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Abstract. Seasonal snow is a critical resource for society by providing water for billions, supporting agriculture, clean energy,

and tourism, and is an important element within the climate system by influencing the global energy balance. However, accu-

rately quantifying snow mass, particularly in mountainous regions, remains a challenge due to substantial observational and

modeling limitations. As such, data assimilation (DA) offers a powerful solution by integrating observations with physically-

based models to improve estimates of the snowpack. Previous snow DA studies have employed an Ensemble Kalman Filter5

(EnKF) to assimilate Sentinel-1 satellite-based snow depth retrievals, demonstrating improved accuracy in modeled snow

depth, mass, and streamflow when evaluated against in-situ measurements. In those studies, the uncertainty of the assimilated

retrievals was assumed to be static in time and space, likely leading to a suboptimal use of the observational information. Here,

we present several advances in snow DA. Using an EnKF, we assimilate novel snow depth retrievals derived from a machine

learning product that leverages Sentinel-1 backscatter observations, land cover, and topographic information over the Euro-10

pean Alps. We also incorporate a spatiotemporally dynamic observation error, whereby the uncertainty of the assimilated snow

depth retrieval varies in space and time with snow depth. The machine learning snow depth retrieval product is assimilated into

the Noah-MP land surface model over the entire European Alps at 1 km resolution for the years 2015-2023 and snow depth,

snow water equivalent, and snow cover are evaluated against independent in-situ data and satellite observations. This work

demonstrates the benefits of machine learning based snow depth retrievals and dynamic observation errors in EnKF-based15

snow DA.

1 Introduction

Snow is a valuable natural resource, integral for societal needs and in the climate system. The runoff from seasonal snow

serves as a water source for billions of people (Barnett et al., 2005; Mankin et al., 2015), supports clean hydroelectric energy

generation (Wasti et al., 2022), and sustains irrigated agriculture (Qin et al., 2020). Snow is also necessary for the multi-billion20

dollar winter tourism industry (Outdoor Industry Association, 2017; Parthum and Christensen, 2022; Steiger et al., 2019). The

total economic value of snow is estimated to be in the trillions of dollars (Sturm et al., 2017).

Snow
:::::::::::
Furthermore,

::::
snow

:
has a high albedo and therefore plays an important role within the climate system by exerting a

large-scale cooling effect. Variability in snow cover therefore impacts the Earth’s surface energy balance and has been shown

1



to potentially affect Northern Hemisphere atmospheric circulation (Henderson et al., 2018). Significant changes including a25

decline in snow-covered area, particularly at low elevations (Bormann et al., 2018; Estilow et al., 2015), shifts in the timing

of snow melt (Musselman et al., 2021; Vorkauf et al., 2021), and an increasing transition from snowfall to rainfall at lower

elevations (Safeeq et al., 2016) have been observed in recent decades, with these changes projected to intensify throughout the

21st century (IPCC, 2021).

Despite the importance of snow within Earth’s climate and as a natural resource, accurately quantifying snow mass (or snow30

water equivalent, SWE) in mountainous, complex terrain remains a challenge.
:::::::
Because

:::::
SWE

:
is
:::::::
difficult

::::
and

:::::
costly

::
to

:::::::
directly

:::::::
quantify

::::::::::::::::
(Dozier et al., 2016)

:
,
::::::::::::
measurements

:::
and

::::::::
retrieval

:::::::::
algorithms

::::
more

::::::::::
commonly

::::
focus

:::
on

:::::
snow

:::::
depth,

::::::
which

::
is

::::::
related

::
to

::::
SWE

:::
via

:::::
snow

:::::::
density. In-situ observation stations provide point-based

::::
snow

:::::
depth

:
measurements with good temporal fre-

quency, but fail to capture spatial snow variability, which can be great even in a small area (López-Moreno et al., 2015; Miller

et al., 2022). Airborne surveys provide accurate snow depth maps at a fine spatial resolution (Deems et al., 2013), but their high35

costs and logistical constraints limit the frequency and spatial coverage of these measurements. Snow depth has also been re-

trieved using satellite observations, which have the benefit of providing frequent, global coverage (Lievens et al., 2019). Passive

:::
One

::::::::
approach

::::::::
estimates

:::::
snow

:::::
depth

:::
by

:::::::::
comparing

::::::
digital

::::::::
elevation

::::::
models

:::::::
(DEMs)

:::::
from

:::::::
snow-on

::::
and

:::::::
snow-off

::::::::::
conditions.

:::::
These

:::::
DEMs

::::
can

::
be

::::::::
generated

:::::
from

:::::::
satellite

::::
laser

::::::::
altimetry

::::
such

::
as

::::::::
ICESat-2

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Enderlin et al., 2022; Deschamps-Berger et al., 2023; Besso et al., 2024)

::
or

::::
from

:::::::::::::::::
very-high-resolution

::::::::::
stereoscopic

:::::::
satellite

:::::::
imagery40

::
via

:::::::::::::::
photogrammetric

:::::::
methods

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Marti et al., 2016; Shaw et al., 2020; Deschamps-Berger et al., 2020).

::::::::
Globally,

::::::
passive

:
microwave

and synthetic aperture radar (SAR) observations are currently widely
::::
more

:::::::::
commonly used to estimate snow depth

:
. (Kelly et al.,

2019; Luojus et al., 2021; Lievens et al., 2022); however, these satellite-based estimates also have substantial limitations and

uncertainties. For example
:
.
:::::::
However, passive microwave imagery has a coarse spatial resolution (∼25 km) and saturates above

1 m snow depth (Tedesco and Narvekar, 2010; Vander Jagt et al., 2013), while SAR observations are challenged by wet snow,45

shallow snow, and forest cover (Broxton et al., 2024; Hoppinen et al., 2024; Lievens et al., 2022). Although recent work has

utilized machine learning (ML) techniques to enhance SAR-based snow depth retrievals (Daudt et al., 2023; Broxton et al.,

2024; Dunmire et al., 2024), there is still some way to go for accurate global SWE estimation.

Ultimately, complex feedbacks between changes in snow and other components of the global climate system are currently

best studied using physics-based models (Girotto et al., 2020). Since in-situ SWE observations are far sparser than snow depth50

measurements (Dunmire et al., 2024), snow mass estimates also rely primarily on modeling approaches. However, these models

are limited by uncertainties in mountain precipitation and low-quality forcing data (Günther et al., 2019; Raleigh et al., 2016;

Terzago et al., 2020). In light of these observational and modeling challenges, data assimilation (DA) offers a way to overcome

shortcomings of both the model and observations by integrating in-situ and remote satellite observations with physics-based

models to improve modeled snow variables (Helmert et al., 2018; Smyth et al., 2020, 2022).55

The
:::
One

:::::::
method

:::
for

:::::::::::
assimilating

::::::::::
observations

::::
into

::
a
:::::::
physical

::::::
model

::
is
::::

via
:::::
direct

::::::::
insertion,

::::::::
whereby

:::
the

:::::::
model’s

:::::
state

:::::::
variables

:::
are

:::::::
directly

:::::::
replaced

::::
with

:::::::::::
observations

::::::
without

::::
any

::::::::
statistical

:::::::
blending

::
or

:::::
error

::::::::
weighting

::::::::::::::::::::::::::::::::::::
(Rodell and Houser, 2004; Toure et al., 2018)

:
.
:::::::::
Increasing

::
in

::::::::::::
sophistication,

::::::
optimal

:::::::::::
interpolation

:::::::
methods,

::::::
which

:::::::
consider

:::::
model

:::
and

:::::::::::
observational

:::::::::
uncertainty

::
to

:::::
blend

:::
the

:::::
model

::::
and

::::::::::
observations

:::::
using

:::::::::
statistically

:::::::
optimal

::::::
weights

:::::::::::::::::::::::
(Liston and Hiemstra, 2008)
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:
,
::
are

:::::::::
commonly

::::
used

::
at

::::::::::
operational

::::::
centers

:::::::::::::::::
(Helmert et al., 2018)

:
.
::::
Also

:::::::
common

::::::
among

:::::::::
operational

::::::
centers

::::::::::::::::::
(Helmert et al., 2018)60

:
,
:::
and

:::
one

::
of

:::
the

:::::
most

::::
used

:::
DA

:::::::::
techniques

::::::
within

:::
the

:::
land

:::::::
surface

::::::::
modeling

::::::::::
community,

:
is
:::
the

:
Ensemble Kalman Filter (EnKF;

Reichle et al. (2002))is a commonly utilized scheme for assimilating snow observations into land surface models via state

updating. With an EnKF, the background-error covariance in the Kalman Filter is not explicitly computed, but instead esti-

mated using an ensemble of model trajectories. While this ensemble approach is advantageous for high-dimensional, non-

linear systems where an exact computation of the background-error covariance is impractical, the assumption of unbiased,65

normally distributed model-state errors is often violated for cumulative state variables like snow depth. Despite its reliance

on Gaussian assumptions, the EnKF has been extensively used in previous snow data assimilation work (Slater and Clark,

2006; Durand and Margulis, 2006; De Lannoy et al., 2012; Huang et al., 2017; Pflug et al., 2024). In contrast
:::
An

:::::::::
alternative

::::::
solution

::::
that

::
is

:::::::::
commonly

:::::
used

::
in

:::::
snow

:::
DA, particle batch filters and smoothers provide as alternative

::
are

:
capable of han-

dling non-Gaussian noise and complex posterior distributions, though they can be more computationally expensive given70

the large number of particles required
:
.
::
In

:::::::::
particular,

::::::
particle

:::::
batch

:::::::::
smoothers

:::::
have

::::
been

::::::::::
commonly

::::::
applied

::
to
::::::

create
:::::
snow

::::::::::::
reconstructions

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Margulis et al., 2015; Baldo and Margulis, 2018; Girotto et al., 2024).

Recent studies have used both particle batch smoothers and the EnKF to assimilate SAR-based snow depth retrievals from

Sentinel-1
:::
(S1), thereby improving modeled snow depth, SWE and streamflow compared to in-situ measurements (De Lannoy

et al., 2024; Brangers et al., 2024; Girotto et al., 2024). However, these previous snow DA studies make the simplifying75

assumption that the observation uncertainty is constant in space and time, meaning that a 10 cm snowpack is assumed to have

the same absolute uncertainty as a 400 cm snowpack, contributing to a suboptimal use of the observational information.

Here, we present several advances in snow DA. First, we assimilate snow depth retrievals from an ML product that uses

Sentinel-1 (S1 ) observations, land cover, and topographic information to estimate snow depth in the European Alps (Dunmire

et al., 2024). These ML-based snow depth retrievals have a higher accuracy and lower bias compared to previous S1-based80

retrievals from a conceptual model (Lievens et al., 2022), when validated against in-situ observations and airborne snow depth

maps .
::::
from

:::
the

::::::::
European

:::::
Alps.

::::
For

:::::::
instance,

:::::::::
compared

::
to

::::
798

:::::::::
Alps-wide

:::::
in-situ

::::::::::::
measurement

::::
sites,

::::
the

:::
ML

::::::
model

:::
has

:::
an

::::::
average

:::
site

:::::
mean

:::::::
absolute

:::::
error

::::::
(MAE)

::
of

::::
0.18

::
m

:::
and

::
an

:::::::
average

:::
site

::::
bias

::
of

::
-8

::::
mm,

::::::::
compared

::
to

:::
an

::::
MAE

:::
of

:::
0.22

::
m
::::
and

:
a
::::
bias

::
of

:::
-99

::::
mm

::
for

::::
the

:::::::::
conceptual

::::::
model,

::::::::::
respectively.

:
We assimilate these ML-based snow depth retrievals within a land surface

model over the entire European Alps, a domain much larger than most previous snow DA efforts which focus primarily on85

smaller, regional scales. Finally, we incorporate a dynamic observation error, whereby the uncertainty of the assimilated snow

depth observation varies in space and time, reflecting the more realistic dynamics of uncertainty in snowpack observations.

The primary goal of this work is to assess the utility of incorporating dynamic observation errors
:::::
versus

:::::::::
commonly

::::
used

:::::
static

:::::::::
observation

:::::
errors

:
in EnKF-based snow DA.
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2 Materials and methodology90

In this work, we utilized the NASA Land Information System (LIS; Kumar et al. (2006); Peters-Lidard et al. (2007)) version

7.5.0 to assimilate snow depth retrievals in the Noah-MP land surface model (Niu et al., 2011; Yang et al., 2011) version 4.0.1.

The snow depth retrievals, land surface model, DA experiments, and evaluation data and methods are further described below.

2.1 Noah-MP land surface model

To simulate snow processes over the European Alps (3.9945◦E–17.0175◦E, 42.9945◦N–48.6195◦N), we ran Noah-MP on a95

regular latitude-longitude grid with a spatial resolution of 0.009◦. The model was forced with atmospheric forcing from the

ECMWF Reanalysis, version 5 (ERA5; Hersbach et al. (2020)). The ERA5 data were downscaled from their native resolution

(31 km) to the domain grid through bilinear spatial interpolation and by applying a topographic lapse-rate correction
::
to

::::::
correct

::
the

:::::::::::::
air-temperature

::::::
forcing. ERA5 has previously been used as atmospheric forcing in other snow DA studies (Pflug et al., 2024;

De Lannoy et al., 2024), and Brangers et al. (2024) additionally demonstrated that ERA5 forcing leads to superior modeled100

snow depth, compared with simulations forced with The Modern-Era Retrospective Analysis for Research and Applications,

version 2 (MERRA-2; Gelaro et al. (2017)), and MERRA-2 gauge-corrected precipitation (M2CORR; Reichle et al. (2017)).

::::
From

::::::
Figure

:::
10

::
of

::::::::::::::::::
Brangers et al. (2024),

:::
the

:::::::
ERA5,

:::::::::
MERRA-2,

::::
and

:::::::::
M2CORR

::::::::::
atmospheric

::::::
forcing

:::
led

:::
to

::::::
average

::::::::
modeled

::::
snow

:::::
depth

::::::
MAEs

::
of

::::::
0.367

::
m,

:::::
0.404

:::
m,

::::
and

:::::
0.434

::
m,

::::
and

:::::::
average

::::
snow

::::::
depth

:::::
biases

::
of

:::::
-0.07

:::
m,

::::::
+0.138

:::
m,

:::
and

::::::
-0.363

:::
m,

::::::::::
respectively,

::::::::
compared

::
to
::::::
in-situ

:::::::::::
measurement

:::::::
stations

::
in

:::
the

:::::::
Western

::::::::
European

:::::
Alps.105

In Noah-MP, snow is simulated in up to 3 layers, depending on the total snow depth. Snow processes and properties such as

melt metamorphism, canopy interception, and snow cover fraction are represented by detailed physically-based parameteriza-

tions (Niu et al., 2011). For snow albedo, we used the Canadian Land Surface Scheme (CLASS; Verseghy (1991)). For other

parameterization options, we followed Brangers et al. (2024).

Before beginning our DA experiments, we performed a 15-year model spin-up (2000-2015). The experiments were con-110

ducted over the period spanning October 1, 2015 – April 30, 2023 (8 snow seasons). Noah-MP was run with a 15 minute model

time step and daily averages of state variables were written to output.

2.2 Machine learning snow depth retrieval

Previous work has assimilated snow depths retrieved from the S1 satellite constellation (SDS1; Brangers et al. (2024); De Lan-

noy et al. (2024)). Here, we assimilated snow depth estimates from Dunmire et al. (2024) (SDML), which uses machine115

learning to enhance S1-based snow depth retrievals. Dunmire et al. (2024) use an eXtreme Gradient Boosting (XGBoost)

model that incorporates 12 input features (elevation, slope, aspect angle, topographical position index, snow class, forest cover

fraction, day of snow season, snow cover fraction, cumulative snow cover fraction, local incidence angle of the S1 observation,

S1 VV backscatter, and S1 cross-polarization ratio) to estimate snow depth across the European Alps at 100 m resolution.

When compared to in-situ snow depth stations and airborne photogrammetry snow depth maps, SDML is shown to be more120
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Table 1. Perturbation parameters applied for the OL and DA runs. ∗ We perturb the total snow depth and propagate these perturbations into

the different snow layers.

Variable Perturbation type Standard deviation Cross-correlation

Forcing variables SW LW P T

SW: Incident shortwave (Wm−2) multiplicative 0.6 1 -0.5 -0.5 0.3

LW: Incident longwave (Wm−2) additive 50.0 0.5 1 0.5 0.6

P: Precipitation (kgm−2 s−2) multiplicative 0.5 -0.5 0.5 1 -0.1

T: 2 m air temperature (K) additive 1.0 0.3 0.6 -0.1 1

Forecast variable∗

Snow depth (m) multiplicative 0.0005

accurate than
:::::
reduce

:::::
MAE

::::
and

:::::::
improve

:::
bias

:::::::::
compared

::
to SDS1 :::::

(MAE
::::::::
reduction

::::
from

::::
0.22

::
m

:::
for

:::::
SDS1::

to
::::
0.18

::
m

:::
for

:::::::
SDML,

:::
bias

:::::::::::
improvement

:::::
from

:::
-99

:::
mm

:::
for

::::::
SDS1 ::

to
::
-8

::::
mm

::
for

:::::::
SDML)

:
(Dunmire et al., 2024; Lievens et al., 2022).

We spatially averaged the SDML retrievals to the 0.009◦ model resolution and masked pixels with a glacier fraction above

50%, according to version 7 of the Randolph Glacier Inventory (Pfeffer et al., 2014; RGI 7.0 Consortium, 2023). We also

temporally averaged the SDML retrievals every 7 days and assimilated these estimates weekly, in the center of the 7-day125

averaging window. This step was taken to avoid assimilating outlier snow depths (the SDML retrievals can be noisy in time)

and to avoid negative consequences (e.g. spurious temporal trends) associated with a changing assimilation frequency (Dee,

2005).

2.3 Data assimilation approach and experiments

We conducted 3 different experiments: (1) an open loop, model-only experiment (OL) which serves as a benchmark to evaluate130

the added value of assimilating SDML retrievals, (2) a DA experiment with an assumed constant observation error (DAconst),

and (3) a DA experiment with a dynamic observation error that varies spatially and temporally (DAvar). For all experiments,

we utilized 12 ensemble members, created by perturbing forcing variables (precipitation, 2 m air temperature, and incident

longwave and shortwave radiation) and the total forecasted snow depth (with the total snow depth perturbations distributed

over the snow layers). Although a larger ensemble size is more optimal, our choice of 12 ensembles is reasonable as the135

control vector used in the assimilation consists of just total snow depth (Pflug et al., 2024). The perturbation parameters are

summarized in Table 1 and follow Modanesi et al. (2022), Bechtold et al. (2023), and Pflug et al. (2024).

For the DA experiments, we used a one-dimensional EnKF to assimilate the SDML retrievals into Noah-MP. The Kalman

gain matrix determines the strength of the model corrections at each location (x) and timestep (t), and is given by Equation 1

below:140

K(x,t) =
σ2
f (x,t)

σ2
f (x,t)+σ2

obs

(1)
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where σf is the standard deviation of the forecast error and represents the uncertainty in the forecast’s total snow, and

σobs is the standard deviation of the observation error and represents the uncertainty in the observations. The EnKF extends a

traditional Kalman Filter by estimating σf using forecast ensembles, while σobs is a user-defined parameter. Here, we tested

two different approaches for σobs, one that is constant (DAconst) and one that varies in space and time (DAvar).145

As per De Lannoy et al. (2024), the DAconst experiment assumes a constant value of σobs = 0.3
:::::::::
σobs = 0.3 m. The multi-

plicative factor for the snow depth state perturbations (Table 1) was determined experimentally through trial and error, with the

optimal value selected based on its performance compared to in-situ snow depth observations over a subset region (Brangers

et al. (2024), personal communication, Isis Brangers).

The DAvar experiment expands upon DAconst by varying σobs throughout space (x) and time (t) following Equation 2150

below:

σobs
obs
::

(x,t) =


0.05, SDML(x,t)≤ 0.167,

m ∗SDML(x,t), 0.167< SDML(x,t)< 3.5,

1.05, SDML(x,t)≥ 3.5.

(2)

where SDML(x,t) is the assimilated observation at location x and time t and m is a user-defined multiplier. We defined

::::::::
calibrated m experimentally by selecting the optimal value when comparing modeled snow depth with in-situ observations in

a subset region (6-8 ◦E
::

◦E, 45-46 ◦N
::

◦N). Here, we used m = 0.3. To avoid issues when SDML(i, t) = 0
:::::::
m= 0.3.

::::::::
Equation155

:
2
:::::::
assumes

::::
that

::::
σobs::::::

varies
:::::::
linearly

::
as

::
a

:::::::
function

::
of

::::::::::
assimilated

:::::
snow

::::::
depth.

:::::::::::
Supplemental

::::::
Figure

::
1
:::::::::::
demonstrates

::::
that

::::
this

:::::::::
assumption

::
is

:::::
valid

::
at

::::::::::
independent

::::::
in-situ

:::::::::::
measurement

::::
sites.

::::
For

::::::
SDML::::::

below
::::
0.25 m, we defined a minimum value of

:::
the

::::::
average

::::
error

::
of
:::
the

:::::::
SDML ::::::

product
::::::::
compared

::
to

::::::
in-situ

::::::::::::
measurements

:
is
:
0.05 m

::::::::::::
(Supplemental

:::::
Figure

:::
1),

:::
and

::
as

::::
such

:::
we

:::::
chose

:::
this

::
as

::
a

::::::::
minimum

::::::::
threshold

:::::
value for σobs . We also defined a maximum value

::::::::
(Equation

:::
2).

::::::
Setting

:::
this

:::::::::
minimum

::::::::
threshold

:::
also

::::::
avoids

:::::
issues

:::::
when

:::::::::
SDML(i,t)

::
=
::
0

::
m.

:::
We

::::
can

:::
see

::::
from

::::::::::::
Supplemental

::::::
Figure

:
1
::::
that

::::
there

:::
are

:::
no

:::::::::
assimilated

:::::
snow

::::::
depths160

:::::
above

:
3
:::
m

::
at

::::
these

::::::
in-situ

:::::::::::
measurement

:::::
sites,

:::::::
making

:
it
:::::::
difficult

::
to
:::::::::::

characterize
:::
the

::::::::::
observation

::::
error

:::
for

::::::
deeper

::::::::::
assimilated

::::
snow

::::::
depths.

:::
As

:::::
such,

:::
we

::::
also

::::::
defined

:::
an

:::::
upper

::::::::
threshold for σobs of 1.05 m. Figure

:
,
::::::::::::
corresponding

::
to

::
an

::::::::::
assimilated

:::::
snow

::::
depth

:::
of

:::
3.5

::
m

::::::::
(Equation

:::
2).

::::
This

:::::
value

:::
was

::::
also

::::::
chosen

::
as

:::
an

:::::
upper

::::::::
threshold

::::::
because

:::
we

::::::::
observed

::::
that

:::
σf ,

:::::
which

:::::::::
represents

::
the

::::::::::
uncertainty

::
in

:::
the

:::::::::
model-only

:::::
(OL)

::::::::
simulated

::::
snow

::::::
depth,

::::
given

:::
by

:::
the

:::::::
standard

::::::::
deviation

::
of

::
the

::::::
model

:::::::::
ensembles,

:::::
levels

:::
off

:::::
above

:::
3.5

::
m

::::
snow

:::::
depth

::::::::::::
(Supplemental

::::::
Figure

::
2).

::::
We

:::::
chose

::
to

:::::
reflect

:::
this

::::::
feature

::
of

:::
the

:::::::
forecast

::::
error

::
in

:::
our

::::::::::::::
characterization

::
of165

::
the

::::::::::
observation

:::::
error.

::::::
Figure 1 compares σobs from DAconst and DAvar as a function of the assimilated snow depth observation

(SDML).

For both DA experiments, the snow updates were applied following the methodology of Brangers et al. (2024), whereby the

increments applied to the total forecasted snow depth and SWE are divided over the different snow layers, proportionate to each

layer’s forecasted share of the total snowpack, and SWE is updated accordingly assuming snow density remains unchanged170

during each update.
:::
The

::::::::::
compaction

:::
and

:::::::::::
redistribution

:::
of

:::::
snow

:::::
layers

::
is

::::
done

::::::
during

:::
the

::::::
model

:::::::::::
propagation.

::::
This

::::::::
approach

::::::::::
circumvents

:::
the

::::
need

:::
to

:::::::
compute

::::::::
dynamic

::::
error

::::::::::
covariances

:::::::
between

:::::
total

:::::
snow

:::::
depth

:::
and

::
a
::::::
varying

:::::::
number

:::
of

::::
snow

:::::
state

6



Figure 1. Assumed observation error standard deviation (σobs) as a function of the assimilated snow depth (SDML) for the two DA experi-

ments.

:::::::
variables

::
in

:::::::
varying

:::::::
numbers

::
of

::::::
layers. We assimilated SDML estimates weekly each year from September 1 through March 31,

except over forested areas and glaciers, or
::::::::
excluding

::::::::::
assimilation

::::::
further

::::
into

:::
the

:::::::
ablation

::::::
period

::::
when

::::
wet

:::::
snow

::::::::::
complicates

::
the

:::
S1

::::::
signal.

:::
Due

::
to
:::::::::
limitations

:::
of

::::
using

:::
S1

::::::::::
observations

::
to
::::::::
estimate

::::
snow

:::::
depth

::
in

:::::::
forested

::::::
terrain,

:::
and

:::
the

:::::::::::
unsuitability

::
of

:::
the175

:::
ML

:::
SD

:::::::
retrieval

::::
over

::::::::
glaciated

::::::
terrain,

:::
we

::
do

:::
not

:::::::::
assimilate

::::
over

:::::::
forested

::::
areas

::
or

:::::::
glaciers.

:::::::::
Following

::::::::::::::::::::
De Lannoy et al. (2024)

:
,
::
we

::::
also

:::
do

:::
not

::::::::
assimilate

:
when the soil or vegetation temperature is above 5◦C(De Lannoy et al., 2024).

2.4 Evaluation

To evaluate the snow depth
:::
For

::::
each

::
of

::::
our

:::::
three

::::::::::
experiments

:::::
(OL,

::::::::
DAconst,:::::::

DAvar),:::
we

:::::::
utilized

:
a
:::::::

variety
::
of

::::::
in-situ

::::
and

:::::::::::
satellite-based

::::::::
products

::
to

:::::::
evaluate

:::
1)

::::
snow

::::::
depth,

::
2)

::::::
SWE,

:::
and

::
3)

:::::
snow

:::::
cover

:::::::
fraction

::::::
(SCF)

:::
and

:::::
snow

::::::::::::
disappearance

::::
date180

::::::
(SDD).

:::
We

::::
also

::::::::
compared

::::
our

:::::
results

:::::
with

::::
those

:::::
from

::::::::::::::::::::
De Lannoy et al. (2024),

::
in

::::::
which

:::
the

:::::
SDS1:::::::

retrieval
::::

was
::::::::::
assimilated

::::
with

:
a
:::::
static

:::::::::
observation

::::::::::
uncertainty.

:

2.4.1
:::::
Snow

:::::
depth

:::::::::
evaluation

:::::
Snow

:::::
depth estimates from each experiment (OL, DAconst, DAvar) , we first

::::
were

:
compared with in-situ snow depth obser-

vations from a variety of snow monitoring networks
:::::
across

:::
the

:::::::::
European

::::
Alps. For comparing the performance of our DA185

experiments against the OL experiment, we utilized independent in-situ observations that were not included in the training for
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the ML model from Dunmire et al. (2024), and sites located in places where the SDML retrievals were assimilated (i.e. not in

dense forest, over glaciers). In total, we utilized snow depth data from 588 measurement sites, which report for varying parts

of the 8 year study period. We obtained these point-scale snow depth measurements from the WSL – Institute for Snow and

Avalanche Research SLF (Switzerland, 220 sites), Météo-France (France, 57 sites), GeoSphere Austria (Austria, 108 sites), the190

International Center for Environmental Monitoring CIMA Research Foundation (Italy, 10 sites), Provincia autonoma di Trento

(Italy, 48 sites), Provincia autonoma di Bolzano - Alto Adige (Italy, 19 sites), Valle d’Aosta (Italy, 27 sites), the Agenzia Re-

gionale per la Protezione Ambientale - Piemonte (Italy, 28 sites), the European Centre for Medium-Range Weather Forecasts’

SYNOP snow depth measurement network (Global, 35 sites; de Rosnay et al. (2015)), and Global Historical Climatology

Network (Global, 36 sites). For each experiment, we computed the mean absolute error (MAE), bias, and Pearson correla-195

tion coefficient (R) of the modeled snow depth compared with the in-situ observations obtained at these sites. To investigate

how well the model captures spatial and temporal anomalies in snow depth patterns, we also computed spatial and temporal

anomaly correlation coefficients (ACC). The spatial ACC was computed for each day throughout the snow season with more

than 10 in-situ snow depth measurements available. Spatial anomalies were computed for each site by subtracting the spatial

mean snow depth recorded across all measurement sites on that day. The temporal ACC was computed for each measurement200

site with 5 or more years of in-situ observations. Temporal anomalies were calculated at each site by subtracting the site’s

multi-year climatology (2015-2023) with a 10-day moving mean smoothing function applied. In order to utilize more sites

with a longer time series of observations, we also included sites that were used in the ML training. Thus, for this metric, we

only compared the two DA experiments, which both assimilated the same SDML retrievals.

2.4.2
::::
SWE

::::::::::
evaluation205

Next, we evaluated modeled SWE, with in-situ measurements of SWE located (1) in places where DA was applied, and

(2) not on a glacier, according to the Noah-MP glacier land cover class and the Randolph Glacier Inventory (Pfeffer et al.,

2014; RGI 7.0 Consortium, 2023). We consolidated 8211 manual SWE measurements from the Bundesministerium für Land-

und Forstwirtschaft, Regionen und Wasserwirtschaft (Austria, 676 measurements), The Climate Data Center of the German

Weather Service (Germany, 2311 measurements), the WSL – Institute for Snow and Avalanche Research SLF (Switzerland,210

1546 measurements), Provincia autonoma di Trento (Italy, 944 measurements), and Valle d’Aosta (Italy, 2793 measurements).

As with snow depth, we compared MAE, bias, and R for the different experiments.

Finally, we

2.4.3
::::
SCF

::::
and

::::
SDD

:::::::::
evaluation

:::
We

::::::
further evaluated the impact of the DA on the timing of snow disappearance and modeled snow cover fraction (SCF)

:::
SCF.215

We first compared the snow disappearance date (SDD )
::::
SDD of the model experiments at the in-situ snow measurement sites.

We computed
:::::
defined

:
the SDD as the first day of five consecutive days with less than 0.1 mm snow depth, following the date

of peak snow. For in-situ SDD, the day of peak snow was computed using the in-situ snow depth and for model SDD, the day

of peak snow was computed using snow depth output from the appropriate model experiment. We also, in the same manner,
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computed SDD using the Interactive Multisensor Snow and Ice Mapping System (IMS) product. IMS is a 1 km horizontal220

resolution binary snow cover dataset that is derived from a variety of satellite and in-situ data.

We also compared SCF and total snow covered area from our three model experiments with both the IMS product and the

Copernicus Fractional Snow Cover product. The Copernicus product is available at a 20 m spatial resolution and is computed

from Sentinel-2 Level1-C
::::::::
Level-1C imagery. The product is not gap-filled, thus data gaps exist when clouds are present. We

regridded both snow cover products to our model domain grid using nearest neighbor interpolation for IMS, and averaging for225

the Copernicus product. For comparison with the IMS product, we converted modeled SCF to a binary value: SCF< 50% = 0,

SCF≥ 50% = 1. For comparison with the Copernicus product, we ignored areas with data gaps.

2.4.4
:::::::::::
Comparison

::
to

::::::
SDS1 :::

DA

::
To

:::::::
compare

::::
with

:::::::
previous

:::::
work

:::
that

:::::::::
assimilates

:::::
snow

:::::
depth

::::::::
retrievals

::::
from

:::
the

::
S1

::::::
change

::::::::
detection

::::::::
algorithm

:::::::
(SDS1;

::::::::::::::::
Lievens et al. (2022)

:
),
:::
we

:::::::::
compared

::::::
output

:::::
from

:::
our

::::
two

::::
DA

::::::::::
experiments

:::::
with

:::
DA

::::::
output

:::::
from

::::::::::::::::::::
De Lannoy et al. (2024)

::::::::::
(experiment

:::::::
DAS1).230

::::
This

:::::
DAS1::::::::::

experiment
::::::
utilized

:::
the

:::::
same

::::
DA

:::::
setup

::
as

::
in

::::::::
DAconst,::::

with
::
a
:::::
static

::::::::::
observation

:::::::::
uncertainty

::::::::::::::
(σobs = 0.3m),

:::
but

:::::::::
assimilates

:::::
SDS1::::::::

retrievals
:::::::

instead
::
of

:::::::
SDML.

:::::
Here,

:::
we

:::::::
utilized

:::::
4548

::::::
manual

:::::
SWE

::::::::::::
measurements

::::::::
collected

::::::
within

:::
the

:::
Po

::::
River

:::::
basin

::::
(the

:::::
study

:::::::
domain

::
of

::::::::::::::::::::
De Lannoy et al. (2024))

:::
to

:::::::
compare

:::::
SWE

:::::
MAE

:::::::
between

::::
the

:::::::
DAconst,:::::::

DAvar,:::
and

::::::
DAS1

::::::::::
experiments.

:

3 Results235

3.1 Snow depthevaluation

The practical impact of the DAvar and DAconst experiments on snow depth estimates is illustrated in Figure 2. When the

assimilated snow depth retrieval is 1 m, the observation uncertainty is equivalent for both experiments (Fig. 1). The variable

observation uncertainty approach in DAvar dynamically adapts to assimilated snow depth, resulting in stronger corrections for

shallow depths while DAconst provides stronger corrections at higher depths (Fig. 2). For assimilated snow depths below 1 m,240

the observation uncertainty is smaller in DAvar than in DAconst, resulting in a lower observation error covariance (σobs) in the

EnKF (Equation 1) and stronger corrections of the posterior state toward the observations in DAvar (Fig. 2a). In contrast, the

constant σobs of 0.3 m in DAconst is relatively large for shallow snow depths and results in minimal corrections of the posterior

state.

A measurement site with assimilated snow depths substantially greater than 1 m is demonstrated in Figure 2b. In this case,245

the observation uncertainty is smaller for DAconst than for DAvar, resulting in stronger posterior state adjustments in DAconst.

::
At

:::
this

::::::::::::
measurement

:::
site

:::
we

:::
see

::::
that

:::
the

:::
OL

:::::::::
experiment

::
is
::::::
closer

::
to

:::
the

:::::
in-situ

:::::
snow

:::::
depth

::::
than

:::
the

::::::::::
assimilated

:::::::::::
observations,

::::::
leading

::
to

::
a
:::::::::::
deterioration

::
in

::::::
model

::::::::::
performance

::::::
when

:::
the

:::
DA

::
is
:::::::
applied

:::::
(both

::::
with

::::::
DAvar::::

and
::::::::
DAconst).::::

For
::::::
DAvar,::::

this

::::::::::
phenomenon

::::::
occurs

::
at

::::::
∼16%

::
of

::
all

:::::::::::
measurement

::::
site

::::
(Fig.

::::
3a),

::::
with

::::
only

:::
1%

:::::::::::
experiencing

:
a
:::::::::::
deterioration

::
in

:::
SD

:::::
MAE

::::::
greater

:::
than

::::
125

::::
mm.

:
250
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Figure 2. Snow depth estimates and
:::::::::
independent in-situ measurements at two example sites. (a) Snow depth from DAconst (red, left) and

DAvar (orange, right) compared with the OL (navy) from a measurement station in Austria (∼13.6228 ◦E, 47.0944 ◦N , 1050 m elevation).

The shading represents ±1 standard deviation in the model ensembles. The sage green dots represent the assimilated SDML retrievals, with

error bars for the assumed observation error standard deviation (σobs:
,
:::::::
Equation

:
2). (b) Same as (a), but for a different measurement station in

Switzerland (∼7.7836 ◦E, 45.9872 ◦N , 2948 m elevation).
:::::

These
:::
two

::::
sites

::::
were

::::::
chosen

:::
due

::
to

:
a
:::
lack

::
of
::::

gaps
::
in

:::
the

:::::
in-situ

:::::::::::
measurements

:::
and

:::
their

::::::
general

::::::::::::::
representativeness

::
of

:::::::
locations

::::
where

:::
the

:::
DA

:::::::
removes

:::
and

:::
adds

:::::
snow.

Across the 588 in-situ snow depth measurement sites used for evaluation, the corrections applied in DAvar result in snow

depth estimates that align more closely with in-situ observations (Fig. 3). The OL experiment yields a site-average MAE of

0.244 m, a
:::::
RMSE

:::
of

::
of

:::::
0.300

:
m,

::
a
:
bias of 0.113 m and a Pearson correlation coefficient of 0.75. Both the DAconst and

DAvar experiments show improved performance, with site-average MAE values of 0.237 m and 0.215 m, and
:::::
RMSE

::::::
values

::
of

:::::
0.292 m

:::
and

:::::
0.268 m

:
,
:::
and

:
biases of 0.106 m and 0.055 m, respectively. These improvements are illustrated in Figure 3,255

which compares MAE from the DAvar experiment with the OL experiment (Fig. 3a) and DAconst (Fig. 3b). Relative to the

OL, MAE is reduced in DAvar by more than 25 mm at 245 sites (42%), while 92 sites (16%) have an MAE increase exceeding

25 mm. Comparing DAvar to DAconst, we find that MAE is reduced in DAvar by more than 15 mm at 297 sites (51%),

while 71 sites (12%) experience a deterioration greater than 15 mm. While improvement in MAE from the OL experiment is

10



not significant for DAconst, the MAE improvement is significant for DAvar (p=0.001). The site-average Pearson correlation260

coefficient slightly deteriorated for DAconst and improved for DAvar to 0.75 and 0.76, respectively.

:::::
While

:::
the

:::
OL

:::::::::
experiment

:::::::
already

::::
does

:
a
::::
good

:::
job

::
at

:::::::::::
representing

:::::
spatial

:::::
snow

:::::
depth

::::::
patterns

:::::::
(spatial

::::
ACC

::
=

:::::
0.71), Figure 3c

highlights that, for most of the snow season, the DAvar experiment provides the best representation of spatial snow depth
:::::
offers

::::
slight

::::::::::::
improvements

::
in

:::
the

::::::::::::
representation

::
of

:::::
these

:::::
spatial

:
patterns. Averaged across the entire year, the spatial ACC is

::::::::
increases

::::
from 0.71 for the OL experiment ,

::
to 0.72 for DAconst , and

:::
and

::
to 0.73 for DAvar. The greatest improvement in spatial ACC for265

DAvar occurs during the early snow season (November), with values exceeding those of the OL and DAconst experiments by

0.058 and 0.047, respectively. From December through April, the spatial ACC for DAvar remains approximately 0.021 greater

than that of the OL experiment. By mid-April, all three experiments exhibit similar performance in capturing spatial snow

depth patterns. Additionally, DAvar significantly outperforms
::::
both DAconst (p < 0.001) in capturing

:::
and

::::::
DAvar:::::::::::

well-capture

temporal snow depth patterns(,
::::
with

:::::::
average

::::::::
temporal

::::
ACC

::::::
values

::
of

::::
0.68

:::
and

::::
0.72,

:::::::::::
respectively.

:::
The

:::::::::::
improvement

::
in

::::::::
temporal270

::::
ACC

:::
for

::::::
DAvar ::::

from
::::
both

:::
the

::::
OL

:::
and

:::::::
DAconst::

is
::::::::::
statistically

:::::::::
significant

::
(p

::
<

:::::
0.01, Fig. 3d). Across the 948 sites evaluated,

491 sites (52%) have an improved temporal ACC in DAvar (>
:
+0.02 compared to DAconst:::::::

DAconst), while only 103 sites

(11%) experience a deterioration in temporal ACC (<
:
-0.02 compared to DAconst).

The OL experiment has an elevation-dependent snow depth bias, characterized by an overestimation of snow depth at lower

elevations and early in the snow season, and an underestimation at higher elevations during peak snow accumulation (Fig.275

4a). Both of these issues are mitigated in the DAvar experiment, which brings seasonal biases closer to zero across all eleva-

tion bands (Fig. 4c). In contrast, the DAconst experiment minimally corrects snow depth overestimation in the early season

and at low elevations, due to the relatively higher assumed observation uncertainty for shallow snow (e.g., Fig. 2a). From

September 1 through January 31, the DAvar experiment reduces the average bias across all sites by 46%, while the DAconst

experiment achieves only a 10% reduction over the same period. These improvements are particularly notable at mid-elevations280

(1000–2000 m), where DAvar reduces model bias by 54% throughout the season, compared to a 13% reduction in model bias

at these same sites in DAconst.

The MAE is also reduced by DAvar across most elevation bands and throughout much of the season. The difference in

MAE between the OL and DAvar experiments (Fig. 4d
:
e) indicate that the largest MAE improvements occur from early winter

through peak accumulation. However, an increase in MAE at high elevations during the melt season (March onwards) suggests285

a tendency for the DA experiments to retain snow for too long, which could be due to limitations in the modeled melt processes

or biases introduced by the assimilated observations at higher elevations
::::
(e.g.,

::::::
Figure

:::
4d).

3.2 SWEevaluation

Compared with 8,211 manual SWE measurements from 231 different measurement sites across the Alps, the DAvar experiment

also significantly improves the MAE of SWE estimates compared to both the OL and DAconst experiments (p<<0.001).290

Relative to the OL, DAvar reduces SWE MAE by at least 15 mm at a majority of these sites (57%), while only 23% of sites

experience a deterioration in SWE MAE of more than 15 mm (Fig. 5a). Similar improvements are observed when comparing

DAvar to DAconst, with DAvar outperforming DAconst at 56% of measurement sites (Fig. 5b).
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Figure 3. Experiment evaluation at in-situ snow depth measurement sites. (a) Change in MAE at each measurement site from the OL

experiment to DAvar. Green colors indicate an improvement in MAE in the DAvar experiment. On the color bar, the number of sites that fall

within each color range is indicated and points within the white color are not plotted on the map. (b) Change in MAE at each measurement

site from the DAconst experiment to DAvar. (c) Change in the spatial anomaly correlation coefficient (ACC) for each DA experiment from

the OL experiment. The spatial ACC is averaged over all snow seasons (2015/16 - 2022/23). (d) Change in the temporal ACC from the

DAconst experiment to DAvar. Green colors indicate an improvement in temporal ACC in the DAvar experiment.

12



Figure 4. Seasonal evolution of bias and mean absolute error (MAE) stratified by elevation. Panels (a)-(c
:
d) snow

::::
show

:
the seasonal snow

depth bias for the (a) OL, (b) DAconst, and (c) DAvar experiments. ,
::::

and
::
for

:::
(d)

:::
the

::::::::
assimilated

::::::::::
observations

::::::::
(SDML). Bias is computed

relative to in-situ snow depth measurements and is grouped by elevation bands (indicated by different colors). Panels (de)–(e
:
f) show the

change in MAE between the OL and DAvar experiments (d
:
e) and between the DAconst and DAvar experiments (e

:
f). Negative values in

(d
:
e)–(e

:
f) indicate improved performance (decreased MAE). Statistics are computed for each day, averaged over the entire 8 year

:::::
8-year

period (2015–2023
::::::::
2015–2023). A 14-day smoothing is applied to each timeseries and the number of in-situ measurement sites

:::
(n) within

each elevation band is provided in the legend.
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In the OL experiment, we observe a positive bias for low observed SWE and a negative bias for high observed SWE (Fig.

5c), similar to the bias patterns seen for snow depth. The DAvar experiment effectively reduces both biases, with the most295

substantial improvement occurring for low observed SWE values. As a result, the overall average SWE bias decreases from

+81 mm in the OL to +18 mm in DAvar. This bias reduction is significantly greater than that for DAconst ::::
(+76

::::
mm

::::
bias),

which only marginally corrects the high
::::::
positive

:
bias for low observed SWE, due to minimal model adjustments for shallow

assimilated snow depths (e.g., Fig. 2a). Both DAconst and DAvar also substantially improve the Pearson correlation coefficient

,
::
(R

:::
=

::::
0.60

::
for

::::
OL,

::
R

::
=

::::
0.72

::
for

::::::::
DAconst,::

R
::
=

::::
0.71

::
for

:::::::
DAvar),:indicating a stronger correlation with measured SWE.300

Across all experiments, SWE typically peaks during the first week of March (March 1–7). The 2016/2017 snow season

recorded the lowest modeled SWE in our OL experiment, and correspondingly saw the largest SWE increases in DAvar prior

to early March, particularly in the Central Alps and Austrian Alps (Fig. 6a). However, DAvar SWE improvements were mixed

during this year. Of the 41 manual measurements taken between March 1 and March 7, 2017, only 24% demonstrated improved

SWE of more than 15 mm in DAvar. While the data assimilation led to more accurately estimated SWE at some sites (e.g.,305

Supplemental Fig. S1b,d), it resulted in an overestimation of SWE at others (e.g., Supplemental Fig. S1c,e,f).

The most significant reductions of the positive SWE bias from the OL to the DAvar experiment occurred during the

2017/2018 snow season, particularly in the Bavarian Alps, Swiss Alps, and French Alps (Fig. 6b). In general, the reduced

SWE in DAvar aligns more closely with in-situ observations (e.g., Supplemental Fig. S2), improving SWE error by more than

15 mm in 59% of the 68 manual measurements taken between March 1 and March 7, 2018.310

The 2020/2021 snow season also experienced substantial SWE reductions, especially in the Swiss Alps and Eastern Dolomites.

A lack of in-situ observations in the Dolomites region makes it difficult to assess whether these reductions are realistic; however,

limited observation sites along the Italy-Austria border suggest that the SWE reductions may be too strong (e.g., Supplemental

Fig. S3d).

3.3 Snow cover evaluation
:::
and

:::::
snow

::::::::::::
disappearance315

The DA also affects snow cover estimates, contributing to a decrease in total snow-covered area leading up to peak snow

accumulation in early March, and a slight increase in snow-covered area later in the season (April-May), compared with

the OL experiment (Fig. 7a). During peak snow accumulation in early March (March 1–7), the DAvar experiment reduces

total snow-covered area by 6,077 km2 compared to the OL, averaged across the 2016-2023 period. Total snow-covered area

during this same period in the DAconst experiment is comparatively reduced by only 1,409 km2. The
::::::
relative

:::::::::
difference

::
in320

:::::::::::
snow-covered

::::
area

::::::::
between

::::::
DAvar :::

and
:::
the

::::
OL

::::::::
fluctuates

:::::
more

::::
than

:::
for

::::::::
DAconst ::::

(Fig.
::::
7a),

::::::::
primarily

::::
due

::
to

:::
the

:::::::::
shallower

::::::::::
early-season

:::
and

::::::::::::
low-elevation

:::::::::
snowpacks

::
in

::::::
DAvar :::::

which
::::
melt

:::
out

:::::
more

:::::::
quickly.

:::
The

:
reduction in snow cover primarily occurs in low-elevation areas along the northern Alps (Fig. 7b), and aligns more

closely with observed snow cover estimates from the IMS and Copernicus snow cover products, both of which indicate sub-

stantially less snow-covered area than any of our model simulations. For example, on March 1, 2021, the OL and DAvar325

experiments have, respectively, 79,345 km2 and 58,091 km2 more snow-covered area than the Copernicus fractional snow
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Figure 5. Evaluation of SWE from the OL and DA experiments against in-situ measurements. (a-b) Change in SWE MAE (a) DAvar relative

to the OL experiment, and (b) DAvar relative to DAconst, where green indicates error reduction and magenta indicates a deterioration in

performance. Measurements from within the same 1 km model grid cell are averaged for visualization purposes. On the color bar, the

number of sites that fall within each color range is indicated and points within the white color are not shown on the map. (c-e) 2D histograms

comparing modeled SWE to in-situ SWE observations for (c) OL, (d) DAconst, and (e) DAvar. All non-zero SWE measurements are included

and the spatiotemporal MAE, bias, and R,
:::
and

::::::
RMSE are provided for each approach.
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Figure 6. Change in SWE during the period March 1-7, between the DAvar and OL experiments for (a) 2017 and (b) 2018. Manual SWE

measurements taken during this period are plotted as dots, colored according to the change in absolute error between the DAvar and OL

experiments. On the error change color bar, the number of sites that fall within each color range is indicated.
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Figure 7. Difference in estimated snow covered area. (a) Timeseries of the percent difference in total snow covered area between DAvar and

OL (orange), and DAconst and OL (red). (b) Average change in snow cover fraction (SCF) between the DAvar and OL experiments during

the period March 1-7 (all years). White indicates glaciers.

cover product, and 55,578 km2 and 32,526 km2 more than the IMS snow cover product (Supplemental Fig. S4). These dis-

crepancies will be discussed further in Section 4.

At the majority of in-situ snow depth measurement sites, the estimated snow persists for too long compared to in-situ

observations. Figure 8 presents cumulative distribution functions (CDFs), which show the cumulative number of sites with330
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Figure 8. Cumulative number
::::::
fraction of measurement sites with snow disappearance (following peak snow depth) at in-situ measurement

sites, stratified by elevation: (a) below 500 m, (b) 500-1000 m, (c) 1000-1500 m, (d) 1500-2000 m, (e) 2000-2500 m, (f) above 2500 m.

snow-free conditions after peak snow, stratified by elevation band. In all three model experiments, the snow disappearance date

(SDD) occurs later than observed, indicating an overestimation of snow persistence across all elevation bands.

In DAvar, the SDD timing is improved at a majority of the observation sites located below 2000 m, with 51% of sites expe-

riencing a SDD closer to in-situ observations, 22% experiencing a SDD farther from in-situ observations, and 27% remaining

unchanged. The improvement is less pronounced for DAconst, in which 40% of sites show better agreement with observations,335

24% show worse agreement, and 36% remain unchanged. The reduced SWE at lower elevations in DAvar (see Section 3.2)

likely results in more realistic timing for snow-free conditions at these sites. As we only assimilate observations through March,

thus limiting assimilation during times of ablation, changes in SDD are mainly a result in changes of peak SWE. In general, the

IMS observations underestimate snow persistence (Fig. 8), leading to an earlier SDD compared to in-situ observations, which

may result from the binary (as opposed to fractional) nature of the IMS observations.340

3.4 DA increments and spread

In DAconst, model updates predominantly occur later in the accumulation season, with positive average increments above

2500 m and negative average increments below 1500 m (Fig. 9a). In contrast, DAvar exhibits stronger negative increments

earlier in the snow season, and at lower elevations (Fig. 9b), suggesting that assimilated observations influence the entire

accumulation period rather than just times near peak SWE. Additionally, the magnitude of positive increments in DAvar is345
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Figure 9. Average total snow depth increments (m) over the accumulation season (x-axis), stratified by elevation (y-axis) for (a) DAconst

and (b) DAvar. Increments are averaged over all years (2015-2023)

reduced, meaning that less snow is added at higher elevations in DAvar. While the OL has a negative snow bias in these higher

elevation areas, the weaker positive increments in DAvar may be more realistic, given that Figure 4b indicates a strong positive

snow depth bias for sites about 2500 m in DAconst, and a reduced positive bias at these same sites in DAvar.

The change in observation uncertainty also has an impact on the analysis ensemble spread, with primarily decreased ensem-

ble spread in DAvar, compared to DAconst, especially in lower elevation regions (Supplemental Fig. S5a). Changes in analysis350

spread are related to changes in the observation uncertainty, with decreases in spread corresponding to decreases in average

observation uncertainty (Supplemental Fig. S5b). For example, for all model grid cells where σobs decreases, on average, from

DAconst to DAvar, 83% indicate a corresponding decrease in the snow depth analysis ensemble spread. In contrast, for all grid

cells where σobs increases, 65% have a corresponding increase in analysis ensemble spread. The reason for this decrease in

ensemble spread is likely two-fold. This overall decrease in ensemble spread is likely driven by two factors: (1) lower obser-355

vation uncertainty in many regions, and (2) reduced snow depth, which results in smaller multiplicative perturbations to the

forecast state.

4 Discussion

This work enhances snow DA by incorporating an ML-based snow depth retrieval product using spatio-temporally dynamic

error estimates into the assimilation scheme. The ML snow depth model integrates multiple sources of information, including360

S1 backscatter observations, fractional snow cover from optical imagery, and land cover information to estimate snow depth.

:::::
Future

:::::
work

:::::
could

::::::::::
experiment

::::
with

:::::::::
integrating

:::::::::
additional

::::::::::::
satellite-based

::::::::::
information

::::
into

:::
the

::::::::::
assimilated

:::
ML

:::::::
product

:::::
(e.g.,

::::::
passive

::::::::::
microwave,

:::::::
X-band,

::::
lidar

:::::
data).

:
The snow depth estimated from this ML model has been shown to possess superior
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accuracy compared to prior S1 snow depth retrieval work by Lievens et al. (2022)
::::::
(SDS1)

:
(Dunmire et al., 2024), which has

previously been assimilated into the Noah-MP land surface model using an Ensemble Kalman Filter (De Lannoy et al., 2024;365

Brangers et al., 2024). Future work could experiment with integrating additional satellite-based information into the assimilated

ML product (e.g., passive microwave, X-band, ICESat-2 data).

To compare with previous work that assimilates snow depth retrievals from the S1 change detection algorithm (SDS1;

Lievens et al. (2022)), we compared output from our two DA experiments with DA output from De Lannoy et al. (2024)

(DAS1). The DAS1 experiment utilizes the same DA setup as DAconst, with a static observation uncertainty (σobs= 0.3m),370

but assimilates SDS1 retrievals instead of SDML.
::
In

:::
the

:::
OL,

:::
we

::::
see

::
an

:::::::::::::
overestimation

::
of

:::::
SWE

::
at

:::::::::::
measurement

:::::
sites

::::
with

:::
low

::::::::
recorded

:::::
SWE,

:::
and

:::
an

:::::::::::::
underestimation

:::
of

::::
SWE

::
at
::::::::::::
measurement

::::
sites

::::
with

::::
high

::::::::
recorded

::::
SWE

:::::
(Fig.

::::
5c).

:::::::
Previous

:::::
work

:::
has

:::::::::::
demonstrated

::::
that

::::::
forcing

::::
bias

::
is

:::
the

::::::::
dominant

::::::
source

:::
of

:::::::::
uncertainty

:::
in

::::
snow

:::::::::
modeling

:::::::::::::::::
(Raleigh et al., 2015)

:
.
:::::
Here,

:::
we

:::
use

:::::
ERA5

::::::::::
atmospheric

:::::::
forcing,

::::::
which

:::
has

:
a
::::::::
relatively

::::::
coarse

::::::
spatial

::::::::
resolution

:::
(31

:::::
km).

:::::
While

:::
we

:::::
apply

:
a
:::::::
standard

:::::::::
lapse-rate

::::::::
correction

::
to

:::::::::
downscale

:::
the

:::::::::::
near-surface

:::
air

::::::::::
temperature

:::::::
forcing,

::::::::::
precipitation

::
is
::::

not
::::::::::
downscaled,

::::
and

::::::::
therefore

::
is

::::::
unable

::
to375

::::::
resolve

:::::::::
orographic

:::::::::::
precipitation,

:::::::
resulting

::
in

::::::::
relatively

::::
low

::::::::::
precipitation

:::
and

:::::
SWE

::::::
spatial

:::::::::
variability,

:::
and

::
an

::::::::::::::
underestimation

::
of

::::
high

::::
SWE

::::::
values.

:::::::::::
Furthermore,

:::
the

::::::
SDML:::::::

product
:::
has

::::
also

::::
been

:::::::::::
demonstrated

::
to

::::::::::::
underestimate

::::
deep

:::::
snow,

:::::
likely

:::
due

::
to

:::::
these

:::::::::::
measurements

:::::
being

:::::::::::::::
underrepresented

::
in

:::
the

::::
ML

::::::
training

:::::::::::::::::::
(Dunmire et al., 2024).

:::
As

:::::
such,

:::
the

::::::::::
assimilation

:::
of

:::
this

:::::::
product

::
is

:::::
unable

::
to
:::::
fully

::::::
correct

:::
the

:::::::
negative

:::::
SWE

:::
bias

:::
for

::::::::
measured

:::::
SWE

:::::::
> ∼800

::::
mm,

::
as

::::
can

::
be

::::
seen

::
in

::::::
Figure

::::
5d/e.

:

::::
Here,

:::
we

::::
also

:::::::
highlight

:::
the

:::::::::::
implications

::
of

:::::::::
accounting

:::
for

:::::::
dynamic

::::::::
estimates

::
of

:::
the

::::::::::
observation

:::::::::
uncertainty

::::
and

::::::::::
demonstrate380

:::
that

:::
this

:::::::
system

:::::
results

::
in
::
a
:::::
more

::::::
realistic

::::::::
modeled

:::::
snow

::::
state.

::::
The

:::::
EnKF

:::::::
depends

:::
on

:::::::
accurate

::::::::::
uncertainty

::::::::
estimates

:::
for

::::
both

::
the

::::::
model

:::
and

::::::::::::
observations,

::::
using

:::::
these

::
to

::::::
weigh

:::
the

::::::::::
information

:::
and

::::::
obtain

::
an

:::::::
optimal

::::
state.

:::::
With

:::
this

::
in
::::::

mind,
::::::::::
Dee (1995)

:::::
argues

::::
that

:::::
proper

::::::::::::::
characterization

::
of

::::
both

::::::
model

:::
and

::::::::::
observation

:::::::::::
uncertainties

:
is
:::::::::

necessary
:::
for

::::::::
successful

::::::::::::::
implementation

::
of

::
the

::::::
EnKF.

::::::
While

:::
the

::::::::::
specification

:::
of

:::::::::
observation

::::::::::
uncertainty

:::::::::::
substantially

::::::::
influences

::::
DA

:::::::::::
performance,

::
in

:::::
snow

:::
DA

::::::::
systems,

:::
this

:::::::::
uncertainty

::
is

:::::
often

::::::::
prescribed

::
as

::
a

:::::::
constant

::::
value

::::::::::::::::::
(Helmert et al., 2018)

:
.
:::::
Some

:::::::
previous

::::::
studies

::::
have

::::::::::
incorporated

::::::::
dynamic385

::::::::::
observations

:::::
errors

:::::
(e.g.,

:::::::::::::::::::::::::::::::::::::::
Magnusson et al. (2017); Oberrauch et al. (2024)

:
);
::::::::
however,

:::
the

:::::
utility

::
of

:::::::
dynamic

::::::::::
observation

::::::
errors,

::::::
relative

::
to

:::
an

:::::::
assumed

:::::
static

::::::::::
observation

:::::
error,

:::
in

:::::
snow

:::
DA

::::
has

:::
not

:::
yet

:::::
been

:::::::
explored

:::::
prior

::
to

::::
this

:::::
work.

:::::::::
Moreover,

:::::
most

:::::::::
operational

::::
land

::::
data

::::::::::
assimilation

:::::::
systems

:::::
(e.g.,

::::::
NASA

:::::
Land

::::
Data

:::::::::::
Assimilation

::::::::
Systems,

::::::::
ECMWF

::::
Land

:::::
Data

:::::::::::
Assimilation

:::::::
System)

:::
and

::::::
recent

::::::
studies

:::
that

::::::::::
assimilates

:::::::::
SAR-based

:::::
snow

:::::
depth

::::::::
retrievals

:::::::
assume

:
a
:::::
static

::::::::::
observation

:::::
error.

:::
For

::::::::
instance,

::::::::::::::::::
Brangers et al. (2024)

:::::::
assumed

::::::::::::
σobs = 0.36 m,

::::
and

::::::::::::::::
Girotto et al. (2024)

:
)
:::
and

::::::::::::::::::::
De Lannoy et al. (2024)

::::
both

::::::
assume

::::::::::::
σobs = 0.30m390

:::::::
(applied

:::
here

:::
in

::::::::
DAconst).

We find that SWE MAE is significantly lower in DAvar compared to DAS1 (p≪ 0.001), whereas
:::::::::
assimilating

:::::::
SDML ::::

with

:
a
:::::::
dynamic

::::::::::
observation

:::::
error

:::::::
(DAvar):::::

offers
::
a
:::::::::
significant

:::::::::::
improvement

::
to

:::::
SWE

:::::
MAE

:::::::::::
(p≪ 0.001)

::::::::
compared

::
to
:::::::::::

assimilating

:::::
SDS1::::

with
:
a
:::::
static

::::::::::
observation

::::
error

:::::::
(DAS1,

:::::::::::
Supplemental

::::
Fig.

::::
S6).

::::::::::
Meanwhile, DAconst does not demonstrate a meaningful

improvement
:::
any

:::::::::
significant

::::::::::::
improvements

::
to

:::::
SWE

:::::
MAE

:
(Supplemental Fig. S6). Using 4548 manual SWE measurements395

collected within the Po River basin(the study domain of De Lannoy et al. (2024)), we find an MAE of 225 mm from the

OL experiment, while the MAE for DAS1, DAconst, and DAvar is 193, 195, and 177 mm, respectively. The
:::::::::
Generally,

:::
the

SDML retrievals are more accurate than SDS1 for in-situ snow depths below 2.5 m, while for snow depth exceeding 3 m,
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SDS1 performs better (see Figure 3a from Dunmire et al. (2024)). This suggests that assimilating SDML should provide

improvements particularly for shallower snow. However, in the DAconst experiment, the use of a static observation uncertainty,400

where relatively large errors are assumed for shallow snow observations, limits these potential improvements (e.g. Fig. 2a)

and results in an overall performance of DAconst that is similar to DAS1. This analysis highlights that the treatment of the

observation uncertainty is as critical as the observations themselves. A poorly parameterized observation uncertainty can restrict

the benefits of DA, underscoring the need for options in DA systems to dynamically vary the observation error.

The EnKF depends on accurate uncertainty estimates for both the model and observations, using these to weigh the information405

and obtain an optimal state. With this in mind, Dee (1995) argues that proper characterization of both model and observation

uncertainties is necessary for successful implementation of the EnKF. While the specification of observation uncertainty

substantially influences DA performance, in snow DA systems, this uncertainty is often prescribed as a constant value (Helmert et al., 2018)

, and the use of dynamic observation error estimation in snow DA had not yet been explored prior to this work. Moreover, most

operational land data assimilation systems (e.g., NASA Land Data Assimilation Systems, ECMWF Land Data Assimilation410

System) and recent studies that have applied the EnKF to assimilate
::::::::::::
Implementing

:::
the

:::::::
dynamic

::::::::::
observation

:::::
error

::::::::
generally

:::::::
improves

:::::::::::
performance

::
in

::::
both

::::::
places

:::
the

:::
DA

::::
adds

:::
and

::::::::
removes

:::::
snow.

::
In

:::
the

:::
OL

::::::::::
experiment,

:::::
snow

:::::
depth

:::
has

:
a
:::::::
positive

::::
bias

::
at

:::
low

:::::::::
elevations

:::
and

:
a
::::::::
negative

:::
bias

::
at
::::
high

:::::::::
elevations

::::
(Fig.

::::
4a).

::::
The

:::::::
DAconst:::::::::

experiment
:::::::

applies
:
a
:::::
static

::::::::::
observation

::::
error

::::
that

:
is
::::::::
relatively

:::
too

:::::
large

:::
for

::::::
shallow

::::::::::
assimilated

::::
snow

::::::
depths

::::
(e.g.

::::
Fig.

:::
2a),

:::::::
limiting

:::::
snow

:::::::
removal

::
at

:::::
lower

::::::::
elevations

:::
and

:::::::
leading

::
to

:
a
::::
still

::::
large

:::::::
positive

::::
bias

::
at

:::::
these

::::::::
locations.

:::
At

::::::
higher

::::::::
elevations

::::::
(above

::::::
∼1500

::::
m),

:::
the

:::::::::
assimilated

:::::::::::
observations

::::::
exhibit

::
a415

:::::
strong

:::::::
positive

::::
bias

::::
(Fig.

::::
4d).

::::
The

::::::::
relatively

:::::
small

:::::
static

::::::::::
observation

::::
error

:::
for

::::::
deeper

::::::::::
assimilated

:::::
snow

:::::
depths

:::::
(e.g.

:::
Fig.

::::
2b)

::::
leads

::
to

:::
too

:::::
much

:::::
added

:::::
snow

::
in

:::::
some

:::::
cases,

::::::::::
particularly

:::::
above

:::::
2500

::
m

::::
(Fig.

::::
4b).

::
In

:::::::
contrast,

::
in

::::::
DAvar,::::

less
:::::
snow

:
is
::::::
added

::
at

::::
high

::::::::
elevations

:::::
(Fig.

::
9),

::::::::
resulting

::
in

::::::::::::
improvements

:::::
where

:::::
snow

:::::
needs

::
to

:::
be

:::::
added

::
as

::::
well

:::::
(Fig.

:::
4f).

::::::::
However,

:::
we

:::
see

::::
that

:::
the

:::::
DAvar::::::::::

experiment
:::::::
performs

::::::
worse

::::
than

:::::::
DAconst:::::::

between
::::::::
February

:::
and

::::
May

::::::
within

:::
the

:::::::::
2000-2500

::
m

::::::::
elevation

::::
band

::::
(Fig.

::::
4f).

::
In

:::
this

::::::
range,

:::
the

:::
OL

::::::::::
experiment

:::
has

::
a

::::::
positive

:::::
snow

:::::
depth

::::
bias

::::
until

:::::::::::::
approximately

::::::::
February,

:::::::
followed

:::
by

::
a

:::::::
negative

:::::
snow420

::::
depth

::::
bias

:::::
until

::::
May

::::
(Fig.

::::
4a).

::::::
DAvar ::::

more
:::::::::
effectively

:::::::
reduces

::::
this

::::
early

::::::
season

:::::::
positive

::::
bias,

::::::::
resulting

::
in

:::::
lower

:::::
mean

:::::
snow

:::::
depths

::::
later

:::
in

:::
the

::::::
season,

::::
and

:::::
poorer

:::::::::::
performance

::::::
during

:::
the

::::::
period

:::::
when

:::
the

:::
OL

::
is

:::::::::
negatively

::::::
biased.

::::
This

::::::::
suggests

:::
that

::
a

:::
lack

:::
of

::::::::::
early-season

:::::::::
corrections

:::
in

:::::::
DAconst ::::

can,
::
in

::::
some

::::::
cases,

::::::::
propagate

::
to

:::::
more

:::::::
accurate

:::::::::
late-season

:::::
snow

::::::
depths,

::::::::
although

:::
this

:::::
effect

::
is

:::::
likely

::::::
limited

::
to

::::::::
locations

:::::
where

:::
the

:::::
snow

:::::
depth

::
is

:::
not

::::::::::
consistently

::::::::
positively

::
or

:::::::::
negatively

:::::
biased

::::::::::
throughout

:::
the

::::::
season.425

:::::
While

::::::
DAvar ::::::::

improves
::::::::::
performance

::
at
:::::

most
:::::
snow

:::::
depth

:::
and

:::::
SWE

:::::::::::
measurement

:::::
sites,

:::::
some

::::::::
locations

:::
see

::::
little

::::::
benefit,

:::
or

::::
even

:
a
:::::::::::
deterioration

::
in

:::::::::::
performance

::::::::::::
(approximately

:::::
12%

::
of

:::::
snow

:::::
depth

::::
sites

:::
and

::::
20%

:::
of

::::
SWE

::::::
sites).

:::::
These

:::::::::::
degradations

:::
are

::::
more

:::::
likely

::
to

:::::
occur

::::::
where

:::
the

::::::
SDML:::::::

product
::
is

:::
less

::::::::
accurate

::::
than

:::
the

:::
OL

::::::::::
experiment.

:::
To

::::::
account

:::
for

::::::
known

:::::::::
limitations

:::
of

SAR-based snow depth retrievalsassume a static observation error ,
:::
we

:::
did

:::
not

::::::::
assimilate

:::
the

:::::::
SDML ::::::

product
::::
over

:::::
dense

::::::
forests

::
or

:::::::
glaciers,

::::
and

::::
after

::::::
March

:::
31.

:::::::::::
Nevertheless,

:::::::
SDML:::::::

remains
:::::::::
inaccurate

::
in

:::::
some

::::::
places,

:::::::
leading

::
to

::::::::
localized

:::::::::::
deterioration430

::::
when

:::::
these

:::::::::::
observations

:::
are

::::::::::
assimilated.

:::::::::
Locations

::::
with

::::::::
minimal

:::::::::
differences

::::::::
between

:::::::
DAconst::::

and
::::::
DAvar ::::::::

typically
:::::
occur

:::::
where

:::
the

::::::::::
observations

:::::::
already

::::
agree

::::
well

::::
with

:::
the

::::
OL,

::
or

:::::
where

:::::::::::
σobs >> σf ,

::::
thus

::
the

::::
DA

:::::::::
increments

:::
are

:::::
small,

:::
and

:::
the

::::::
model

::::::
receives

:::::::
limited

::::::
benefit

::::
from

::::
the

:::::::::::
observational

:::::::::::
information.

::::::
Despite

:::::
these

::::::
spatial

:::::::::::::
inconsistencies,

::::::
DAvar::::::

nearly
:::::::
doubles

:::
the
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:::::::::::
improvement

::
in

:::::::
absolute

:::::
SWE

::::
error

:::::::::
compared

::
to

:::::::
DAconst. For instance, Brangers et al. (2024) assumed σobs= 0.36m, and

De Lannoy et al. (2024) assume σobs= 0.30 m (applied here in
:::
the

::::
SWE

:::::
MAE

::::::::
decreases

:::::
from

:::
152

::::
mm

::
in DAconst::

to
:::
132

::::
mm435

::
in

:::::
DAvar::::::::

(-13.2%),
:::::
while

:::
the

::::::
overall

::::::
impact

::
of

:::::::
DAconst:::::::

relative
::
to

:::
the

:::
OL

::
is

:
a
::::::
13.6%

::::::::
reduction

::::
(176

::::
mm

::
in

::
the

::::
OL

::
to

:::
152

::::
mm

::
in

:::::::
DAconst).::::::::::

Importantly,
::::::::
previous

::::::
studies

::::
have

:::::::::::
demonstrated

:::
that

:::::
even

::::::
modest

::::::::::::
improvements

::
in

::::
snow

:::::
depth

::
or

:::::
SWE

::::
from

::::
DA

::::::::
propagate

::
to

::::::
further

::::::::::::
improvements

::
in

:::::::::
streamflow

::::::::::::::::::::::::::::::::::::::
(Brangers et al., 2024; De Lannoy et al., 2024).

:

Here, we highlight the implications of accounting for dynamical estimates of observation uncertainty,
:::::
Snow

:::::
cover

:::::::
fraction

:::::
affects

:::
the

::::::
energy

::::::::
balance,

:::
and

::::::::::::
consequently,

:::
has

:::::::::::
implications

::
for

:::::::::
numerical

:::::::
weather

:::::::::
prediction.

::::::
While

:::
the

:::
DA

:::::::::::
experiments440

:::::::
generally

::::::
reduce

:::
the

::::::::::::
snow-covered

::::
area

::
by

::::::
largely

::::::::
removing

:::::
snow

::
at

:::::
lower

:::::::
elevation

:::::::
regions,

:::
all

::::
three

::::::::::
experiments

::::
still

::::::
exhibit

:
a
:::::::::
substantial

::::::::::::
overestimation

::
of

::::
total

::::::::::::
snow-covered

::::
area

::::::::
compared

::::
with

::::
both

::::::::::
Copernicus

:::
and

::::
IMS

:::::
snow

::::
cover

::::::::
products.

:::::::
Several

:::::
factors

:::::
may

:::::::::
contribute

::
to

::::
this

::::::::::
discrepancy.

:::::
First,

::
a
:::::::

positive
::::

bias
:::

in
:::::::
snowfall

:::::::
forcing

::::
data

::
at
::::

low
:::::::::

elevations
::::
will

:::::
result

:::
in

:::::::::::
unrealistically

:::::
large

:::::::::::
snow-covered

::::
area.

:::::::
Second,

:::
the

::::::::::::::
higher-resolution

::::::::::
Copernicus

::::::
product

:::
(20

:::
m)

::::::::
inherently

:::::::
captures

:::::::::
finer-scale

:::::::
variation

:::::::
between

::::::::::::
snow-covered and demonstrate that this system results in a more realistic modeled snow state. In

::::::::
snow-free445

:::::::::
conditions,

::::
often

::::::::
resulting

::
in

:::::
lower

::::::
overall

:::::
snow

:::::
cover

::::::::
estimates

::::::::
compared

::
to

:::::::::::::::
coarser-resolution

::::::::
products.

:::::
Third,

:::::::::::
inaccuracies

::
in

:::
the

::::::::::::::
parameterization

::
of

::::
snow

:::::
cover

:::::::
fraction

::::::
within

::::::::
Noah-MP

::::
may

::::
also

::::
play

:
a
:::::
role.

::
In

::::::::
Noah-MP,

:::
the

:::::
snow

:::::
cover

:::::::
fraction

::
is

:::::::::::
parameterized

::
as
::
a
:::::::
function

::
of

:::::
snow

:::::
depth,

:::::::
density,

:::
and

::::::
ground

:::::::::
roughness

::::::
length.

::::::::::::::::::::::::::::
(Niu et al., 2011; Lee et al., 2024).

::
It

::::::
should

::
be

::::::::::
investigated

:::::::
whether

:::
the

::::::
current

:::::::::::::::
parameterizations

::
in

::::::::
Noah-MP

::::::
remain

::::::::::
appropriate

::
for

:::::::
regions

::::
with

:::::::
complex

::::::
terrain,

::::::
where

::::::
subgrid

::::::::
variation

::
in

::::::::::
topography

:::
can

:::::::::::
significantly

:::::::
influence

:::::::::
fractional

:::::
snow

:::::
cover.

:::::::
Finally,

:::::::::
uncertainty

::
in
:::

the
::::::::::

Copernicus
::::
and450

::::
IMS

::::
snow

::::::
cover,

:::
for

:::::::
example

::::
due

::
to

:::::
cloud

:::
and

:::::
forest

::::::
cover,

:::::::::
contribute

::
to

:::::
errors

::
in

:::::
these

::::::::
validation

::::
data

::::
sets

::::
and

:::::::::
potentially

:::::::
influence

:::
the

::::::::
perceived

::::::
model

::::::
biases.

::::::
Finally,

::
in DAvar, Equation 2 (σobs =m ∗SDML :::::::::::::::

σobs =m ∗SDML, m= 0.3) is used to adapt the standard deviation of the

observation error
::
in

:::::
space

:::
and

::::
time

:
based on the assimilated snow depth. This relationship is a first-order approximation that

assumes that the observation error increases linearly with the observation magnitude; however, σobs could be defined to vary455

in more complex ways. Future work could explore applying relationships where σobs varies non-linearly with the assimilated

snow depth observation, or statistical parameterizations of σobs depending on other conditions such as elevation, or forest cover.

::::::::::
Furthermore,

::::
σobs:::::

could
:::
be

::::::
directly

::::::
linked

::
to

:::
the

::::::
SDML:::::::

retrieval
::::::
quality

::::::
which

:::::
could

::
be

::::::::
obtained,

:::
for

::::::::
example,

::::::
through

:::::
error

::::::::::
propagation.

:
The effectiveness of a variable

:::::::
dynamic

:
observation error also depends on the magnitude of the forecast error,

as the Kalman gain matrix, which determines the strength of the corrections, depends on both forecast and observation error.460

To maximize benefits, the observation error, whether static or dynamic, should be properly tuned in relation to forecast error.

:::::
While

::::
most

::::::::::
operational

::::::
systems

:::
do

:::
not

::::::::
currently

::::::
include

::::::
options

::
to

:::::::::::
dynamically

::::
vary

::
the

::::::::::
observation

:::::
error,

:::
this

:::::::::::
functionality

::
is

:::
not

::::::::::
complicated

::
to

::::::::::
incorporate,

:::
and

:::
the

::::::::::::
snow-specific

::::::
MuSA

::::::::
(Multiple

:::::
Snow

::::
Data

:::::::::::
Assimilation

:::::::
System)

::::::
system

::::
does

:::::::
already

::::::
provide

::
an

::::::
option

:::
for

:
a
:::::::::::
user-defined

:::::::::
observation

:::::
error

:::
that

::::
can

::::
vary

::::::::::
dynamically

:::::::::::::::::::::::::
(Alonso-González et al., 2022)

:
.

4.1
:::::::::
Limitations

:::
of

:::::::::
bias-blind

:::
DA

:::::::
systems465

The EnKF is widely used in snow DA systems due to its efficiency; however, a key assumption is that both the observations and

model are unbiased.
:::
We

:::
see

::::
from

::::::
Figure

::
4

:::
that

:::
this

::::::::::
assumption

::
is

:::
not

:::::::
satisfied

::
by

::::::
neither

:::
the

:::::::::::
observations

:::
nor

:::
the

::::::
model. Here,
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we implement a bias-blind system by not bias-correcting either the observations or the model, thereby violating this assumption.

Bias-aware systems which a priori correct the model bias to align with the observation climatology assume that the assimilated

observations are more realistic than the model. While this assumption may be realistic in many situations, satellite-based snow470

retrievals also exhibit substantial bias. Since snow is a cumulative variable, biases in either the observations or the model

typically persist throughout the snow season. While in-situ measurement stations can help quantify these biases, they are often

inconsistent spatially and on an interannual basis (i.e. Supplemental Fig. S7), which provides a challenge for correcting them

a priori.

Two major issues exist with bias-blind systems: (1) model drift towards its original state, leading to a sawtooth-like pattern475

that can result in unrealistic fluxes in other variables, and (2) unrealistic model trends in DA output due to changes in assim-

ilated observation frequency (Dee, 2005). For snow, model biases primarily stem from errors in precipitation forcing data.

Consequently, we do not expect model drift to occur as observed in De Lannoy et al. (2007); Mocko et al. (2021); Scherrer

et al. (2023), unless there is an instantaneous precipitation forcing error. We also assimilate observations weekly throughout the

study period, thereby mitigating the potential effects of assimilation frequency in bias-blind DA. Scherrer et al. (2023) further480

compare bias-blind and bias-aware assimilation of leaf area index - a cumulative variable - using the EnKF. Their results show

that the bias-blind DA more effectively updates the model state variable, and leads to larger improvements in water balance

components such as evapotranspiration and runoff. In contrast, while the bias-aware approach yields smaller improvements in

state variables, it improves temporal anomalies and internal DA diagnostics indicate a more optimal DA system performance.

Given our focus on improving the modeled snow state rather than snow anomalies, along with the inherent challenges of a pri-485

ori bias correcting the observations and model, we opt for a bias-blind approach, recognizing that this may lead to suboptimal

DA performance (i.e. temporally correlated residuals).

Snow cover fraction affects the energy balance, and consequently, has implications for numerical weather prediction. While

the DA experiments generally reduce the snow-covered areaby largely removing snow at lower elevation regions, all three

experiments still exhibit a substantial overestimation of total snow-covered area compared with both Copernicus and IMS490

snow cover products. Several factors may contribute to this discrepancy. First, a high bias in snowfall forcing data at low

elevations will result in unrealistically large snow-covered area. Second,

4.2
:::::::::

Limitations
:::
of

:::
site

:::::::::
evaluation

::::::::::::::::
representativeness

:::::::
Previous

::::::
studies

::::
have

::::::
shown

:::
that

::::::::
mountain

::::
snow

::
is

::::::
highly

:::::::
variable,

:::
and

:::::::::
point-scale

::::::::::::
measurements

:::::
don’t

:::::::::
necessarily

::::::::::::
well-represent

::
the

::::::::::
surrounding

:::::
area,

::::
even

::
at

:::::
spatial

:::::
scales

::
as

::::
fine

::
as

::
10

::
m

::::::::::::::::::::::::::::::::::::::::::
(López-Moreno et al., 2011; Fassnacht et al., 2018).

::::::::::::::::::
Meromy et al. (2013)495

:::::
found

:::
that

::::::::::::
approximately

::::
half

::
of

:::
the

::::::::
SNOTEL

::::
sites

::::
they

::::::::
analyzed

:::::
where

::::::::::::
representative

::
of

:::
the

::::::::::
surrounding

:
1
:::
km

:::::
area,

:::::::
defining

:::::::::::::
“representative”

::
as

:::::
snow

:::::
station

:::::
biases

::::::
within

::::
10%

::
of

:::
the

::::::::::
surrounding

:::::
mean

:::::::
observed

::::::
depth.

::::
More

:::::::
recently,

::::::::::::::::::
Herbert et al. (2024)

:::::::
reported

::::
that

:::::::
roughly

::::::::
one-third

::
of

::::
476

::::::
paired

:::::::::::
lidar–station

::::
data

:::::::::::
observations

:::::
were

::::::::::::
representative

::
at

:
the higher-resolution

Copernicus product (20 m ) inherently captures finer-scale variation between snow-covered and snow-free conditions, often

resulting in lower overall snow cover estimates compared to coarser-resolution products. Third, inaccuracies in the parameterization500

of snow cover fraction within Noah-MP may also play a role. In Noah-MP, the snow cover fraction is parameterized as a
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function of snow depth, density, and ground roughness length. (Niu et al., 2011; Lee et al., 2024). It should be investigated

whether the current parameterizations in Noah-MP remain appropriate for regions with complex terrain, where subgrid variation

in topography can significantly influence fractional snow cover. Finally, uncertainty in the Copernicus and IMS snow cover, for

example due to cloud and forest cover, contribute to errors in these validation data sets and potentially influence the perceived505

model biases
:
1
:::
km

:::::
scale,

::::
with

:::::::::::::::
representativeness

:::::::
defined

::
as

:::::
in-situ

::::::::
measured

:::::
snow

:::::
within

::::
±10

:::
cm

::
of

:::
the

:::::::::
lidar-mean

:::::
snow

:::::
depth

:
at
::::
that

:::::
scale.

::::::::
However,

::::
they

::::
also

::::::
showed

:::::
little

::::::
change

:::::::
between

:::
the

:::
500

::
m
::::

and
:
1
:::
km

::::::
scales,

::::
with

:::::
35%

::
of

::::::
stations

::::::::::
considered

::
as

:::::::::::
representative

::
at

:::
500

:::
m.

:::::::::
Generally,

:::::
in-situ

:::::
snow

::::::
stations

::::::
exhibit

::
a
:::::::
positive

:::
bias

::
as

:::::
these

::::
sites

:::
are

::::
often

:::::::
located

::
in

:::
flat

:::::
terrain

::::
that

:::::::::::
preferentially

::::::::::
accumulates

:::::
snow

::::::::::::::::::::::::::
(Grünewald and Lehning, 2011)

:
.

::
In

:::
this

::::::
study,

:::
we

:::
use

::::::
in-situ

:::::
snow

:::::
depth

:::
and

:::::::
manual

:::::
SWE

::::::::::::
measurements

::
as

:::
the

::::::::::::
best-available

::::::::
reference

::
in

:::
the

:::::::::
European510

::::
Alps

:::
that

:::::
cover

:
a
:::::
range

:::
of

:::::
terrain

:::::::::
conditions

:::
and

:::::
spans

:::::
many

:::::
years.

::::::
Unlike

::
in
:::
the

:::::::
western

::::::
United

::::::
States,

:::::
where

:::::::::::::
high-resolution

:::::
spatial

:::::
snow

:::::
depth

::::::::
products

::::
from

:::
the

::::::::
Airborne

:::::
Snow

:::::::::::
Observatory

:::
and

::::::
NASA

:::::::
SnowEx

::::::::
missions

:::
are

::::::::
available,

:::::
such

:::::::
publicly

:::::::
available

::::::::
products

::
are

:::::::::
extremely

::::::
limited

::
in

:::
the

::::::::
European

:::::
Alps.

:::
As

::::
such,

::
it
::
is

:::
not

:::::::
feasible

::
to

:::::
assess

:::
the

:::::::::::::::
representativeness

::
of

:::
all

:::
588

:::::
snow

::::
depth

:::::::::::
measurement

::::
sites

::::
and

::::
8211

::::::
manual

:::::
SWE

::::::::::::
measurements

::
at

:::
the

:
1
:::
km

:::::
scale,

:::
and

:::::
these

:::::::::
point-scale

::::::::::::
measurements

::::::
provide

:::
the

::::
best

::::::::
available

:::::::::
Alps-wide,

:::::::::
multi-year

::::
data

:::::::
available

:::
for

::::::::::
evaluation.

:::::::::::
Nevertheless,

:::
by

::::::::
leveraging

::
a
::::
large

:::::::
network

:::
of515

::::
sites

:::
that

:::::
span

:
a
:::::
range

:::
of

::::::::
elevations

::::
and

::::::
terrain

:::::
types,

:::
we

:::
can

::::::
reduce

::::::::::::::
sampling-related

::::::::::
limitations

::
by

:::::::::
increased

:::::::
coverage

:::
of

:::::
terrain

::::::::
diversity,

::::::::
although

:::
this

::::
does

:::
not

:::::::
mitigate

:::
the

::::::
general

:::::::
positive

::::
bias

:::::
noted

:::::
above.

5 Conclusions

In this manuscript, we demonstrate the utility of incorporating a dynamic observation uncertainty into a snow depth data

assimilation scheme. For the first time, we assimilate satellite-based snow depth estimates from a novel machine learning520

model into the Noah-MP land surface model using the EnKF to update snow depth and SWE. We compare two data assimilation

experiments: one with a static observation error (DAconst), and one with an observation error that is dynamic in space and time

(DAvar).The performance of these DA experiments is evaluated against the open-loop experiment (OL, model-only) using in-

situ snow depth observations, manual SWE measurements, and two different snow cover products. We show that the dynamic

observation error makes better use of the assimilated observations, thereby leading to stronger model corrections, particularly at525

times when the assimilated snow depth observation is much shallower than the model forecast (e.g., early in the accumulation

period or at lower elevations). The DA experiment that incorporates this dynamic observation error more effectively corrects

biases introduced by errors in the forcing data, and improves SWE estimates by 25% and 13% compared to the OL and

DAconst experiments, respectively. While snow cover is overestimated in all three model experiments, DAvar also leads to

stronger reductions in snow cover than DAconst, better aligning with existing snow cover products. As most snow DA work530

and operational snow DA systems assume that the observational uncertainty is constant in space and time, this work highlights

the impact of a better constrained observational error and the importance of these considerations when designing a DA system.
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Code and data availability. The ML-based snow depth retrieval product is publicly available at (https://doi.org/10.5281/zenodo.13342108).

The NASA LIS software is available at https://github.com/NASA-LIS/LISF. Publicly available in-situ snow depth and SWE data used for

evaluation can be accessed at:535

– https://www.doi.org/10.16904/15 (Switzerland)

– https://www.doi.org/10.16904/envidat.380 (Switzerland)

– https://www.doi.org/10.16904/envidat.590 (Switzerland)

– https://www.doi.org/10.16904/envidat.406 (Switzerland)

– https://www.arpa.piemonte.it/rischi_naturali/snippets_arpa_graphs/map_meteoweb/?rete=stazione_meteorologica (Italy)540

– https://www.meteotrentino.it/index.html#!/home (Italy)

– https://data.civis.bz.it/de/dataset/p-bz-southtyrolean-weatherservice-weatherstations/resource/ef2f6f24-cffd-4993-8699-5023696a49b5

(Italy)

– https://dataset.api.hub.geosphere.at/app/frontend/station/historical/klima-v2-1d (Austria)

– https://donneespubliques.meteofrance.fr/?fond=recherche (France)545

– https://cdc.dwd.de/portal/ (Germany)

Additional snow depth and SWE data were obtained from the Italian Department of Civil Protection and processed by the Centro Inter-

nazionale in Monitoraggio Ambientale (CIMA).

The configuration files used for the modeling experiments and code used for the analysis and creation of figures will be made freely

available after review.550
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