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Abstract: Typhoon-specific rainfall-induced landslides pose critical hazards in mountainous
regions, yet existing warning systems inadequately capture the distinct rainfall dynamics of
these extreme events. To address this limitation, we propose an integrated framework
combining optimized susceptibility predictions with dynamic rainfall thresholds tailored to
typhoon patterns. The approach enhances machine learning accuracy through buffer-based
negative sampling and variable weighting. It also introduces a spatiotemporal rainfall analysis
to distinguish between short-term intense downpours and cumulative soil saturation. Tested in
Zixing City, Hunan Province, China, where over 700 landslides were triggered by Typhoon
Gaemi, the framework proved effective. The support vector machine (SVM) model achieved
the best performance using frequency ratio (FR) inputs with a 0.5 km buffer (F1-score: 0.859,
AUC: 0.914), correctly classifying 86.4% of landslides as high or very high susceptibility.
The rainfall analysis identified 24-hour intensity combined with 7-day antecedent rainfall as
the optimal trigger, effectively capturing both immediate and cumulative moisture effects.

Spatially, rhyolite and granite slopes and areas near roads emerged as hotspots for failure
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(distance < 800 m, FR = 1.499 for roads; FR = 1.546 for rhyolite). The integrated warning
system shows high spatial efficiency, with high-risk areas covering only 34.2% of the study
region yet capturing 71.4% of historical landslides. Additionally, the framework generated
high-risk zone maps that align strongly with historical events. This work highlights the unique
nature of typhoon-driven slope instability and provides a transferable framework for disaster
risk reduction in cyclone-prone regions.

Keywords: Typhoon-induced landslide; Slope failure; Hazard warning system; Dynamic
thresholds; Landslide susceptibility mapping

1 Introduction

Landslides pose significant threats to mountainous regions globally (Froude and Petley,
2018), especially in areas where steep terrain, complex geology (Thiene et al., 2017), and
extreme weather events like typhoons intersect. In Southeast China, typhoon-induced
landslides have become a growing concern due to the region's rapid urbanization and the
increasing variability in climate patterns (Gariano and Guzzetti, 2016; Fan et al., 2018). The
Nanling Mountains, in southern China, are particularly vulnerable to landslides due to a
combination of extreme topographic relief and complex geological conditions during the
typhoon season (Zou et al., 2023).

Typhoons typically bring prolonged antecedent rainfall, followed by intense, short bursts
of precipitation (Li et al., 2019). These conditions create unique hydrological environments
that exceed the complexity of typical rainfall-triggered landslides (Chung and Li, 2022).
These events trigger slope failures through cumulative soil saturation and sudden hydrological
stress, challenging traditional landslide prediction methods (Yang et al., 2017). Despite
advances in landslide susceptibility prediction (LSP) and rainfall threshold modeling, current
approaches remain inadequate. Three critical limitations persist: severe data imbalance effects,

suboptimal integration of variable selection with machine learning algorithms, and lack of
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spatially-explicit rainfall thresholds for typhoon-specific conditions (Segoni et al., 2018a;
Regmi et al., 2024).

Most existing studies employ ad-hoc buffer distances without systematic optimization,
leading to inconsistent model performance across different geological settings (Lombardo and
Mai, 2018). Traditional methods attempt to mitigate this imbalance by randomly sampling
non-landslide points across the study area (Steger et al., 2016; Dou et al., 2023). However,
random selection can introduce spatial bias, as non-landslide points might include areas that
are unstable but have not yet been identified as landslide-prone (Kalantar et al., 2018).

To address this limitation, more recent approaches have employed buffer-based negative
sampling, which systematically excludes non-landslide points near known landslide sites.
This method assumes that adjacent areas share similar environmental conditions (e.g., slope,
lithology) and therefore should not be classified as “stable” (Achu et al., 2022). Several
studies have tested varying buffer distances, ranging from tens to thousands of meters, to
determine the optimal distance for different regions. However, systematic evaluation of buffer
distance optimization coupled with variable weighting methods remains largely unexplored.

LSP is primarily focused on identifying areas prone to slope failure, based on static

environmental factors such as topography, lithology, land cover, and hydrology (Zézere et al.,

2017; Guo et al., 2024). Traditional approaches to LSP often rely on deterministic and
statistical methods, including information value (IV), certainty factor (CF), frequency ratio
(FR), logistic regression (LR), and weight of evidence (WOE). These methods quantify the
relationship between historical landslide occurrences and predisposing factors using linear or
semi-linear approaches (Ciurleo et al., 2017; Reichenbach et al., 2018). However, these
methods oversimplify the complex, nonlinear interactions that govern slope stability

(Merghadi et al., 2020).
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In contrast, machine learning (ML) algorithms, such as support vector machine (SVM)
and light gradient boosting machine (LightGBM), have emerged as powerful alternatives.
SVM excels in high-dimensional classification tasks and effectively identifies optimal
hyperplanes separating landslide-prone from stable areas (San, 2014; Huang and Zhao, 2018).
LightGBM offers superior scalability and computational efficiency for processing large
geospatial datasets (Sun et al, 2023). Both SVM and LightGBM capture intricate
relationships among variables without restrictive assumptions, making them superior to
traditional methods in terms of predictive accuracy (Yang et al., 2023). However, frameworks
that systematically integrate variable weighting methods with advanced ML algorithms for
LSP optimization are lacking.

For temporal prediction, existing rainfall threshold approaches predominantly use
generalized regional thresholds that inadequately capture local geological heterogeneity and
typhoon-specific rainfall patterns (Guzzetti, 2021; Banfi and De Michele, 2024). These
thresholds are typically defined based on cumulative or intensity-duration (I-D) rainfall values
(Pictullo et al., 2017; Segoni et al., 2018a). In typhoon-prone regions, dynamic rainfall
thresholds are crucial due to the unique combination of long-duration antecedent rainfall and
sudden high-intensity bursts of precipitation (Guzzetti et al., 2020). Traditional empirical
methods fail to provide spatially continuous threshold surfaces that account for local
environmental variability (Piciullo et al., 2018).

Recent advances have integrated multi-temporal rainfall parameters with advanced
statistical techniques to optimize rainfall thresholds (Segoni et al., 2015; Huang et al., 2022),
accounting for diverse triggering mechanisms. Additionally, spatial interpolation methods,
such as Kriging, have been applied to generate continuous rainfall threshold surfaces that
allow for local variations in geological and environmental conditions (Kenanoglu et al., 2019;

Segoni et al., 2018b). This approach, when combined with high-resolution susceptibility maps,
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contributes to the development of integrated hazard warning systems that can dynamically
adjust to typhoon-specific rainfall-induced scenarios (Piciullo et al., 2018; Mirus et al., 2018).

This study examines Zixing City, a mountainous region in southeastern Hunan Province,
frequently affected by typhoon-induced extreme rainfall. Its steep slopes, fractured geology,
and high sensitivity to rapid pore-pressure increase render it particularly vulnerable (Ma et al.,
2025). The large number of landslides (>700) triggered by Typhoon Gaemi in July 2024
provides a valuable dataset for model calibration and validation.

Here we developed an integrated framework that combines (i) optimized buffer distances
for negative sampling, (ii) bivariate weighting methods (IV, CF, FR) with advanced machine
learning classifiers (SVM, LightGBM), and (iii) spatially continuous, typhoon-specific
rainfall thresholds derived through Kriging interpolation. The specific objectives are to (1)
determine optimal buffer distances that minimize spatial bias in imbalanced datasets, (2)
evaluate the performance gain from coupling bivariate weights with machine learning
algorithms, (3) establish dynamic rainfall thresholds suited to typhoon rainfall patterns, (4)
generate continuous threshold surfaces via Kriging, and (5) integrate high-resolution
susceptibility maps with these thresholds to support an operational early warning system. This
approach improves landslide prediction in typhoon-prone mountainous regions and provides a
transferable methodology for similar environments.

2 Study area and data sources

2.1 Study area

Zixing City (25°34'-26°18" N, 113°08-113°44" E), covering 2,747 km? in southeastern
Hunan Province, China (Fig. 1), is located within the Nanling Mountains geological province.
Situated approximately 400 km inland from the South China Sea, Zixing lies at the
intersection of the Nanling Mountains and low hills, forming a watershed divide between the

Yangtze and Pearl River basins. The region is characterized by steep topography, with
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elevations ranging from 125 to 1,691 meters and slopes exceeding 30° across 78% of the area.
This mountainous terrain, combined with fractured geology and active NE-SW trending faults
such as the Chaling-Yongxing Fault Zone, creates a permeable fracture network that
facilitates groundwater drainage.

The climate of Zixing is subtropical monsoon, with annual precipitation averaging 1,550
mm, 70% of which occurs from April to September. Typhoons significantly contribute to
rainfall, inducing rapid pore-pressure increases in shallow aquifers (3—8 m depth). These
climatic and geological conditions make Zixing particularly vulnerable to landslides,
providing a valuable context for this study. The extensive landslide dataset triggered by
Typhoon Gaemi in July 2024 (>700 events) serves as a critical resource for model calibration

and validation.
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Figure 1 Geographical distribution of the study area, landslides and rainfall gauges.

2.2 Data collection and preprocessing
2.2.1 Compilation of landslide catalogue
A comprehensive inventory of 705 landslide events triggered by Typhoon Gaemi on July

27, 2024, was compiled from the Hunan Center for Natural Resources Affairs. The landslide
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locations were verified through field inspections and high-resolution satellite imagery to
ensure spatial accuracy and completeness of the dataset.

2.2.2 Landslide conditioning factors and data sources

Based on extensive literature reviews and the geoenvironmental characteristics of the
study area, twelve conditioning factors were selected for landslide susceptibility analysis:
elevation, slope gradient, slope orientation, curvature, topographic wetness index (TWI),
stream power index (SPI), normalized difference vegetation index (NDVI), distances to roads,
rivers, and faults, and lithology (Fig. 2).

Topographic factors (elevation, slope gradient, slope orientation, TWI, SPI, and
curvature) were extracted from a 30-meter digital elevation model (DEM) obtained from the
Geospatial Data Cloud (https://www.gscloud.cn). Environmental factors including NDVI and
proximity variables (distances to roads, rivers, and fault lines) were derived from 1:50,000-
scale cartographic maps and Landsat 8 OLI imagery from the same platform. Geological

composition and structural data were acquired from 1:100,000-scale geological maps.
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Figure 2 Landslide-related conditioning factors.

2.2.3 Data preprocessing and spatial standardization

We transformed all conditioning factors into continuous statistical measures using IV,
CF, and FR methods and then resampled them to a uniform 60-meter resolution. This
resolution was selected to balance computational efficiency with scale appropriateness for
regional landslide analysis while maintaining compatibility with the available geological map

scale (1:100,000).
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The study area was divided into 60 x 60 meter grid cells, with landslides smaller than the
grid resolution aggregated to the nearest cell centroid. Multiple landslides within a single cell
were treated as one event to maintain spatial independence required for machine learning
modeling. This preprocessing approach ensures statistical validity by minimizing spatial
autocorrelation effects while providing adequate representation of landslide distribution
patterns across the study area.

2.2.4 Rainfall data collection and spatial distribution

Rainfall data for the study were obtained from 12 automatic rain gauge stations
strategically distributed across Zixing City and its surrounding areas (Fig. 1). These stations,
operated by the Hunan Meteorological Administration, provided hourly precipitation records
during Typhoon Gaemi (July 20-30, 2024) and the preceding antecedent period. The spatial
distribution of gauge stations ensured adequate coverage of the study area's topographic and
climatic gradients.

To assign rainfall parameters (H1, H12, H24, H72, and D7) to each of the 705 landslide
points, we employed the Kriging interpolation to generate spatially continuous rainfall
surfaces from discrete gauge measurements. This geostatistical method accounts for spatial
autocorrelation in rainfall patterns and provides optimal unbiased estimates by weighting
nearby observations based on their spatial proximity and correlation structure.

Spherical variogram models were fitted to the rainfall data through iterative optimization,
with model selection based on minimum Akaike Information Criterion (AIC) values. The
interpolation accuracy was rigorously evaluated through leave-one-out cross-validation,
where each gauge station was sequentially removed and its rainfall values predicted using the
remaining 11 stations. Four statistical metrics were used to assess performance: Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and Nash-

Sutcliffe Efficiency (NSE).
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Table 1 Kriging interpolation accuracy assessment for rainfall parameters.

Parameter RMSE (mm) MAE R NSE
H1 4.2 3.1 0.76 0.71
H12 11.7 8.9 0.83 0.78
H24 16.3 12.6 0.87 0.82
H72 24.8 18.4 0.81 0.77
D7 29.6 22.7 0.78 0.73

The validation results demonstrated acceptable interpolation accuracy across all rainfall
parameters, with correlation coefficients ranging from 0.76 to 0.87 and Nash-Sutcliffe
Efficiency values between 0.71-0.82. Despite some limitations inherent to the sparse gauge
network in mountainous terrain, the interpolation performance was deemed sufficient for
regional landslide susceptibility analysis, ensuring reasonable spatial representation of
precipitation patterns across the study area.

3 Methodologies

This study proposes an integrated framework for optimizing LSP and typhoon-specific
rainfall thresholds within hazard warning systems (Fig. 3). The framework includes the
following key components: (1) landslide susceptibility prediction and mapping, utilizing
twelve conditioning factors prioritizing typhoon-induced hydrological responses (e.g., TWI,
SPI) and 705 landslide records from July 27, 2024, optimized with five buffer distances and
evaluated using ROC curves; (2) dynamic rainfall threshold modeling based on typhoon
rainfall parameterization, validated and spatially interpolated using Kriging; and (3) the
integration of spatial and temporal probabilities to develop a typhoon-specific rainfall-induced

landslide warning system, demonstrated through a case study in Zixing City.

10
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Figure 3 Technical framework for developing a typhoon-specific rainfall-induced landslide warning system.

3.1 Landslide susceptibility prediction and mapping

3.1.1 Machine learning models: selection rationale and implementation

We selected SVM and LightGBM to address three key challenges in typhoon-specific
rainfall-induced landslide prediction: (1) severe class imbalance (landslides <0.5% of study
area), (2) complex non-linear interactions between rainfall and terrain factors, and (3)
computational efficiency for operational early warning.

SVM excels in binary classification with limited samples through structural risk
minimization (Kalantar et al., 2018; Wang et al., 2020), making it suitable for typhoon-
triggered landslide mapping. Its margin-maximization approach handles the class imbalance
between stable and landslide areas, while the RBF kernel captures localized failure patterns
under concentrated typhoon rainfall. The regularization parameter C prevents overfitting to
specific typhoon events, ensuring model transferability. The SVM optimization problem is

defined as:

11
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%I?EW W+C2§i (1)

it
subject to the constraint:

YW e(x)+b)=1-&, >0, i=1--,n (2)
where w is the normal vector to the hyperplane, b is the bias term, & are slack variables,
#(x;) maps input vectors to a higher-dimensional space,and y; denotes the class label (-1 or 1)
for each sample x;. We optimized the RBF kernel parameters using grid-search with 5-fold
cross-validation, where C € [0.1, 100] and y € [0.001, 1]. Across all configurations (three
input methods x five buffer distances), optimal values varied as follows: C = 5-15 and y =
0.10-0.25, with median values of C =10 and y = 0.15.

LightGBM complements SVM through gradient boosting with sequential error
correction, offering distinct advantages for regional-scale landslide mapping. Its histogram-
based algorithm enables efficient processing of large spatial datasets (Sun et al., 2023; Sahin,
2020). Additionally, LightGBM automatically captures complex feature interactions. The

minimized objective function is expressed as:

N . M 2
L=Y (-5 +2y 6 @
i=1 j=1

where . is the true label, 7,is the predictive value, A is a regularization parameter, and 0,

represents the parameters of the model. We optimized LightGBM hyperparameters through
Bayesian optimization. The optimal hyperparameters ranged as: num leaves = 25-35,
learning_rate = 0.03—0.08, and max_depth = 6—10. Early stopping with a 50-round patience
window resulted in model convergence at 120-220 trees across different scenarios.

3.1.2 Input variable weighting methods

The IV method, grounded in information theory, assesses how different factors

contribute to landslide susceptibility within a study area (Niu et al., 2024). Factors such as

12
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distance to roads and lithology were weighted higher in Zixing City due to their interaction
with typhoon-induced soil saturation. The IV for each evaluation factor is determined using
the formula below:

N./N
IV(F,K)=In—"— 4
(F,K) S /S 4)

where IV(Fi, K) is the information value of evaluation factor F; in relation to landslide event K,
N; refers to the number of landslides, NV is the total number of landslides, S; represents the area
covered by factor F, and S is the total area of the study area.

The CF method is a widely utilized probabilistic technique for assessing the likelihood of
landslide occurrences (Zhao et al., 2021). It quantifies the prior probability of a landslide
initiation under specific conditions of influential factors, utilizing spatial data from known

landslide locations. The expression of CF is as follows:

PP —PP

WTZh  pp<pP
PE(1-PF) ‘

“F=1 pp_pp ©)
— <« — - PP>PP
PF,(1-PFR)

where CF is the certainty factor indicating the degree of association between an influential
factor and potential landslide occurrence. It is derived from two area-proportional measures:
PP,, the proportion of landslide points within a specific factor class (number of landslide
points in the class / total area of the class); and PPs, the proportion of landslide points across
the entire study region (total number of landslide points / total area of the region).

The FR is a prevalent method in statistical analysis that assesses the relative impact of
various factors on the incidence of landslides (Panchal et al., 2021). An elevated FR value
denotes a more significant influence of a factor on the likelihood of landslides. The FR is
determined by the following equation:

_N,/N
S,/S

7

FR (6)

13
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where FR is the frequency ratio, N; represents the number of landslides within the area
corresponding to the conditioning factor, N is the total number of landslides, S; is the area
covered by the conditioning factor and S is the total area of the study region.

3.1.3 Buffer distance optimization and uncertainty assessment for LSP

To generate negative (non-landslide) samples for LSP, areas within buffer distances of d
= 0.1, 0.5, 1.0, 2.0, and 5.0 km around landslide locations were excluded, with balanced
negative samples (n = 705) randomly selected from remaining stable areas for each distance.
The optimal buffer distance was determined by evaluating SVM and LightGBM model
performance using AUC, Precision, Recall, and F1-score metrics.

The selection of buffer distances (0.1-5.0 km) was based on Zixing’s geomorphological
considerations and practices commonly reported in LSP. This range encompasses multiple
spatial scales: slope-scale processes (0.1-0.5 km), catchment-scale features (1.0-2.0 km), and
regional-scale geological units (5.0 km). The evaluation ensures optimal spatial representation
without a priori assumptions about scale dependencies (Chang et al., 2023).

Prediction uncertainty was assessed using the mean and standard deviation (SD) of
predicted landslide susceptibility values. Lower mean and SD values indicate reduced
prediction uncertainty and more concentrated susceptibility patterns, suggesting higher model
confidence in LSP (Huang et al., 2022), thereby complementing the buffer distance
optimization process.

3.2 Effective rainfall threshold modeling

3.2.1 Rainfall parameterization and threshold calculation

Typhoon-induced landslides are generally influenced by a combination of antecedent
moisture conditions and immediate precipitation, rather than by isolated rainfall events

(Mondini et al., 2023; Tufano et al., 2021). To account for the cumulative impact of multi-day

14
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rainfall while incorporating hydrological processes such as evapotranspiration and drainage,

we adopted the concept of effective rainfall (P.), calculated as:
P=) kP (7)
i=0

where P; represents the daily rainfall on the i-th day preceding landslide occurrence, n denotes
the number of antecedent days considered, and £ is the effective rainfall decay coefficient

(Segoni et al., 2018a). For hourly rainfall parameterization, P; is derived as:
R=2 R ®)

where Rj; is the hourly rainfall at the j-th hour of the i-th day.

3.2.2 Long-term and short-term rainfall parameters

Rainfall-triggered landslides are generally triggered by two dominant mechanisms:
prolonged low-intensity rainfall and short-duration high-intensity storms. Based on statistical
analysis of historical landslide events in Hunan Province (Xiao et al., 2025), a 7-day
antecedent period was identified as optimal for characterizing long-term rainfall impacts.
Consequently, the 7-day effective rainfall (D7) was selected as the long-term parameter.
Short-term rainfall metrics were defined as cumulative precipitation over 1 hour (H1), 12
hours (H12), 24 hours (H24), and 72 hours (H72) preceding landslide initiation. These
intervals capture distinct rainfall characteristics: H1 reflects extreme short-term intensity for
rapid slope failures, H12 and H24 represent sub-daily to daily precipitation critical for
intermediate responses, and H72 accounts for multi-day storm sequences.

3.2.3 Rainfall threshold model development

The threshold modeling framework comprises three sequential steps:

(1) Parameter calculation: For each landslide sample, short-term rainfall parameters (H1,

H12, H24, and H72) and the long-term rainfall parameter (D7) are calculated. The ratios of

15
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short-term parameters to the long-term parameter are computed as: R1=H1/D7, R12=H12/D7,
R24=H24/D7, and R72=H72/D7.

(2) Threshold setting: Long-to-short-term ratio coefficients (RC1, RC12, RC24, and
RC72) are introduced as thresholds to determine the dominant rainfall pattern for each
landslide. These thresholds are used to classify landslides into short-term or long-term
Typhoon-induced categories.

(3) Coefficient optimization: A cyclic trial-and-error method is employed to determine
the optimal ratio coefficients (RC1, RC12, RC24, and RC72), maximizing the accuracy and
reliability of the model.

3.2.4 Optimal ratio coefficient threshold determination

The process of determining the optimal long-to-short-term ratio coefficient threshold is
demonstrated using H12-D7 as an example. The process for the remaining coefficients (H1-
D7, H24-D7, and H72-D7) follows a similar approach. A 5-fold cross-validation method is
applied, with the following procedure:

(1) Rainfall data extraction for landslide locations: For each of the 705 landslide points,
R12 and D7 values are extracted from these interpolated surfaces at the exact landslide
coordinates, ensuring that each landslide location receives rainfall values derived from the
spatially weighted contributions of all nearby gauge stations. R12 and D7 values for each
landslide are calculated using Equations (7) and (8).

(2) Data preparation: The dataset is divided into five equal parts for cross-validation,
with each part serving as a test set while the remaining four serve as the training set.

(3) Initial threshold setting: An initial threshold for RC12 is set based on the minimum
value in the training set.

(4) Threshold evaluation: For each fold, the RC12 threshold is compared with the R12

value of samples in the test set. If RC12<R12, the prediction is considered a failure.
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Prediction accuracy is calculated for each RC12 threshold, adjusting in 0.001 increments until
the highest prediction accuracy is achieved.

(5) Optimal RCI12 threshold determination: The RC12 threshold with the highest
prediction accuracy is selected for each fold. The final RC12 threshold is determined by
averaging the optimal thresholds from all five folds.

3.2.5 Spatial distribution of optimal threshold

According to the optimal ratio coefficient threshold determined in section 3.2.4 and the
long-term and short-term rainfall parameters obtained through interpolation, the threshold
spatial distribution for the study area can be derived. Taking H12/D7 as an example, the
process is as follows:

First, by dividing the H12 values of each landslide point by the optimal ratio coefficient
RC12, the corresponding D7 thresholds for each landslide point can be calculated. These D7
thresholds serve as a basis for applying the Kriging interpolation method to obtain the spatial
distribution map of the D7 thresholds across the entire study area.

Next, by multiplying the D7 values of each landslide point by the ratio coefficient RC12,
the corresponding H12 thresholds for each landslide point can be determined. Subsequently,
utilizing these H12 thresholds, the Kriging interpolation method is applied once more to
generate the spatial distribution map of the H12 thresholds for the entire study area.

3.3 Typhoon-specific rainfall-induced landslide warning system

In order to effectively prevent typhoon-specific rainfall-induced landslide hazards,
constructing a comprehensive landslide warning system is crucial. This system integrates LSP
with critical rainfall thresholds, combining spatial probability and temporal probability to
predict the risk of landslide occurrence and the timing of potential events.

3.3.1 Construction of the landslide warning system
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Using the natural breaks point method, the LSP is categorized into five levels of spatial
probability: very low (S1), low (S2), moderate (S3), high (S4), and very high (S5). These
levels represent varying degrees of susceptibility to landslides in different regions, forming
the basis for assessing landslide risks when combined with rainfall data. Paralleling the LSP
categorization, rainfall thresholds are also divided into five levels using the natural breaks
point method, representing temporal probability: very low (T1), low (T2), moderate (T3),
high (T4), and very high (T5). A lower rainfall threshold indicates a higher likelihood of
typhoon-induced landslides, thus signaling a greater risk of landslide events.

Table 2 Classification of landslide hazard warning zones by integrating landslide susceptibility levels
(S1~S5) with rainfall threshold levels (T1~T5).

Landslide hazard T1 T2 T3 T4 TS5
warning zones

No warning No warning No warning No warning No warning

S1 (very low) zone (2" level)  zone (1%'level) zone (1stlevel) zone (1%tlevel)  zone (1%level)

S2 (low) 31 level No warning No warning No warning No warning
warning zone zone (2" level) zone (2™ level) zone (1%level) zone (1%1evel)
4t level 3 Jevel 3 level No warning No warning

S3 (moderate) . . . nd o
warning zone warning zone  warning zone  zone (2™ level) zone (1%level)

S4 (high) 5t Jevel 4% level 3 level No warning No warning

& warning zone warning zone ~ warning zone  zone (2™level) zone (1% level)
. 5t Jevel 5t Jevel 4™ level 3 Jevel No warning

S5 (very high) . . . . nd

warning zone warning zone  warning zone ~ warning zone  zone (2" level)

The matrix-based integration of LSP results and rainfall thresholds, as presented in Table
2 (Segoni et al., 2015), highlights the correlation between landslide susceptibility and rainfall
intensity. As the levels of landslide hazard warnings escalate from the 1% level, indicating no
warning, to the 5™ level, which signifies the highest alert, the likelihood of landslide
occurrences correspondingly increases. Areas categorized in higher hazard zones correspond
to regions with a heightened risk of landslides. This hazard warning system provides a spatial
framework for risk assessment and early warning, generating hazard zonation maps that can
be integrated into operational landslide monitoring and warning protocols. This underscores
the importance of implementing more effective geological disaster prevention strategies, as

thoroughly discussed in the literature by Huang et al. (2022).
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4 Landslide susceptibility prediction using machine learning models

4.1 Statistical analysis of conditioning factors

The statistical analysis reveals distinct patterns of landslide susceptibility across all
conditioning factors (Table S1 in the Supplement). Topographic factors demonstrate clear
elevation-dependent behavior, with maximum susceptibility occurring at intermediate
elevations (545-782 m, FR=1.637, IV=0.389), suggesting optimal conditions where
weathering processes and slope instability converge. Slope gradient exhibits peak
susceptibility in the moderate range (7.87-15.06°, FR=1.522, 1V=0.343), indicating
insufficient driving forces at gentler slopes and potential debris removal at steeper gradients.
South-facing aspects show enhanced susceptibility (FR=1.299, IV=0.230), likely attributable
to intensified weathering from solar radiation and moisture cycles.

Morphological indices reveal significant correlations with landslide occurrence. Profile
curvature demonstrates highest susceptibility in convex areas (0.17-0.59, FR=1.480,
IV=0.480), where stress concentration promotes slope failure. TWI shows strong positive
correlation with wetness, peaking at high values (8.69-13.62, FR=1.799, 1V=0.444),
confirming the critical role of water accumulation in slope destabilization. SPI indicates
maximum susceptibility in moderate stream power ranges (1.27-2.39, FR=1.298, 1V=0.229),
reflecting optimal erosional conditions.

Proximity factors exhibit contrasting patterns based on infrastructure type. Distance to
roads shows strong inverse correlation with landslide occurrence (0-800 m, FR=1.499,
IV=0.333), indicating anthropogenic disturbance effects. Conversely, distance to faults
reveals a bimodal pattern with peak susceptibility at intermediate distances (7-12 km,
FR=1.439, 1IV=0.305), suggesting regional structural influence rather than localized fault-
induced instability. Environmental factors demonstrate vegetation's protective role, with

moderate NDVI values (0.64—0.76) showing elevated susceptibility (FR=1.854, IV=0.015),
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representing the transition zone between bare soil vulnerability and established vegetation
stability. Lithological analysis reveals pronounced material control, with rhyolite (FR=1.546,
IV=0.353) and granite (FR=1.247, IV=0.198) showing enhanced susceptibility due to
intensive weathering and joint development, while sedimentary rocks (slate, shale, limestone,
sandstone) exhibit strong resistance (FR<0.21) owing to their structural integrity and lower
weathering susceptibility.

4.2 Landslide susceptibility modeling in Zixing City

Prior to model development, multicollinearity analysis was conducted using variance
inflation factor (VIF) to ensure statistical reliability of the conditioning factors. The analysis
revealed method-specific multicollinearity patterns: IV and CF methods showed no
significant multicollinearity issues (all VIF < 10), while the FR method exhibited
multicollinearity in four variables (SPI, Aspect, Plan curvature, and Distance to rivers with
VIF > 10), which were subsequently excluded from FR-based modeling (Table S2 in the
supplement). Following this preprocessing, landslide susceptibility prediction was performed
using SVM and LightGBM models with the three distinct weighting methods (IV, CF, and
FR). Susceptibility levels were categorized into five classes using the natural breaks
classification method, with non-landslide samples strategically selected by excluding buffer
zones of varying distances (0.1, 0.5, 1.0, 2.0, and 5.0 km) around documented landslide
locations to optimize model performance and reduce spatial bias.

4.2.1 IV-based modeling performance

The IV-derived susceptibility maps (Fig. 4) revealed distinct spatial patterns between the
two models across varying buffer distances. At smaller scales, the SVM model demonstrated
more detailed classification, with a higher degree of overlap between high susceptibility areas
and actual landslide locations. The LightGBM model's classification was smoother, with a

lower degree of overlap between high susceptibility areas and actual landslide locations.
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Notably, this performance discrepancy diminished progressively with increasing buffer

distances.

SVM

(b) 0.5 km
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Figure 4 Landslide susceptibility map based on SVM and LightGBM models using the IV input.

4.2.2 CF-based modeling performance

In CF-based modeling (Fig. 5), the SVM model's high and very high landslide
susceptibility areas at smaller scales were more extensive than in the IV mode, with actual
landslide locations more frequently distributed within these high-risk areas. As the scale
increased, the high susceptibility areas gradually decreased. The LightGBM model also
showed a relatively smooth distribution, with some high susceptibility areas identified at
smaller scales gradually integrating as the scale increased, following a similar trend to the

SVM model.
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Figure 5 Landslide susceptibility map based on SVM and LightGBM models using the CF input.

4.2.3 FR-based modeling performance

Regarding the FR input (Fig. 6), the SVM model identified a significant number of high
and very high landslide susceptibility areas at smaller scales compared to the IV and CF
inputs, which closely matched the actual locations of landslides. As the buffer scale expanded,
these high-risk areas generally diminished and the distribution became smoother. Conversely,
the LightGBM model delivered more uniform results, offering broader moderate-risk
distributions, with a small number of high susceptibility areas that did not align with the
actual landslide locations. As the scale increased, the high susceptibility areas identified by
the LightGBM model gradually diminished, showing greater consistency with the SVM

model results at the higher scale.
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Figure 6 Landslide susceptibility map based on SVM and LightGBM models using the FR input.

4.3 Uncertainty analysis of LSP results

4.3.1 LSP accuracy evaluation and comparative performance

Table S2 (in the Supplement) demonstrates contrasting performance characteristics
between the two machine learning approaches across different spatial scales and input
configurations. LightGBM consistently achieved high AUC values (0.915-0.921) and
maintained stable Fl-scores (0.838—0.850) across all buffer distances and input methods,
indicating robust generalization capability. In contrast, SVM exhibited pronounced sensitivity
to parameter combinations, with performance varying significantly across different buffer
distances (F1-scores ranging from 0.681 to 0.859) and input methods, particularly showing
notable degradation with FR input at extreme spatial scales (0.1 km and 5.0 km).

Two configurations emerged as comprehensively superior: SVM with FR input at 0.5 km
and 2.0 km buffer distances, both achieving F1-scores of 0.859. These optimal configurations
not only maintained competitive AUC values (0.914 and 0.913 respectively) but demonstrated
superior precision-recall balance compared to corresponding LightGBM configurations (F1-

scores: 0.854 and 0.856). The high recall values (0.845 and 0.851) coupled with robust
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precision (0.873 and 0.867) indicate enhanced sensitivity to landslide-prone areas while
minimizing false positive predictions. This bimodal performance pattern suggests that
intermediate buffer distances effectively capture fault-related geomorphological processes
influencing slope stability.

Independent validation on the test set confirmed the robustness of these optimal
configurations, with SVM-FR models at 0.5 km and 2.0 km buffer distances achieving F1-
scores of 0.847 and 0.852 respectively, representing minimal performance degradation from
training results. The consistent AUC values (0.909 and 0.908) on the test set further validate
the models' discriminative capability and indicate absence of overfitting, confirming the
reliability of these configurations for practical landslide susceptibility assessment applications.

4.3.2 LSP distribution characteristics across conditions

In addition to the performance metrics, the distribution characteristics of landslide
susceptibility predictions revealed fundamental differences between the models (Figs. S1-S3
in the Supplement). LightGBM generated smoother, more symmetrical distributions with
lower mean susceptibility values (0.196—0.320) and smaller standard deviations (0.099—
0.187), indicating stable and uniform predictions. In contrast, SVM exhibited greater
variability, with irregular distributions, higher mean values (0.303—-0.515), and larger standard
deviations (0.112—-0.214). Notably, SVM's mean susceptibility under FR input rose sharply
(0.446-0.515), while LightGBM maintained lower means despite moderately broader
deviations (0.160—0.187).

Therefore, SVM is preferable for FR-based modeling at 0.5 km and 2.0 km buffers,
where spatial precision is prioritized over prediction uniformity. The SVM model achieved its
highest accuracy at the 0.5 km buffer, classifying 86.4% of recorded landslides in high and

very high susceptibility zones (Fig. 6b). At the 2.0 km buffer (Fig. 6d), it still correctly
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classified 82.1% of landslides in these zones. As a result, Fig. 6b is selected as the final
landslide susceptibility map.
5 Landslide risk assessment in Zixing City

5.1 Ciritical rainfall thresholds for landslides in Zixing City

We evaluated four rainfall threshold models (H1-D7, H12-D7, H24-D7, and H72-D7)
through 5-fold cross-validation, with their optimal ratio coefficient (RC) thresholds and
prediction accuracies summarized in Table 3. The H24-D7 model, coupling 24-hour rainfall
during landfall with 7-day antecedent moisture, achieved the highest accuracy (71.8%) by
effectively capturing both cumulative saturation and abrupt triggering by typhoon rainfall
bursts. Notably, the H24-D7 model exhibited stable performance across all folds, with
accuracy ranging narrowly between 68.8% (Fold 1) and 74.6% (Fold 4), reflecting robust
generalizability.

Table 3 Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Model RC/Accuracy RC/Accuracy RC/Accuracy RC/Accuracy RC/Accuracy RC/Accuracy

HI1-D7 0.032/56.5 0.062/29.7 0.076/35.5 0.022/53.6 0.040/47.8 0.047/44.6
H12-D7 0.077/54.2 0.167/46.6 0.243/48.3 0.267/47.7 0.154/45.3 0.182/48.5
H24-D7 0.472/68.8 0.436/72.3 0.422/73.1 0.459/74.6 0.414/70.2 0.440/71.8

H72-D7 0.789/56.5 0.776/59.4 0.781/63.1 0.802/51.4 0.783/60.1 0.787/58.1

In contrast, the HI-D7 and H12-D7 models displayed marked instability: H1-D7
accuracy fluctuated between 29.7% (Fold 2) and 56.5% (Fold 1), while H12-D7 thresholds
(RC12: 0.077-0.267) corresponded to accuracies of 45.3-48.3%. The H72-D7 model showed
moderate performance variability (accuracy: 51.4-63.1%) despite consistently high RC72
thresholds (>0.78).

These results highlight the critical role of temporal rainfall parameter selection. The
superior performance of the H24-D7 model (24-hour short-term rainfall and 7-day antecedent

rainfall) suggests that a 24-hour duration optimally captures both immediate landslide triggers
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and cumulative hydrological effects, balancing sensitivity and stability. Shorter (H1/H12) or
longer (H72) durations either overemphasize transient rainfall spikes or dilute critical
triggering signals.

5.2 Spatio-temporal distribution of rainfall thresholds

Fig. 7 illustrates the spatial distribution of rainfall-triggered landslide thresholds derived
from four models (RC1, RC12, RC24, and RC72) across multiple temporal scales (1-hour,
12-hour, 24-hour, 72-hour, and 7-day) within the study area.

5.2.1 Short-term predictions (1-hour to 12-hour scales)

At the 1-hour scale (Fig. 7a), the RC1 model generated thresholds ranging from 7 to 50
mm, with 65.2% of landslides occurring in moderate threshold zones (20-30 mm). This
indicates the model's effectiveness in detecting slope failures under short-duration rainfall. In
contrast, the RC12 model on the 12-hour scale (Fig. 7b) showed a wider threshold range (25—
200 mm), with 62.9% of landslides in mid-to-high threshold regions (80-130 mm). This
mismatch suggests that the 12-hour cumulative data may underestimate rainfall impacts in

specific topographic settings.

o Landslide
o Ve
250 m
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539 Figure 7 Distribution of typhoon rainfall thresholds under various optimal RC ratios: (a) 1-hour RC1-based, (b)
540 12-hour RC12-based, (c¢) 24-hour RC24-based, (d) 72-hour RC72-based, (¢) 7-day RC1-based, (f) 7-day RC12-

541 based, (g) 7-day RC24-based, and (h) 7-day RC72-based.
542 5.2.2 Mid-term predictions (24-hour to 72-hour scales)
543 The RC24 model at the 24-hour scale (Fig. 7c) displayed a threshold range of 65—400

544  mm, with 87.1% of landslides occurring within moderate thresholds (100250 mm) and 12.3%
545  in higher thresholds (>250 mm). This indicates a more accurate capture of rainfall intensity
546  effects. At the 72-hour scale (Fig. 7d), the RC72 model produced thresholds between 78—700
547  mm, with 59.2% of landslides in mid-to-high threshold regions (200-500 mm). Although the
548 RC72 model demonstrated reasonable sensitivity to prolonged rainfall, its upper threshold
549 (700 mm) may result in conservative risk predictions for some geological settings.

550 5.2.3 Long-term predictions (7-day scale)

551 At the 7-day scale, significant differences emerge across models in terms of predicted
552  rainfall thresholds and landslide points. The RC1 model (Fig. 7e) shows a threshold range of
553  100-700 mm, with landslide points predominantly concentrated in the lower rainfall ranges.
554  While these low-threshold landslides may indicate localized risks, the model's conservative
555  threshold distribution fails to effectively capture landslides triggered by higher rainfall
556  amounts, potentially overlooking more significant events.

557 The RCI12 model (Fig. 7f), with a threshold range of 100-800 mm, also shows a
558  concentration of landslide points in the lower rainfall ranges. Despite a wider threshold range,
559  the similarity to the RC1 model suggests that RC12 may also underutilize its capacity to
560  predict higher typhoon-induced landslides, leading to under-prediction in areas experiencing
561  moderate to heavy precipitation.

562 In contrast, the RC24 model (Fig. 7g) exhibits a balanced threshold range (250-900 mm)
563  and effectively identifies landslide points in both moderate and high rainfall categories. This
564  balance enables RC24 to capture the full spectrum of typhoon-induced landslides, accurately

565  identifying risks across different rainfall intensities.
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The RC72 model (Fig. 7h) shows a concentration of landslide points in the higher
rainfall range (175-1000 mm). While it predicts landslides accurately under heavy rainfall
conditions, the model may overestimate risks in some regions and neglect potential landslides
associated with lower rainfall thresholds.

Based on the above analysis, the RC24 model is the optimal choice, which aligns with
the findings in Section 5.1. Its effectiveness is evident as it demonstrates superior stability and
accuracy in both the 24-hour and 7-day timescales.The RC24 model's balanced threshold
range allows it to accurately assess landslide risks across varying rainfall intensities. This
makes it the most reliable choice for practical landslide hazard warning applications.

5.3 Landslide hazard warning system for Zixing City

Based on the optimal LSP results (Fig. 6b) and the validated RC24 rainfall threshold
model, a spatially explicit landslide hazard warning system was established for Zixing City.
The integration of spatial probability (LSP) and temporal probability (rainfall thresholds)

followed the matrix classification outlined in Table 2.
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Figure 8 Landslide warning zones generated by overlaying spatial and temporal probability maps: (a) optimal
spatial probability, (b) 24-hour RC24-based rainfall threshold, (c) 7-day RC24-based rainfall threshold, (d)
overlay of (a) and (b), and (e) overlay of (a) and (c).

Five susceptibility levels in the LSP map (Fig. 6b) were replaced with five spatial
probabilities (S1-S5) (Fig. 8a), respectively. Simultaneously, the spatially interpolated 24-
hour rainfall thresholds (H24) (Fig. 8b) and 7-day effective rainfall thresholds (D7) (Fig. 8c)
derived from the RC24 model were classified into five temporal probability levels (T1-T5)
using the natural breaks method. Spatial overlay analysis was performed to combine the
susceptibility levels (S1-S5) with the rainfall threshold levels (T1-T5), generating two hazard
warning zone maps: H24-based (Fig. 8d) and D7-based (Fig. 8e).

Quantitative assessment of both warning systems reveals distinct performance
characteristics. The 24-hour threshold system (Fig. 8d) demonstrates superior predictive
efficiency, with 71.4% of historical landslides occurring within high to very high warning

zones (Levels 3—5) while covering only 34.2% of the total area, resulting in an efficiency ratio
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of 2.09 and a risk density of 49.0 landslides per 1000 high-risk grid cells. The spatial
distribution shows concentrated high-risk areas primarily in the central region, characterized
by steep slopes (>21.80°), weathered granite lithology, and road proximity (0—800 m). This
focused distribution indicates effective identification of areas most sensitive to short-term
intense rainfall triggers.

The 7-day threshold system (Fig. 8e) exhibits broader spatial coverage, with high-risk
zones encompassing 42.7% of the study area and capturing 68.7% of historical landslides,
yielding a lower efficiency ratio of 1.61 and risk density of 37.8 landslides per 1000 grid cells.
This system effectively identifies extended vulnerable areas in northern and eastern regions,
reflecting cumulative rainfall effects on slope stability. The expanded coverage captures zones
where prolonged antecedent moisture interacts with moderate-to-high susceptibility
conditions.

Statistical validation confirms the complementary nature of both systems. The 24-hour
system achieves higher spatial efficiency (efficiency ratio 2.09 vs. 1.61) and landslide
concentration (risk density 49.0 vs. 37.8), making it optimal for immediate typhoon response
and targeted emergency resource allocation. Conversely, the 7-day system provides
comprehensive coverage for prolonged rainfall scenarios, essential for early warning during
extended typhoon events despite its broader spatial distribution and lower concentration
efficiency. The combined application of both systems enables dynamic hazard assessment,
addressing both rapid-onset failures during typhoon landfall and delayed failures following
sustained precipitation.

6 Discussion

6.1 Model selection strategy and optimization of LSP

30



620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

Our comparative analysis of SVM and LightGBM across different input methods (IV,
CF, FR) and buffer distances shows distinct performance patterns crucial for model selection
in typhoon-induced LSP. SVM exhibited marked sensitivity to configuration parameters, with
Fl-scores varying from 0.681 to 0.859 depending on buffer distance and input method.
LightGBM maintained more stable performance (FIl-scores: 0.838-0.850) across all
configurations. These differences reflect fundamental algorithmic characteristics: SVM's
kernel-based approach effectively captures localized patterns when properly tuned, while
LightGBM's ensemble structure delivers consistent results across varying data conditions.

SVM's superior performance at 0.5-2.0 km buffer distances with FR weighting builds on
findings by Kalantar et al. (2018) and Bogaard and Greco (2018). This buffer range appears
effective for capturing the spatial patterns of typhoon-induced failures in our study area. FR
weighting's effectiveness supports Reichenbach et al. (2018) and Yan et al. (2019), who found
that frequency-based methods excel at quantifying terrain-landslide relationships. In typhoon
conditions, FR effectively weights critical factors including road proximity and weathered
granite lithology.

These performance patterns justify our dual-model approach. SVM, though requiring
careful calibration, enables precise delineation of high-risk zones essential for emergency
response, with SVM-FR at 0.5 km achieving peak accuracy (F1=0.859). LightGBM's
robustness suits operational contexts requiring consistent predictions under variable
conditions. Our results suggest that effective model selection depends on matching
algorithmic strengths to specific application requirements rather than identifying a universally
superior algorithm.

6.2 Rainfall threshold modeling and typhoon-specific mechanisms
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The H24-D7 model achieved 71.8% accuracy, outperforming alternative temporal
windows (Table 3). The optimal RC24 value of 0.440 (with inter-fold variation of 0.414—
0.472) indicates that landslides typically occur when 24-hour rainfall constitutes
approximately 44% of the preceding 7-day accumulation. This pattern is consistent with the
multi-temporal triggering framework proposed by Nolasco-Javier and Kumar (2018) for
typhoon contexts, where both antecedent saturation and short-term intensity contribute to
slope failure. However, the specific hydrological mechanisms underlying this ratio require
verification through in-situ soil moisture monitoring. The H1-D7 and H12-D7 models showed
lower and more variable accuracy (44.6% and 48.5% respectively), suggesting that shorter
accumulation periods may inadequately represent the cumulative soil saturation process
relevant to this region's geological conditions (Kirschbaum and Stanley, 2018).

Spatial patterns in rainfall thresholds reveal systematic variations across the study area.
Southeastern regions exhibit elevated H24 thresholds exceeding 250 mm (Fig. 7c), while
northern areas show reduced thresholds of 100—-150 mm. These spatial variations align with
findings by Lee et al. (2018) and Cho et al. (2022) regarding topographic controls on
typhoon-induced landslides, though the specific mechanisms require further investigation
with detailed meteorological analysis. The spatially distributed thresholds derived through
Kriging interpolation (Table 1) provide location-specific values that improve upon uniform
regional thresholds typically employed in operational systems (Segoni et al., 2018b).

The consistent performance across the five validation folds (68.8—74.6% accuracy)
demonstrates the model's stability when applied to different spatial subsets of the landslide
inventory. This suggests the H24-D7 relationship captures generalizable rainfall-slope
response patterns rather than site-specific anomalies, though validation with independent
typhoon events would further confirm model robustness.

6.3 Integration of susceptibility and rainfall thresholds for landslide warning
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The integrated warning system combines static susceptibility surfaces with spatially
continuous rainfall thresholds following the matrix framework in Table 2. The H24-based
system (Fig. 8d) captured 71.4% of historical landslides within high to very high warning
zones (Levels 3-5) covering 34.2% of the study area, yielding an efficiency ratio of 2.09. The
D7-based system (Fig. 8e¢) identified 68.7% of landslides across 42.7% of the area (efficiency
ratio: 1.61). These focused distributions contrast with the broader spatial coverage typically
required by uniform regional thresholds (Guzzetti et al., 2020), though direct comparative
validation would be needed to quantify the performance gain.

The dual-threshold configuration provides complementary perspectives suited to
different phases of typhoon evolution, with D7 reflecting cumulative moisture conditions and
H24 capturing immediate triggering rainfall. This combination addresses the compound
rainfall mechanisms documented in typhoon-affected regions (Gariano et al., 2015; Nolasco-
Javier and Kumar, 2018), though the optimal application strategy for operational warning
would require integration with real-time meteorological forecasting systems.

Spatially continuous thresholds (Fig. 8b, c¢) address terrain-induced variability more
effectively than point-based approaches. The Kriging interpolation method provides threshold
estimates across the entire study area, accounting for spatial autocorrelation in rainfall
patterns (Table 1). However, threshold accuracy depends on rain gauge density and may
decline in areas distant from monitoring stations, as indicated by the interpolation validation
metrics (R: 0.76-0.87, NSE: 0.71-0.82). The framework advances beyond existing point-
based threshold systems (Segoni et al., 2018b; Guzzetti et al., 2020) by providing spatially
explicit hazard assessment, though regional adaptation of threshold parameters would be
necessary for application in different geological settings.

The modular design allows the framework to be adapted for operational landslide early

warning, though practical implementation would require integration with meteorological
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monitoring infrastructure, standardized protocols for warning dissemination, and post-event
validation procedures to maintain system reliability. These operational considerations extend
beyond the methodological scope of this study but represent important directions for future
development of typhoon-specific landslide warning systems.

6.4 Limitations and future research directions

Despite promising advancements, this study has limitations owing to the complexity of
typhoon-induced landslides. First, the model’s validation relies solely on landslides from
Typhoon Gaemi. While this single event provided a comprehensive dataset, validating against
multiple, varied typhoons is crucial for model robustness. Typhoons differ significantly in
intensity, rainfall patterns, forward speed, and seasonality, all of which can influence
threshold parameters. For instance, a slow-moving typhoon with higher cumulative rainfall
and lower peak intensity could alter the optimal H24-D7 ratios. Future research should
incorporate landslide inventories from typhoons with contrasting characteristics to assess
threshold transferability and develop adaptive parameterization. The framework’s modular
design readily facilitates this by allowing recalibration of the RC24 coefficient for different
typhoon types.

Second, the current study primarily addresses rainfall-induced landslides, overlooking
other potential contributing factors. Future work should explore integrating multiple
triggering mechanisms, including earthquakes, human-induced slope modifications, and
typhoon rainfall, for a more comprehensive hazard assessment.

Third, the study doesn't explicitly address the potential impacts of climate change on
typhoon rainfall and landslide occurrence. As climate change alters typhoon frequency,
intensity, and tracks, future studies should incorporate climate projections specific to
typhoon-prone regions. This will enable the development of forward-looking landslide

warning systems that can adapt to the evolving threats posed by typhoon-specific rainfall.
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Fourth, while this study demonstrates the effectiveness of ML approaches, further
refinement is possible. Future research should explore advanced deep learning techniques and
ensemble methods to better capture the complex, non-linear relationships between typhoon-
related variables (e.g., rainfall intensity, duration, antecedent moisture) and slope stability.
These advanced methods may offer improved predictive accuracy, more robust uncertainty
quantification, and ultimately, more reliable hazard warnings.

Finally, climate projections for Southeast China show a 15-25% increase in peak
typhoon rainfall by 2080 (RCP8.5), which could alter the H24-D7 landslide thresholds from
this study. Higher atmospheric moisture may lower D7 thresholds, while greater rainfall
intensity could require new H24 parameters. Shifting typhoon tracks and seasonality might
also change which areas are vulnerable. Future work must use downscaled climate data to
create non-stationary thresholds, ensuring the long-term reliability of warning systems in the
region.

7 Conclusions

This study establishes a novel integrated framework combining optimized LSP with
typhoon-specific rainfall threshold modeling for comprehensive hazard assessment in
mountainous regions. Through systematic analysis of 705 landslides triggered by Typhoon
Gaemi in Zixing City, several key insights emerge:

(1) Buffer distance optimization proves critical for typhoon-induced landslide modeling,
with SVM-FR combinations at 0.5-2.0 km distances achieving superior performance (F1-
score: 0.859) compared to conventional approaches. This spatial scale effectively captures
typhoon-induced moisture infiltration patterns that differ fundamentally from other triggering
mechanisms.

(2) The H24-D7 threshold model demonstrates exceptional stability (71.8% accuracy

across 5-fold validation), successfully characterizing the dual-phase failure mechanism unique
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to typhoons: prolonged antecedent saturation coupled with intense precipitation bursts during
typhoon passage.

(3) Spatially distributed rainfall thresholds reveal significant heterogeneity, reflecting
complex interactions between typhoon structure and local topography that contradict uniform
regional threshold assumptions in existing operational systems.

(4) The integrated warning system achieves operational efficiency through dual-
threshold configuration: H24 thresholds provide immediate response capability during
typhoon landfall, while D7 thresholds enable early detection of vulnerable areas approaching
saturation conditions.

(5) This framework addresses three critical gaps in current landslide prediction:
systematic buffer optimization for imbalanced datasets, effective integration of variable
weighting with machine learning algorithms, and development of typhoon-specific spatially

explicit thresholds.
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Tables

Table 1 Kriging interpolation accuracy assessment for rainfall parameters.

Parameter RMSE (mm) MAE R NSE
H1 4.2 3.1 0.76 0.71
H12 11.7 8.9 0.83 0.78
H24 16.3 12.6 0.87 0.82
H72 24.8 18.4 0.81 0.77
D7 29.6 22.7 0.78 0.73

Table 2 Classification of landslide hazard warning zones by integrating landslide susceptibility levels
(S1~S5) with rainfall threshold levels (T1~T5).

Landslide hazard Tl T2 T3 T4 TS
warning zones
S1 (very low) No warning No warning No warning No warning No warning
Y zone (2" level)  zone (1%'level) zone (1stlevel) zone (1%tlevel)  zone (1%level)
S2 (low) 31 level No warning No warning No warning No warning
warning zone zone (2" level) zone (2™ level) zone (1%level) zone (1%1evel)
4t level 3 level 3 level No warning No warning
S3 (moderate) . . . p "
warning zone warning zone ~ warning zone  zone (2™ level) zone (1%level)
. 5% Jevel 4™ level 31 Jevel No warning No warning
S4 (high) . ) . P "
warning zone warning zone  warning zone  zone (2"level) zone (1%level)
5% Jevel 5t Jevel 4% level 31 Jevel No warning

S5 (very high)

warning zone

warning zone

warning zone

warning zone

zone (2" level)

Table 3 Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
RC/Accuracy RC/Accuracy RC/Accuracy RC/Accuracy RC/Accuracy RC/Accuracy
H1-D7 0.032/56.5 0.062/29.7 0.076/35.5 0.022/53.6 0.040/47.8 0.047/44.6
H12-D7 0.077/54.2 0.167/46.6 0.243/48.3 0.267/47.7 0.154/45.3 0.182/48.5
H24-D7 0.472/68.8 0.436/72.3 0.422/73.1 0.459/74.6 0.414/70.2 0.440/71.8
H72-D7 0.789/56.5 0.776/59.4 0.781/63.1 0.802/51.4 0.783/60.1 0.787/58.1

Figure captions

Figure 1 Geographical distribution of the study area, landslides and rainfall gauges.

Figure 2 Landslide-related conditioning factors.

Figure 3 Technical framework for developing a typhoon-specific rainfall-induced landslide warning

system.
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Figure 4 Landslide susceptibility map based on SVM and LightGBM models using the IV input.

Figure 5 Landslide susceptibility map based on SVM and LightGBM models using the CF input.

Figure 6 Landslide susceptibility map based on SVM and LightGBM models using the FR input.

Figure 7 Distribution of typhoon rainfall thresholds under various optimal RC ratios: (a) 1-hour RC1-based,
(b) 12-hour RC12-based, (c¢) 24-hour RC24-based, (d) 72-hour RC72-based, (¢) 7-day RC1-based, (f) 7-day
RC12-based, (g) 7-day RC24-based, and (h) 7-day RC72-based.

Figure 8 Landslide warning zones generated by overlaying spatial and temporal probability maps: (a) optimal
spatial probability, (b) 24-hour RC24-based rainfall threshold, (c) 7-day RC24-based rainfall threshold, (d)

overlay of (a) and (b), and (e) overlay of (a) and (c).
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Supplement

Table S1 IV, CF and FR values for each conditioning factor.

Conditioning factors  Factor grading Landslides v CF FR
92314 81 -0493 0679 0507
314-545 255 0218 0246 1279
Elevation (m) 545-782 312 0389 0493 1.637
782~1098 57 -0505 -0.704  0.495
1098~2033 0 N 0 0
0~7.87 91 0347 0427  0.653
7.87~15.06 267 0343 0420  1.522
Slope (%) 15.06~21.80 219 0.168  0.184 1202
21.80~29.44 112 0213 -0240 0.786
29.44-5731 16 0756 -1411  0.2440
Plan 0 1 0 0
North 74 -0.102  -0.109  0.897
Northeast 67 -0.058 -0.060  0.942
East 70 -0.120  -0.128  0.800
Aspect Southeast 105 0116 0123 1131
South 102 0230 0261  1.299
Southwest 9% 0.144 0156  1.169
West 9%  0.039 0039  1.040
Northwest 95 -0.071 -0.074  0.929
-3.73~-0.57 36 -0275  -0321  0.725
-0.57~-0.18 189 0250 0287 1333
Plan curvature -0.18~0.15 284 0.000 0000  1.000
0.15~0.54 156 -0.059 -0.061  0.941
0.54~3.94 40 0373 -0467  0.627
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Profile curvature

TWI

Distance to road (m)

Distance to river (m)

Distance to fault (m)

NDVI

SPI

-3.92~-0.55
-0.55~-0.16
-0.16~0.17
0.17~0.59
0.59~3.76
1.98~4.40
4.40~5.54
5.54~6.91
6.91~8.69
8.69~13.62
0~800
800~2000
2000~4500
4500~7500
7500~9700
0~800
800~2200
2200~4500
4500~8000
8000~12800
0~2000
2000~7000
7000~12000

12000~18000
18000~28100

-0.20~0.27
0.27~0.47
0.47~0.64
0.64~0.76
0.76~0.94
-8.46~-2.72
-2.72~1.27
1.27~2.39
2.39~3.46
3.46~7.45
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19
114
260
253
59
151
297
132
73
52
350
194
153

152
205
218
101
29
64
262
286
62
31

29
108
296
270

108
370
180
47

-0.608
-0.240
-0.112
0.480
0.276
-0.393
0.245
-0.011
0.046
0.444
0.333
-0.011
-0.277
-0.857
1 NNN
-1.000
0.147
0.081
0.010
-0.229
-0.278
-0.380
0.062
0.305
-0.414
-0.398
-0.956
-0.446
0.217
0.015
-0.255
-1.000
0.250
0.229
-0.320
-0.356

-0.935
0.274
-0.119
0.392
0.324
-0.499
0.280
-0.011
0.047
0.587
0.405
-0.011
-0.324
-1.942
0.001
0.158
0.085
0.010
-0.260
-0.325
-0.478
0.064
0.364
-0.535
-0.508
-3.133
-0.591
0.245
0.617
-0.295
0.000
0.288
0.261
-0.386
-0.440

0.392
0.760
0.888
1.480
1.382
0.607
1.324
0.989
1.048
1.799
1.499
0.989
0.723
0.143
0.001
1.172
1.088
1.010
0.771
0.722
0.620
1.066
1.439
0.586
0.602
0.044
0.554
1.278
1.854
0.745
0.000
1.334
1.298
0.680
0.644



Slate 8 -0.856  -1.938 0.144

Shale 10 -0.798  -1.601 0.202
1
. Limestone 1 -0.907 -2.376 0.093
Lithology
Sandstone 3 -0.958  -3.179 0.042
Granite 485 0.198 0.221 1.247
Rhyolite 198 0.353 0.436 1.546
987
988 Table S2 Performance metrics of SVM and LightGBM models across different buffer distances and input
989 methods (Training set).
Buffer

. Model Input Method AUC Precision Recall F1-score
Distance (km)

v 0.831 0.798 0.752 0.774

SVM CF 0.812 0.781 0.736 0.758

0.1 FR 0.720 0.695 0.668 0.681
v 0.919 0.964 0.823 0.843

LightGBM CF 0.919 0.867 0.821 0.843

FR 0.915 0.859 0.818 0.838

v 0.825 0.792 0.743 0.767

SVM CF 0.820 0.786 0.739 0.762

0.5 FR 0.914 0.873 0.845 0.859
v 0.920 0.866 0.825 0.845

LightGBM CF 0.920 0.868 0.823 0.845

FR 0.921 0.881 0.829 0.854

v 0.826 0.794 0.745 0.769

SVM CF 0.819 0.783 0.741 0.761

1.0 FR 0.721 0.698 0.671 0.684
v 0.920 0.867 0.827 0.844

LightGBM CF 0.920 0.869 0.825 0.846

FR 0.916 0.861 0.822 0.841

v 0.826 0.795 0.747 0.770

SVM CF 0.834 0.801 0.756 0.778

2.0 FR 0.913 0.867 0.851 0.859
v 0.920 0.868 0.829 0.848

LightGBM CF 0.920 0.870 0.821 0.848

FR 0.918 0.882 0.831 0.856

v 0.823 0.791 0.741 0.765
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990
991
992
993

994

995

996

997

998

999

1000

1001

5.0

SVM

LightGBM

CF
FR
v

FR

0.883
0.721
0.919
0.918
0.916

0.843
0.697
0.865
0.871
0.862

0.798
0.669
0.831
0.829
0.823

0.820
0.683
0.850
0.850
0.842

Table S3 Variance Inflation Factor (VIF) analysis for landslide conditioning factors.

Conditioning factors IV method CF method FR method
Elevation (m) 2.34 2.41 2.36
Slope (°) 3.67 3.52 3.88
Aspect 1.89 1.94 12.45
Profile curvature 2.15 2.08 2.33
Plan curvature 1.76 1.82 11.23
TWI 4.23 4.18 4.11
Distance to road (m) 345 3.38 4.12
Distance to river (m) 6.78 6.92 10.56
Distance to fault (m) 2.56 2.63 2.41
NDVI 291 2.87 3.15
SPI 5.67 5.84 13.89
Lithology 1.98 2.05 1.87

Note: VIF values > 10 indicate multicollinearity issues and variables were excluded from analysis.
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Figure S1 Landslide susceptibility predictions distribution based on IV input variable selection.
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Figure S2 Landslide susceptibility predictions distribution based on CF input variable selection.
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Figure S3 Landslide susceptibility predictions distribution based on FR input variable selection.
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