
General Comment:

The work has improved from the last draft; however, several conclusions in this paper over-
state the magnitude of improvement, terminology drifts into subjective language, and a few
structural/citation issues need attention.

We thank the reviewer for their further comments and commitment to improving this
manuscript. Our responses below, are in red, with manuscript text in dark red and additions
to the manuscript in italics.

Major Comments:

I don’t agree with the overall conclusion of the paper that DAvar provides substantial improve-
ment over DAconst. The claimed performance gains of DAvar over DAconst are statistically
significant but small in absolute terms (<10 cm and, in places, ∼2 mm), and not uniform
across sites. Please change the framing in the Result/Discussion/Conclusions to emphasize
the limited magnitude and spatial inconsistency and to discuss whether the added complexity
of DAvar is justified by these gains.

We will modify the results section to be as quantitative and objective as possible, removing
language such as ”substantial”, and adding quantification where necessary. We will clarify that
improvements are ”small, but significant” in places where we test statistical significance. We
will further add a few sentences on spatial and temporal inconsistencies in the first paragraph
of the discussion:

“The snow depth estimated from this ML model has been shown to possess superior accuracy
compared to prior S1 snow depth retrieval work by Lievens et al. [2022] (SDS1) [Dunmire
et al., 2024], which has previously been assimilated into the Noah-MP land surface model
using an Ensemble Kalman Filter [De Lannoy et al., 2024, Brangers et al., 2024]. Recent
work by Mirza et al. [2025] has questioned the utility of assimilating S1 snow depth retrievals,
highlighting inconsistencies in temporal and spatial errors of the SDS1 in the Western United
States, where less regular S1 data are available. Despite advancements made by SDML, the
quality of the ML-based observations assimilated in this study also varies across space and
time, which can lead to localized degradations in DA performance (e.g., Fig. 3). Although
improving mountain snow depth estimation is an active area of research, progress is limited
by the current suite of satellite sensors, which are not specifically designed for snow depth or
SWE retrieval. Future DA efforts that incorporate more reliable snow depth or SWE products
should reduce these spatial and temporal inconsistencies, improving overall DA performance.”

Furthermore, in the previous iteration of review, we added the following text to discuss spatial
inconsistencies. We are grateful for the reviewer’s previous comments and believe this discus-
sion has improved the manuscript. However, we believe that the current level of discussion
sufficiently addresses spatial inconsistencies.
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“While DAvar improves performance at most snow depth and SWE measurement sites, some
locations see little benefit, or even a deterioration in performance (approximately 12% of snow
depth sites and 20% of SWE sites). These degradations are more likely to occur where the
SDML product is less accurate than the OL experiment, and the DAvar experiment more
strongly corrects to these inaccurate observations. To account for known limitations of SAR-
based snow depth retrievals, we did not assimilate the SDML product over dense forests or
glaciers, and after March 31. Nevertheless, SDML remains inaccurate in some places, leading
to localized deterioration when these observations are assimilated. Locations with minimal
differences between DAconst and DAvar typically occur where the observations already agree
well with the OL, or where σobs >> σf , thus the DA increments are small, and the model
receives limited benefit from the observational information.”

We will also add the following text to the conclusions to acknowledge the small and
spatially inconsistent improvements in DAvar:

“However, given limitations of the assimilated satellite-based snow depth product, improve-
ments from the DA, or from the specific implementation of a dynamic observation error in
DAvar, are limited in magnitude and not spatially consistent. As most snow DA work and op-
erational snow DA systems assume that the observational uncertainty is constant in space and
time, this work highlights the impact of these assumptions, and the importance of observa-
tion uncertainty considerations when designing a DA system. Future studies should put effort
into the consideration of observation uncertainties and the parameterization of observation
uncertainty should depend on study goals, the DA system used, and specific characteristics of
the assimilated observations.”

Finally, regarding whether the added complexity of DAvar is justified by these gains:
very recent work by Gichamo et al. [2025] demonstrates improvements of similar, and even
slightly smaller magnitude (SD MAE reduction of 12 mm) when switching from an Optimal
Interpolation to a EnKF for snow data assimilation (DA) in NOAA’s NWP system, the Global
Forecast System (GFS). The authors conclude that ”the results are encouraging and motivate
implementing ensemble methods for the snow data assimilation in NWP systems, in place of
the current OI-based systems”. This implementation of ensemble systems would be a much
larger step in increased complexity than going from DAvar to DAconst in our work (which
resulted in a SD MAE reduction of 22 mm). In light of recent work highlighting the value
of improvements of this magnitude in snow DA systems, we do not believe that achieving
comparable, in fact slightly larger, gains should be downplayed here, especially given the
minimal added complexity of DAvar.

Some results are currently summarized with site averages that can be skewed by a few poor
sites; compare medians for DAconst vs. DAvar and, if feasible, repeat significance testing on
medians.

It is true that the distribution of SD and SWE MAE is right-skewed. As such, we have used
a Mann-Whitney U test (an alternative to the two-sample independent t-test when the data
is not normally distributed) to test for significantly different distributions in the evaluation
metrics. We will specify our use of the Mann-Whitney U test in the results section. Where
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relevant, we will also report median MAE values and include significance tests on the medians.
Below are the instance where these significance tests will be included:

• For snow depth: “While improvement in MAE from the OL experiment is not significant
for DAconst (Mann-Whitney U test p-value = 0.59, median-test p-value = 0.68 ), the
MAE improvement is small, but significant for DAvar (Mann-Whitney U test p-value =
0.001, median-test p-value = 0.03 )”.

• For temporal ACC: “The improvement in temporal ACC for DAvar from both the OL
and DAconst is statistically significant (p < 0.01 for both a Mann-Whitney U test and
median-test, Fig. 3d).”

• For SWE: “Compared with 8,211 manual SWE measurements from 231 different mea-
surement sites across the Alps, the DAvar experiment also offers small, but signifi-
cant improvements for SWE MAE compared to both the OL and DAconst experiments
(p<<0.001 for both a Mann-Whitney U test and median-test).”

Avoid subjective terms such as “substantial” where differences are on the order of millimeters;
replace with exact values.

We will remove subjective language such as ”substantial” and quantify where necessary.

The statement in discussion line 435 that modest snow/SWE improvements translate to
streamflow gains is out of context here; withdraw or support it with streamflow evidence.

We will remove this sentence from the discussion.

Abstract can also be one or two lines with clear results. Right now, the abstract is vague
without stating a clear outcome of the study.

We will add the following sentences to the abstract to summarize the results:

“The DAvar experiment offers small, but significant improvements to snow depth and snow
water equivalent (SWE) mean absolute errors (MAE), and slightly reduces snow cover, thereby
better matching satellite-based snow cover observations. Compared to an open loop (no DA)
experiment (OL), and an experiment with an assumed static observation error (DAconst),
DAvar reduces SWE MAE by 25% and 13%, respectively, compared with over 8000 manual
SWE measurements. This work demonstrates the benefits of machine learning based snow
depth retrievals and the impact of incorporating dynamic observation errors in EnKF-based
snow DA.”

Specific clarifications.
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Where a “15 mm improvement” is cited (Lines 301–306), specify the metric (likely bias) and
state the exact value and sign.

We will specify that the 15 mm improvement refers to SWE MAE.

Replace “standard WY 2016/2017” with an unambiguous convention (e.g., “Water Year
2017”) to avoid seasonality confusion.

We will replace “2016/2017” with “Water Year 2017”. We have also replaced “2017/2018”
(L299) with “Water Year 2018” and “2020/2021” (L302) with “Water year 2021”.

Across Lines 295–314, report concrete numbers rather than qualitative characterizations.

We will add a quantitative assessment to Lines 295-314. This section will be modified to the
text below:

“Across all experiments, SWE typically peaks during the first week of March (March 1–7).
Water Year 2017 recorded the lowest modeled SWE in our OL experiment, and correspond-
ingly saw the largest SWE increases in DAvar prior to early March, particularly in the Central
Alps and Austrian Alps (Fig. 6a). However, DAvar SWE improvements were mixed during
this year. Of the 41 manual measurements taken between March 1 and March 7, 2017, only
24% demonstrated improved SWE MAE of more than 15 mm in DAvar. While the DA led
to more accurately estimated SWE at some sites (e.g., Supplemental Fig. S3b,d), it resulted
in an overestimation of SWE at others (e.g., Supplemental Fig. S3c,e,f). For example, three
measurement sites in Italy (dark pink dots in Fig. 6a) experienced an average increase of
101 mm in added SWE in DAvar relative to the OL. The average SWE MAE at these sites
increased by 134 mm in DAvar, indicating that the assimilated SDML observations overes-
timate snow at these locations. The degradation is even larger in DAconst, where the SWE
MAE increases by 193 mm compared to the OL. This stronger deterioration arises from the
lower assumed σobs in DAconst at these locations, which leads to stronger corrections toward
the observations. A time series of modeled and observed SWE at one of these sites is shown
in Supplemental Fig. S3e.

The largest SWE reductions from the OL to the DAvar experiment occurred during Water
Year 2018, particularly in the Bavarian Alps, Swiss Alps, and French Alps (Fig. 6b). In
general, the reduced SWE in DAvar aligns more closely with in-situ observations (e.g., Sup-
plemental Fig. S4). The average SWE MAE for in-situ measurements taken between March
1-7, 2018 decreases from 164 mm in the OL, to 137 mm in DAconst and 116 mm in DAvar. In
DAvar, SWE MAE is improved by more than 15 mm in 59% of the 68 manual measurements
taken between March 1 and March 7, 2018.

Water Year 2021 also experienced a large SWE reduction between the OL and DAvar

experiments, especially in the Swiss Alps and Eastern Dolomites. In the Dolomites region,
where SWE reductions are often greater than 100 mm, a lack of in-situ observations makes
it difficult to assess whether these reductions are realistic. However, limited measurement
sites along the Italy-Austria border suggest that the SWE reductions may be too strong (e.g.,
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Supplemental Fig. S5d). For instance, two in-situ measurements sites along the Italy-Austria
border (indicated with yellow circles in Supplementary Fig. S5a) have an average SWE de-
crease of 142 mm in DAvar, and a corresponding degradation in SWE MAE of +113 mm.
Meanwhile, southwest of these locations, 8 measurement sites in Italy (black box in Supple-
mentary Figure S5a) demonstrate contrasting improvements in DAvar SWE MAE. At these
eight sites, SWE decreases by an average of 100 mm in DAvar, with a corresponding 74 mm
reduction in SWE MAE. This result highlights some of the spatial inconsistencies of the DA
improvements, which are likely due to spatial and temporal variation in the quality of the
assimilated observations.

In the concluding sections (Lines 385–391), explicitly acknowledges that DAvar’s advantage
over DAconst is slight and not pervasive, and suggests that method choice should depend on
study goals and acceptable complexity.

In the conclusion, we will add the following text to acknowledge the limited improvement and
spatial inconsistencies. We will also suggest that the design of future studies should depend
on study goals, the DA system used, and characteristics of the assimilated observations.

“‘However, given limitations of the assimilated satellite-based snow depth product, improve-
ments from the DA, or from the implementation of a dynamic observation error in DAvar, are
limited in magnitude and not spatially consistent. As most snow DA work and operational
snow DA systems assume that the observational uncertainty is constant in space and time,
this work highlights the impact of a these assumptions, and the importance of observation
uncertainty considerations when designing a DA system. Future studies should put effort into
the consideration of observation uncertainties and the parameterization of observation uncer-
tainty should depend on study goals, the DA system used, and specific characteristics of the
assimilated observations.”

Line-by-line:

Line 73: add PBS downscaling citations (Bachand 2025; https://doi.org/10.1175/JHM-D-24-
0131.1).

We will modify the sentence in L73 and add the suggested citation: “In particular, particle
batch smoothers have been commonly applied to create snow reconstructions [Margulis et al.,
2015, Baldo and Margulis, 2018] or to downscale model variables such as precipitation [Girotto
et al., 2024, Bachand et al., 2025].”

Lines 75, 100, 114: insert https://doi.org/10.5194/egusphere-2025-978 wherever relevant to
substantiate recent usage and performance.

We will add the above citation to the following sentences:

• “Recent studies have used both particle batch smoothers and the EnKF to assimilate
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SAR-based snow depth retrievals from Sentinel-1 (S1), thereby improving modeled snow
depth, SWE and streamflow compared to in-situ measurements [De Lannoy et al., 2024,
Brangers et al., 2024, Girotto et al., 2024, Mirza et al., 2025].”

• “Recent work by Mirza et al. [2025] has questioned the utility of assimilating S1 snow
depth retrievals, highlighting inconsistencies in temporal and spatial errors of the SDS1

in the Western United States.”

• “ERA5 has previously been used as atmospheric forcing in other snow DA studies [Pflug
et al., 2024, De Lannoy et al., 2024, Mirza et al., 2025]...”

Section 2.1: Section 2.1 name is misleading: the title (“Noah-MP land surface”) suggests a
model description, but the text mixes model and forcing details. Rename to “Model setup
and data” or similar, and keep model vs. forcing clearly separated

As suggested, we will rename Section 2.1 “Model setup and data”. To clearly separate model
and forcing we will further add two subsections: “2.1.1 Noah-MP land surface model” and
“2.1.2 Atmospheric forcing for Noah-MP”.

Line 260: compare medians (and re-test significance on medians if earlier tests used means).

We will report the median SD MAE values and test significance on these medians. As de-
scribed above, we also use a Mann-Whitney U test to test for significantly different distribu-
tions of non-normal data.

“Both the DAconst and DAvar experiments improve these metrics, with site-average MAE
values of 0.237 m and 0.215 m (median values of 0.207 m and 0.185 m), RMSE values of
0.292 m and 0.268 m, and biases of 0.106 m and 0.055 m, respectively.”

“While improvement in MAE from the OL experiment is not significant for DAconst (Mann-
Whitney U test p-value = 0.59, median-test p-value = 0.68 ), the MAE improvement is slight,
but significant for DAvar (Mann-Whitney U test p-value = 0.001, median-test p-value =
0.03 ).”

Lines 295–300: replace “substantial” with exact mm values and note that benefits must be
weighed against DAvar complexity.

We will modify this text with: “In the OL experiment, we observe a positive bias for low
observed SWE and a negative bias for high observed SWE (Fig. ??c), similar to the bias
patterns seen for snow depth. The DAvar experiment reduces both biases, with the largest
improvements occurring for low observed SWE values. For instance, for in-situ SWE below
200 mm, the bias is reduced by 52% in DAvar compared to the OL (OL bias = +166 mm,
DAvar bias = +80 mm), meanwhile the bias in-situ SWE measurements above 600 mm is
reduced by 7% in DAvar (OL bias = -362 mm, DAvar bias = -335 mm).”

Lines 301–314: report actual numbers; avoid “substantial.”
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As discussed above, we will modify to text in these lines to include a more quantitative
analysis, avoiding subjective language.
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