
Reviewer 2

This manuscript performs an assimilation experiment over the European Alps to investigate
several advances to the modeling and assimilation scheme. Specifically, they consider the
assimilation of a snow depth machine learning product based on Sentinel-1 observations and
the development of a dynamic observation error for their Ensemble Kalman Filter setup. I
find this study to be very compelling with interesting results, and I only have a few minor
comments.

We thank this reviewer for their thoughtful and helpful comments and we believe that
our revised manuscript is much improved as a result. Our responses below, are in red, with
manuscript text in dark red and additions to the manuscript in italics.

1) Are the snow depth ML estimates available everywhere and thus assimilated everywhere
or are there flags to exclude assimilation in higher uncertainty areas where SAR does not
perform well, like dense forests?

The final sentence in Section 2.3 Data assimilation approach and experiments
explains the flags used to exclude assimilation under certain conditions. We will modify this
sentence slightly so that these conditions are more obvious:

“We assimilated SDML estimates weekly each year from September 1 through March 31,
excluding assimilation further into the ablation period when wet snow complicates the S1
signal. Due to limitations of S1 in forested terrain, and the unsuitability of the ML SD
retrieval over glaciated terrain, we do not assimilate over forested areas or glaciers. Following
De Lannoy et al. [2024], we also do not assimilate when the soil or vegetation temperature is
above 5 ◦C.”

2) How representative are the in situ observations of the surrounding ∼1km to match the
modeled grid?

This is a good question. To address this, we will add the following section to the Discussion:

4.2 Limitations of site evaluation representativeness

Previous studies have shown that mountain snow is highly variable, and point-scale mea-
surements don’t necessarily well-represent the surrounding area, even at spatial scales as fine
as 10 m [López-Moreno et al., 2011, Fassnacht et al., 2018]. Meromy et al. [2013] found that
approximately half of the SNOTEL sites they analyzed where representative of the surround-
ing 1 km area, defining “representative” as snow station biases within 10% of the surrounding
mean observed depth. More recently, Herbert et al. [2024] reported that roughly one-third of
476 paired lidar–station data observations were representative at the 1 km scale, with repre-
sentativeness defined as in-situ measured snow within ±10 cm of the lidar-mean snow depth
at that scale. However, they also showed little change between the 500 m and 1 km scales,
with 35% of stations considered as representative at 500 m. Generally, in-situ snow stations
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exhibit a high bias as these sites are often located in flat terrain that preferentially accumulates
snow [Grünewald and Lehning, 2011].

In this study, we use in-situ snow depth and manual SWE measurements as the best-
available reference in the European Alps that cover a range of terrain conditions and spans
many years. Unlike in the western United States, where high-resolution spatial snow depth
products from the Airborne Snow Observatory and NASA SnowEx missions are available,
such products are extremely limited in the European Alps. As such, it is not feasible to
assess the representativeness of all 588 snow depth measurement sites and 8211 manual SWE
measurements at the 1 km scale, and these point-scale measurements provide the best available
Alps-wide, multi-year data available for evaluation. Nevertheless, by leveraging a large network
of sites that span a range of elevations and terrain types, we can mitigate some of the inherent
limitations of using point measurements for evaluating the 1 km gridded product.

3) Are there any spatial datasets, like lidar, for evaluating modeled snow depth over a
broader area?

Unfortunately, spatial datasets such as lidar are very limited over the European Alps. A
number of airborne photogrammetry products exist for the Dischma Valley in Switzerland, but
comparable, freely available datasets are non-existent elsewhere in the Alps. Moreover, most
of these available spatial snow depth datasets (with the exception of two products analyzed
in Dunmire et al. [2024]) were used in training the SDML product and therefore cannot
be considered as independent evaluation sources. Given the extremely limited spatial and
temporal coverage of these spatial datasets, we instead focus our evaluation on in-situ snow
depth stations and manual SWE measurements. These datasets, collected across multiple
nations, span a range of elevations and terrain conditions, and provide continuous multi-year
records, offering a more robust basis for assessing the impact of the DA.

4) In Figure 2b, the OL performs better than either DA scenario compared to the in situ,
though DAvar performs better than DAconst. Is this similar behavior in other locations where
the initial OL estimate is already close to the in situ truth?

Yes, inevitably there are locations where the OL model run is closer to reality than the
observations and the assimilation leads to a deterioration. Figure 3a demonstrates how fre-
quently this phenomenon occurs. We can see here that DA leads to a deterioration in MAE at
16% of Alps-wide measurement sites, with only ∼1% experiencing a deterioration > 125 mm.
We will include this information in the text of the manuscript as follows:

“A measurement site with assimilated snow depths substantially greater than 1 m is
demonstrated in Figure 2b. In this case, the observation uncertainty is smaller for DAconst than
for DAvar, resulting in stronger posterior state adjustments in DAconst. At this measurement
site we see that the OL experiment is closer to the in-situ snow depth than the assimilated
observations, leading to a deterioration in model performance when the DA is applied. This
phenomenon occurs at 16% of all measurement site (Fig. 3a), with only 1% experiencing a
deterioration in SD MAE greater than 125 mm.”
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5) How does the DA perform when snow needs to be added to the system? Figure 2a
shows the DA reducing the modeled snow down to match the observations. Though in later
results, it appears that DA mostly reduces snow in the model.

Here the DA does mostly reduce snow because the OL has a positive snow depth bias due
to an overestimation of precipitation at lower elevations in ERA5. However, we can see in
Figure 9 that both DAconst and DAvar generally add snow above approximately 2250 m. We
will add the following paragraph in the Discussion section to discuss DA performance when
snow needs to be added to the system:

“Here, we highlight the implications of accounting for dynamic estimates of observation un-
certainty and demonstrate that this system results in a more realistic modeled snow state.
Implementing the dynamic observation error generally improves performance in both places
the DA adds and removes snow. In the OL experiment, snow depth has a positive bias at low
elevations and a negative bias at high elevations (Fig. 4a). The DAconst experiment applies
a static observation error that is relatively too large for shallow assimilated snow depths (e.g.
Fig. 2a), limiting snow removal at lower elevations and leading to a still large positive bias at
these locations. At higher elevations (above ∼1500 m), the assimilated observations exhibit a
strong positive bias (Fig. 4d). The relatively small static observation error for deeper assim-
ilated snow depths (e.g. Fig. 2b) leads to too much added snow in some cases, particularly
above 2500 m (Fig. 4b). In contrast, in DAvar, less snow is added at high elevations (Fig. 9),
resulting in improvements where snow needs to be added as well (Fig. 4f).”

We will also add a new panel to Figure 4 (see Review Figure 1), showing the bias of the
assimilated observations for the various elevation bands.

6) Lines 226-230: You mentioned that some of the increases in MAE at higher elevations
could be due to limitations in the model during the melt season or biases from the assimilation.
In your results, do you find that DA tends to add to remove snow at the higher elevations?
How does the ML snow depth product perform at higher elevations where I assume the snow
is deeper.

We can see from Figure 9 that both DAconst and DAvar both add snow above approximately
2250 m. To address this comment, we will add a subpanel, depicting the bias of the SDML

assimilated observations for different elevation bands, to Figure 4 (See Review Figure 1). This
panel indicates that the assimilated observations exhibit minimal bias below 1500 m and a
positive bias above 1500 m. We will modify Lines 226-230 as follows: “However, an increase in
MAE at high elevations during the melt season (March onwards) suggests a tendency for the
DA experiments to retain snow for too long, which could be due to limitations in the modeled
melt processes or biases introduced by the assimilated observations at higher elevations (e.g.,
Figure 4d).”

7) Figure 4e: Do you have an idea why DAvar degrades performance around peak accu-
mulation for the 2000-2500 m elevation band? Aside from that line, it appears like DAvar

improves upon DAconst for each elevation band throughout the winter
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Review Figure 1: (Revised Figure 4 in manuscript) Seasonal evolution of bias and mean
absolute error (MAE) stratified by elevation. Panels (a)-(d) show the seasonal snow depth
bias for the (a) OL, (b) DAconst, and (c) DAvar experiments, and for (d) the assimilated
observations (SDML). Bias is computed relative to in-situ snow depth measurements and is
grouped by elevation bands (indicated by different colors). Panels (e)–(f) show the change
in MAE between the OL and DAvar experiments (e) and between the DAconst and DAvar

experiments (f). Negative values in (e)–(f) indicate improved performance (decreased MAE).
Statistics are computed for each day, averaged over the entire 8-year period (2015–2023). A
14-day smoothing is applied to each timeseries and the number of in-situ measurement sites
within each elevation band is provided in the legend.
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Review Figure 2: Seasonal evolution of snow and bias for sites in the 2000-2500 m elevation
band. (a) Seasonal snow depth bias for the OL (blue) and the assimilated observations (black).
Bias is computed relative to in-situ snow depth measurements from sites within this elevation
band. (b) Mean snow depth at these same in-situ measurement sites from DAconst (red) and
DAvar (orange).

Yes, Review Figure 2 shows side-by-side comparison timeseries of the bias for the OL and
the assimilated observations for sites between 2000 and 2500 m elevation. We see that the
OL has a positive snow depth bias until approximately February and then a negative snow
depth bias until May, while the assimilated observations have a positive bias throughout the
entire snow season. However, in the early season (before January), the assimilated observa-
tions have a lower magnitude bias than the OL experiment. As discussed throughout the
manuscript, DAvar leads to more effective snow reductions due to its lower assumed obser-
vational uncertainty for shallow assimilated snow depths. As such, in February, DAvar has a
lower average snow depth than DAconst for sites between 2000 and 2500 m (Review Figure
2). This indicates that a lack of early season corrections in DAconst can propagate to better
simulated late-season snow, although this impact is limited to specific to sites where the snow
depth bias is not consistent throughout the snow season.

We will discuss this phenomenon in the following text in the Discussion section:

“However, we see that the DAvar experiment performs worse than DAconst between February
and May within the 2000-2500 m elevation band (Fig. 4f). In this range, the OL experiment
has a positive snow depth bias until approximately February, followed by a negative snow
depth bias until May (Fig. 4a). DAvar more effectively reduces this early season positive bias,
resulting in lower mean snow depths later in the season, and poorer performance during the
period when the OL is negatively biased. This suggests that a lack of early-season corrections
in DAconst can, in some cases, propagate to more accurate late-season snow depths, although
this effect is likely limited to locations where the snow depth is not consistently positively or
negatively biased throughout the season.”

8) Figure 5: It appears like the modeled SWE almost reaches an asymptote around 600-
700mm of SWE. Any ideas why the model is underestimating at the deepest SWE values?
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This apparent asymptote is likely primarily due to limits with both the precipitation forc-
ing and the observations. Indeed, Raleigh et al. [2015] demonstrate that forcing bias is the
dominating uncertainty source in snow modeling. The atmospheric forcing used in this study
comes from the relatively low resolution ERA5 atmospheric reanalysis product (31 km hori-
zontal resolution). As such, the precipitation forcing for the land surface model has a coarse
horizontal resolution and is unable to resolve orographic precipitation, resulting in an under-
estimation of precipitation at high elevations and a corresponding underestimation at high
SWE. From Figure 2b in Dunmire et al. [2024] we see a similar asymptotic behavior of SDML

for recorded snow depths above ∼3.5 m, likely attributed to these deep snow measurements
being underrepresented in the ML training. To discuss this in the manuscript we will add the
following paragraph in the Discussion section

“In the OL, we see an overestimation of SWE at measurement sites with low recorded SWE,
and an underestimation of SWE at measurement sites with high recorded SWE (Fig. 5c).
Previous work has demonstrated that forcing bias is the dominant source of uncertainty in
snow modeling [Raleigh et al., 2015]. Here, we use ERA5 atmospheric forcing, which has a
relatively coarse spatial resolution (31 km). While we apply a standard lapse-rate correction
to downscale the near-surface air temperature forcing, precipitation is not downscaled, and
therefore is unable to resolve orographic precipitation, resulting in relatively low precipitation
and SWE spatial variability, and an underestimation of high SWE values. Furthermore, the
SDML product has also been demonstrated to underestimate deep snow, likely due to these
measurements being underrepresented in the ML training [Dunmire et al., 2024]. As such,
the assimilation of this product is unable to fully correct the negative SWE bias for measured
SWE > ∼800 mm, as can be seen in Figure 5d/e.”

9) Figure 7: The difference plot for DAvar is much jumpier than that from DAconst. Can
you explain that? Does DAvar have more ephemeral snow that comes and goes throughout
the winter and spring? I assume much of that is from low elevation snow?

Yes, in DAvar snow at low elevation and early in the snow season (October, November) is
often lower than in DAconst and therefore melts away more quickly, resulting in the jumpier
nature of the DAvar difference timeseries. We will add the following sentence to the manuscript
to describe this phenomenon: “The relative difference in snow-covered area between DAvar and
the OL fluctuates more than for DAconst (Fig. 7a), primarily due to the shallower early-season
and low-elevation snowpacks in DAvar which melt out more quickly.”

10) Lines 264-268: Do you have any time series with snow cover comparisons to IMS or
Copernicus?

It would be difficult to compare snow cover time series with the Copernicus product. The
Copernicus Fractional snow cover product is not gap filled, meaning that the data is not
spatiotemporally continuous. The model’s strong overestimation of snow cover (described
in Section 3.3, and in L360-371) compared to the IMS product is temporally consistent and
therefore a timeseries comparing snow cover from our experiments with the IMS product
would not provide substantial new information beyond that which is already presented in
Figure 8, Supplemental Figure S4 and the text.
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11) Figure 8: Does it make more sense to have the y axes on these plots be the percentage
of sites within each elevation band so it is easier to compare against 25%, 50%, etc of sites?

Thanks for the suggestion. We will change the y-axis to ‘Cumulative fraction of sites with
snow disappearance’ instead of ‘Cumulative sites with snow disappearance’.

12) Lines 307-320: I think this would be better in the methods. It feels odd to introduce
a new dataset in the discussion section.

Agreed, we will introduce the DAS1 dataset in a new subsection of the methodology:

2.4.4 Comparison to SDS1 DA

To compare with previous work that assimilates snow depth retrievals from the S1 change
detection algorithm (SDS1; Lievens et al. [2022]), we compared output from our two DA
experiments with DA output from De Lannoy et al. [2024] (experiment DAS1). This DAS1

experiment utilized the same DA setup as in DAconst, with a static observation uncertainty
(σobs = 0.3 m), but assimilates SDS1 retrievals instead of SDML. Here, we utilized 4548 man-
ual SWE measurements collected within the Po River basin (the study domain of De Lannoy
et al. [2024]) to compare SWE MAE between the DAconst, DAvar, and DAS1 experiments.
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J. I. López-Moreno, S. R. Fassnacht, S. Begueŕıa, and J. B. P. Latron. Variability of snow
depth at the plot scale: implications for mean depth estimation and sampling strategies.
The Cryosphere, 5(3):617–629, 2011. ISSN 1994-0424. doi: 10.5194/tc-5-617-2011.

Leah Meromy, Noah P. Molotch, Timothy E. Link, Steven R. Fassnacht, and Robert Rice. Sub-
grid variability of snow water equivalent at operational snow stations in the western USA.
Hydrological Processes, 27(17):2383–2400, 8 2013. ISSN 0885-6087. doi: 10.1002/hyp.9355.

M. S. Raleigh, J. D. Lundquist, and M. P. Clark. Exploring the impact of forcing error
characteristics on physically based snow simulations within a global sensitivity analysis
framework. Hydrology and Earth System Sciences, 19(7):3153–3179, 7 2015. ISSN 1607-
7938. doi: 10.5194/hess-19-3153-2015.

8


