::
reductions

::::
from

:::
the

:
OL to the DAvar

experiment occurred during the 2017/
:::::
Water

::::
Year

:
2018snow season, particularly in the Bavarian Alps, Swiss Alps, and French

Alps (Fig. 6b). In general, the reduced SWE in DAvar aligns more closely with in-situ observations (e.g., Supplemental Fig.

S2), improving SWE error
:::
S4).

::::
The

:::::::
average

:::::
SWE

:::::
MAE

::
for

::::::
in-situ

::::::::::::
measurements

:::::
taken

:::::::
between

::::::
March

::::
1-7,

::::
2018

:::::::::
decreases330

::::
from

:::
164

::::
mm

::
in

:::
the

:::
OL,

::
to
::::
137

:::
mm

::
in
::::::::
DAconst :::

and
:::
116

::::
mm

::
in

::::::
DAvar.::

In
::::::
DAvar,:::::

SWE
:::::
MAE

::
is

::::::::
improved by more than 15 mm

in 59% of the 68 manual measurements taken between March 1 and March 7, 2018.

The 2020/
:::::
Water

::::
Year 2021 snow season also experienced substantial SWE reductions

::::
also

::::::::::
experienced

:
a
::::
large

:::::
SWE

::::::::
reduction

:::::::
between

:::
the

:::
OL

::::
and

::::::
DAvar ::::::::::

experiments, especially in the Swiss Alps and Eastern Dolomites. A
:
In

:::
the

:::::::::
Dolomites

:::::::
region,

:::::
where

:::::
SWE

::::::::
reductions

:::
are

:::::
often

::::::
greater

::::
than

::::
100

::::
mm,

:
a
:
lack of in-situ observations in the Dolomites region makes it difficult335

to assess whether these reductions are realistic; however, limited observation
:
.
::::::::
However,

::::::
limited

::::::::::::
measurement sites along the
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Figure 5. Evaluation of SWE from the OL and DA experiments against in-situ measurements. (a-b) Change in SWE MAE (a) DAvar relative

to the OL experiment, and (b) DAvar relative to DAconst, where green indicates error reduction and magenta indicates a deterioration in

performance. Measurements from within the same 1 km model grid cell are averaged for visualization purposes. On the color bar, the

number of sites that fall within each color range is indicated and points within the white color are not shown on the map. (c-e) 2D histograms

comparing modeled SWE to in-situ SWE observations for (c) OL, (d) DAconst, and (e) DAvar. All non-zero SWE measurements are included

and the spatiotemporal MAE, bias, R, and RMSE are provided for each approach.
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Figure 6. Change in SWE during the period March 1-7, between the DAvar and OL experiments for (a) 2017 and (b) 2018. Manual SWE

measurements taken during this period are plotted as dots, colored according to the change in absolute error between the DAvar and OL

experiments. On the error change color bar, the number of sites that fall within each color range is indicated.
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Italy-Austria border suggest that the SWE reductions may be too strong (e.g., Supplemental Fig. S3d).
:::::
S5d).

:::
For

::::::::
instance,

:::
two

::::::
in-situ

::::::::::::
measurements

::::
sites

:::::
along

:::
the

:::::::::::
Italy-Austria

::::::
border

::::::::
(indicated

:::::
with

::::::
yellow

:::::
circles

:::
in

:::::::::::
Supplemental

::::
Fig.

::::
S5a)

:::::
have

::
an

:::::::
average

:::::
SWE

:::::::
decrease

::
of
::::

142
::::
mm

::
in

:::::::
DAvar, :::

and
::
a
::::::::::::
corresponding

::::::::::
degradation

::
in

:::::
SWE

:::::
MAE

::
of
:::::

+113
:::::
mm.

::::::::::
Meanwhile,

::::::::
southwest

::
of

:::::
these

::::::::
locations,

::::
eight

::::::::::::
measurement

::::
sites

::
in

::::
Italy

:::::
(black

::::
box

::
in

:::::::::::
Supplemental

::::::
Figure

::::
S5a)

::::::::::
demonstrate

::::::::::
contrasting340

:::::::::::
improvements

::
in
::::::
DAvar:::::

SWE
:::::
MAE.

:::
At

::::
these

::
8

::::
sites,

:::::
SWE

::::::::
decreases

::
by

:::
an

::::::
average

::
of

::::
100

:::
mm

::
in

:::::::
DAvar, ::::

with
:
a
::::::::::::
corresponding

::
74

::::
mm

::::::::
reduction

::
in

::::
SWE

::::::
MAE.

::::
This

:::::
result

::::::::
highlights

:::::
some

::
of

:::
the

::::::
spatial

:::::::::::::
inconsistencies

::
of

:::
the

:::
DA

::::::::::::
improvements,

::::::
which

:::
are

:::::
likely

:::
due

::
to

::::::
spatial

:::
and

::::::::
temporal

:::::::
variation

::
in

:::
the

::::::
quality

::
of
:::
the

::::::::::
assimilated

:::::::::::
observations.

3.3 Snow cover and snow disappearance

The DA also affects snow cover estimates, contributing to a decrease in total snow-covered area leading up to peak snow345

accumulation in early March, and a slight increase in snow-covered area later in the season (April-May), compared with

the OL experiment (Fig. 7a). During peak snow accumulation in early March (March 1–7), the DAvar experiment reduces

total snow-covered area by 6,077 km2 compared to the OL, averaged across the 2016-2023 period. Total snow-covered area

during this same period in the DAconst experiment is comparatively reduced by only 1,409 km2. The relative difference in

snow-covered area between DAvar and the OL fluctuates more than for DAconst (Fig. 7a), primarily due to the shallower350

early-season and low-elevation snowpacks in DAvar which melt out more quickly.

The reduction in snow cover primarily occurs in low-elevation areas along the northern Alps (Fig. 7b), and aligns more

closely with observed snow cover estimates from the IMS and Copernicus snow cover products, both of which indicate

substantially less snow-covered area than any of our model simulations. For example, on March 1, 2021, the OL and DAvar

experiments have, respectively, 79,345 km2 and 58,091 km2 more snow-covered area than the Copernicus fractional snow355

cover product, and 55,578 km2 and 32,526 km2 more than the IMS snow cover product (Supplemental Fig. S4
::
S6). These

discrepancies will be discussed further in Section 4.

At the majority of in-situ snow depth measurement sites, the estimated snow persists for too long compared to in-situ

observations. Figure 8 presents cumulative distribution functions (CDFs), which show the cumulative number of sites with

snow-free conditions after peak snow, stratified by elevation band. In all three model experiments, the snow disappearance date360

(SDD) occurs later than observed, indicating an overestimation of snow persistence across all elevation bands.

In DAvar, the SDD timing is improved at a majority of the observation sites located below 2000 m, with 51% of sites expe-

riencing a SDD closer to in-situ observations, 22% experiencing a SDD farther from in-situ observations, and 27% remaining

unchanged. The improvement is less pronounced for DAconst, in which 40% of sites show better agreement with observations,

24% show worse agreement, and 36% remain unchanged. The reduced SWE at lower elevations in DAvar (see Section 3.2)365

likely results in more realistic timing for snow-free conditions at these sites. As we only assimilate observations through March,

thus limiting assimilation during times of ablation, changes in SDD are mainly a result in changes of peak SWE. In general, the

IMS observations underestimate snow persistence (Fig. 8), leading to an earlier SDD compared to in-situ observations, which

may result from the binary (as opposed to fractional) nature of the IMS observations.
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Figure 7. Difference in estimated snow covered area. (a) Timeseries of the percent difference in total snow covered area between DAvar and

OL (orange), and DAconst and OL (red). (b) Average change in snow cover fraction (SCF) between the DAvar and OL experiments during

the period March 1-7 (all years). White indicates glaciers.
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Figure 8. Cumulative fraction of measurement sites with snow disappearance (following peak snow depth) at in-situ measurement sites,

stratified by elevation: (a) below 500 m, (b) 500-1000 m, (c) 1000-1500 m, (d) 1500-2000 m, (e) 2000-2500 m, (f) above 2500 m.

3.4 DA increments and spread370

In DAconst, model updates predominantly occur later in the accumulation season, with positive average increments above

2500 m and negative average increments below 1500 m (Fig. 9a). In contrast, DAvar exhibits stronger negative increments

earlier in the snow season, and at lower elevations (Fig. 9b), suggesting that assimilated observations influence the entire

accumulation period rather than just times near peak SWE. Additionally, the magnitude of positive increments in DAvar is

reduced, meaning that less snow is added at higher elevations in DAvar. While the OL has a negative snow bias in these higher375

elevation areas, the weaker positive increments in DAvar may be more realistic, given that Figure 4b indicates a strong positive

snow depth bias for sites about 2500 m in DAconst, and a reduced positive bias at these same sites in DAvar.

The change in observation uncertainty also has an impact on the analysis ensemble spread, with primarily decreased en-

semble spread in DAvar, compared to DAconst, especially in lower elevation regions (Supplemental Fig. S5a
:::
S7a). Changes

in analysis spread are related to changes in the observation uncertainty, with decreases in spread corresponding to decreases380

in average observation uncertainty (Supplemental Fig. S5b
:::
S7b). For example, for all model grid cells where σobs decreases,

on average, from DAconst to DAvar, 83% indicate a corresponding decrease in the snow depth analysis ensemble spread. In

contrast, for all grid cells where σobs increases, 65% have a corresponding increase in analysis ensemble spread. The reason

for this decrease in ensemble spread is likely two-fold. This overall decrease in ensemble spread is likely driven by two fac-
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Figure 9. Average total snow depth increments (m) over the accumulation season (x-axis), stratified by elevation (y-axis) for (a) DAconst

and (b) DAvar. Increments are averaged over all years (2015-2023)

tors: (1) lower observation uncertainty in many regions, and (2) reduced snow depth, which results in smaller multiplicative385

perturbations to the forecast state.

4 Discussion

This work enhances snow DA by incorporating an ML-based snow depth retrieval product using spatio-temporally dynamic

error estimates into the assimilation scheme. The ML snow depth model
:::::::
retrieval integrates multiple sources of information,

including S1 backscatter observations, fractional snow cover from optical imagery, and land cover information to estimate snow390

depth. Future work could experiment with integrating additional satellite-based information into the assimilated ML product

(e.g., passive microwave, X-band, lidar data). The snow depth estimated from this ML model has been shown to possess

superior accuracy compared to prior S1 snow depth retrieval work by Lievens et al. (2022) (SDS1) (Dunmire et al., 2024),

which has previously been assimilated into the Noah-MP land surface model using an Ensemble Kalman Filter (De Lannoy

et al., 2024; Brangers et al., 2024).
:::::
Recent

:::::
work

::
by

::::::::::::::::
Mirza et al. (2025)

:::
has

:::::::::
questioned

:::
the

:::::
utility

::
of
:::::::::::
assimilating

::
S1

:::::
snow

:::::
depth395

::::::::
retrievals,

::::::::::
highlighting

:::::::::::::
inconsistencies

::
in

::::::::
temporal

::::
and

::::::
spatial

:::::
errors

::
of

:::
the

::::::
SDS1::

in
:::
the

:::::::
Western

:::::::
United

:::::
States,

::::::
where

::::
less

::::::
regular

::
S1

::::
data

:::
are

:::::::::
available.

::::::
Despite

::::::::::::
advancements

:::::
made

:::
by

:::::::
SDML,

:::
the

::::::
quality

::
of
::::

the
::::::::
ML-based

:::::::::::
observations

::::::::::
assimilated

::
in

:::
this

:::::
study

::::
also

:::::
varies

::::::
across

:::::
space

::::
and

:::::
time,

:::::
which

::::
can

::::
lead

::
to

::::::::
localized

:::::::::::
degradations

::
in

:::
DA

:::::::::::
performance

:::::
(e.g.,

::::
Fig.

:::
3).

::::::::
Although

:::::::::
improving

::::::::
mountain

::::::::::
snow-depth

:::::::::
estimation

::
is

::
an

::::::
active

::::
area

::
of

::::::::
research,

::::::::
progress

::
is

::::::
limited

:::
by

:::
the

::::::
current

:::::
suite

::
of

:::::::
satellite

:::::::
sensors,

:::::
which

:::
are

:::
not

::::::::::
specifically

::::::::
designed

:::
for

::::::::::
snow-depth

::
or

:::::
SWE

:::::::
retrieval.

::::::
Future

::::
DA

:::::
efforts

::::
that

::::::::::
incorporate400

::::
more

:::::::
reliable

::::::::::
snow-depth

::
or

:::::
SWE

:::::::
products

::::::
should

::::::
reduce

:::::
these

::::::
spatial

:::
and

::::::::
temporal

:::::::::::::
inconsistencies,

:::::::::
improving

::::::
overall

::::
DA

:::::::::::
performance.
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In the OL, we see an overestimation of SWE at measurement sites with low recorded SWE, and an underestimation of SWE

at measurement sites with high recorded SWE (Fig. 5c). Previous work has demonstrated that forcing bias is the dominant

source of uncertainty in snow modeling (Raleigh et al., 2015). Here, we use ERA5 atmospheric forcing, which has a relatively405

coarse spatial resolution (31 km). While we apply a standard lapse-rate correction to downscale the near-surface air temperature

forcing, precipitation is not downscaled, and therefore is unable to resolve orographic precipitation, resulting .
::::
This

:::::::::
limitation

:::::
results

:
in relatively low precipitation and SWE spatial variability , and an underestimation of high SWE values. Furthermore,

the SDML product has also been demonstrated to underestimate deep snow, likely due to these measurements being under-

represented in the ML training (Dunmire et al., 2024). As such, the assimilation of this product is unable to fully correct the410

negative SWE bias for measured SWE > ∼800 mm, as can be seen in Figure 5d/e.

Here, we also highlight the implications of accounting for dynamic estimates of the observation uncertainty and demonstrate

that this system
:::::::
generally

:
results in a more realistic modeled snow state. The EnKF depends on accurate uncertainty estimates

for both the model and observations, using these to weigh the information and obtain an optimal state. With this in mind, Dee

(1995) argues that proper characterization of both model and observation uncertainties is necessary for successful implemen-415

tation of the EnKF. While the specification of observation uncertainty substantially influences DA performance, in snow DA

systems, this uncertainty is often prescribed as a constant value (Helmert et al., 2018). Some previous studies have incorpo-

rated dynamic observations errors (e.g., Magnusson et al. (2017); Oberrauch et al. (2024)); however, the utility of dynamic

observation errors, relative to an assumed static observation error, in snow DA has not yet been explored prior to this work.

Moreover, most operational land data assimilation systems (e.g., NASA Land Data Assimilation Systems, ECMWF Land Data420

Assimilation System) and recent studies that assimilates
::::::::
assimilate SAR-based snow depth retrievals assume a static observa-

tion error. For instance, Brangers et al. (2024) assumed σobs = 0.36 m, and Girotto et al. (2024)) and De Lannoy et al. (2024)

both assume σobs = 0.30m (applied here in DAconst).

We find that assimilating SDML with a dynamic observation error (DAvar) offers a significant improvement to SWE MAE

(p≪ 0.001) compared to assimilating SDS1 with a static observation error (DAS1, Supplemental Fig. S6
::
S8). Meanwhile,425

DAconst does not demonstrate any significant improvements to SWE MAE (Supplemental Fig. S6
::
S8). Using 4548 manual

SWE measurements collected within the Po River basin, we find an MAE of 225 mm from the OL experiment, while the MAE

for DAS1, DAconst, and DAvar is 193, 195, and 177 mm, respectively. Generally, the SDML retrievals are more accurate than

SDS1 for in-situ snow depths below 2.5 m, while for snow depth exceeding 3 m, SDS1 performs better (see Figure 3a from

Dunmire et al. (2024)). This suggests that assimilating SDML should provide improvements particularly for shallower snow.430

However, in the DAconst experiment, the use of a static observation uncertainty, where relatively large errors are assumed for

shallow snow observations, limits these potential improvements (e.g. Fig. 2a) and results in an overall performance of DAconst

that is similar to DAS1. This analysis highlights that the treatment of the observation uncertainty is
::
can

:::
be as critical as the

observations themselves. A poorly parameterized observation uncertainty can restrict the benefits of DA, underscoring the need

for options in DA systems to dynamically vary the observation error.435

Implementing the dynamic observation error generally improves performance in both places the DA adds and removes snow.

In the OL experiment, snow depth has a positive bias at low elevations and a negative bias at high elevations (Fig. 4a). The
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DAconst experiment applies a static observation error that is relatively too large for shallow assimilated snow depths (e.g. Fig.

2a), limiting snow removal at lower elevations and leading to a still large positive bias at these locations. At higher elevations

(above ∼1500 m), the assimilated observations exhibit a strong positive bias (Fig. 4d). The relatively small static observation440

error for deeper assimilated snow depths (e.g. Fig. 2b) leads to too much added snow in some cases, particularly above 2500 m

(Fig. 4b). In contrast, in DAvar, less snow is added at high elevations (Fig. 9), resulting in improvements where snow needs

to be added as well (Fig. 4f). However, we see that the DAvar experiment performs worse than DAconst between February

and May within the 2000-2500 m elevation band (Fig. 4f). In this range, the OL experiment has a positive snow depth bias

until approximately February, followed by a negative snow depth bias until May (Fig. 4a). DAvar more effectively reduces445

this early season positive bias, resulting in lower mean snow depths later in the season, and poorer performance during the

period when the OL is negatively biased. This suggests that a lack of early-season corrections in DAconst can, in some cases,

propagate to more accurate late-season snow depths, although this effect is likely limited to locations where the snow depth is

not consistently positively or negatively biased throughout the season.

While DAvar improves performance at most snow depth and SWE measurement sites, some locations see little benefit, or450

even a deterioration in performance (approximately 12% of snow depth sites and 20% of SWE sites). These degradations are

more likely to occur where the SDML product is less accurate than the OL experiment
:
,
::::
and

:::
the

::::::
DAvar::::::::::

experiment
:::::
more

:::::::
strongly

:::::::
corrects

::
to

:::::
these

:::::::::
inaccurate

:::::::::::
observations. To account for known limitations of SAR-based snow depth retrievals,

we did not assimilate the SDML product over dense forests or glaciers, and after March 31. Nevertheless, SDML remains

inaccurate in some places, leading to localized deterioration when these observations are assimilated. Locations with minimal455

differences between DAconst and DAvar typically occur where the observations already agree well with the OL, or where

σobs >> σf , thus the DA increments are small, and the model receives limited benefit from the observational information.

Despite these spatial inconsistencies, DAvar nearly doubles the improvement in absolute SWE error compared to DAconst.

For instance, the SWE MAE decreases from 152 mm in DAconst to 132 mm in DAvar (-13.2%), while the overall impact of

DAconst relative to the OL is a 13.6% reduction (176 mm in the OL to 152 mm in DAconst). Importantly, previous studies460

have demonstrated that even modest improvements in snow depth or SWE from DA propagate to further improvements in

streamflow (Brangers et al., 2024; De Lannoy et al., 2024).

Snow cover fraction affects the energy balance, and consequently, has implications for numerical weather prediction. While

the DA experiments generally reduce the snow-covered area by largely removing snow at lower elevation regions, all three

experiments still exhibit a substantial
:
an

:
overestimation of total snow-covered area compared with both Copernicus and IMS465

snow cover products. Several factors may contribute to this discrepancy. First, a positive bias in snowfall forcing data at low

elevations will result in unrealistically large snow-covered area. Second, the higher-resolution Copernicus product (20 m) in-

herently captures finer-scale variation between snow-covered and snow-free conditions, often resulting in lower overall snow

cover estimates compared to coarser-resolution products. Third, inaccuracies in the parameterization of snow cover fraction

within Noah-MP may also play a role. In Noah-MP, the snow cover fraction is parameterized as a function of snow depth,470

density, and ground roughness length. (Niu et al., 2011; Lee et al., 2024). It should be investigated whether the current pa-

rameterizations in Noah-MP remain appropriate for regions with complex terrain, where subgrid variation in topography can
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significantly influence fractional snow cover. Finally, uncertainty in the Copernicus and IMS snow cover, for example due to

cloud and forest cover, contribute to errors in these validation data sets and potentially influence the perceived model biases.

Finally, in DAvar, Equation 2 (σobs =m ∗SDML, m= 0.3) is used to adapt the standard deviation of the observation475

error in space and time based on the assimilated snow depth. This relationship is a first-order approximation that assumes

that the observation error increases linearly with the observation magnitude; however, σobs could be defined to vary in more

complex ways. Future work could explore applying relationships where σobs varies non-linearly with the assimilated snow

depth observation, or statistical parameterizations of σobs depending on other conditions such as elevation, or forest cover.

Furthermore, σobs could be directly linked to the SDML retrieval quality which could be obtained, for example, through error480

propagation. The effectiveness of a dynamic observation error also depends on the magnitude of the forecast error, as the

Kalman gain matrix, which determines the strength of the corrections, depends on both forecast and observation error. To

maximize benefits, the observation error, whether static or dynamic, should be properly tuned in relation to forecast error.

While most operational systems do not currently include options to dynamically vary the observation error, this functionality is

not complicated to incorporate, and the snow-specific MuSA (Multiple Snow Data Assimilation System) system does already485

provide an option for a user-defined observation error that can vary dynamically (Alonso-González et al., 2022).

4.1 Limitations of bias-blind DA systems

The EnKF is widely used in snow DA systems due to its efficiency; however, a key assumption is that both the observations

and model are unbiased. We see from Figure 4 that this assumption is not satisfied by neither the observations nor the model.

Here, we implement a bias-blind system by not bias-correcting either the observations or the model, thereby violating this490

assumption. Bias-aware systems which a priori correct the model bias to align with the observation climatology assume that

the assimilated observations are more realistic than the model. While this assumption may be realistic in many situations,

satellite-based snow retrievals also exhibit substantial bias
:::
have

::::::::
inherent

:::::
biases. Since snow is a cumulative variable, biases in

either the observations or the model typically persist throughout the snow season. While in-situ measurement stations can help

quantify these biases, they are often inconsistent spatially and on an interannual basis (i.e. Supplemental Fig. S7
::
S9), which495

provides a challenge for correcting them a priori.

Two major issues exist with bias-blind systems: (1) model drift towards its original state, leading to a sawtooth-like pattern

that can result in unrealistic fluxes in other variables, and (2) unrealistic model trends in DA output due to changes in assim-

ilated observation frequency (Dee, 2005). For snow, model biases primarily stem from errors in precipitation forcing data.

Consequently, we do not expect model drift to occur as observed in De Lannoy et al. (2007); Mocko et al. (2021); Scherrer500

et al. (2023), unless there is an instantaneous precipitation forcing error. We also assimilate observations weekly throughout the

study period, thereby mitigating the potential effects of assimilation frequency in bias-blind DA. Scherrer et al. (2023) further

compare bias-blind and bias-aware assimilation of leaf area index - a cumulative variable - using the EnKF. Their results show

that the bias-blind DA more effectively updates the model state variable, and leads to larger improvements in water balance

components such as evapotranspiration and runoff. In contrast, while the bias-aware approach yields smaller improvements in505

state variables, it improves temporal anomalies and internal DA diagnostics indicate a more optimal DA system performance.
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Given our focus on improving the modeled snow state rather than snow anomalies, along with the inherent challenges of a pri-

ori bias correcting the observations and model, we opt for a bias-blind approach, recognizing that this may lead to suboptimal

DA performance (i.e. temporally correlated residuals).

4.2 Limitations of site evaluation representativeness510

Previous studies have shown that mountain snow is highly variable, and point-scale measurements don’t necessarily well-

represent the surrounding area, even at spatial scales as fine as 10 m (López-Moreno et al., 2011; Fassnacht et al., 2018).

Meromy et al. (2013) found that approximately half of the SNOTEL sites they analyzed where representative of the surrounding

1 km area, defining “representative” as snow station biases within 10% of the surrounding mean observed depth. More recently,

Herbert et al. (2024) reported that roughly one-third of 476 paired lidar–station data observations were representative at the515

1 km scale, with representativeness defined as in-situ measured snow within ±10 cm of the lidar-mean snow depth at that scale.

However, they also showed little change between the 500 m and 1 km scales, with 35% of stations considered as representative

at 500 m. Generally, in-situ snow stations exhibit a positive bias as these sites are often located in flat terrain that preferentially

accumulates snow (Grünewald and Lehning, 2011).

In this study, we use in-situ snow depth and manual SWE measurements as the best-available reference in the European520

Alps that cover a range of terrain conditions and spans many years. Unlike in the western United States, where high-resolution

spatial snow depth products from the Airborne Snow Observatory and NASA SnowEx missions are available, such publicly

available products are extremely limited in the European Alps. As such, it is not feasible to assess the representativeness of all

588 snow depth measurement sites and 8211 manual SWE measurements at the 1 km scale, and these point-scale measurements

provide the best available Alps-wide, multi-year data available for evaluation. Nevertheless, by leveraging a large network of525

sites that span a range of elevations and terrain types, we can reduce sampling-related limitations by increased coverage of

terrain diversity, although this does not mitigate the general positive bias noted above.

5 Conclusions

In this manuscript, we demonstrate the utility of
:::::
work,

:::
we

::::::
explore

::::
how

:
incorporating a dynamic observation uncertainty into

:::
can

::::::::
influence a snow depth data assimilation scheme. For the first time, we assimilate satellite-based snow depth estimates from530

a novel machine learning model into the Noah-MP land surface model using the EnKF to update snow depth and SWE. We

compare two data assimilation experiments: one with a static observation error (DAconst), and one with an observation error that

is dynamic in space and time (DAvar). The performance of these DA experiments is evaluated against the open-loop experiment

(OL, model-only) using in-situ snow depth observations, manual SWE measurements, and two different snow cover products.

We show that
:::::::
Overall, the dynamic observation error makes

::::::
appears

::
to

:::::
make better use of the assimilated observations, thereby535

leading to stronger model corrections, particularly at times when the assimilated snow depth observation is much shallower

than the model forecast (e.g., early in the accumulation period or at lower elevations). The DA experiment that incorporates

this dynamic observation error more effectively corrects biases introduced by errors in the forcing data,
::
By

:::::
doing

:::
so,

::::::
DAvar
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::::::
reduces

::::::
biases

:::
tied

::
to

:::::::
forcing

:::::
errors

:
and improves SWE estimates

::::
MAE

:
by 25% and 13% compared to the OL and DAconst

experiments, respectively. While snow cover is overestimated in all three model experiments, DAvar also leads to stronger540

reductions in snow cover than DAconst, better aligning with existing snow cover products.
:::::::
However,

:::::
given

:::::::::
limitations

:::
of

:::
the

:::::::::
assimilated

::::::::::::
satellite-based

:::::
snow

:::::
depth

:::::::
product,

::::::::::::
improvements

::::
from

:::
the

::::
DA,

::
or

::::
from

:::
the

:::::::
specific

:::::::::::::
implementation

::
of

:
a
::::::::
dynamic

:::::::::
observation

:::::
error

::
in

:::::::
DAvar, :::

are
::::::
limited

::
in

:::::::::
magnitude

::::
and

:::
not

::::::::
spatially

:::::::::
consistent.

:
As most snow DA work and operational

snow DA systems assume that the observational uncertainty is constant in space and time, this work highlights the impact of

a better constrained observational error
::::
these

:::::::::::
assumptions, and the importance of these

:::::::::
observation

::::::::::
uncertainty considerations545

when designing a DA system
:
.
::::::
Future

::::::
studies

::::::
should

::::
put

:::::
effort

::::
into

:::
the

:::::::::::
consideration

:::
of

::::::::::
observation

:::::::::::
uncertainties

::::
and

:::
the

:::::::::::::
parameterization

:::
of

:::::::::
observation

::::::::::
uncertainty

::::::
should

::::::
depend

:::
on

::::
study

::::::
goals,

:::
the

:::
DA

::::::
system

:::::
used,

:::
and

:::::::
specific

::::::::::::
characteristics

::
of

::
the

::::::::::
assimilated

:::::::::::
observations.

Code and data availability. The ML-based snow depth retrieval product is publicly available at (https://doi.org/10.5281/zenodo.13342108).

The NASA LIS software is available at https://github.com/NASA-LIS/LISF. Publicly available in-situ snow depth and SWE data used for550

evaluation can be accessed at:

– https://www.doi.org/10.16904/15 (Switzerland)

– https://www.doi.org/10.16904/envidat.380 (Switzerland)

– https://www.doi.org/10.16904/envidat.590 (Switzerland)

– https://www.doi.org/10.16904/envidat.406 (Switzerland)555

– https://www.arpa.piemonte.it/rischi_naturali/snippets_arpa_graphs/map_meteoweb/?rete=stazione_meteorologica (Italy)

– https://www.meteotrentino.it/index.html#!/home (Italy)

– https://data.civis.bz.it/de/dataset/p-bz-southtyrolean-weatherservice-weatherstations/resource/ef2f6f24-cffd-4993-8699-5023696a49b5

(Italy)

– https://dataset.api.hub.geosphere.at/app/frontend/station/historical/klima-v2-1d (Austria)560

– https://donneespubliques.meteofrance.fr/?fond=recherche (France)

– https://cdc.dwd.de/portal/ (Germany)

Additional snow depth and SWE data were obtained from the Italian Department of Civil Protection and processed by the Centro Inter-

nazionale in Monitoraggio Ambientale (CIMA).

The configuration files used for the modeling experiments and code used for the analysis and creation of figures will be made freely565

available after review.
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