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Abstract: From typhoon rainfall to slope failure, this study addresses the urgent need for15

typhoon-adapted hazard warning systems in mountainous regions like Zixing City, China. We16

develop an integrated framework to optimize dynamic susceptibility models and rainfall17

thresholds by leveraging machine learning and spatiotemporal rainfall analysis. Using buffer-18

based negative sampling (0.1–5.0 km) and variable weighting methods (IV, CF, FR), we19

compare SVM and LightGBM models. The SVM model with FR input at 0.5 km buffer20

achieved the highest accuracy (AUC=0.913), correctly classifying 86.4% of landslides in21

high-risk zones, revealing how typhoon-driven hydrology interacts with slope instability. For22

rainfall thresholds, the H24-D7 model (24-hour intensity vs. 7-day antecedent rainfall)23

emerged as optimal (71.8% accuracy), effectively capturing typhoon-specific triggers like24

short-term downpours and cumulative soil saturation. Kriging interpolation generated25

spatially explicit thresholds, identifying granite slopes and road-proximal areas as hotspots for26

typhoon-induced failures. The final hazard warning system, integrating susceptibility and27

dynamic thresholds, showed 71.4% overlap with historical landslides, emphasizing the critical28
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role of typhoon rainfall dynamics in slope failure prediction. This work provides a scalable29

approach for regions facing typhoon-related landslide risks, prioritizing both spatial30

heterogeneity and temporal rainfall patterns.31

Keywords: Typhoon-induced landslide; Slope failure; Hazard warning system; Dynamic32

thresholds; Landslide susceptibility mapping33

1 Introduction34

Landslides are among the most devastating natural hazards, particularly in regions with35

steep terrain, complex geology, and high rainfall variability (Thiene et al., 2017; Froude and36

Petley, 2018). As rapid urbanization and climate change exacerbate the frequency of typhoon-37

induced extreme precipitation events in coastal and mountainous regions like Zixing City,38

landslide risks have escalated, threatening lives and infrastructure (Gariano and Guzzetti,39

2016; Fan et al., 2018). Typhoons, characterized by prolonged antecedent rainfall and short-40

duration high-intensity bursts, uniquely drive slope failures through cumulative soil saturation41

and abrupt hydrological stress (Yang et al., 2017). This situation underscores the urgent need42

for advanced hazard prediction systems capable of addressing region-specific triggers such as43

typhoon rainfall patterns (Segoni et al., 2018a; Regmi et al., 2024). Despite progress in44

landslide susceptibility prediction (LSP) and rainfall threshold modeling, critical challenges45

remain. These challenges include addressing data imbalances, optimizing variable selection,46

and refining the integration of spatiotemporal risk assessments under dynamic meteorological47

conditions.48

A major challenge in LSP arises from the imbalance between landslide (positive) and49

non-landslide (negative) samples (Pourghasemi and Rahmati, 2018; Lv et al., 2022; Sun et al.,50

2023). The relatively sparse distribution of landslides compared to stable areas leads to51

datasets dominated by negative samples, complicating model training (Lombardo and Mai,52

2018). Traditional methods often mitigate this imbalance by randomly sampling non-landslide53
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points across the study area (Steger et al., 2016; Dou et al., 2023). However, such random54

selection may introduce spatial bias, as non-landslide points may still include areas prone to55

instability that are not yet identified (Kalantar et al., 2018).56

To overcome this limitation, recent approaches have employed buffer-based negative57

sampling, systematically excluding non-landslide points near known landslides (Reichenbach58

et al., 2018; Chen et al., 2017b; Yan et al., 2023). This method assumes that adjacent areas59

share similar environmental conditions (e.g., slope, lithology) and should not be classified as60

“stable” (Achu et al., 2022; Huang et al., 2020). Various buffer distances have been tested,61

ranging from tens to thousands of meters, with the optimal buffer distance being region-62

specific (Yan et al., 2019; Chen et al., 2017a). However, the influence of buffer distance,63

variable selection methods (e.g., information value (IV), certainty factor (CF), frequency ratio64

(FR)), and machine learning model architecture on predictive performance remains65

underexplored, limiting the generalizability of current frameworks.66

Landslide susceptibility prediction aims to identify areas prone to slope failure based on67

static environmental factors such as topography, lithology, land cover, and hydrology (Zêzere68

et al., 2017; Guo et al., 2024). Traditional methods often use deterministic and statistical69

approaches, including frequency ratio (FR), logistic regression (LR), and weight of evidence70

(WOE), which quantify the correlation between historical landslides and predisposing factors71

through linear or semi-linear relationships (Ciurleo et al., 2017; Reichenbach et al., 2018).72

However, these methods typically oversimplify the complex, nonlinear interactions that73

govern slope stability (Merghadi et al., 2020).74

Machine learning (ML) algorithms, such as support vector machine (SVM) and light75

gradient boosting machine (LightGBM), have emerged as powerful alternatives. SVM excels76

in high-dimensional classification, identifying optimal hyperplanes to differentiate between77

landslide-prone and stable areas, even in imbalanced datasets (San, 2014; Huang and Zhao,78
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2018). LightGBM, a gradient-boosted decision tree method, enhances scalability and79

computational efficiency, making it well-suited for large, complex geospatial datasets (Sun et80

al., 2023). Both models offer superior predictive accuracy by capturing intricate relationships81

among variables without restrictive assumptions (Yang et al., 2023; Zhang et al., 2022).82

However, the performance of ML models is sensitive to the choice of input variables and83

sampling strategies, and a comparative analysis of commonly used variable weighting84

methods (e.g., IV, CF, FR) in combination with ML algorithms remains limited.85

In addition to spatial susceptibility, temporal landslide prediction requires the definition86

of rainfall thresholds—cumulative or intensity-duration (I-D) rainfall values that trigger slope87

failure. For typhoon-prone regions like Zixing City, dynamic thresholds must account for both88

short-term extreme rainfall bursts and prolonged antecedent precipitation patterns (Guzzetti et89

al., 2020; Guzzetti, 2021). Traditional empirical methods for deriving regional rainfall90

thresholds often fail to address local geological and environmental variability, leading to91

generalized thresholds that reduce prediction accuracy (Segoni et al., 2018a; Piciullo et al.,92

2018). Recent approaches integrate multi-temporal rainfall parameters and advanced93

statistical techniques to optimize thresholds for diverse triggering mechanisms.94

Spatial interpolation methods, such as Kriging, have also been applied to generate95

continuous rainfall threshold surfaces, allowing for local variations in geological and96

environmental conditions (Huang et al., 2022; Segoni et al., 2018b). When combined with97

high-resolution susceptibility maps, this approach supports the development of integrated98

hazard warning systems that dynamically adapt to typhoon rainfall scenarios (Piciullo et al.,99

2017; Mirus et al., 2018).100

In this study, we focus on Zixing City, located in the mountainous southern region of101

Hunan Province, China, a region frequently impacted by typhoon-induced extreme rainfall, as102

a representative case study for the development of an integrated framework for optimizing103
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landslide susceptibility prediction and determining rainfall thresholds. Following the landfall104

of Typhoon “Gemei” in July 2024, which triggered over 700 landslides, Zixing’s unique geo-105

environmental conditions provide an ideal setting for investigating typhoon-driven landslide106

mechanisms. The specific objectives of this study are as follows: (1) to identify optimal buffer107

distances for negative sampling to mitigate spatial bias in imbalanced datasets; (2) to evaluate108

the effectiveness of variable weighting methods (IV, CF, FR) in combination with machine109

learning algorithms (SVM, LightGBM) for improving landslide susceptibility prediction110

accuracy; (3) to optimize dynamic rainfall threshold models for typhoon rainfall,111

distinguishing between short-term high-intensity bursts (e.g., 24-hour rainfall) and long-term112

antecedent moisture (e.g., 7-day effective rainfall); (4) to apply Kriging interpolation to113

generate spatially continuous rainfall threshold surfaces that consider local geological and114

environmental variability; and (5) to integrate the optimized susceptibility maps with the115

interpolated rainfall thresholds to develop a comprehensive hazard warning system for116

typhoon-induced landslides.117

2 Study area and data sources118

2.1 Study area119

Zixing City, situated in southeastern Hunan Province, China (25°34′–26°18′ N, 113°08′–120

113°44′ E), spans 2,746 km² and is characterized by rugged topography, with over 200 peaks121

exceeding 800 meters in elevation (Fig. 1). As a typhoon-prone mountainous region in122

southern Hunan, it faces direct impacts from Pacific typhoons, which impose dual123

hydrological threats: (1) prolonged pre-typhoon antecedent rainfall that gradually saturates124

slopes and (2) short-duration extreme rainfall during landfall that induces abrupt hydrological125

stress. For example, Typhoon ‘Gemei’ in July 2024 unleashed 412.7 mm of rainfall,126

triggering over 700 landslides and underscoring the urgent need for typhoon-specific hazard127

monitoring systems tailored to its geo-environmental conditions.128
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129

Figure 1. Geographical distribution of the study are, landslides and rainfall gauges.130

2.2 Data collection and preprocessing131

2.2.1 Compilation of landslide catalogue132

Constructing an accurate landslide catalogue is crucial for landslide susceptibility133

prediction (Reichenbach et al., 2018). In this study, a total of 705 landslide events triggered134

by Typhoon “Gemei” on July 27, 2024, were documented. The dataset was obtained from the135

Hunan Center for Natural Resources Affairs, verified through field inspections and satellite136

imagery to ensure accuracy.137

2.2.2 Landslides-related conditioning factors138

Identifying key conditioning factors is essential for delineating landslide-prone areas.139

Based on literature reviews and the study area’s geo-environmental characteristics, twelve140

factors were selected, including elevation, slope gradient, slope orientation, curvatures,141

topographic wetness index (TWI), distance to road, river, fault, normalized difference142

vegetation index (NDVI), stream power index (SPI), and lithology (Fig. 2).143
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Figure 2. Landslide-related conditioning factors.148

Topographic factors, such as elevation, slope gradient, slope orientation, TWI, SPI, and149

curvature, were extracted from a 30-meter digital elevation model (DEM) sourced from the150

Geospatial Data Cloud (https://www.gscloud.cn). Environmental factors like NDVI, distances151

to roads, rivers, and fault lines were derived from 1:50,000-scale cartographic maps and152

Landsat 8 OLI imagery, both of which were also accessible via the Geospatial Data Cloud.153

Geological composition and fault line data were obtained from 1:100,000-scale geological154

maps. Hourly rainfall data from 12 meteorological stations during Typhoon "Gemei" were155

integrated to support dynamic threshold analysis.156

For analysis, the study area was divided into 60 × 60 meter grid cells. Within this grid,157

705 landslide events were recorded, each located within a unique grid cell and treated as158

positive samples for susceptibility analysis.159

3 Methodologies160

This study proposes an integrated framework for optimizing landslide susceptibility161

prediction (LSP) and typhoon-specific rainfall thresholds within hazard warning systems (Fig.162

3). The framework includes the following key components: (1) landslide susceptibility163

prediction and mapping, utilizing twelve conditioning factors prioritizing typhoon-induced164

hydrological responses (e.g., TWI, SPI) and 705 landslide records from July 27, 2024,165

optimized with five buffer distances and evaluated using ROC curves; (2) dynamic rainfall166

threshold modeling based on typhoon rainfall parameterization, validated and spatially167

interpolated using Kriging; and (3) the integration of spatial and temporal probabilities to168

develop a typhoon-adapted hazard warning system, demonstrated through a case study in169

Zixing City.170

171
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172

Figure 3. Technical framework for developing a typhoon rainfall-induced landslide hazard warning system.173

3.1 Landslide susceptibility prediction and mapping174

3.1.1 Machine learning models175

SVM is a robust supervised learning algorithm widely used for classification in landslide176

susceptibility mapping (Kalantar et al., 2018; Wang et al., 2020). It operates by finding the177

optimal hyperplane that separates landslide-prone areas from stable regions in a178

multidimensional feature space. For typhoon-triggered landslides, SVM effectively handles179

imbalanced datasets caused by concentrated slope failures in high-intensity rainfall zones. The180

SVM optimization problem is defined as:181





n

i
i

T

bw
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
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where w is the normal vector to the hyperplane, b is the bias term, ξi are slack variables, C is185

the regularization parameter, and ϕ(xi) maps input vectors to a higher-dimensional space. The186

variable yi represents the class label (-1 or 1) for each sample xi.187

LightGBM is an efficient gradient boosting framework for large datasets, known for188

training an ensemble of decision trees by iteratively adding trees that minimize errors from189

previous trees. LightGBM’s scalability is critical for processing typhoon-related geospatial190

data (e.g., hourly rainfall grids) across 2,746 km2 (Sun et al., 2023; Sahin, 2020). The191

minimized objective function is expressed as:192





M

j
j

N

i
ii yyL

1

2

1

2)ˆ(  (3)193

where iy is the true label, iŷ is the predictive value,  is a regularization parameter, and194

j represents the parameters of the model.195

3.1.2 Input variable weighting methods196

The IV method, grounded in information theory, assesses how different factors197

contribute to landslide susceptibility within a study area (Niu et al., 2024). Factors such as198

distance to roads and lithology were weighted higher in Zixing City due to their interaction199

with typhoon-induced soil saturation. The IV for each evaluation factor is determined using200

the formula below:201

SS
NNKFIV

i

i
i /

/ln),(  (4)202

where IV(Fi, K) is the information value of evaluation factor Fi in relation to landslide event K,203

Ni refers to the number of landslides, N is the total number of landslides, Si represents the area204

covered by factor Fi, and S is the total area of the study area.205

The CF is a widely utilized probabilistic technique for assessing the likelihood of206

landslide events (Zhao et al., 2021). It quantifies the prior probability of a landslide occurring207
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under various influential factor conditions using data from known landslide locations. The208

expression of CF is as follows:209
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where CF is the certainty factor for potential landslide occurrences, PPa is the proportion of211

the number of landslide points relative to the area of the influencing factor's domain, and PPs212

is the proportion of the total number of landslide points across the entire study region to the213

total area of the study region.214

The FR is a prevalent method in statistical analysis that assesses the relative impact of215

various factors on the incidence of landslides (Panchal et al., 2021). An elevated FR value216

denotes a more significant influence of a factor on the likelihood of landslides. The FR is217

determined by the following equation:218

SS
NNFR

i

i

/
/

 (6)219

where FR is the frequency ratio, Ni represents the account of landslides within the area220

corresponding to the conditioning factor, N is the total number of landslides, Si is the area221

covered by the conditioning factor and S is the total area of the study region.222

3.1.3 Buffer distance optimization223

Negative (non-landslide) samples are generated by excluding zones within five buffer224

distances (d=0.1, 0.5, 1.0, 2.0, 5.0 km) around landslide points. For each distance d, negative225

samples are selected from the remaining stable areas, balanced to match the landslide count226

(n=705). The optimal buffer is determined by maximizing the receiver operating characteristic227

curve (AUC) values across distances.228

3.1.4 Uncertainty assessment for model performance229
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To assess the SVM and LightGBM models' performance in predicting landslide230

susceptibility, we focused on the area under the AUC for both the training and test sets. AUC231

is a crucial metric for assessing classification models, especially in binary tasks like this. The232

AUC score quantifies the model's overall ability to distinguish between the positive (landslide)233

and negative (non-landslide) classes. An AUC value closer to 1 indicates better model234

performance, reflecting a higher capability to correctly classify instances.235

In landslide susceptibility prediction, the mean and standard deviation (SD) are critical236

metrics indicating central tendency and variability. Generally, a lower mean and SD in LSP237

distribution suggest lower uncertainty and less spread in predicting landslide susceptibility238

(Huang et al., 2022).239

3.2 Effective rainfall threshold modeling240

3.2.1 Rainfall parameterization and threshold calculation241

Typhoon-induced landslides are generally influenced by a combination of antecedent242

moisture conditions and immediate precipitation, rather than by isolated rainfall events243

(Mondini et al., 2023; Tufano et al., 2021). To account for the cumulative impact of multi-day244

rainfall while incorporating hydrological processes such as evapotranspiration and drainage,245

we adopted the concept of effective rainfall (Pe), calculated as:246





n

i
i

i
e PkP

0
(7)247

where Pi represents the daily rainfall on the i-th day preceding landslide occurrence, n denotes248

the number of antecedent days considered, and k is the effective rainfall decay coefficient249

(Segoni et al., 2018a). For hourly rainfall parameterization, Pi is derived as:250





24

1j
iji RP (8)251

where Rij is the hourly rainfall at the j-th hour of the i-th day.252

3.2.2 Long-term and short-term rainfall parameters253
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Rainfall-triggered landslides are generally triggered by two dominant mechanisms:254

prolonged low-intensity rainfall and short-duration high-intensity storms. Based on statistical255

analysis of historical landslide events in Hunan Province (Xiao et al., 2025), a 7-day256

antecedent period was identified as optimal for characterizing long-term rainfall impacts.257

Consequently, the 7-day effective rainfall (D7) was selected as the long-term parameter.258

Short-term rainfall metrics were defined as cumulative precipitation over 1 hour (H1), 12259

hours (H12), 24 hours (H24), and 72 hours (H72) preceding landslide initiation. These260

intervals capture distinct rainfall characteristics: H1 reflects extreme short-term intensity for261

rapid slope failures, H12 and H24 represent sub-daily to daily precipitation critical for262

intermediate responses, and H72 accounts for multi-day storm sequences.263

3.2.3 Rainfall threshold model development264

The threshold modeling framework comprises four sequential steps:265

(1) Parameter calculation: For each landslide sample, short-term rainfall parameters (H1,266

H12, H24, and H72) and the long-term rainfall parameter (D7) are calculated. The ratios of267

short-term parameters to the long-term parameter are computed as: R1=H1/D7, R12=H12/D7,268

R24=H24/D7, and R72=H72/D7.269

(2) Threshold setting: Long-to-short-term ratio coefficients (RC1, RC12, RC24, and270

RC72) are introduced as thresholds to determine the dominant rainfall pattern for each271

landslide. These thresholds are used to classify landslides into short-term or long-term272

Typhoon-induced categories.273

(3) Coefficient optimization: A cyclic trial-and-error method is employed to determine274

the optimal ratio coefficients (RC1, RC12, RC24, and RC72), maximizing the accuracy and275

reliability of the model.276

3.2.4 Optimal ratio coefficient threshold determination277
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The process of determining the optimal long-to-short-term ratio coefficient threshold is278

demonstrated using H12-D7 as an example. The process for the remaining coefficients (H1-279

D7, H24-D7, and H72-D7) follows a similar approach. A 5-fold cross-validation method is280

applied, with the following procedure:281

(1) Spatial interpolation: Kriging interpolation is applied to short-term and long-term282

rainfall data from various rain gauge stations within the study area. R12 and D7 values for283

each landslide are calculated using Equations (7) and (8).284

(2) Data preparation: The dataset is divided into five equal parts for cross-validation,285

with each part serving as a test set while the remaining four serve as the training set.286

(3) Initial threshold setting: An initial threshold for RC12 is set based on the minimum287

value in the training set.288

(4) Threshold evaluation: For each fold, the RC12 threshold is compared with the R12289

value of samples in the test set. If RC12<R12, the prediction is considered a failure.290

Prediction accuracy is calculated for each RC12 threshold, adjusting in 0.001 increments until291

the highest prediction accuracy is achieved.292

(5) Optimal RC12 threshold determination: The RC12 threshold with the highest293

prediction accuracy is selected for each fold. The final RC12 threshold is determined by294

averaging the optimal thresholds from all five folds.295

3.2.5 Spatial distribution of optimal threshold296

According to the optimal ratio coefficient threshold determined in section 3.2.4 and the297

long-term and short-term rainfall parameters obtained through interpolation, the threshold298

spatial distribution for the study area can be derived. Taking H12/D7 as an example, the299

process is as follows:300

First, by dividing the H12 values of each landslide point by the optimal ratio coefficient301

RC12, the corresponding D7 thresholds for each landslide point can be calculated. These D7302
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thresholds serve as a basis for applying the Kriging interpolation method to obtain the spatial303

distribution map of the D7 thresholds across the entire study area.304

Next, by multiplying the D7 values of each landslide point by the ratio coefficient RC12,305

the corresponding H12 thresholds for each landslide point can be determined. Subsequently,306

utilizing these H12 thresholds, the Kriging interpolation method is applied once more to307

generate the spatial distribution map of the H12 thresholds for the entire study area.308

3.3 Typhoon-adapted hazard warning system309

In order to effectively prevent typhoon-adapted landslide hazards, constructing a310

comprehensive landslide early warning system is crucial. This system integrates landslide311

susceptibility prediction with critical rainfall thresholds, combining spatial probability and312

temporal probability to predict the risk of landslide occurrence and the timing of potential313

events.314

3.3.1 Construction of the hazard warning system315

Using the natural breaks point method, the LSP is categorized into five levels of spatial316

probability: very low (S1), low (S2), moderate (S3), high (S4), and very high (S5). These317

levels represent varying degrees of susceptibility to landslides in different regions, forming318

the basis for assessing landslide risks when combined with rainfall data. Paralleling the LSP319

categorization, rainfall thresholds are also divided into five levels using the natural breaks320

point method, representing temporal probability: very low (T1), low (T2), moderate (T3),321

high (T4), and very high (T5). A lower rainfall threshold indicates a higher likelihood of322

typhoon-induced landslides, thus signaling a greater risk of landslide events.323

Table 1. Classification of landslide hazard warning zones by integrating landslide susceptibility levels324
(S1~S5) with rainfall threshold levels (T1~T5).325

Landslide hazard
warning zones

T1 T2 T3 T4 T5

S1 (very low) No warning
zone (2nd level)

No warning
zone (1st level)

No warning
zone (1st level)

No warning
zone (1st level)

No warning
zone (1st level)

S2 (low) 3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (2nd level)

No warning
zone (1st level)

No warning
zone (1st level)
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S3 (moderate) 4th level
warning zone

3rd level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (1st level)

S4 (high) 5th level
warning zone

4th level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (1st level)

S5 (very high) 5th level
warning zone

5th level
warning zone

4th level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

The matrix-based integration of LSP results and rainfall thresholds, as presented in Table326

1 (Segoni et al., 2015), highlight the correlation between landslide susceptibility and rainfall327

intensity. As the levels of landslide hazard warnings escalate from the 1st level, indicating no328

warning, to the 5th level, which signifies the highest alert, the likelihood of landslide329

occurrences correspondingly increases. Areas categorized in higher hazard zones correspond330

to regions with a heightened risk of landslides. This underscores the importance of331

implementing more effective geological disaster prevention strategies, as thoroughly332

discussed in the literature by Huang et al. (2022).333

4.Landslide susceptibility prediction using machine learning models334

4.1 IV, CF and FR values335

The IV, CF, and FR values were calculated for various conditioning factors influencing336

landslide susceptibility. For elevation, the highest FR (1.637) was observed in the 545~782 m337

range, with a corresponding positive IV (0.389) and CF (0.493). Slope showed a peak FR338

(1.522) in the 7.87~15.06° range, with higher IV (0.343) and CF (0.420). Aspect revealed that339

south-facing slopes had the highest FR (1.299), with positive IV (0.230) and CF (0.261). TWI340

showed the highest FR (1.799) in the range 8.69~13.62, with IV (0.444) and CF (0.587)341

indicating strong susceptibility. Lithology analysis showed that granite and rhyolite had342

higher FR values (1.247 and 1.546), while slate and sandstone had much lower FR values,343

suggesting a greater influence of geological type on landslide occurrence.344

Table 2. IV, CF and FR values for each conditioning factor.345

Conditioning factors Factor grading Landslides IV CF FR

Elevation (m)

92~314 81 -0.493 -0.679 0.507
314~545 255 0.218 0.246 1.279
545~782 312 0.389 0.493 1.637
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782~1098 57 -0.505 -0.704 0.495
1098~2033 0 -1 0 0

Slope (°)

0~7.87 91 -0.347 -0.427 0.653
7.87~15.06 267 0.343 0.420 1.522
15.06~21.80 219 0.168 0.184 1.202
21.80~29.44 112 -0.213 -0.240 0.786
29.44~57.31 16 -0.756 -1.411 0.2440

Aspect

Plan 0 -1 0 0
North 74 -0.102 -0.109 0.897
Northeast 67 -0.058 -0.060 0.942
East 70 -0.120 -0.128 0.800
Southeast 105 0.116 0.123 1.131
South 102 0.230 0.261 1.299
Southwest 96 0.144 0.156 1.169
West 96 0.039 0.039 1.040
Northwest 95 -0.071 -0.074 0.929

Plan curvature

-3.73~-0.57 36 -0.275 -0.321 0.725
-0.57~-0.18 189 0.250 0.287 1.333
-0.18~0.15 284 0.000 0.000 1.000
0.15~0.54 156 -0.059 -0.061 0.941
0.54~3.94 40 0.373 -0.467 0.627

Profile curvature

-3.92~-0.55 19 -0.608 -0.935 0.392
-0.55~-0.16 114 -0.240 -0.274 0.760
-0.16~0.17 260 -0.112 -0.119 0.888
0.17~0.59 253 0.480 0.392 1.480
0.59~3.76 59 0.276 0.324 1.382

TWI

1.98~4.40 151 -0.393 -0.499 0.607
4.40~5.54 297 0.245 0.280 1.324
5.54~6.91 132 -0.011 -0.011 0.989
6.91~8.69 73 0.046 0.047 1.048
8.69~13.62 52 0.444 0.587 1.799

Distance to road (m)

0~800 350 0.333 0.405 1.499
800~2000 194 -0.011 -0.011 0.989
2000~4500 153 -0.277 -0.324 0.723
4500~7500 8 -0.857

-1.000
-1.942 0.143

7500~9700 0 -1.000 0.001 0.001

Distance to river (m)

0~800 152 0.147 0.158 1.172
800~2200 205 0.081 0.085 1.088
2200~4500 218 0.010 0.010 1.010
4500~8000 101 -0.229 -0.260 0.771
8000~12800 29 -0.278 -0.325 0.722

Distance to fault (m)

0~2000 64 -0.380 -0.478 0.620
2000~7000 262 0.062 0.064 1.066
7000~12000 286 0.305 0.364 1.439
12000~18000 62 -0.414 -0.535 0.586
18000~28100 31 -0.398 -0.508 0.602

NDVI

-0.20~0.27 2 -0.956 -3.133 0.044
0.27~0.47 29 -0.446 -0.591 0.554
0.47~0.64 108 0.217 0.245 1.278
0.64~0.76 296 0.015 0.617 1.854
0.76~0.94 270 -0.255 -0.295 0.745

SPI

-8.46~-2.72 0 -1.000 0.000 0.000
-2.72~1.27 108 0.250 0.288 1.334
1.27~2.39 370 0.229 0.261 1.298
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2.39~3.46 180 -0.320 -0.386 0.680
3.46~7.45 47 -0.356 -0.440 0.644

Lithology

Slate 8 -0.856 -1.938 0.144
Shale 10

1
-0.798 -1.601 0.202

Limestone 1 -0.907 -2.376 0.093
Sandstone 3 -0.958 -3.179 0.042
Granite 485 0.198 0.221 1.247
Rhyolite 198 0.353 0.436 1.546

4.2 Multicollinearity analysis for landslide-related conditioning factors346

To ensure reliable landslide susceptibility evaluations, we addressed the potential issue347

of multicollinearity among the considered factors using the variance inflation factor (VIF). A348

VIF score above 10 signifies a strong linear relationship, indicating potential multicollinearity349

issues.350

For both the IV and CF methods, none of the predictor variables had VIF scores351

exceeding 10, suggesting no significant multicollinearity concerns. However, when applying352

the FR method, four specific variables (SPI, Aspect, Plan curvature, and Distance to river)353

had VIF values above the threshold of 10. Consequently, these variables were removed from354

the FR analysis to reduce multicollinearity and improve the model's accuracy.355

4.3 Landslide susceptibility modeling in Zixing City356

We conducted landslide susceptibility prediction in Zixing City using SVM and357

LightGBM models with three distinct input data methods: IV, CF, and FR. Susceptibility358

levels were categorized into five classes using the natural breaks classification method. Non-359

landslide samples were strategically selected by excluding five buffer zones (0.1 km, 0.5 km,360

etc.) surrounding documented landslide locations.361

Overall, the SVM model provided more detailed and accurate classification of landslide362

susceptibility at smaller scales, effectively identifying high-risk areas. In contrast, the363

LightGBM model produced more uniform results across all scales. As the scale of the buffer364

zone increased, the susceptibility distribution results from both models using different input365

methods tended to converge.366
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4.3.1 IV-based modeling performance367

The IV-derived susceptibility maps (Fig. 4) revealed distinct spatial patterns between the368

two models across varying buffer distances. At smaller scales, the SVM model demonstrated369

more detailed classification, with a higher degree of overlap between high susceptibility areas370

and actual landslide locations. The LightGBM model's classification was smoother, with a371

lower degree of overlap between high susceptibility areas and actual landslide locations.372

Notably, this performance discrepancy diminished progressively with increasing buffer373

distances.374

375

Figure 4. Landslide susceptibility map based on SVM and LightGBM models using the IV input.376

4.3.2 CF-based modeling performance377

In CF-based modeling (Fig. 5), the SVM model's high and very high landslide378

susceptibility areas at smaller scales were more extensive than in the IV mode, with actual379

landslide locations more frequently distributed within these high-risk areas. As the scale380

increased, the high susceptibility areas gradually decreased. The LightGBM model also381

showed a relatively smooth distribution, with some high susceptibility areas identified at382
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smaller scales gradually integrating as the scale increased, following a similar trend to the383

SVM model.384

385

Figure 5. Landslide susceptibility map based on SVM and LightGBM models using the CF input.386

4.3.3 FR-based modeling performance387

Regarding the FR input (Fig. 6), the SVM model identified a significant number of high388

and very high landslide susceptibility areas at smaller scales compared to the IV and CF389

inputs, which closely matched the actual locations of landslides. As the buffer scale expanded,390

these high-risk areas generally diminished and the distribution became smoother. Conversely,391

the LightGBM model delivered more uniform results, offering broader moderate-risk392

distributions, with a small number of high susceptibility areas that did not align with the393

actual landslide locations. As the scale increased, the high susceptibility areas identified by394

the LightGBM model gradually diminished, showing greater consistency with the SVM395

model results at the higher scale.396
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397

Figure 6. Landslide susceptibility map based on SVM and LightGBM models using the FR input.398

4.4 Uncertainty analysis of LSP results399

4.4.1 LSP accuracy evaluation and comparative performance400

Table 3 presents the training and testing AUC values of SVM and LightGBM models401

across buffer distances (0.1–5.0 km) and input methods (IV, CF, FR). Both models402

demonstrated robust predictive performance, with LightGBM consistently outperforming403

SVM, particularly under FR input conditions.404

Table 3. AUC values of different buffer distances under all combined conditions.405

Buffer
distance

(km)

SVM LightGBM
IV CF FR IV CF FR

0.1 0.831 (0.769) 0.812 (0.741) 0.720 (0.666) 0.919 (0.832) 0.919 (0.822) 0.915 (0.826)

0.5 0.825 (0.744) 0.820 (0.738) 0.914 (0.913) 0.920 (0.811) 0.920 (0.820) 0.921 (0.920)

1.0 0.826 (0.744) 0.819 (0.745) 0.721 (0.641) 0.920 (0.809) 0.920 (0.823) 0.916 (0.795)

2.0 0.826 (0.743) 0.834 (0.758) 0.913 (0.912) 0.920 (0.805) 0.920 (0.824) 0.918 (0.918)

5.0 0.823 (0.731) 0.883 (0.761) 0.721 (0.633) 0.919 (0.803) 0.918 (0.830) 0.916 (0.775)

For SVM, training AUC ranged from 0.720 to 0.914, while testing AUC spanned 0.633406

to 0.913. The model showed notable sensitivity to buffer distances with FR input, peaking at407

0.913 (0.5 km buffer) but declining to 0.633 at 5.0 km. IV and CF inputs delivered more408
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stable performance (IV: 0.731–0.769; CF: 0.738–0.761), showing minimal overfitting across409

spatial scales.410

LightGBM demonstrated superior consistency, maintaining training AUC >0.915 and411

testing AUC between 0.775 and 0.920. Its performance peaked at 0.920 with FR input at 0.5412

km and 2.0 km buffers, highlighting robustness to spatial variations. Unlike SVM, LightGBM413

retained high testing AUC (>0.820) for IV and CF inputs across all buffer distances, with only414

marginal declines for FR at 5.0 km (0.775).415

Comparative analysis identified 0.5 km and 2.0 km buffer distances with FR input as416

optimal configurations. At these distances, both models achieved near-identical training and417

testing AUC values (SVM: 0.914/0.913 at 0.5 km, 0.913/0.912 at 2.0 km; LightGBM:418

0.921/0.920 at 0.5 km, 0.918/0.918 at 2.0 km).419

Despite LightGBM’s overall stability, SVM demonstrated distinct advantages at these420

buffer distances with FR input. While SVM produced less uniform distributions, it captured421

finer spatial variations in landslide risk, as reflected in its higher mean susceptibility values422

and better AUC performance. This irregularity in SVM predictions likely indicates greater423

sensitivity to localized risk patterns at these spatial resolutions.424

4.4.2 LSP distribution characteristics across conditions425

In addition to the performance metrics, the distribution characteristics of landslide426

susceptibility predictions revealed fundamental differences between the models (Supplement427

Figs. S1–S3). LightGBM generated smoother, more symmetrical distributions with lower428

mean susceptibility values (0.196–0.320) and smaller standard deviations (0.099–0.187),429

indicating stable and uniform predictions. In contrast, SVM exhibited greater variability, with430

irregular distributions, higher mean values (0.303–0.515), and larger standard deviations431

(0.112–0.214). Notably, SVM's mean susceptibility under FR input rose sharply (0.446–432
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0.515), while LightGBM maintained lower means despite moderately broader deviations433

(0.160–0.187).434

Therefore, SVM is preferable for FR-based modeling at 0.5 km and 2.0 km buffers,435

where spatial precision is prioritized over prediction uniformity. The SVM model achieved its436

highest accuracy at the 0.5 km buffer, classifying 86.4% of recorded landslides in high and437

very high susceptibility zones (Fig. 6 (b)). At the 2.0 km buffer (Fig. 6 (d)), it still correctly438

classified 82.1% of landslides in these zones. As a result, Fig. 6 (b) is selected as the final439

landslide susceptibility map.440

5 Landslide risk assessment in Zixing City441

5.1 Critical rainfall thresholds for landslides in Zixing City442

The July 2024 typhoon Gaemi-induced extreme rainfall (412.7 mm average, peaking at443

673.9 mm/24h and 132.2 mm/h) triggered a heavy landslide event in Zixing City, Hunan. This444

event, characterized by granite-weathered soils and slope-side settlements, highlighted critical445

thresholds for typhoon-induced failures.446

Four rainfall threshold models (H1-D7, H12-D7, H24-D7, and H72-D7) were447

systematically evaluated through 5-fold cross-validation, with their optimal ratio coefficient448

(RC) thresholds and prediction accuracies summarized in Table 4. The H24-D7 model, which449

couples 24-hour landfall rainfall with 7-day antecedent moisture—key components of450

typhoon hydrology—achieved the highest accuracy (71.8%), effectively capturing both451

cumulative saturation and abrupt triggering by typhoon rainfall bursts. Notably, the H24-D7452

model exhibited stable performance across all folds, with accuracy ranging narrowly between453

68.8% (Fold 1) and 74.6% (Fold 4), reflecting robust generalizability.454

Table 4. Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation.455

Model Fold 1
RC/Accuracy

Fold 2
RC/Accuracy

Fold 3
RC/Accuracy

Fold 4
RC/Accuracy

Fold 5
RC/Accuracy

Average
RC/Accuracy

H1-D7 0.032/56.5 0.062/29.7 0.076/35.5 0.022/53.6 0.040/47.8 0.047/44.6

H12-D7 0.077/54.2 0.167/46.6 0.243/48.3 0.267/47.7 0.154/45.3 0.182/48.5
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H24-D7 0.472/68.8 0.436/72.3 0.422/73.1 0.459/74.6 0.414/70.2 0.440/71.8

H72-D7 0.789/56.5 0.776/59.4 0.781/63.1 0.802/51.4 0.783/60.1 0.787/58.1

In contrast, the H1-D7 and H12-D7 models displayed marked instability: H1-D7456

accuracy fluctuated between 29.7% (Fold 2) and 56.5% (Fold 1), while H12-D7 thresholds457

(RC12: 0.077–0.267) corresponded to accuracies of 45.3–48.3%. The H72-D7 model showed458

moderate performance variability (accuracy: 51.4–63.1%) despite consistently high RC72459

thresholds (>0.78).460

These results highlight the critical role of temporal rainfall parameter selection. The461

superior performance of the H24-D7 model—combining 24-hour short-term rainfall (H24)462

and 7-day antecedent rainfall (D7)—suggests that a 24-hour duration optimally captures both463

immediate landslide triggers and cumulative hydrological effects, balancing sensitivity and464

stability. This contrasts with shorter (H1/H12) or longer (H72) durations, which either465

overemphasize transient rainfall spikes or dilute critical triggering signals.466

5.2 Spatio-temporal distribution of rainfall thresholds467

Fig. 7 illustrates the spatial distribution of rainfall-triggered landslide thresholds derived468

from four models (RC1, RC12, RC24, and RC72) across multiple temporal scales (1-hour,469

12-hour, 24-hour, 72-hour, and 7-day) within the study area.470

5.2.1 Short-term predictions (1-hour to 12-hour scales)471

At the 1-hour scale (Fig. 7 (a)), the RC1 model generated thresholds ranging from 7 to472

50 mm, with 65.2% of landslides occurring in moderate threshold zones (20-30 mm). This473

indicates the model's effectiveness in detecting slope failures under short-duration rainfall. In474

contrast, the RC12 model on the 12-hour scale (Fig. 7 (b)) showed a wider threshold range475

(25-200 mm), with 62.9% of landslides in mid-to-high threshold regions (80-130 mm). This476

mismatch suggests that the 12-hour cumulative data may underestimate rainfall impacts in477

specific topographic settings.478
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479

Figure 7. Distribution of typhoon rainfall thresholds under the optimal RC ratio in Zixing City.480

5.2.2 Mid-term predictions (24-hour to 72-hour scales)481

The RC24 model at the 24-hour scale (Fig. 7 (c)) displayed a threshold range of 65-400482

mm, with 87.1% of landslides occurring within moderate thresholds (100-250 mm) and483

12.3% in higher thresholds (>250 mm). This indicates a more accurate capture of rainfall484

intensity effects. At the 72-hour scale (Fig. 7 (d)), the RC72 model produced thresholds485

between 78-700 mm, with 59.2% of landslides in mid-to-high threshold regions (200-500486

mm). Although the RC72 model demonstrated reasonable sensitivity to prolonged rainfall, its487

upper threshold (700 mm) may result in conservative risk predictions for some geological488

settings.489

5.2.3 Long-term predictions (7-day scale)490

At the 7-day scale, significant differences emerge across models in terms of predicted491

rainfall thresholds and landslide points. The RC1 model (Fig. 7 (e)) shows a threshold range492

of 100-700 mm, with landslide points predominantly concentrated in the lower rainfall ranges.493
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While these low-threshold landslides may indicate localized risks, the model's conservative494

threshold distribution fails to effectively capture landslides triggered by higher rainfall495

amounts, potentially overlooking more significant events.496

The RC12 model (Fig. 7 (f)), with a threshold range of 100-800 mm, also shows a497

concentration of landslide points in the lower rainfall ranges. Despite a wider threshold range,498

the similarity to the RC1 model suggests that RC12 may also underutilize its capacity to499

predict higher typhoon-induced landslides, leading to under-prediction in areas experiencing500

moderate to heavy precipitation.501

In contrast, the RC24 model (Fig. 7 (g)) exhibits a balanced threshold range (250-900502

mm) and effectively identifies landslide points in both moderate and high rainfall categories.503

This balance enables RC24 to capture the full spectrum of typhoon-induced landslides,504

accurately identifying risks across different rainfall intensities.505

The RC72 model (Fig. 7 (h)) shows a concentration of landslide points in the higher506

rainfall range (175-1000 mm). While it predicts landslides accurately under heavy rainfall507

conditions, the model may overestimate risks in some regions and neglect potential landslides508

associated with lower rainfall thresholds.509

Based on the above analysis, the RC24 model is the optimal choice, which aligns with510

the finding in Section 5.1. Its effectiveness is evident as it demonstrates superior stability and511

accuracy in both the 24-hour and 7-day timescales. The RC24 model's balanced threshold512

range enables it to effectively capture landslide risks across varying rainfall intensities,513

making it the most reliable choice for practical applications in landslide disaster early warning514

systems.515

5.3 Landslide hazard warning system for Zixing City516

Based on the optimal LSP results (Fig. 6 (b)) and the validated RC24 rainfall threshold517

model, a spatially explicit landslide hazard warning system was established for Zixing City.518
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The integration of spatial probability (LSP) and temporal probability (rainfall thresholds)519

followed the matrix classification outlined in Table 1.520

521

Figure 8. Landslide hazard warning zones in Zixing City.522

Five susceptibility levels in the LSP map (Fig. 6 (b)) were replaced with five spatial523

probabilities (S1–S5) (Fig. 8 (a)), respectively. Simultaneously, the spatially interpolated 24-524

hour rainfall thresholds (H24) (Fig. 8 (b)) and 7-day effective rainfall thresholds (D7) (Fig. 8525

(c)) derived from the RC24 model were classified into five temporal probability levels (T1–526

T5) using the natural breaks method. Spatial overlay analysis was performed to combine the527

susceptibility levels (S1–S5) with the rainfall threshold levels (T1–T5), generating two hazard528

warning zone maps: one based on the 24-hour rainfall thresholds (H24-D7) (Fig. 8 (d)) and529

the other on the 7-day effective rainfall thresholds (D7-H24) (Fig. 8 (e)).530

In the 24-hour threshold system (Fig. 8 (d)), a significant portion of the study area was531

classified as high to very high warning zones (Levels 3–5), particularly in the central region.532

These areas are characterized by steep slopes (>21.80°; yellow to dark red regions in Fig. 2533

(b)), weathered granite lithology (pink areas in Fig. 2 (l)), proximity to roads (0–800 m; blue534

zones in Fig. 2 (g)), and moderate-to-distant distances from fracture zones (2,000–7,000 m;535
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light green regions in Fig. 2 (i)). The high-susceptibility zones (S4–S5), combined with lower536

rainfall thresholds (T4–T5), indicate acute sensitivity to short-term intense rainfall. Notably,537

these high-level warning zones overlap with 71.4% of historical landslide occurrences,538

underscoring the immediate threat posed by short-duration heavy rainfall events.539

In contrast, the 7-day threshold system (Fig. 8 (e)) exhibits a similar distribution of high540

to very high warning zones (Levels 3–5) but with expanded coverage into the northern and541

eastern parts of the study area. These regions reflect the interaction of prolonged antecedent542

rainfall (D7) with moderate-to-very-high susceptibility (S3–S5). Topographically, these areas543

feature greater rainfall accumulation (steep slopes in Fig. 2 (b)) and are predominantly544

underlain by granite lithology (large pink zones in Fig. 2 (l)). Additionally, they are adjacent545

to roads (blue and green regions in Fig. 2 (g)) and closer to fracture zones (green and light546

yellow areas in Fig. 2 (i)). This broader spatial distribution captures sustained risks associated547

with cumulative rainfall, highlighting zones vulnerable to prolonged precipitation. The548

alignment of these warning zones with 68.7% of historical landslide sites further validates the549

effectiveness of the 7-day model in detecting cumulative hydrological effects.550

6 Discussion551

6.1 Optimization of landslide susceptibility prediction552

The comparative analysis of SVM and LightGBM models across different input methods553

(IV, CF, FR) and buffer distances revealed important insights into the optimization of554

landslide susceptibility prediction under typhoon rainfall conditions. While LightGBM555

generally exhibited higher overall accuracy and stability, SVM demonstrated superior556

performance at specific spatial scales (0.5–2.0 km buffers), capturing localized slope557

instability patterns induced by typhoon-driven hydrological processes. This finding aligns558

with previous studies highlighting SVM’s effectiveness in modeling non-linear interactions559

between typhoon rainfall intensity and terrain features (Kalantar, 2018; Zhao et al., 2021).560
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The optimal performance of SVM at intermediate buffer distances (0.5–2.0 km) suggests561

a critical balance between typhoon-induced local heterogeneity (e.g., soil saturation variations)562

and regional geological controls. This range effectively isolates slope units most vulnerable to563

short-duration typhoon rainfall pulses, while filtering out noise from distant stable areas. The564

superiority of the FR input method underscores its ability to quantify typhoon-specific factor565

interactions, such as road density amplifying runoff concentration in granite-weathered slopes566

(Liu et al., 2022). These results emphasize the necessity of typhoon-adapted spatial scaling in567

susceptibility modeling, supporting the spatial correlation principles established by568

Reichenbach et al. (2018).569

6.2 Rainfall threshold modeling and spatio-temporal distribution570

The evaluation of multiple rainfall threshold models (H1-D7, H12-D7, H24-D7, and571

H72-D7) revealed that the H24-D7 model was the most effective for predicting typhoon-572

triggered landslides. This model combines 24-hour typhoon rainfall bursts with 7-day573

antecedent moisture from tropical cyclones, achieving an accuracy of 71.8%. It strikes a574

balance between capturing immediate slope failure during typhoon landfall and accounting575

for prolonged saturation due to pre-typhoon rainfall. In contrast, the shorter (H1/H12) and576

longer (H72) durations misrepresented the rainfall dynamics specific to typhoons. This577

finding aligns with Long et al. (2020), who emphasized the importance of integrating both578

short-term intensity and long-term saturation to predict debris flows.579

Spatial thresholds derived from the H24-D7 model demonstrated distinct rainfall580

gradients related to typhoon exposure. In southeastern slopes, which are more exposed to581

prevailing typhoon tracks (Fig. 7c), higher thresholds (>250 mm) were observed. This is582

consistent with Cai et al. (2023), who found that areas directly in the path of typhoons583

typically experience more intense rainfall due to the influence of the typhoon’s core. These584

regions are often impacted by the high-intensity convective cores of typhoons. In contrast,585
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northern valleys, influenced by cumulative typhoon rainbands, exhibited lower thresholds586

(100-150 mm). As Lin et al. (2019) pointed out, typhoon rainbands generate widespread,587

cumulative rainfall that can be further amplified by topography, such as in valleys where588

terrain traps moisture and enhances precipitation accumulation. This mechanism explains the589

lower triggering thresholds in these regions compared to the slopes directly exposed to590

typhoon tracks.591

The spatial gradient observed in the H24-D7 thresholds reflects the dual rainfall modes592

of typhoons: convective cores with high-intensity bursts and stratiform bands with prolonged593

drizzle. This highlights the need for typhoon-specific models that can capture both microscale594

(e.g., storm cell) and macroscale (e.g., rainband) dynamics. Many existing models fail to595

address these complexities (Segoni et al., 2018b; Guzzetti et al., 2020). The H24-D7 model,596

by incorporating these spatial gradients and rainfall modes, represents a significant597

advancement in accurately predicting typhoon-induced landslides.598

6.3 Integration of susceptibility and rainfall thresholds for hazard warning599

The integration of landslide susceptibility maps with spatially distributed rainfall600

thresholds resulted in a comprehensive hazard warning system for Zixing City. This approach,601

combining spatial probability (LSP) and temporal probability (rainfall thresholds), addresses602

the limitations of traditional, uniform threshold-based warning systems by accounting for603

local variations in landslide susceptibility. The resulting hazard warning maps based on 24-604

hour and 7-day rainfall thresholds provide complementary information on short-term and605

long-term landslide risks.606

The high overlap between identified high-risk zones and historical landslide occurrences607

(71.4% for 24-hour and 68.7% for 7-day thresholds) validates the effectiveness of this608

integrated approach. These results support the findings of Segoni et al. (2018a) and Piciullo et609

al. (2018), who emphasized the importance of considering both spatial and temporal factors in610
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landslide hazard assessment. The distinct spatial patterns observed in the 24-hour and 7-day611

warning maps highlight the different mechanisms of landslide triggering associated with612

short-duration intense rainfall and prolonged precipitation, respectively.613

6.4 Implication for landslide risk management614

The developed framework, tailored to the unique challenges posed by typhoon rainfall,615

has far-reaching implications for enhancing landslide risk management strategies in typhoon-616

prone regions. By precisely linking the spatial distribution of landslide susceptibility with the617

dynamic patterns of typhoon - induced rainfall, the hazard warning system provides highly618

targeted and actionable information. This enables authorities to allocate disaster prevention619

and mitigation resources more efficiently, focusing efforts on areas most vulnerable to the620

dual threats of typhoon-related short-term intense rainfall and prolonged antecedent621

precipitation.622

For instance, in Zixing City, the system can identify regions where slopes are already623

saturated due to pre-typhoon rainfall and are thus highly susceptible to failure during the624

typhoon’s high-intensity rainfall phase. Such targeted identification allows for the625

implementation of pre-emptive measures, such as evacuation plans, slope stabilization work,626

and road closures in these high-risk areas. Moreover, the ability to distinguish between areas627

at risk from short-term intense rainfall bursts and those vulnerable to the cumulative effects of628

prolonged typhoon-associated precipitation enables the development of customized response629

strategies. This not only improves the effectiveness of early warning systems but also630

enhances overall public safety during typhoon events.631

The methodology’s adaptability, which allows for the incorporation of various machine632

learning algorithms, input methods, and rainfall parameterizations, is particularly valuable in633

diverse typhoon-affected geological and climatic settings. It can be adjusted to account for the634

specific characteristics of different typhoon tracks, intensities, and the unique geo-635
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environmental conditions of each region, thereby meeting the urgent need for region - specific636

landslide hazard assessment tools in the context of typhoon-induced disasters.637

6.5 Limitations and future research directions638

Despite the significant advancements made in this study, several limitations exist,639

especially when considering the complex and dynamic nature of typhoon - induced landslides.640

Firstly, the model validation predominantly depends on a single landslide event triggered by641

Typhoon “Gemei” in July 2024. Typhoons vary greatly in intensity, rainfall patterns, and642

tracks, and relying on a single event may not fully capture the diversity of conditions that can643

lead to landslides during typhoon occurrences. Future research should incorporate multiple644

landslide events triggered by different typhoons across various seasons and years. This will645

help to enhance the robustness and generalizability of the results, ensuring that the hazard646

warning system can perform reliably under a wide range of typhoon-related scenarios.647

Secondly, the current study primarily focuses on rainfall - induced landslides triggered648

by typhoons, overlooking other potential triggering factors that often interact with typhoon649

rainfall. For example, in some regions, pre-existing seismic activities or ongoing human650

construction projects in mountainous areas can significantly increase the likelihood of slope651

failure during typhoons. Future work should explore the integration of multiple triggering652

mechanisms, such as earthquakes, human-induced slope modifications, and typhoon rainfall,653

into the hazard assessment framework. This integrated approach will provide a more654

comprehensive understanding of the complex processes leading to landslides during typhoon655

events.656

Furthermore, the study does not explicitly consider the potential impacts of climate657

change on typhoon rainfall patterns and landslide occurrence. Climate change is known to658

alter the frequency, intensity, and track of typhoons, which in turn can have profound effects659

on landslide risks. Given the increasing frequency and intensity of extreme precipitation660
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events associated with typhoons due to climate change, future studies should incorporate661

climate projections specific to typhoon-prone regions. This will enable the development of662

more forward - looking hazard warning systems that can anticipate and adapt to the changing663

nature of typhoon-induced landslide threats.664

Finally, although this study demonstrates the effectiveness of machine learning665

approaches in landslide susceptibility modeling under typhoon conditions, there is ample666

room for improvement. Further research should explore advanced deep learning techniques667

and ensemble methods that can better handle the complex and nonlinear relationships between668

typhoon-related variables (such as rainfall intensity, duration, and antecedent moisture) and669

slope stability. These advanced methods may offer improved predictive capabilities, more670

accurate uncertainty quantification, and ultimately, more reliable hazard warnings for671

typhoon-induced landslides.672

7 Conclusions673

This study presents an integrated framework for optimizing landslide susceptibility674

prediction and rainfall threshold modeling to develop a comprehensive hazard warning675

system for Zixing City, China. The key conclusions are as follows:676

(1) The comparative analysis of SVM and LightGBM models revealed that SVM with677

FR input at 0.5 km and 2.0 km buffer distances achieved optimal performance in landslide678

susceptibility prediction. This highlights the importance of careful consideration of spatial679

scale and input variable selection in susceptibility modeling.680

(2) The H24-D7 model, integrating 24-hour typhoon rainfall bursts and 7-day681

antecedent moisture—key components of typhoon hydrology—achieved the highest accuracy682

(71.8%), revealing how typhoon-induced saturation and intense rainfall synergistically drive683

slope failure.684
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(3) The typhoon-adapted hazard warning system, merging susceptibility maps685

with dynamic rainfall thresholds, showed 71.4% overlap with historical686

landslides, confirming the utility of linking spatial slope vulnerability to typhoon rainfall687

patterns.688

(4) The 24-hour and 7-day warning maps unveiled divergent failure mechanisms: short-689

term typhoon downpours triggering abrupt slope failures vs. prolonged antecedent rainfall690

inducing gradual soil saturation, underscoring the need for temporally explicit hazard691

assessments.692

(5) The developed framework demonstrates significant potential for improving landslide693

risk management by providing spatially explicit hazard warnings that account for both694

inherent susceptibility and dynamic rainfall conditions.695

696

697
698

Code and data availability. The source code and data will be made available on request.699

Competing interests. The contact author has declared that none of the authors has any700

competing interests.701

Author contributions. Weifeng Xiao: Writing-review & editing, Validation,702

Conceptualization. Guangchong Yao: Visualization, Validation, Data curation. Zhenghui703

Xiao: Writing-review & editing, Formal analysis. Luguang Luo: Visualization, Validation,704

Investigation, Data curation. Yunjiang Cao: Visualization, Formal analysis, Data curation.705

Wei Yin: Validation, Investigation, Correspondence.706

Acknowledgments. This research was funded by the Research Project on Natural Resources of707

Hunan Provincial Department of Natural Resources (No. HBZ20240112), the Open Research708

Topic of Hunan Geological Disaster Monitoring Early Warning and Emergency Rescue709

https://doi.org/10.5194/egusphere-2025-2298
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



35

Engineering Technology Research Center (No. hndzgczx202409), and the Hunan Provincial710

Natural Science Foundation of China (No. 2023JJ30238).711

712

713

714

References715

Achu, A. L., Aju, C. D., Pham, Q. B., Reghunath, R., and Anh, D. T.: Landslide susceptibility modeling716

using hybrid bivariate statistical - based machine - learning method in a highland segment of Southern717

Western Ghats, India, Environ. Earth Sci., 81, 361, https://doi.org/10.1007/s12665-022-10464-z, 2022.718

Caine, N.: The rainfall intensity: duration control of shallow landslides and debris flows, Geog. Ann. A., 62,719

23–27, https://doi.org/10.2307/520449, 1980.720

Chang, Z. L., Huang, J. S., Huang, F. M., Bhuyan, K., Meena, S. R., and Catani, F.: Uncertainty analysis of721

non - landslide sample selection in landslide susceptibility prediction using slope unit - based machine722

learning models, Gondwana Res., 117, 307–320, https://doi.org/10.1016/j.gr.2023.02.007, 2023.723

Chen, W., Pourghasemi, H. R., and Zhao, Z.: A GIS - based comparative study of Dempster - Shafer,724

logistic regression and artificial neural network models for landslide susceptibility mapping, Geocarto725

Int., 32, 367–385, https://doi.org/10.1080/10106049.2016.1140824, 2017.726

Chen, W., Xie, X. S., Wang, J. L., Pradhan, B., Hong, H. Y., Bui, D. T., Duan, Z., and Ma, J. Q.: A727

comparative study of logistic model tree, random forest, and classification and regression tree models for728

spatial prediction of landslide susceptibility, Catena, 151, 147–160,729

https://doi.org/10.1016/j.catena.2016.11.032, 2017.730

Ciurleo, M., Cascini, L., and Calvello, M.: A comparison of statistical and deterministic methods for731

shallow landslide susceptibility zoning in clayey soils, Eng. Geol., 223, 71–81,732

https://doi.org/10.1016/j.enggeo.2017.04.023, 2017.733

Dou, H. Q., He, J. B., Huang, S. Y., Jian, W. B., and Guo, C. X.: Influences of non - landslide sample734

selection strategies on landslide susceptibility mapping by machine learning, Geomat. Nat. Haz. Risk, 14,735

1–15, https://doi.org/10.1080/19475705.2023.2285719, 2023.736

https://doi.org/10.5194/egusphere-2025-2298
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



36

Fan, W., Wei, X. S., Cao, Y. B., and Zheng, B.: Landslide susceptibility assessment using the certainty737

factor and analytic hierarchy process, J. Mt. Sci., 14, 906–925, https://doi.org/10.1007/s11629-016-4068-738

2, 2017.739

Fan, W., Wei, Y. N., and Deng, L. S.: Failure modes and mechanisms of shallow debris landslides using an740

artificial rainfall model experiment on Qin-ba Mountain, Int. J. Geomech., 18, 04017157,741

https://doi.org/10.1061/(ASCE)GM.1943 - 5622.0001068, 2018.742

Froude, M. J., and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth743

Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess - 18 - 2161 - 2018, 2018.744

Gariano, S. L., and Guzzetti, F.: Landslides in a changing climate, Earth - Sci. Rev., 162, 227–252,745

https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.746

Guo, W. X., Ye, J., Liu, C. B., Lv, Y. J., Zeng, Q. Y., and Huang, X.: An approach for predicting landslide747

susceptibility and evaluating predisposing factors, Int. J. Appl. Earth Obs., 135, 104217,748

https://doi.org/10.1016/j.jag.2024.104217, 2024.749

Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., and Melillo, M.:750

Geographical landslide early warning systems, Earth - Sci. Rev., 200, 102973,751

https://doi.org/10.1016/j.earscirev.2019.102973, 2020.752

Guzzetti, F.: Invited perspectives: Landslide populations - can they be predicted?, Nat. Hazards Earth Syst.753

Sci., 21, 1467–1471, https://doi.org/10.5194/nhess - 21 - 1467 - 2021, 2021.754

Huang, F., Cao, Z. S., Guo, J. F., Jiang, S. H., Li, S., and Guo, Z. Z.: Comparisons of heuristic, general755

statistical and machine learning models for landslide susceptibility prediction and mapping, Catena, 191,756

104580, https://doi.org/10.1016/j.catena.2020.104580, 2020.757

Huang, F., Cao, Y., Li, W., Catani, F., Song, G., Huang, J., and Yu, C.: Uncertainties of landslide758

susceptibility prediction: influences of different study area scales and mapping unit scales, Int. J. Coal759

Sci. Technol., 11, 26, https://doi.org/10.1007/s40789 - 024 - 00678 - w, 2024.760

Huang, F., Chen, J., Liu, W., Huang, J., Hong, H., and Chen, W.: Regional rainfall - induced landslide761

hazard warning based on landslide susceptibility mapping and a critical rainfall threshold,762

Geomorphology, 408, 108236, https://doi.org/10.1016/j.geomorph.2022.108236, 2022.763

Huang, Y., and Zhao, L.: Review on landslide susceptibility mapping using support vector machines,764

Catena, 165, 520–529, https://doi.org/10.1016/j.catena.2018.03.003, 2018.765

https://doi.org/10.5194/egusphere-2025-2298
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



37

Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., and Mansor, S.: Assessment of the effects of766

training data selection on the landslide susceptibility mapping: A comparison between support vector767

machine (SVM), logistic regression (LR), and artificial neural networks (ANN), Geomat. Nat. Haz. Risk,768

9, 49–69, https://doi.org/10.1080/19475705.2017.1407368, 2018.769

Kenanoglu, M. B., Ahmadi - Adli, M., Toker, N. K., and Huvaj, N.: Effect of unsaturated soil properties on770

the intensity - duration threshold for rainfall triggered landslides, Tek. Dergi, 30, 9009–9027,771

https://doi.org/10.18400/tekderg.414884, 2019.772

Li, Y. L., Lin, Y. L., and Wang, Y. Q.: A Numerical Study on the Formation and Maintenance of a Long -773

Lived Rainband in Typhoon Longwang (2005), J. Geophys. Res. Atmos., 124(19), 10401–10426,774

https://doi.org/10.1029/2019JD030600, 2019.775

Liu, L. L., Zhang, Y. L., Xiao, T., and Yang, C.: A frequency ratio - based sampling strategy for landslide776

susceptibility assessment, Bull. Eng. Geol. Environ., 81, 360, https://doi.org/10.1007/s10064 - 022 -777

02836 - 3, 2022.778

Lombardo, L., and Mai, P. M.: Presenting logistic regression - based landslide susceptibility results, Eng.779

Geol., 244, 14–24, https://doi.org/10.1016/j.enggeo.2018.07.019, 2018.780

Long, K., Zhang, S. J., Wei, F. Q., Hu, K. H., Zhang, Q., and Luo, Y.: A hydrology - process based method781

for correlating debris flow density to rainfall parameters and its application on debris flow prediction, J.782

Hydrol., 589, 125124, https://doi.org/10.1016/j.jhydrol.2020.125124, 2020.783

Lv, L., Chen, T., Dou, J., and Plaza, A.: A hybrid ensemble - based deep - learning framework for landslide784

susceptibility mapping, Int. J. Appl. Earth Obs., 108, 102713, https://doi.org/10.1016/j.jag.2022.102713,785

2022.786

Marra, F.: Rainfall thresholds for landslide occurrence: systematic underestimation using coarse temporal787

resolution data, Nat. Hazards, 95, 883–890, https://doi.org/10.1007/s11069-018-3508-4, 2019.788

Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., and Abderrahmane,789

B.: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm790

performance, Earth-Sci. Rev., 207, 103225, https://doi.org/10.1016/j.earscirev.2020.103225, 2020.791

Mirus, B. B., Becker, R. E., Baum, R. L., and Smith, J. B.: Integrating real - time subsurface hydrologic792

monitoring with empirical rainfall thresholds to improve landslide early warning, Landslides, 15, 1909–793

1919, https://doi.org/10.1007/s10346-018-0995-z, 2018.794

https://doi.org/10.5194/egusphere-2025-2298
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



38

Mondini, A. C., Guzzetti, F., and Melillo, M.: Deep learning forecast of rainfall - induced shallow795

landslides, Nat. Commun., 14, 10.1038/s41467-023-38135-y, https://doi.org/10.1038/s41467-023-38135-796

y, 2023.797

Niu, H. T., Shao, S. J., Gao, J. Q., and Jing, H.: Research on GIS-based information value model for798

landslide geological hazards prediction in soil - rock contact zone in southern Shaanxi, Phys. Chem.799

Earth, 133, 103515, https://doi.org/10.1016/j.pce.2023.103515, 2024.800

Panchal, S., and Shrivastava, A. K.: A comparative study of frequency ratio, Shannon's entropy and801

analytic hierarchy process (AHP) models for landslide susceptibility assessment, ISPRS Int. J. Geo-Inf.,802

10, 603, https://doi.org/10.3390/ijgi10090603, 2021.803

Piciullo, L., Calvello, M., and Cepeda, J. M.: Territorial early warning systems for rainfall - induced804

landslides, Earth-Sci. Rev., 179, 228–247, https://doi.org/10.1016/j.earscirev.2018.02.013, 2018.805

Piciullo, L., Gariano, S. L., Melillo, M., Brunetti, M. T., Peruccacci, S., Guzzetti, F., and Calvello, M.:806

Definition and performance of a threshold - based regional early warning model for rainfall - induced807

landslides, Landslides, 14, 995–1008, https://doi.org/10.1007/s10346-016-0750-2, 2017.808

Pourghasemi, H. R., and Rahmati, O.: Prediction of the landslide susceptibility: Which algorithm, which809

precision?, Catena, 162, 177–192, https://doi.org/10.1016/j.catena.2017.11.022, 2018.810

Regmi, N. R., Walter, J. I., Jiang, J. L., Orban, A. M., and Hayman, N. W.: Spatial patterns of landslides in811

a modest topography of the Ozark and Ouachita Mountains, USA, Catena, 245, 108344,812

https://doi.org/10.1016/j.catena.2024.108344, 2024.813

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically - based814

landslide susceptibility models, Earth-Sci. Rev., 180, 60–91,815

https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.816

Sahin, E. K.: Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping,817

Geocarto Int., 37, 2441–2465, https://doi.org/10.1080/10106049.2020.1831623, 2022.818

San, B. T.: An evaluation of SVM using polygon-based random sampling in landslide susceptibility819

mapping: The Candir catchment area (western Antalya, Turkey), Int. J. Appl. Earth Obs., 26, 399–412,820

https://doi.org/10.1016/j.jag.2013.09.010, 2014.821

https://doi.org/10.5194/egusphere-2025-2298
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



39

Segoni, S., Lagomarsino, D., Fanti, R., Moretti, S., and Casagli, N.: Integration of rainfall thresholds and822

susceptibility maps in the Emilia Romagna (Italy) regional - scale landslide warning system, Landslides,823

12, 773–785, https://doi.org/10.1007/s10346-014-0502-0, 2015.824

Segoni, S., Piciullo, L., and Gariano, S. L.: A review of the recent literature on rainfall thresholds for825

landslide occurrence, Landslides, 15, 1483–1501, https://doi.org/10.1007/s10346-018-0966-4, 2018.826

Segoni, S., Rosi, A., Lagomarsino, D., Fanti, R., and Casagli, N.: Brief communication: Using averaged827

soil moisture estimates to improve the performances of a regional - scale landslide early warning system,828

Nat. Hazards Earth Syst. Sci., 18, 807–812, https://doi.org/10.5194/nhess-18-807-2018, 2018.829

Sharma, L. P., Patel, N., Ghose, M. K., and Debnath, P.: Development and application of Shannon's830

entropy integrated information value model for landslide susceptibility assessment and zonation in831

Sikkim Himalayas in India, Nat. Hazards, 75, 1555–1576, https://doi.org/10.1007/s11069-014-1378-y,832

2015.833

Steger, S., Brenning, A., Bell, R., and Glade, T.: The propagation of inventory - based positional errors into834

statistical landslide susceptibility models, Nat. Hazards Earth Syst. Sci., 16, 2729–2745,835

https://doi.org/10.5194/nhess-16-2729-2016, 2016.836

Sun, D. L., Wu, X. Q., Wen, H. J., and Gu, Q. Y.: A LightGBM-based landslide susceptibility model837

considering the uncertainty of non-landslide samples, Geomat. Nat. Haz. Risk, 14, 2213807,838

https://doi.org/10.1080/19475705.2023.2213807, 2023.839

Thiene, M., Shaw, W. D., and Scarpa, R.: Perceived risks of mountain landslides in Italy: Stated choices for840

subjective risk reductions, Landslides, 14, 1077–1089, https://doi.org/10.1007/s10346-016-0741-3, 2017.841

Tufano, R., Formetta, G., Calcaterra, D., and De Vita, P.: Hydrological control of soil thickness spatial842

variability on the initiation of rainfall-induced shallow landslides using a three - dimensional model,843

Landslides, 18, 3367–3380, https://doi.org/10.1007/s10346-021-01681 - x, 2021.844

Wang, H. J., Zhang, L. M., Yin, K. S., Luo, H. Y., and Li, J. H.: Landslide identification using machine845

learning, Geosci. Front., 12(1), 351–364, https://doi.org/10.1016/j.gsf.2020.02.012, 2021.846

Xiao, W. F., Zhou, Z. Y., Ren, B. Z., and Deng, X. P.: Integrating spatial clustering and multi - source847

geospatial data for comprehensive geological hazard modeling in Hunan Province, Sci. Rep., 15, 1982,848

https://doi.org/10.1038/s41598-024-84825 - y, 2025.849

https://doi.org/10.5194/egusphere-2025-2298
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



40

Yan, F., Zhang, Q. W., Ye, S., and Ren, B.: A novel hybrid approach for landslide susceptibility mapping850

integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model,851

Geomorphology, 327, 170–187, https://doi.org/10.1016/j.geomorph.2018.10.024, 2019.852

Yang, C., Liu, L. L., Huang, F. M., Huang, L., and Wang, X. M.: Machine learning - based landslide853

susceptibility assessment with optimized ratio of landslide to non-landslide samples, Gondwana Res.,854

123, 198–216, https://doi.org/10.1016/j.gr.2022.05.012, 2023.855

Yang, K. H., Uzuoka, R., Thuo, J. N., Lin, G. L., and Nakai, Y.: Coupled hydro-mechanical analysis of two856

unstable unsaturated slopes subject to rainfall infiltration, Eng. Geol., 216, 13–30,857

https://doi.org/10.1016/j.enggeo.2016.11.006, 2017.858

Zêzere, J. L., Pereira, S., Melo, R., Oliveira, S. C., and Garcia, R. A. C.: Mapping landslide susceptibility859

using data-driven methods, Sci. Total Environ., 589, 250–267,860

https://doi.org/10.1016/j.scitotenv.2017.02.188, 2017.861

Zhang, W. A., Gu, X., Tang, L. B., Yin, Y. P., Liu, D. S., and Zhang, Y. M.: Application of machine862

learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive863

review and future challenge, Gondwana Res., 109, 1–17, https://doi.org/10.1016/j.gr.2022.03.015, 2022.864

Zhao, Z., Liu, Z. Y., and Xu, C.: Slope unit-based landslide susceptibility mapping using certainty factor,865

support vector machine, random forest, CF-SVM and CF-RF models, Front. Earth Sci., 9, 589630,866

https://doi.org/10.3389/feart.2021.589630, 2021.867

868

https://doi.org/10.5194/egusphere-2025-2298
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.


