Reviewer 1

This manuscript explores the assimilation of a machine learning-derived Sentinel-1 snow depth
product into a NOAH land surface model using a dynamically varying observation error. While
the approach is innovative and addresses an important limitation in current snow data assim-
ilation systems, the demonstrated improvements over the static error method are relatively
modest/marginal and not consistent across space or time. Given the added complexity of
implementing a dynamic error model, I do not fully agree with the authors’ conclusion that
this approach provides a clear performance advantage. The manuscript has potential, partic-
ularly if it reframes the findings to emphasize that the benefits of dynamic error observation
methods are highly dependent on the pattern and variability of observation errors. One has
minimal leverage on the other, and a more thorough error characterization is essential for
selecting an appropriate DA strategy for the problem at hand.

We thank the reviewer for their thoughtful and helpful comments and we believe that
our revised manuscript is much improved as a result. Our responses below, are in red, with
manuscript text in dark red and additions to the manuscript in italics.

Major Comments

Comment 1 - Result:

While the authors claim that the Dvar experiment outperforms DA onst in terms of snow depth
and SWE estimation, the practical improvement is marginal at best. For snow depth, the
spatial ACC increases only slightly—from 0.72 (DAconst) to 0.73 (DAyar)—a mere 0.01 gain
(Figure 3c), which is unlikely to represent a meaningful enhancement in most applications.
The temporal ACC comparison (Figure 3d) shows that just 52% of sites improve with DAy,
while nearly half do not, and 11% of sites degrade by more than 0.02.

The improvements in spatial and temporal ACC seem small because the model-only run
already does a good job at representing the spatial and temporal snow depth patterns, as the
model parameterizations and forcing have been previously tuned for optimal results [Brangers
et al., 2024]. Indeed, the OL experiment boasts an average spatial ACC of 0.71. However,
we can see from Figure 3c that the improvements of DAy, compared to the OL are more
than double those from DA.gnst. We will modify the text in L208-213 to highlight that all
experiments well-represent spatial and temporal snow depth patterns in response to the above
concern:

“While the OL experiment already does a good job at representing spatial snow depth patterns
(spatial ACC = 0.71), Figure 3c highlights that, for most of the snow season, the DAyay
experiment offers slight improvements in the representation of these spatial patterns. Averaged
across the entire year, the spatial ACC increases from 0.71 for the OL experiment to 0.72 for
DAconst and to 0.73 for DAy,,. The greatest improvement in spatial ACC for DA, occurs
during the early snow season (November), with values exceeding those of the OL and DA opst



experiments by 0.058 and 0.047, respectively. From December through April, the spatial ACC
for DA, remains approximately 0.021 greater than that of the OL experiment. By mid-April,
all three experiments exhibit similar performance in capturing spatial snow depth patterns.
Additionally, both DA const and DAy well-capture temporal snow depth patterns, with average
temporal ACC values of 0.68 and 0.72, respectively. The improvement in temporal ACC for
DAy, from both the OL and DA opst is statistically significant (p < 0.01, Fig. 3d). Across
the 948 sites evaluated, 491 sites (52%) have an improved temporal ACC in DAy, (> 40.02
compared to DAcopst ), while only 103 sites (11%) experience a deterioration in temporal ACC
(< -0.02 compared to DAcopst).”

Further, while temporal and spatial ACC are useful metrics for understanding how well
the OL and DA experiments capture spatial and temporal snow depth patterns, from a water
resource perspective, MAE (or RMSE) and bias are more meaningful statistics. For this
reason, most of our Results section focuses on these error and bias metrics. We will further
address reviewer concerns regarding MAE and bias improvements in response to the reviewer
comments below.

Similarly, the MAE reduction from DAconst to DAyar occurs at only ~51% of sites, with
12% worsening. These statistics reveal that the advantage of DA.,; is not robust or generaliz-
able. The pattern is echoed in the SWE evaluation, where only 56% of sites see improvement
in MAE under DA, compared to DAcopst- In other words, nearly half the sites experience no
benefit or deterioration, which raises questions about the reliability of the variable uncertainty
approach. This is consistent with SDD and SCF evaluation (Figures 7 and 8).

First, a 51% improvement vs. a 12% deterioration at sites is convincing considering the
representativeness error of in-situ sites in general. Further, while the improvements seem
small at individual in-situ sites, these changes may be amplified when applied across the
whole European Alps domain. Previous work has demonstrated that small improvements in
SD or SWE lead to further improvements in simulated river discharge [Brangers et al., 2024,
De Lannoy et al., 2024]. Regarding sites that experience a deterioration: snow depth retrieved
from the Sentinel-1 satellite (either through the conceptual snow depth retrieval algorithm of
Lievens et al. [2022], or through the ML-based retrieval of Dunmire et al. [2024] (SDjsr), is
not uniformly robust or necessarily generalizable across all time and space. Many papers have
previously demonstrated the limitations of these SAR-based snow depth retrievals [Broxton
et al., 2024, Hoppinen et al., 2024, Dunmire et al., 2024]. C-band SAR further appears to be
sensitive to snow stratigraphy [Brangers et al., 2024], thus the intensity of snow layering can
influence the retrieved snow depth at sites with otherwise similar in-situ snow depth. Given
these limitations, there will likely always be locations where the assimilation of a SAR-based
snow product deteriorates the simulated snow depth. The DA, experiment is generally
more influenced by the observational information than DA.nst and as such, the performance
will be deteriorated in locations where the observations are more inaccurate than the OL
experiment. Figure 3b in the manuscript demonstrates that this occurs for a minority of
sites. While we have accounted for some of the known limitations of the ML-based snow
depth retrieval by not assimilating the SDjsr, product over glaciers or forested terrain, it is
impossible to consider every single grid cell where the S1 retrievals may be unreliable. Thus,
there remains a relatively small number of sites that experience a deterioration in the DAy,
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Review Figure 1: Snow depth estimates and independent in-situ measurements from an ex-
ample site. The dark blue shading represents £1 standard deviation of the OL ensemble
snow depth. The magenta dots represent the assimilated SDjsr retrievals, with error bars
for the assumed observation error standard deviation from the DA onst experiment. Assumed
observation error standard deviation from DA,,, is indicated by the blue error bars.

experiment,.

The reviewer also points out that many sites experience no benefit in the DA, experiment.
This happens in locations where the DA increments are small, either because the assimilated
observations are not substantially different from the prior state, or the uncertainty of the
observations is much larger than that of the prior state. For example, we can see in Review
Figure 1 that observations in December (black box) are very similar to the simulated snow
depth. Additionally, throughout the entire timeseries, o5 from both DAcongt (blue error
bars) and DAy, (pink error bars) is substantially larger than the modeled forecast ensemble
standard deviation at this site (dark blue shading) which leads to minimal changes in either
experiment.

A deterioration in some locations resulting from the DA is perhaps in contrast to the
assimilation of lidar data, which are generally more accurate observational products and will
lead to more robust and generalizable improvements. However, as demonstrated, assimilating
S1-based snow depth observations can still provide benefit, especially as these observations
are freely available, and offer frequent, global coverage, qualities which no other snow depth
products can offer.

It is also surprising that RMSE was not reported, as it is a standard metric in snow
modeling and data assimilation evaluations, and helps better in error magnitude in snow

depth and SWE.



MAE is also a standard metric in snow modeling and data assimilation evaluation and
both RMSE and MAE are error metrics that indicate how far the predictions are from actual
values. We chose to report the MAE instead of RMSE because it gives equal weight to all
errors, is more interpretable, and is better for understanding the average error magnitude.
In the revised manuscript we will additionally include RMSE values in lines 241-245, and in
Figure 5.

“Across the 588 in-situ snow depth measurement sites used for evaluation, the corrections ap-
plied in DA, result in snow depth estimates that align more closely with in-situ observations
(Fig. 3). The OL experiment yields a site-average MAE of 0.244 m, a RMSE of 0.300 m, a
bias of 0.113 m, and a Pearson correlation coefficient of 0.75. Both the DAconst and DAy
experiments show improved performance, with site-average MAE values of 0.237 m and 0.215
m, RMSE values of 0.292 m and 0.268 m, and biases of 0.106 m and 0.055 m, respectively.”

Despite the narrative of statistical significance (e.g., p < 0.001), these results suggest that
the magnitude of improvement is small, the spatial consistency is weak, and the operational
gain may not justify the added complexity. The authors should contextualize these findings
more carefully, perhaps by comparing the computational cost or exploring why improvements
are minimal across the full domain.

First, the model-only experiments and atmospheric forcing used here have been previously
tuned for optimal performance (in Brangers et al. [2024]) and as such the OL experiment
performs reasonably well. If this previous tuning had not been applied, the improvements
from the data assimilation would be relatively larger. Nonetheless, the improvements that are
presented here are generally larger than other work which assimilates SAR-based snow depth
retrievals over the Alps. For instance, Brangers et al. [2024] assimilated the SDg; product
over the Western European Alps. They demonstrate that SWE MAE decreases from 134 mm
in the OL experiment to 121 mm with DA, a 9.7% reduction in MAE (Figure 4c/f in Brangers
et al. [2024]). In our work (which includes substantial additional SWE measurement sites),
the SWE MAE decreases from 152 mm in DAyng to 132 mm in DA,;, a 13.2% reduction. In
fact, this improvement is comparable to reduction in MAE resulting from the DA in general,
as SWE MAE reduces from 176 mm to 152 mm in DA s (-13.6%), indicating that the
implementation of DAy, can double the error reduction from DA.

Despite small improvements to SD or SWE, Brangers et al. [2024] and De Lannoy et al.
[2024] demonstrate that these changes further impact river discharge; thus, seemingly marginal
improvements can have a large downstream (pun intended) impact in the land surface model.
Additionally, these small, localized improvements will be meaningful when an entire basin or
mountain range is considered.

We agree that a stronger contextualization of the results is needed within the discussion.
We will incorporate the following paragraph into the Discussion section:

“While DAy, improves performance at most snow depth and SWE measurement sites, some
locations see little benefit, or even a deterioration in performance (approximately 12% of snow
depth sites and 20% of SWE sites). These degradations are more likely to occur where the



SDyrr, product is less accurate than the OL experiment. To account for known limitations
of SAR-based snow depth retrievals, we did not assimilate the SDjyrr, product over dense
forests or glaciers, and after March 31. Nevertheless, SDyrp, remains inaccurate in some
places, leading to localized deteriorations when these observations are assimilated. Locations
with minimal differences between DAconst and DAy, typically occur where the observations
already agree well with the OL, or where ogps >> 0, thus the DA increments are small, and
the model receives limited benefit from the observational information. Despite these spatial
inconsistencies, DAyar nearly doubles the improvement in absolute SWE error compared to
DAconst- For instance, the SWE MAE decreases from 152 mm in DAconst to 132 mm in DAy,
(-18.2%), while the overall impact of DAconst relative to the OL is a 13.6% reduction (176 mm
in the OL to 152 mm in DAconst ). Importantly, previous studies have demonstrated that even
modest improvements in snow depth or SWE from DA propagate to further improvements in
streamflow [Brangers et al., 2024, De Lannoy et al., 2024).

Finally, in DAy,;, Equation 2 (0,5 = m % SDyrr, m = 0.3) is used to adapt the standard
deviation of the observation error in space and time based on the assimilated snow depth.
This relationship is a first-order approximation that assumes that the observation error in-
creases linearly with the observation magnitude; however, o, could be defined to vary in
more complex ways. Future work could explore applying relationships where o, varies non-
linearly with the assimilated snow depth observation, or statistical parameterizations of o,
depending on other conditions such as elevation, or forest cover. Furthermore, o, could
be directly linked to the S Dy, retrieval quality which could be obtained e.g. through error
propagation. The effectiveness of a dynamic observation error also depends on the magnitude
of the forecast error, as the Kalman gain matrix, which determines the strength of the correc-
tions, depends on both forecast and observation error. To maximize benefits, the observation
error, whether static or dynamic, should be properly tuned in relation to forecast error. While
most operational systems do not currently include options to dynamically vary the observation
error, this functionality is not complicated to incorporate, and the snow-specific MuSA (Multi-
ple Snow Data Assimilation System) system does already provide an option for a user-defined
observation error that can vary dynamically [Alonso-Gonzdlez et al., 2022].”

Comment 2 - Discussion:

The discussion attempts to cover many important aspects of the study. However, it overem-
phasizes statistical significance while underplaying the marginal and spatially inconsistent
nature of the improvements. Standard metrics like RMSE are missing to give a clear picture.

Please see our responses to the above concerns for a discussion on the nature of the
improvements, an explanation of how we will better contextualize the results within the

discussion, and for our inclusion of RMSE metrics.

Key ideas like bias treatment and dynamic observation error comparison with SDg; are
introduced without prior mention or clear connection to the results or existing literature.

We discuss bias because it is a known issue in EnKF DA approaches, and thus the concerns



of a biased DA system are important to address here. We will move this discussion into a new
a subsection of the Discussion that focuses on these limitations of a bias-blind DA system:
4.1 Limitations of bias-blind DA systems

In response to a suggestion from Reviewer 2, we will introduce the comparison with the
DAg; experiment in the Materials and Methodology section:

2.4.4 Comparison to SDg; DA

To compare with previous work that assimilates snow depth retrievals from the S1 change
detection algorithm (SDg1; Lievens et al. [2022]), we compared output from our two DA
experiments with DA output from De Lannoy et al. [2024] (experiment DAg;). This DAg; ex-
periment utilized the same DA setup as in DAconst, with a static observation uncertainty (oyps
= 0.3 m), but assimilates SDg1 retrievals instead of SDyrr,. Here, we utilized 4548 manual
SWE measurements collected within the Po River basin (the study domain of De Lannoy et al.
[2024]) to compare SWE MAE between the DAconst, DAvar, and DAg; experiments.

Minor Comments

Comment 1 - Introduction:

Since this paper focuses on evaluating different data assimilation (DA) approaches, it would
strengthen the manuscript to include a more thorough overview of existing DA algorithm
literature, for context and completeness. I recommend adding this near Lines 44-51, where
the background on DA methods is introduced.

Agreed. We will provide a more thorough overview of existing DA algorithm literature in
this paragraph as follows:

“One method for assimilating observations into a physical model is via direct insertion, whereby
the model’s state variables are directly replaced with observations without any statistical blend-
ing or error weighting [Rodell and Houser, 2004, Toure et al., 2018]. Increasing in sophis-
tication, optimal interpolation methods, which consider model and observational uncertainty
to blend the model and observations using statistically optimal weights [Liston and Hiemstra,
2008], are commonly used at operational centers [Helmert et al., 2018]. Also common among
operational centers [Helmert et al., 2018/, and one of the most-used DA techniques within
the land surface modeling community is the Ensemble Kalman Filter (EnKF; Reichle et al.
[2002]). With an EnKF, the background-error covariance is not explicitly computed, but
instead estimated using an ensemble of model trajectories. While this ensemble approach
is advantageous for high-dimensional, nonlinear systems where an exact computation of the
background-error covariance is impractical, the assumption of unbiased, normally distributed
model-state errors is often violated for cumulative state variables like snow depth. Despite
its reliance on Gaussian assumptions, the EnKF has been extensively used in previous snow
data assimilation work [Slater and Clark, 2006, Durand and Margulis, 2006, De Lannoy et al.,
2012, Huang et al., 2017, Pflug et al., 2024]. An alternative solution that is commonly used
i snow DA, particle batch filters and smoothers are capable of handling non-Gaussian noise
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Review Figure 2: (Supplemental Figure 1 of revised manuscript) Actual observation error per
bin of assimilated snow depth (SDyrr). The error is computed using 588 independent in-situ
measurement sites.

and complex posterior distributions. In particular, particle batch smoothers have been com-
monly applied to create snow reconstructions [Margulis et al., 2015, Baldo and Margulis, 2018,
Girotto et al., 2024].”

Comment 1 - Methods/Results:

Justify the use of 0.05 to 1.05 bounds and increasing error with time. It would be helpful
to include spatial and temporal figures (e.g., from representative sites) comparing the input
observations against independent validation data. This could illustrate the spatial and tem-
poral variability of observation errors and help justify the bounds selected for dynamic error
modeling (0.05 to 1.05). For instance, do errors vary systematically with snow depth, such
as being lower in shallow snow and higher in deeper snow? As noted by Alonso-Gonzalez et
al. (2024), no data assimilation algorithm is universally superior; performance depends on
the data and task at hand. Thus, this figure can further support the choice of the Ensemble
Kalman Filter (EnKF) and observation error technique.

To justify the use of an observation error that varies with snow depth we will include
Review Figure 2 in the supplementary material, demonstrating how the SDj;p error varies
with snow depth at our 588 independent measurement sites:

We will also modify the following text to provide this justification, and to justify of our
0.05 and 1.05 lower and upper threshold on the observation error
“... We defined m experimentally by selecting the optimal value when comparing modeled
snow depth with in-situ observations in a subset region (6-8 °E, 45-46 °N). Here, we used
m = 0.3. Fquation 2 assumes that o varies linearly as a function of assimilated snow
depth. Supplemental Figure 1 demonstrates that this assumption is valid at independent in-
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Review Figure 3: (Supplemental Figure 2 of revised manuscript) Standard deviation of the
forecast error (o) per bin of forecast snow depth (SDy). oy is computed as the standard
deviation of the ensembles for the OL.

situ measurement sites. For SDysr, below 0.25 m, the average error of the SDyr, product
compared to in-situ measurements is 0.05 (Supplemental Figure 1), and as such we chose this
as a minimum threshold value for ous (Equation 2). Setting this minimum threshold also
avoids issues when SDyyr, (i,t) = 0 m. We can see from Supplemental Figure 1 that there are
no assimilated snow depths above 3 m at these in-situ measurement sites, making it difficult to
characterize the observation error for deeper assimilated snow depths. As such, we also defined
an upper threshold for oups of 1.05 m, corresponding to an assimilated snow depth of 3.5 m
(Equation 2). This value was also chosen as an upper threshold because we observed that oy,
which represents the uncertainty in the model-only (OL) simulated snow depth, given by the
standard deviation of the model ensembles, levels off above 3.5 m snow depth (Supplemental
Figure 2). We chose to reflect this feature of the forecast error in our characterization of the
observation error.”

Line to Line Comments

1) Lines 17-29 would be more effective as a single cohesive paragraph. The current break into
two paragraphs disrupts the logical flow and makes the message harder to follow.

We will merge these two paragraphs into a single paragraph.

2) Lines 30-43 discuss various SWE estimation methods, but some other approaches such
as spaceborne laser altimetry (e.g., ICESat/ICESat-2), Sentinel-2, and MODIS, are missing
and should be acknowledged for completeness. Additionally, the paragraph uses SWE and
snow depth somewhat interchangeably (line 42). It would strengthen the clarity to note



explicitly that snow density is required to convert snow depth into SWE.

We will update the text in this paragraph to mention other satellite-based SWE estimation
methods:

“Snow depth has also been retrieved using satellite observations, which have the benefit
of providing frequent, global coverage [Lievens et al., 2019]. One approach estimates snow
depth by comparing digital elevation models (DEMs) from snow-on and snow-off conditions.
These DEMs can be generated from satellite laser altimetry such as ICESat-2 [Enderlin et al.,
2022, Deschamps-Berger et al., 2023, Besso et al., 2024] or from very-high-resolution stereo-
scopic satellite imagery via photogrammetric methods [Marti et al., 2016, Shaw et al., 2020,
Deschamps-Berger et al., 2020]. Globally, passive microwave and synthetic aperture radar
(SAR) observations are more commonly used to estimate snow depth. [Kelly et al., 2019,
Luojus et al., 2021, Lievens et al., 2022]. However, passive microwave imagery has a coarse
spatial resolution...”

We will also clarify the distinction between snow depth and SWE at the beginning of the
paragraph:

“Despite the importance of snow within Earth’s climate and as a natural resource, accurately
quantifying snow mass (or snow water equivalent, SWE) in mountainous, complex terrain
remains a challenge. Because SWE is difficult and costly to directly quantify [Dozier et al.,
2016], measurements and retrieval algorithms more commonly focus on snow depth, which is
related to SWE via the snow density.”

3) Line 58-59: particle batch filters and smoothers. can be more computationally expensive
given the large number of particles required.” While this is generally true for particle filters, it
is not necessarily the case for particle batch smoothers (PBS). For example, Alonso-Gonzélez
et al. (2024) showed that PBS was less computationally expensive than EnKF and other
particle-based methods across multiple particle counts (100, 200, 300). The authors should
either revise the statement to reflect this variability or cite relevant studies to justify the
statement.

We will modify the paragraph that contains lines 58-59 in accordance with this reviewer’s
first minor comment. Our modifications will provide more background details for other various
DA methods used in the snow community. In our modification, we will also remove the
comment that particle batch filters and smoothers can be more computationally expensive
given the number of particles required.

4) Line 67/86: Report the accuracy metrics from Lievens et al. compared to those from
Dunmire et al. (2024). Additionally, please clarify that higher accuracy was achieved when
evaluated over the European Alps only, as this distinction is crucial for understanding the
geographic limitations of these methods.

Following L67, we will add the following sentence to provide metrics for the conceptual
[Lievens et al., 2022] and ML-based [Dunmire et al., 2024] models: “For instance, compared



to 798 Alps-wide in-situ measurement sites, the ML model has an average site mean absolute
error (MAE) of 0.18 m and an average site bias of -8 mm, compared to an MAE of 0.22 m
and a bias of -99 mm for the conceptual model, respectively.” We will also clarify that that
these metrics are valid over the European Alps specifically.

Following .86, we will add the following text to provide metrics for the superiority of ERA5
forcing on modeled snow depth accuracy and bias: “From Brangers et al. [2024], the ERAS,
MERRA-2, and M2CORR atmospheric forcing led to average modeled snow depth MAEs of
0.367 m, 0.404 m, and 0.434 m, and average snow depth biases of -0.07 m, +0.138 m, and
-0.363 m, respectively, compared to in-situ measurement stations in the Western FEuropean
Alps (Figure 10, Brangers et al. [2024]).”

5) Line 62-73: Clarify that the primary goal of this work is to assess the utility of incor-
porating dynamic observation errors versus static ones, because there are studies that have
compared the performance of different algorithms already.

We will clarify that the primary goal of this work is to assess the utility of incorporating
dynamic observation error versus static ones.

6) Line 101-102: specify the reported accuracy metrics (same as 67 and 86). What does
better mean?

We will modify the sentence in LL102 as follows to include accuracy metrics: “When com-
pared to in-situ snow depth stations and airborne photogrammetry snow depth maps, SDyy,
is shown to reduce MAE and improve bias compared to SDgy (MAE reduction from 0.22 m for
SDgi to 0.18 m for SDyyr,, bias improvement from -99 mm for SDgy to -8 mm for SDyr,).”

7) Line 173-184: The evaluation section introduces Snow Disappearance Date (SDD) and
Snow Cover Fraction (SCF) without prior mention or justification in the earlier sections of
the manuscript. To improve clarity and coherence, it would be helpful to introduce these
variables earlier in the manuscript, explain their relevance to the study objectives.

Snow Disappearance Date and Snow Cover Fraction are relevant to the study objectives
in that they are used to evaluate the DA experiments. Therefore, we believe that it is
most appropriate to introduce these concepts in the Evaluation subsection of Materials and
Methodology. We have restructured this section (2.4 Evaluation) to better introduce these
concepts and the materials used for this evaluation by adding further subsections. This revised
structure will be as follows:

2.4 Evaluation

For each of our three experiments (OL, DAconst, DAvar), we utilized a variety of in-situ and
satellite-based products to evaluate 1) snow depth, 2) SWE, and 3) snow cover fraction (SCF)
and snow disappearance date (SDD).

2.4.1 Snow depth evaluation

10



2.4.2 SWE evaluation

2.4.83 SCF and SDD evaluation

8) Figure 2:

e Why were these two sites chosen? State reason (representativeness, topography, etc)
either in the figure description or the result section.

We will add the following text to the figure caption: “These two sites were chosen be-
cause a continuous time series of in-situ data was available, and these sites are generally
representative of locations where the DA removes and adds snow.”

e Axis can be shared for better readability (general comment for all figures).

We will share and simplify the x-axis of the graph for better readability (see Review
Figure 4)

Line 240-243: State the bias-corrected numbers for the constant as well and compare them
to the variable. “Both DAconst and DAy, also substantially improve the Pearson correlation
coefficient. ..” report numbers.

We will incorporate in-text numbers as suggested for the DAconst bias and the Pearson
correlation coefficients:

“As a result, the overall average SWE bias decreases from +81 mm in the OL to +18 mm
in DAy,,;. This bias reduction is significantly greater than that for DAconss (+76 mm bias),
which only marginally corrects the high bias for low observed SWE, due to minimal model
adjustments for shallow assimilated snow depths (e.g., Fig. 5a). Both DAconst and DAy,
also substantially improve the Pearson correlation coefficient (R = 0.60 for OL, R = 0.72 for
DAconst, R = 0.71 for DAy, ), indicating a stronger correlation with measured SWE.”

9) Line 325: The claim that dynamic observation error estimation “had not yet been
explored” overlooks prior work that has implemented such approaches (e.g., Alonso-Gonzalez
et al., 2022). While these studies may not compare dynamic and constant errors directly, they
do demonstrate prior use of dynamic error treatment in snow science. I suggest rephrasing to
acknowledge existing efforts and clarify this study’s specific novelty.

We assume that the Alonso-Gonzélez et al (2022) reference here is referring to the MuSA
paper in Geoscientific Model Development. According to this manuscript, a dynamic obser-
vation error was not implemented. In Section 2.3, the authors state: “A temporally and
spatially static constant scalar corresponding to the assumed observation error variance must

11
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Review Figure 4: (Figure 2 in the Manuscript) Snow depth estimates and independent in-
situ measurements at two example sites. (a) Snow depth from DAconse (red, left) and DAy,
(orange, right) compared with the OL (navy) from a measurement station in Austria (13.6228
°E, 47.0944 °N, 1050 m elevation). The shading represents +1 standard deviation in the model
ensembles. The sage green dots represent the assimilated S Dy, retrievals, with error bars for
the assumed observation error standard deviation (o, , Equation 2). (b) Same as (a), but
for a different measurement station in Switzerland (7.7836 °E, 45.9872 °N, 2948 m elevation).
These two sites were chosen due to a lack of gaps in the in-situ measurements and their
general representativeness of locations where the DA removes and adds snow.
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be provided for each type of observation that is to be assimilated.” [Alonso-Gonzalez et al.,
2022]. In fact, options for a dynamic observation error in MuSA were not incorporated until
to v2.1, which was released on May 8, 2024.

However, there does exist other prior work that has utilized dynamic observation errors
and as such we will modify this statement accordingly: “While the specification of observation
uncertainty substantially influences DA performance, in snow DA systems, this uncertainty
is often prescribed as a constant value [Helmert et al., 2018]. Some previous studies have
incorporated dynamic observations errors (e.g., Magnusson et al. [2017], Oberrauch et al.
[2024]); however, the utility of dynamic observation errors, relative to an assumed static
observation error, in snow DA has not yet been explored prior to this work.”
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