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Abstract: Typhoon-specific rainfall-induced landslides pose critical hazards in mountainous 14 

regions, yet existing warning systems inadequately capture the distinct rainfall dynamics of 15 

these extreme events. To address this limitation, we propose an integrated framework 16 

combining optimized susceptibility predictions with dynamic rainfall thresholds tailored to 17 

typhoon patterns. The approach enhances machine learning accuracy through buffer-based 18 

negative sampling and variable weighting. It also introduces a spatiotemporal rainfall analysis 19 

to distinguish between short-term intense downpours and cumulative soil saturation. Tested in 20 

Zixing City, Hunan Province, China, where over 700 landslides were triggered by Typhoon 21 

Gaemi, the framework proved effective. The support vector machine (SVM) model achieved 22 

the best performance using frequency ratio (FR) inputs with a 0.5 km buffer (F1-score: 0.859, 23 

AUC: 0.914), correctly classifying 86.4% of landslides as high or very high susceptibility. 24 

The rainfall analysis identified 24-hour intensity combined with 7-day antecedent rainfall as 25 

the optimal trigger, effectively capturing both immediate and cumulative moisture effects. 26 

Spatially, rhyolite and granite slopes and areas near roads emerged as hotspots for failure 27 
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(distance < 800 m, FR = 1.499 for roads; FR = 1.546 for rhyolite). The integrated warning 28 

system shows high spatial efficiency, with high-risk areas covering only 34.2% of the study 29 

region yet capturing 71.4% of historical landslides. Additionally, the framework generated 30 

high-risk zone maps that align strongly with historical events. This work highlights the unique 31 

nature of typhoon-driven slope instability and provides a transferable framework for disaster 32 

risk reduction in cyclone-prone regions. 33 

Keywords: Typhoon-induced landslide; Slope failure; Hazard warning system; Dynamic 34 

thresholds; Landslide susceptibility mapping 35 

1  Introduction 36 

Landslides pose significant threats to mountainous regions globally (Froude and Petley, 37 

2018), especially in areas where steep terrain, complex geology (Thiene et al., 2017), and 38 

extreme weather events like typhoons intersect. In Southeast China, typhoon-induced 39 

landslides have become a growing concern due to the region's rapid urbanization and the 40 

increasing variability in climate patterns (Gariano and Guzzetti, 2016; Fan et al., 2018). The 41 

Nanling Mountains, in southern China, are particularly vulnerable to landslides due to a 42 

combination of extreme topographic relief and complex geological conditions during the 43 

typhoon season (Zou et al., 2023). 44 

Typhoons typically bring prolonged antecedent rainfall, followed by intense, short bursts 45 

of precipitation (Li et al., 2019). These conditions create unique hydrological environments 46 

that exceed the complexity of typical rainfall-triggered landslides (Chung and Li, 2022). 47 

These events trigger slope failures through cumulative soil saturation and sudden hydrological 48 

stress, challenging traditional landslide prediction methods (Yang et al., 2017). Despite 49 

advances in landslide susceptibility prediction (LSP) and rainfall threshold modeling, current 50 

approaches remain inadequate. Three critical limitations persist: severe data imbalance effects, 51 

suboptimal integration of variable selection with machine learning algorithms, and lack of 52 
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spatially-explicit rainfall thresholds for typhoon-specific conditions (Segoni et al., 2018a; 53 

Regmi et al., 2024). 54 

Most existing studies employ ad-hoc buffer distances without systematic optimization, 55 

leading to inconsistent model performance across different geological settings (Lombardo and 56 

Mai, 2018). Traditional methods attempt to mitigate this imbalance by randomly sampling 57 

non-landslide points across the study area (Steger et al., 2016; Dou et al., 2023). However, 58 

random selection can introduce spatial bias, as non-landslide points might include areas that 59 

are unstable but have not yet been identified as landslide-prone (Kalantar et al., 2018). 60 

To address this limitation, more recent approaches have employed buffer-based negative 61 

sampling, which systematically excludes non-landslide points near known landslide sites. 62 

This method assumes that adjacent areas share similar environmental conditions (e.g., slope, 63 

lithology) and therefore should not be classified as “stable” (Achu et al., 2022). Several 64 

studies have tested varying buffer distances, ranging from tens to thousands of meters, to 65 

determine the optimal distance for different regions. However, systematic evaluation of buffer 66 

distance optimization coupled with variable weighting methods remains largely unexplored. 67 

LSP is primarily focused on identifying areas prone to slope failure, based on static 68 

environmental factors such as topography, lithology, land cover, and hydrology (Zêzere et al., 69 

2017; Guo et al., 2024). Traditional approaches to LSP often rely on deterministic and 70 

statistical methods, including information value (IV), certainty factor (CF), frequency ratio 71 

(FR), logistic regression (LR), and weight of evidence (WOE). These methods quantify the 72 

relationship between historical landslide occurrences and predisposing factors using linear or 73 

semi-linear approaches (Ciurleo et al., 2017; Reichenbach et al., 2018). However, these 74 

methods oversimplify the complex, nonlinear interactions that govern slope stability 75 

(Merghadi et al., 2020). 76 
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In contrast, machine learning (ML) algorithms, such as support vector machine (SVM) 77 

and light gradient boosting machine (LightGBM), have emerged as powerful alternatives. 78 

SVM excels in high-dimensional classification tasks and effectively identifies optimal 79 

hyperplanes separating landslide-prone from stable areas (San, 2014; Huang and Zhao, 2018). 80 

LightGBM offers superior scalability and computational efficiency for processing large 81 

geospatial datasets (Sun et al., 2023). Both SVM and LightGBM capture intricate 82 

relationships among variables without restrictive assumptions, making them superior to 83 

traditional methods in terms of predictive accuracy (Yang et al., 2023). However, frameworks 84 

that systematically integrate variable weighting methods with advanced ML algorithms for 85 

LSP optimization are lacking. 86 

For temporal prediction, existing rainfall threshold approaches predominantly use 87 

generalized regional thresholds that inadequately capture local geological heterogeneity and 88 

typhoon-specific rainfall patterns (Guzzetti, 2021; Banfi and De Michele, 2024). These 89 

thresholds are typically defined based on cumulative or intensity-duration (I-D) rainfall values 90 

(Piciullo et al., 2017; Segoni et al., 2018a). In typhoon-prone regions, dynamic rainfall 91 

thresholds are crucial due to the unique combination of long-duration antecedent rainfall and 92 

sudden high-intensity bursts of precipitation (Guzzetti et al., 2020). Traditional empirical 93 

methods fail to provide spatially continuous threshold surfaces that account for local 94 

environmental variability (Piciullo et al., 2018). 95 

Recent advances have integrated multi-temporal rainfall parameters with advanced 96 

statistical techniques to optimize rainfall thresholds (Segoni et al., 2015; Huang et al., 2022), 97 

accounting for diverse triggering mechanisms. Additionally, spatial interpolation methods, 98 

such as Kriging, have been applied to generate continuous rainfall threshold surfaces that 99 

allow for local variations in geological and environmental conditions (Kenanoglu et al., 2019; 100 

Segoni et al., 2018b). This approach, when combined with high-resolution susceptibility maps, 101 
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contributes to the development of integrated hazard warning systems that can dynamically 102 

adjust to typhoon-specific rainfall-induced scenarios (Piciullo et al., 2018; Mirus et al., 2018). 103 

This study examines Zixing City, a mountainous region in southeastern Hunan Province, 104 

frequently affected by typhoon-induced extreme rainfall. Its steep slopes, fractured geology, 105 

and high sensitivity to rapid pore-pressure increase render it particularly vulnerable (Ma et al., 106 

2025). The large number of landslides (>700) triggered by Typhoon Gaemi in July 2024 107 

provides a valuable dataset for model calibration and validation. 108 

Here we developed an integrated framework that combines (i) optimized buffer distances 109 

for negative sampling, (ii) bivariate weighting methods (IV, CF, FR) with advanced machine 110 

learning classifiers (SVM, LightGBM), and (iii) spatially continuous, typhoon-specific 111 

rainfall thresholds derived through Kriging interpolation. The specific objectives are to (1) 112 

determine optimal buffer distances that minimize spatial bias in imbalanced datasets, (2) 113 

evaluate the performance gain from coupling bivariate weights with machine learning 114 

algorithms, (3) establish dynamic rainfall thresholds suited to typhoon rainfall patterns, (4) 115 

generate continuous threshold surfaces via Kriging, and (5) integrate high-resolution 116 

susceptibility maps with these thresholds to support an operational early warning system. This 117 

approach improves landslide prediction in typhoon-prone mountainous regions and provides a 118 

transferable methodology for similar environments. 119 

2  Study area and data sources 120 

2.1  Study area 121 

Zixing City (25°34′–26°18′ N, 113°08′–113°44′ E), covering 2,747 km² in southeastern 122 

Hunan Province, China (Fig. 1), is located within the Nanling Mountains geological province. 123 

Situated approximately 400 km inland from the South China Sea, Zixing lies at the 124 

intersection of the Nanling Mountains and low hills, forming a watershed divide between the 125 

Yangtze and Pearl River basins. The region is characterized by steep topography, with 126 
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elevations ranging from 125 to 1,691 meters and slopes exceeding 30° across 78% of the area. 127 

This mountainous terrain, combined with fractured geology and active NE-SW trending faults 128 

such as the Chaling-Yongxing Fault Zone, creates a permeable fracture network that 129 

facilitates groundwater drainage. 130 

The climate of Zixing is subtropical monsoon, with annual precipitation averaging 1,550 131 

mm, 70% of which occurs from April to September. Typhoons significantly contribute to 132 

rainfall, inducing rapid pore-pressure increases in shallow aquifers (3–8 m depth). These 133 

climatic and geological conditions make Zixing particularly vulnerable to landslides, 134 

providing a valuable context for this study. The extensive landslide dataset triggered by 135 

Typhoon Gaemi in July 2024 (>700 events) serves as a critical resource for model calibration 136 

and validation. 137 

 138 

 Figure 1 Geographical distribution of the study area, landslides and rainfall gauges. 139 

2.2  Data collection and preprocessing 140 

2.2.1  Compilation of landslide catalogue 141 

A comprehensive inventory of 705 landslide events triggered by Typhoon Gaemi on July 142 

27, 2024, was compiled from the Hunan Center for Natural Resources Affairs. The landslide 143 
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locations were verified through field inspections and high-resolution satellite imagery to 144 

ensure spatial accuracy and completeness of the dataset. 145 

2.2.2  Landslide conditioning factors and data sources 146 

Based on extensive literature reviews and the geoenvironmental characteristics of the 147 

study area, twelve conditioning factors were selected for landslide susceptibility analysis: 148 

elevation, slope gradient, slope orientation, curvature, topographic wetness index (TWI), 149 

stream power index (SPI), normalized difference vegetation index (NDVI), distances to roads, 150 

rivers, and faults, and lithology (Fig. 2).  151 

Topographic factors (elevation, slope gradient, slope orientation, TWI, SPI, and 152 

curvature) were extracted from a 30-meter digital elevation model (DEM) obtained from the 153 

Geospatial Data Cloud (https://www.gscloud.cn). Environmental factors including NDVI and 154 

proximity variables (distances to roads, rivers, and fault lines) were derived from 1:50,000-155 

scale cartographic maps and Landsat 8 OLI imagery from the same platform. Geological 156 

composition and structural data were acquired from 1:100,000-scale geological maps. 157 

 158 

https://www.gscloud.cn/
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 160 

 161 

 Figure 2 Landslide-related conditioning factors. 162 

2.2.3 Data preprocessing and spatial standardization 163 

We transformed all conditioning factors into continuous statistical measures using IV, 164 

CF, and FR methods and then resampled them to a uniform 60-meter resolution. This 165 

resolution was selected to balance computational efficiency with scale appropriateness for 166 

regional landslide analysis while maintaining compatibility with the available geological map 167 

scale (1:100,000). 168 
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The study area was divided into 60 × 60 meter grid cells, with landslides smaller than the 169 

grid resolution aggregated to the nearest cell centroid. Multiple landslides within a single cell 170 

were treated as one event to maintain spatial independence required for machine learning 171 

modeling. This preprocessing approach ensures statistical validity by minimizing spatial 172 

autocorrelation effects while providing adequate representation of landslide distribution 173 

patterns across the study area. 174 

2.2.4 Rainfall data collection and spatial distribution 175 

Rainfall data for the study were obtained from 12 automatic rain gauge stations 176 

strategically distributed across Zixing City and its surrounding areas (Fig. 1). These stations, 177 

operated by the Hunan Meteorological Administration, provided hourly precipitation records 178 

during Typhoon Gaemi (July 20–30, 2024) and the preceding antecedent period. The spatial 179 

distribution of gauge stations ensured adequate coverage of the study area's topographic and 180 

climatic gradients. 181 

To assign rainfall parameters (H1, H12, H24, H72, and D7) to each of the 705 landslide 182 

points, we employed the Kriging interpolation to generate spatially continuous rainfall 183 

surfaces from discrete gauge measurements. This geostatistical method accounts for spatial 184 

autocorrelation in rainfall patterns and provides optimal unbiased estimates by weighting 185 

nearby observations based on their spatial proximity and correlation structure. 186 

Spherical variogram models were fitted to the rainfall data through iterative optimization, 187 

with model selection based on minimum Akaike Information Criterion (AIC) values. The 188 

interpolation accuracy was rigorously evaluated through leave-one-out cross-validation, 189 

where each gauge station was sequentially removed and its rainfall values predicted using the 190 

remaining 11 stations. Four statistical metrics were used to assess performance: Root Mean 191 

Square Error (RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and Nash-192 

Sutcliffe Efficiency (NSE). 193 
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Table 1 Kriging interpolation accuracy assessment for rainfall parameters. 194 

Parameter RMSE (mm) MAE 

(mm) 

R NSE 

H1 4.2 3.1 0.76 0.71 

H12 11.7 8.9 0.83 0.78 

H24 16.3 12.6 0.87 0.82 

H72 24.8 18.4 0.81 0.77 

D7 29.6 22.7 0.78 0.73 

The validation results demonstrated acceptable interpolation accuracy across all rainfall 195 

parameters, with correlation coefficients ranging from 0.76 to 0.87 and Nash-Sutcliffe 196 

Efficiency values between 0.71–0.82. Despite some limitations inherent to the sparse gauge 197 

network in mountainous terrain, the interpolation performance was deemed sufficient for 198 

regional landslide susceptibility analysis, ensuring reasonable spatial representation of 199 

precipitation patterns across the study area. 200 

3  Methodologies 201 

This study proposes an integrated framework for optimizing LSP and typhoon-specific 202 

rainfall thresholds within hazard warning systems (Fig. 3). The framework includes the 203 

following key components: (1) landslide susceptibility prediction and mapping, utilizing 204 

twelve conditioning factors prioritizing typhoon-induced hydrological responses (e.g., TWI, 205 

SPI) and 705 landslide records from July 27, 2024, optimized with five buffer distances and 206 

evaluated using ROC curves; (2) dynamic rainfall threshold modeling based on typhoon 207 

rainfall parameterization, validated and spatially interpolated using Kriging; and (3) the 208 

integration of spatial and temporal probabilities to develop a typhoon-specific rainfall-induced 209 

landslide warning system, demonstrated through a case study in Zixing City. 210 
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 Figure 3 Technical framework for developing a typhoon-specific rainfall-induced landslide warning system. 212 

3.1  Landslide susceptibility prediction and mapping 213 

3.1.1  Machine learning models: selection rationale and implementation 214 

We selected SVM and LightGBM to address three key challenges in typhoon-specific 215 

rainfall-induced landslide prediction: (1) severe class imbalance (landslides <0.5% of study 216 

area), (2) complex non-linear interactions between rainfall and terrain factors, and (3) 217 

computational efficiency for operational early warning. 218 

SVM excels in binary classification with limited samples through structural risk 219 

minimization (Kalantar et al., 2018; Wang et al., 2020), making it suitable for typhoon-220 

triggered landslide mapping. Its margin-maximization approach handles the class imbalance 221 

between stable and landslide areas, while the RBF kernel captures localized failure patterns 222 

under concentrated typhoon rainfall. The regularization parameter C prevents overfitting to 223 

specific typhoon events, ensuring model transferability. The SVM optimization problem is 224 

defined as: 225 
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where w is the normal vector to the hyperplane, b is the bias term, ξi are slack variables, 229 

ϕ(xi) maps input vectors to a higher-dimensional space,and yi denotes the class label (-1 or 1) 230 

for each sample xi. We optimized the RBF kernel parameters using grid-search with 5-fold 231 

cross-validation, where C ∈ [0.1, 100] and γ ∈ [0.001, 1]. Across all configurations (three 232 

input methods × five buffer distances), optimal values varied as follows: C = 5–15 and γ = 233 

0.10–0.25, with median values of C = 10 and γ = 0.15.  234 

LightGBM complements SVM through gradient boosting with sequential error 235 

correction, offering distinct advantages for regional-scale landslide mapping. Its histogram-236 

based algorithm enables efficient processing of large spatial datasets (Sun et al., 2023; Sahin, 237 

2020). Additionally, LightGBM automatically captures complex feature interactions. The 238 

minimized objective function is expressed as: 239 
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where iy is the true label, iŷ is the predictive value,  is a regularization parameter, and 
j241 

represents the parameters of the model. We optimized LightGBM hyperparameters through 242 

Bayesian optimization. The optimal hyperparameters ranged as: num_leaves = 25–35, 243 

learning_rate = 0.03–0.08, and max_depth = 6–10. Early stopping with a 50-round patience 244 

window resulted in model convergence at 120–220 trees across different scenarios. 245 

3.1.2  Input variable weighting methods 246 

The IV method, grounded in information theory, assesses how different factors 247 

contribute to landslide susceptibility within a study area (Niu et al., 2024). Factors such as 248 
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distance to roads and lithology were weighted higher in Zixing City due to their interaction 249 

with typhoon-induced soil saturation. The IV for each evaluation factor is determined using 250 

the formula below: 251 
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covered by factor Fi, and S is the total area of the study area. 255 

The CF method is a widely utilized probabilistic technique for assessing the likelihood of 256 

landslide occurrences (Zhao et al., 2021). It quantifies the prior probability of a landslide 257 

initiation under specific conditions of influential factors, utilizing spatial data from known 258 

landslide locations. The expression of CF is as follows: 259 














−

−


−

−

=

sa

sa

sa

sa

as

sa

PPPP
PPPP

PPPP

PPPP
PPPP

PPPP

CF

       ,
)1(

       ,
)1(

                    (5) 260 

where CF is the certainty factor indicating the degree of association between an influential 261 

factor and potential landslide occurrence. It is derived from two area-proportional measures:   262 

PPa, the proportion of landslide points within a specific factor class (number of landslide 263 

points in the class / total area of the class); and PPs, the proportion of landslide points across 264 

the entire study region (total number of landslide points / total area of the region). 265 

The FR is a prevalent method in statistical analysis that assesses the relative impact of 266 

various factors on the incidence of landslides (Panchal et al., 2021). An elevated FR value 267 

denotes a more significant influence of a factor on the likelihood of landslides. The FR is 268 

determined by the following equation: 269 
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where FR is the frequency ratio, Ni represents the number of landslides within the area 271 

corresponding to the conditioning factor, N is the total number of landslides, Si is the area 272 

covered by the conditioning factor and S is the total area of the study region. 273 

3.1.3 Buffer distance optimization and uncertainty assessment for LSP 274 

To generate negative (non-landslide) samples for LSP, areas within buffer distances of d 275 

= 0.1, 0.5, 1.0, 2.0, and 5.0 km around landslide locations were excluded, with balanced 276 

negative samples (n = 705) randomly selected from remaining stable areas for each distance. 277 

The optimal buffer distance was determined by evaluating SVM and LightGBM model 278 

performance using AUC, Precision, Recall, and F1-score metrics. 279 

The selection of buffer distances (0.1–5.0 km) was based on Zixing’s geomorphological 280 

considerations and practices commonly reported in LSP. This range encompasses multiple 281 

spatial scales: slope-scale processes (0.1–0.5 km), catchment-scale features (1.0–2.0 km), and 282 

regional-scale geological units (5.0 km). The evaluation ensures optimal spatial representation 283 

without a priori assumptions about scale dependencies (Chang et al., 2023). 284 

Prediction uncertainty was assessed using the mean and standard deviation (SD) of 285 

predicted landslide susceptibility values. Lower mean and SD values indicate reduced 286 

prediction uncertainty and more concentrated susceptibility patterns, suggesting higher model 287 

confidence in LSP (Huang et al., 2022), thereby complementing the buffer distance 288 

optimization process. 289 

3.2  Effective rainfall threshold modeling   290 

3.2.1  Rainfall parameterization and threshold calculation 291 

Typhoon-induced landslides are generally influenced by a combination of antecedent 292 

moisture conditions and immediate precipitation, rather than by isolated rainfall events 293 

(Mondini et al., 2023; Tufano et al., 2021). To account for the cumulative impact of multi-day 294 



 15  

rainfall while incorporating hydrological processes such as evapotranspiration and drainage, 295 

we adopted the concept of effective rainfall (Pe), calculated as: 296 
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where Pi represents the daily rainfall on the i-th day preceding landslide occurrence, n denotes 298 

the number of antecedent days considered, and k is the effective rainfall decay coefficient 299 

(Segoni et al., 2018a). For hourly rainfall parameterization, Pi is derived as: 300 
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where Rij is the hourly rainfall at the j-th hour of the i-th day. 302 

3.2.2 Long-term and short-term rainfall parameters 303 

Rainfall-triggered landslides are generally triggered by two dominant mechanisms: 304 

prolonged low-intensity rainfall and short-duration high-intensity storms. Based on statistical 305 

analysis of historical landslide events in Hunan Province (Xiao et al., 2025), a 7-day 306 

antecedent period was identified as optimal for characterizing long-term rainfall impacts. 307 

Consequently, the 7-day effective rainfall (D7) was selected as the long-term parameter. 308 

Short-term rainfall metrics were defined as cumulative precipitation over 1 hour (H1), 12 309 

hours (H12), 24 hours (H24), and 72 hours (H72) preceding landslide initiation. These 310 

intervals capture distinct rainfall characteristics: H1 reflects extreme short-term intensity for 311 

rapid slope failures, H12 and H24 represent sub-daily to daily precipitation critical for 312 

intermediate responses, and H72 accounts for multi-day storm sequences. 313 

3.2.3  Rainfall threshold model development 314 

The threshold modeling framework comprises three sequential steps: 315 

(1) Parameter calculation: For each landslide sample, short-term rainfall parameters (H1, 316 

H12, H24, and H72) and the long-term rainfall parameter (D7) are calculated. The ratios of 317 
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short-term parameters to the long-term parameter are computed as: R1=H1/D7, R12=H12/D7, 318 

R24=H24/D7, and R72=H72/D7. 319 

(2) Threshold setting: Long-to-short-term ratio coefficients (RC1, RC12, RC24, and 320 

RC72) are introduced as thresholds to determine the dominant rainfall pattern for each 321 

landslide. These thresholds are used to classify landslides into short-term or long-term 322 

Typhoon-induced categories. 323 

(3) Coefficient optimization: A cyclic trial-and-error method is employed to determine 324 

the optimal ratio coefficients (RC1, RC12, RC24, and RC72), maximizing the accuracy and 325 

reliability of the model. 326 

3.2.4  Optimal ratio coefficient threshold determination 327 

The process of determining the optimal long-to-short-term ratio coefficient threshold is 328 

demonstrated using H12-D7 as an example. The process for the remaining coefficients (H1-329 

D7, H24-D7, and H72-D7) follows a similar approach. A 5-fold cross-validation method is 330 

applied, with the following procedure: 331 

(1) Rainfall data extraction for landslide locations: For each of the 705 landslide points, 332 

R12 and D7 values are extracted from these interpolated surfaces at the exact landslide 333 

coordinates, ensuring that each landslide location receives rainfall values derived from the 334 

spatially weighted contributions of all nearby gauge stations. R12 and D7 values for each 335 

landslide are calculated using Equations (7) and (8). 336 

(2) Data preparation: The dataset is divided into five equal parts for cross-validation, 337 

with each part serving as a test set while the remaining four serve as the training set. 338 

(3) Initial threshold setting: An initial threshold for RC12 is set based on the minimum 339 

value in the training set. 340 

(4) Threshold evaluation: For each fold, the RC12 threshold is compared with the R12 341 

value of samples in the test set. If RC12<R12, the prediction is considered a failure. 342 
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Prediction accuracy is calculated for each RC12 threshold, adjusting in 0.001 increments until 343 

the highest prediction accuracy is achieved. 344 

(5) Optimal RC12 threshold determination: The RC12 threshold with the highest 345 

prediction accuracy is selected for each fold. The final RC12 threshold is determined by 346 

averaging the optimal thresholds from all five folds. 347 

3.2.5  Spatial distribution of optimal threshold  348 

According to the optimal ratio coefficient threshold determined in section 3.2.4 and the 349 

long-term and short-term rainfall parameters obtained through interpolation, the threshold 350 

spatial distribution for the study area can be derived. Taking H12/D7 as an example, the 351 

process is as follows: 352 

First, by dividing the H12 values of each landslide point by the optimal ratio coefficient 353 

RC12, the corresponding D7 thresholds for each landslide point can be calculated. These D7 354 

thresholds serve as a basis for applying the Kriging interpolation method to obtain the spatial 355 

distribution map of the D7 thresholds across the entire study area. 356 

Next, by multiplying the D7 values of each landslide point by the ratio coefficient RC12, 357 

the corresponding H12 thresholds for each landslide point can be determined. Subsequently, 358 

utilizing these H12 thresholds, the Kriging interpolation method is applied once more to 359 

generate the spatial distribution map of the H12 thresholds for the entire study area. 360 

3.3  Typhoon-specific rainfall-induced landslide warning system 361 

In order to effectively prevent typhoon-specific rainfall-induced landslide hazards, 362 

constructing a comprehensive landslide warning system is crucial. This system integrates LSP 363 

with critical rainfall thresholds, combining spatial probability and temporal probability to 364 

predict the risk of landslide occurrence and the timing of potential events. 365 

3.3.1  Construction of the landslide warning system 366 
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Using the natural breaks point method, the LSP is categorized into five levels of spatial 367 

probability: very low (S1), low (S2), moderate (S3), high (S4), and very high (S5). These 368 

levels represent varying degrees of susceptibility to landslides in different regions, forming 369 

the basis for assessing landslide risks when combined with rainfall data. Paralleling the LSP 370 

categorization, rainfall thresholds are also divided into five levels using the natural breaks 371 

point method, representing temporal probability: very low (T1), low (T2), moderate (T3), 372 

high (T4), and very high (T5). A lower rainfall threshold indicates a higher likelihood of 373 

typhoon-induced landslides, thus signaling a greater risk of landslide events. 374 

Table 2 Classification of landslide hazard warning zones by integrating landslide susceptibility levels 375 
(S1~S5) with rainfall threshold levels (T1~T5). 376 

Landslide hazard 

warning zones 

T1 T2 T3 T4 T5 

S1 (very low) 
No warning 

zone (2nd level) 

No warning 

zone (1st level) 

No warning 

zone (1st level) 

No warning 

zone (1st level) 

No warning 

zone (1st level) 

S2 (low) 
3rd level 

warning zone 

No warning 

zone (2nd level) 

No warning 

zone (2nd level) 

No warning 

zone (1st level) 

No warning 

zone (1st level) 

S3 (moderate) 
4th level 

warning zone 

3rd level 

warning zone 

3rd level 

warning zone 

No warning 

zone (2nd level) 

No warning 

zone (1st level) 

S4 (high) 
5th level 

warning zone 

4th level 

warning zone 

3rd level 

warning zone 

No warning 

zone (2nd level) 

No warning 

zone (1st level) 

S5 (very high) 
5th level 

warning zone 

5th level 

warning zone 

4th level 

warning zone 

3rd level 

warning zone 

No warning 

zone (2nd level) 

The matrix-based integration of LSP results and rainfall thresholds, as presented in Table 377 

2 (Segoni et al., 2015), highlights the correlation between landslide susceptibility and rainfall 378 

intensity. As the levels of landslide hazard warnings escalate from the 1st level, indicating no 379 

warning, to the 5th level, which signifies the highest alert, the likelihood of landslide 380 

occurrences correspondingly increases. Areas categorized in higher hazard zones correspond 381 

to regions with a heightened risk of landslides. This hazard warning system provides a spatial 382 

framework for risk assessment and early warning, generating hazard zonation maps that can 383 

be integrated into operational landslide monitoring and warning protocols. This underscores 384 

the importance of implementing more effective geological disaster prevention strategies, as 385 

thoroughly discussed in the literature by Huang et al. (2022). 386 
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4  Landslide susceptibility prediction using machine learning models 387 

4.1 Statistical analysis of conditioning factors 388 

The statistical analysis reveals distinct patterns of landslide susceptibility across all 389 

conditioning factors (Table S1 in the Supplement). Topographic factors demonstrate clear 390 

elevation-dependent behavior, with maximum susceptibility occurring at intermediate 391 

elevations (545–782 m, FR=1.637, IV=0.389), suggesting optimal conditions where 392 

weathering processes and slope instability converge. Slope gradient exhibits peak 393 

susceptibility in the moderate range (7.87–15.06°, FR=1.522, IV=0.343), indicating 394 

insufficient driving forces at gentler slopes and potential debris removal at steeper gradients. 395 

South-facing aspects show enhanced susceptibility (FR=1.299, IV=0.230), likely attributable 396 

to intensified weathering from solar radiation and moisture cycles. 397 

Morphological indices reveal significant correlations with landslide occurrence. Profile 398 

curvature demonstrates highest susceptibility in convex areas (0.17–0.59, FR=1.480, 399 

IV=0.480), where stress concentration promotes slope failure. TWI shows strong positive 400 

correlation with wetness, peaking at high values (8.69–13.62, FR=1.799, IV=0.444), 401 

confirming the critical role of water accumulation in slope destabilization. SPI indicates 402 

maximum susceptibility in moderate stream power ranges (1.27–2.39, FR=1.298, IV=0.229), 403 

reflecting optimal erosional conditions. 404 

Proximity factors exhibit contrasting patterns based on infrastructure type. Distance to 405 

roads shows strong inverse correlation with landslide occurrence (0–800 m, FR=1.499, 406 

IV=0.333), indicating anthropogenic disturbance effects. Conversely, distance to faults 407 

reveals a bimodal pattern with peak susceptibility at intermediate distances (7–12 km, 408 

FR=1.439, IV=0.305), suggesting regional structural influence rather than localized fault-409 

induced instability. Environmental factors demonstrate vegetation's protective role, with 410 

moderate NDVI values (0.64–0.76) showing elevated susceptibility (FR=1.854, IV=0.015), 411 



 20  

representing the transition zone between bare soil vulnerability and established vegetation 412 

stability. Lithological analysis reveals pronounced material control, with rhyolite (FR=1.546, 413 

IV=0.353) and granite (FR=1.247, IV=0.198) showing enhanced susceptibility due to 414 

intensive weathering and joint development, while sedimentary rocks (slate, shale, limestone, 415 

sandstone) exhibit strong resistance (FR<0.21) owing to their structural integrity and lower 416 

weathering susceptibility. 417 

4.2  Landslide susceptibility modeling in Zixing City 418 

Prior to model development, multicollinearity analysis was conducted using variance 419 

inflation factor (VIF) to ensure statistical reliability of the conditioning factors. The analysis 420 

revealed method-specific multicollinearity patterns: IV and CF methods showed no 421 

significant multicollinearity issues (all VIF < 10), while the FR method exhibited 422 

multicollinearity in four variables (SPI, Aspect, Plan curvature, and Distance to rivers with 423 

VIF > 10), which were subsequently excluded from FR-based modeling (Table S2 in the 424 

supplement). Following this preprocessing, landslide susceptibility prediction was performed 425 

using SVM and LightGBM models with the three distinct weighting methods (IV, CF, and 426 

FR). Susceptibility levels were categorized into five classes using the natural breaks 427 

classification method, with non-landslide samples strategically selected by excluding buffer 428 

zones of varying distances (0.1, 0.5, 1.0, 2.0, and 5.0 km) around documented landslide 429 

locations to optimize model performance and reduce spatial bias. 430 

4.2.1  IV-based modeling performance  431 

The IV-derived susceptibility maps (Fig. 4) revealed distinct spatial patterns between the 432 

two models across varying buffer distances. At smaller scales, the SVM model demonstrated 433 

more detailed classification, with a higher degree of overlap between high susceptibility areas 434 

and actual landslide locations. The LightGBM model's classification was smoother, with a 435 

lower degree of overlap between high susceptibility areas and actual landslide locations. 436 
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Notably, this performance discrepancy diminished progressively with increasing buffer 437 

distances. 438 

 439 

 Figure 4 Landslide susceptibility map based on SVM and LightGBM models using the IV input. 440 

4.2.2  CF-based modeling performance  441 

In CF-based modeling (Fig. 5), the SVM model's high and very high landslide 442 

susceptibility areas at smaller scales were more extensive than in the IV mode, with actual 443 

landslide locations more frequently distributed within these high-risk areas. As the scale 444 

increased, the high susceptibility areas gradually decreased. The LightGBM model also 445 

showed a relatively smooth distribution, with some high susceptibility areas identified at 446 

smaller scales gradually integrating as the scale increased, following a similar trend to the 447 

SVM model. 448 
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 449 

 Figure 5 Landslide susceptibility map based on SVM and LightGBM models using the CF input. 450 

4.2.3  FR-based modeling performance  451 

Regarding the FR input (Fig. 6), the SVM model identified a significant number of high 452 

and very high landslide susceptibility areas at smaller scales compared to the IV and CF 453 

inputs, which closely matched the actual locations of landslides. As the buffer scale expanded, 454 

these high-risk areas generally diminished and the distribution became smoother. Conversely, 455 

the LightGBM model delivered more uniform results, offering broader moderate-risk 456 

distributions, with a small number of high susceptibility areas that did not align with the 457 

actual landslide locations. As the scale increased, the high susceptibility areas identified by 458 

the LightGBM model gradually diminished, showing greater consistency with the SVM 459 

model results at the higher scale. 460 
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 461 

 Figure 6 Landslide susceptibility map based on SVM and LightGBM models using the FR input. 462 

4.3  Uncertainty analysis of LSP results 463 

4.3.1  LSP accuracy evaluation and comparative performance 464 

Table S2 (in the Supplement) demonstrates contrasting performance characteristics 465 

between the two machine learning approaches across different spatial scales and input 466 

configurations. LightGBM consistently achieved high AUC values (0.915–0.921) and 467 

maintained stable F1-scores (0.838–0.850) across all buffer distances and input methods, 468 

indicating robust generalization capability. In contrast, SVM exhibited pronounced sensitivity 469 

to parameter combinations, with performance varying significantly across different buffer 470 

distances (F1-scores ranging from 0.681 to 0.859) and input methods, particularly showing 471 

notable degradation with FR input at extreme spatial scales (0.1 km and 5.0 km). 472 

Two configurations emerged as comprehensively superior: SVM with FR input at 0.5 km 473 

and 2.0 km buffer distances, both achieving F1-scores of 0.859. These optimal configurations 474 

not only maintained competitive AUC values (0.914 and 0.913 respectively) but demonstrated 475 

superior precision-recall balance compared to corresponding LightGBM configurations (F1-476 

scores: 0.854 and 0.856). The high recall values (0.845 and 0.851) coupled with robust 477 
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precision (0.873 and 0.867) indicate enhanced sensitivity to landslide-prone areas while 478 

minimizing false positive predictions. This bimodal performance pattern suggests that 479 

intermediate buffer distances effectively capture fault-related geomorphological processes 480 

influencing slope stability. 481 

Independent validation on the test set confirmed the robustness of these optimal 482 

configurations, with SVM-FR models at 0.5 km and 2.0 km buffer distances achieving F1-483 

scores of 0.847 and 0.852 respectively, representing minimal performance degradation from 484 

training results. The consistent AUC values (0.909 and 0.908) on the test set further validate 485 

the models' discriminative capability and indicate absence of overfitting, confirming the 486 

reliability of these configurations for practical landslide susceptibility assessment applications. 487 

4.3.2  LSP distribution characteristics across conditions 488 

In addition to the performance metrics, the distribution characteristics of landslide 489 

susceptibility predictions revealed fundamental differences between the models (Figs. S1–S3 490 

in the Supplement). LightGBM generated smoother, more symmetrical distributions with 491 

lower mean susceptibility values (0.196–0.320) and smaller standard deviations (0.099–492 

0.187), indicating stable and uniform predictions. In contrast, SVM exhibited greater 493 

variability, with irregular distributions, higher mean values (0.303–0.515), and larger standard 494 

deviations (0.112–0.214). Notably, SVM's mean susceptibility under FR input rose sharply 495 

(0.446–0.515), while LightGBM maintained lower means despite moderately broader 496 

deviations (0.160–0.187). 497 

Therefore, SVM is preferable for FR-based modeling at 0.5 km and 2.0 km buffers, 498 

where spatial precision is prioritized over prediction uniformity. The SVM model achieved its 499 

highest accuracy at the 0.5 km buffer, classifying 86.4% of recorded landslides in high and 500 

very high susceptibility zones (Fig. 6b). At the 2.0 km buffer (Fig. 6d), it still correctly 501 
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classified 82.1% of landslides in these zones. As a result, Fig. 6b is selected as the final 502 

landslide susceptibility map. 503 

5  Landslide risk assessment in Zixing City 504 

5.1  Critical rainfall thresholds for landslides in Zixing City 505 

We evaluated four rainfall threshold models (H1-D7, H12-D7, H24-D7, and H72-D7) 506 

through 5-fold cross-validation, with their optimal ratio coefficient (RC) thresholds and 507 

prediction accuracies summarized in Table 3. The H24-D7 model, coupling 24-hour rainfall 508 

during landfall with 7-day antecedent moisture, achieved the highest accuracy (71.8%) by 509 

effectively capturing both cumulative saturation and abrupt triggering by typhoon rainfall 510 

bursts. Notably, the H24-D7 model exhibited stable performance across all folds, with 511 

accuracy ranging narrowly between 68.8% (Fold 1) and 74.6% (Fold 4), reflecting robust 512 

generalizability. 513 

Table 3 Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation. 514 

Model 
Fold 1 

RC/Accuracy 

Fold 2 

RC/Accuracy 

Fold 3 

RC/Accuracy 

Fold 4 

RC/Accuracy 

Fold 5 

RC/Accuracy 

Average 

RC/Accuracy 

H1-D7 0.032/56.5 0.062/29.7 0.076/35.5 0.022/53.6 0.040/47.8 0.047/44.6 

H12-D7 0.077/54.2 0.167/46.6 0.243/48.3 0.267/47.7 0.154/45.3 0.182/48.5 

H24-D7 0.472/68.8 0.436/72.3 0.422/73.1 0.459/74.6 0.414/70.2 0.440/71.8 

H72-D7 0.789/56.5 0.776/59.4 0.781/63.1 0.802/51.4 0.783/60.1 0.787/58.1 

In contrast, the H1-D7 and H12-D7 models displayed marked instability: H1-D7 515 

accuracy fluctuated between 29.7% (Fold 2) and 56.5% (Fold 1), while H12-D7 thresholds 516 

(RC12: 0.077–0.267) corresponded to accuracies of 45.3–48.3%. The H72-D7 model showed 517 

moderate performance variability (accuracy: 51.4–63.1%) despite consistently high RC72 518 

thresholds (>0.78). 519 

These results highlight the critical role of temporal rainfall parameter selection. The 520 

superior performance of the H24-D7 model (24-hour short-term rainfall and 7-day antecedent 521 

rainfall) suggests that a 24-hour duration optimally captures both immediate landslide triggers 522 
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and cumulative hydrological effects, balancing sensitivity and stability. Shorter (H1/H12) or 523 

longer (H72) durations either overemphasize transient rainfall spikes or dilute critical 524 

triggering signals. 525 

5.2  Spatio-temporal distribution of rainfall thresholds 526 

Fig. 7 illustrates the spatial distribution of rainfall-triggered landslide thresholds derived 527 

from four models (RC1, RC12, RC24, and RC72) across multiple temporal scales (1-hour, 528 

12-hour, 24-hour, 72-hour, and 7-day) within the study area.  529 

5.2.1  Short-term predictions (1-hour to 12-hour scales) 530 

At the 1-hour scale (Fig. 7a), the RC1 model generated thresholds ranging from 7 to 50 531 

mm, with 65.2% of landslides occurring in moderate threshold zones (20–30 mm). This 532 

indicates the model's effectiveness in detecting slope failures under short-duration rainfall. In 533 

contrast, the RC12 model on the 12-hour scale (Fig. 7b) showed a wider threshold range (25–534 

200 mm), with 62.9% of landslides in mid-to-high threshold regions (80–130 mm). This 535 

mismatch suggests that the 12-hour cumulative data may underestimate rainfall impacts in 536 

specific topographic settings. 537 

 538 
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 Figure 7 Distribution of typhoon rainfall thresholds under various optimal RC ratios: (a) 1-hour RC1-based, (b) 539 
12-hour RC12-based, (c) 24-hour RC24-based, (d) 72-hour RC72-based, (e) 7-day RC1-based, (f) 7-day RC12-540 

based, (g) 7-day RC24-based, and (h) 7-day RC72-based. 541 

5.2.2  Mid-term predictions (24-hour to 72-hour scales) 542 

The RC24 model at the 24-hour scale (Fig. 7c) displayed a threshold range of 65–400 543 

mm, with 87.1% of landslides occurring within moderate thresholds (100–250 mm) and 12.3% 544 

in higher thresholds (>250 mm). This indicates a more accurate capture of rainfall intensity 545 

effects. At the 72-hour scale (Fig. 7d), the RC72 model produced thresholds between 78–700 546 

mm, with 59.2% of landslides in mid-to-high threshold regions (200–500 mm). Although the 547 

RC72 model demonstrated reasonable sensitivity to prolonged rainfall, its upper threshold 548 

(700 mm) may result in conservative risk predictions for some geological settings. 549 

5.2.3  Long-term predictions (7-day scale) 550 

At the 7-day scale, significant differences emerge across models in terms of predicted 551 

rainfall thresholds and landslide points. The RC1 model (Fig. 7e) shows a threshold range of 552 

100–700 mm, with landslide points predominantly concentrated in the lower rainfall ranges. 553 

While these low-threshold landslides may indicate localized risks, the model's conservative 554 

threshold distribution fails to effectively capture landslides triggered by higher rainfall 555 

amounts, potentially overlooking more significant events. 556 

The RC12 model (Fig. 7f), with a threshold range of 100–800 mm, also shows a 557 

concentration of landslide points in the lower rainfall ranges. Despite a wider threshold range, 558 

the similarity to the RC1 model suggests that RC12 may also underutilize its capacity to 559 

predict higher typhoon-induced landslides, leading to under-prediction in areas experiencing 560 

moderate to heavy precipitation. 561 

In contrast, the RC24 model (Fig. 7g) exhibits a balanced threshold range (250–900 mm) 562 

and effectively identifies landslide points in both moderate and high rainfall categories. This 563 

balance enables RC24 to capture the full spectrum of typhoon-induced landslides, accurately 564 

identifying risks across different rainfall intensities. 565 
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The RC72 model (Fig. 7h) shows a concentration of landslide points in the higher 566 

rainfall range (175–1000 mm). While it predicts landslides accurately under heavy rainfall 567 

conditions, the model may overestimate risks in some regions and neglect potential landslides 568 

associated with lower rainfall thresholds. 569 

Based on the above analysis, the RC24 model is the optimal choice, which aligns with 570 

the findings in Section 5.1. Its effectiveness is evident as it demonstrates superior stability and 571 

accuracy in both the 24-hour and 7-day timescales.The RC24 model's balanced threshold 572 

range allows it to accurately assess landslide risks across varying rainfall intensities. This 573 

makes it the most reliable choice for practical landslide hazard warning applications. 574 

5.3  Landslide hazard warning system for Zixing City 575 

Based on the optimal LSP results (Fig. 6b) and the validated RC24 rainfall threshold 576 

model, a spatially explicit landslide hazard warning system was established for Zixing City. 577 

The integration of spatial probability (LSP) and temporal probability (rainfall thresholds) 578 

followed the matrix classification outlined in Table 2. 579 

 580 



 29  

 581 

Figure 8 Landslide warning zones generated by overlaying spatial and temporal probability maps: (a) optimal 582 
spatial probability, (b) 24-hour RC24-based rainfall threshold, (c) 7-day RC24-based rainfall threshold, (d) 583 

overlay of (a) and (b), and (e) overlay of (a) and (c). 584 

Five susceptibility levels in the LSP map (Fig. 6b) were replaced with five spatial 585 

probabilities (S1–S5) (Fig. 8a), respectively. Simultaneously, the spatially interpolated 24-586 

hour rainfall thresholds (H24) (Fig. 8b) and 7-day effective rainfall thresholds (D7) (Fig. 8c) 587 

derived from the RC24 model were classified into five temporal probability levels (T1–T5) 588 

using the natural breaks method. Spatial overlay analysis was performed to combine the 589 

susceptibility levels (S1–S5) with the rainfall threshold levels (T1–T5), generating two hazard 590 

warning zone maps: H24-based (Fig. 8d) and D7-based (Fig. 8e). 591 

Quantitative assessment of both warning systems reveals distinct performance 592 

characteristics. The 24-hour threshold system (Fig. 8d) demonstrates superior predictive 593 

efficiency, with 71.4% of historical landslides occurring within high to very high warning 594 

zones (Levels 3–5) while covering only 34.2% of the total area, resulting in an efficiency ratio 595 
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of 2.09 and a risk density of 49.0 landslides per 1000 high-risk grid cells. The spatial 596 

distribution shows concentrated high-risk areas primarily in the central region, characterized 597 

by steep slopes (>21.80°), weathered granite lithology, and road proximity (0–800 m). This 598 

focused distribution indicates effective identification of areas most sensitive to short-term 599 

intense rainfall triggers. 600 

The 7-day threshold system (Fig. 8e) exhibits broader spatial coverage, with high-risk 601 

zones encompassing 42.7% of the study area and capturing 68.7% of historical landslides, 602 

yielding a lower efficiency ratio of 1.61 and risk density of 37.8 landslides per 1000 grid cells. 603 

This system effectively identifies extended vulnerable areas in northern and eastern regions, 604 

reflecting cumulative rainfall effects on slope stability. The expanded coverage captures zones 605 

where prolonged antecedent moisture interacts with moderate-to-high susceptibility 606 

conditions. 607 

Statistical validation confirms the complementary nature of both systems. The 24-hour 608 

system achieves higher spatial efficiency (efficiency ratio 2.09 vs. 1.61) and landslide 609 

concentration (risk density 49.0 vs. 37.8), making it optimal for immediate typhoon response 610 

and targeted emergency resource allocation. Conversely, the 7-day system provides 611 

comprehensive coverage for prolonged rainfall scenarios, essential for early warning during 612 

extended typhoon events despite its broader spatial distribution and lower concentration 613 

efficiency. The combined application of both systems enables dynamic hazard assessment, 614 

addressing both rapid-onset failures during typhoon landfall and delayed failures following 615 

sustained precipitation. 616 

6  Discussion 617 

6.1  Model selection strategy and optimization of LSP 618 

 619 
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Our comparative analysis of SVM and LightGBM across different input methods (IV, 620 

CF, FR) and buffer distances shows distinct performance patterns crucial for model selection 621 

in typhoon-induced LSP. SVM exhibited marked sensitivity to configuration parameters, with 622 

F1-scores varying from 0.681 to 0.859 depending on buffer distance and input method. 623 

LightGBM maintained more stable performance (F1-scores: 0.838–0.850) across all 624 

configurations. These differences reflect fundamental algorithmic characteristics: SVM's 625 

kernel-based approach effectively captures localized patterns when properly tuned, while 626 

LightGBM's ensemble structure delivers consistent results across varying data conditions. 627 

SVM's superior performance at 0.5–2.0 km buffer distances with FR weighting builds on 628 

findings by Kalantar et al. (2018) and Bogaard and Greco (2018). This buffer range appears 629 

effective for capturing the spatial patterns of typhoon-induced failures in our study area. FR 630 

weighting's effectiveness supports Reichenbach et al. (2018) and Yan et al. (2019), who found 631 

that frequency-based methods excel at quantifying terrain-landslide relationships. In typhoon 632 

conditions, FR effectively weights critical factors including road proximity and weathered 633 

granite lithology. 634 

These performance patterns justify our dual-model approach. SVM, though requiring 635 

careful calibration, enables precise delineation of high-risk zones essential for emergency 636 

response, with SVM-FR at 0.5 km achieving peak accuracy (F1=0.859). LightGBM's 637 

robustness suits operational contexts requiring consistent predictions under variable 638 

conditions. Our results suggest that effective model selection depends on matching 639 

algorithmic strengths to specific application requirements rather than identifying a universally 640 

superior algorithm. 641 

6.2  Rainfall threshold modeling and typhoon-specific mechanisms 642 

 643 
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The H24-D7 model achieved 71.8% accuracy, outperforming alternative temporal 644 

windows (Table 3). The optimal RC24 value of 0.440 (with inter-fold variation of 0.414–645 

0.472) indicates that landslides typically occur when 24-hour rainfall constitutes 646 

approximately 44% of the preceding 7-day accumulation. This pattern is consistent with the 647 

multi-temporal triggering framework proposed by Nolasco-Javier and Kumar (2018) for 648 

typhoon contexts, where both antecedent saturation and short-term intensity contribute to 649 

slope failure. However, the specific hydrological mechanisms underlying this ratio require 650 

verification through in-situ soil moisture monitoring. The H1-D7 and H12-D7 models showed 651 

lower and more variable accuracy (44.6% and 48.5% respectively), suggesting that shorter 652 

accumulation periods may inadequately represent the cumulative soil saturation process 653 

relevant to this region's geological conditions (Kirschbaum and Stanley, 2018). 654 

Spatial patterns in rainfall thresholds reveal systematic variations across the study area. 655 

Southeastern regions exhibit elevated H24 thresholds exceeding 250 mm (Fig. 7c), while 656 

northern areas show reduced thresholds of 100–150 mm. These spatial variations align with 657 

findings by Lee et al. (2018) and Cho et al. (2022) regarding topographic controls on 658 

typhoon-induced landslides, though the specific mechanisms require further investigation 659 

with detailed meteorological analysis. The spatially distributed thresholds derived through 660 

Kriging interpolation (Table 1) provide location-specific values that improve upon uniform 661 

regional thresholds typically employed in operational systems (Segoni et al., 2018b). 662 

 The consistent performance across the five validation folds (68.8–74.6% accuracy) 663 

demonstrates the model's stability when applied to different spatial subsets of the landslide 664 

inventory. This suggests the H24-D7 relationship captures generalizable rainfall-slope 665 

response patterns rather than site-specific anomalies, though validation with independent 666 

typhoon events would further confirm model robustness. 667 

6.3  Integration of susceptibility and rainfall thresholds for landslide warning 668 
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The integrated warning system combines static susceptibility surfaces with spatially 669 

continuous rainfall thresholds following the matrix framework in Table 2. The H24-based 670 

system (Fig. 8d) captured 71.4% of historical landslides within high to very high warning 671 

zones (Levels 3–5) covering 34.2% of the study area, yielding an efficiency ratio of 2.09. The 672 

D7-based system (Fig. 8e) identified 68.7% of landslides across 42.7% of the area (efficiency 673 

ratio: 1.61). These focused distributions contrast with the broader spatial coverage typically 674 

required by uniform regional thresholds (Guzzetti et al., 2020), though direct comparative 675 

validation would be needed to quantify the performance gain. 676 

The dual-threshold configuration provides complementary perspectives suited to 677 

different phases of typhoon evolution, with D7 reflecting cumulative moisture conditions and 678 

H24 capturing immediate triggering rainfall. This combination addresses the compound 679 

rainfall mechanisms documented in typhoon-affected regions (Gariano et al., 2015; Nolasco-680 

Javier and Kumar, 2018), though the optimal application strategy for operational warning 681 

would require integration with real-time meteorological forecasting systems. 682 

Spatially continuous thresholds (Fig. 8b, c) address terrain-induced variability more 683 

effectively than point-based approaches. The Kriging interpolation method provides threshold 684 

estimates across the entire study area, accounting for spatial autocorrelation in rainfall 685 

patterns (Table 1). However, threshold accuracy depends on rain gauge density and may 686 

decline in areas distant from monitoring stations, as indicated by the interpolation validation 687 

metrics (R: 0.76–0.87, NSE: 0.71–0.82). The framework advances beyond existing point-688 

based threshold systems (Segoni et al., 2018b; Guzzetti et al., 2020) by providing spatially 689 

explicit hazard assessment, though regional adaptation of threshold parameters would be 690 

necessary for application in different geological settings. 691 

The modular design allows the framework to be adapted for operational landslide early 692 

warning, though practical implementation would require integration with meteorological 693 
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monitoring infrastructure, standardized protocols for warning dissemination, and post-event 694 

validation procedures to maintain system reliability. These operational considerations extend 695 

beyond the methodological scope of this study but represent important directions for future 696 

development of typhoon-specific landslide warning systems. 697 

6.4  Limitations and future research directions 698 

Despite promising advancements, this study has limitations owing to the complexity of 699 

typhoon-induced landslides. First, the model’s validation relies solely on landslides from 700 

Typhoon Gaemi. While this single event provided a comprehensive dataset, validating against 701 

multiple, varied typhoons is crucial for model robustness. Typhoons differ significantly in 702 

intensity, rainfall patterns, forward speed, and seasonality, all of which can influence 703 

threshold parameters. For instance, a slow-moving typhoon with higher cumulative rainfall 704 

and lower peak intensity could alter the optimal H24-D7 ratios. Future research should 705 

incorporate landslide inventories from typhoons with contrasting characteristics to assess 706 

threshold transferability and develop adaptive parameterization. The framework’s modular 707 

design readily facilitates this by allowing recalibration of the RC24 coefficient for different 708 

typhoon types. 709 

Second, the current study primarily addresses rainfall-induced landslides, overlooking 710 

other potential contributing factors. Future work should explore integrating multiple 711 

triggering mechanisms, including earthquakes, human-induced slope modifications, and 712 

typhoon rainfall, for a more comprehensive hazard assessment. 713 

Third, the study doesn't explicitly address the potential impacts of climate change on 714 

typhoon rainfall and landslide occurrence. As climate change alters typhoon frequency, 715 

intensity, and tracks, future studies should incorporate climate projections specific to 716 

typhoon-prone regions. This will enable the development of forward-looking landslide 717 

warning systems that can adapt to the evolving threats posed by typhoon-specific rainfall. 718 
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Fourth, while this study demonstrates the effectiveness of ML approaches, further 719 

refinement is possible. Future research should explore advanced deep learning techniques and 720 

ensemble methods to better capture the complex, non-linear relationships between typhoon-721 

related variables (e.g., rainfall intensity, duration, antecedent moisture) and slope stability. 722 

These advanced methods may offer improved predictive accuracy, more robust uncertainty 723 

quantification, and ultimately, more reliable hazard warnings. 724 

Finally, climate projections for Southeast China show a 15–25% increase in peak 725 

typhoon rainfall by 2080 (RCP8.5), which could alter the H24–D7 landslide thresholds from 726 

this study. Higher atmospheric moisture may lower D7 thresholds, while greater rainfall 727 

intensity could require new H24 parameters. Shifting typhoon tracks and seasonality might 728 

also change which areas are vulnerable. Future work must use downscaled climate data to 729 

create non-stationary thresholds, ensuring the long-term reliability of warning systems in the 730 

region. 731 

7  Conclusions 732 

This study establishes a novel integrated framework combining optimized LSP with 733 

typhoon-specific rainfall threshold modeling for comprehensive hazard assessment in 734 

mountainous regions. Through systematic analysis of 705 landslides triggered by Typhoon 735 

Gaemi in Zixing City, several key insights emerge: 736 

(1) Buffer distance optimization proves critical for typhoon-induced landslide modeling, 737 

with SVM-FR combinations at 0.5–2.0 km distances achieving superior performance (F1-738 

score: 0.859) compared to conventional approaches. This spatial scale effectively captures 739 

typhoon-induced moisture infiltration patterns that differ fundamentally from other triggering 740 

mechanisms. 741 

(2) The H24-D7 threshold model demonstrates exceptional stability (71.8% accuracy 742 

across 5-fold validation), successfully characterizing the dual-phase failure mechanism unique 743 
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to typhoons: prolonged antecedent saturation coupled with intense precipitation bursts during 744 

typhoon passage. 745 

(3) Spatially distributed rainfall thresholds reveal significant heterogeneity, reflecting 746 

complex interactions between typhoon structure and local topography that contradict uniform 747 

regional threshold assumptions in existing operational systems. 748 

(4) The integrated warning system achieves operational efficiency through dual-749 

threshold configuration: H24 thresholds provide immediate response capability during 750 

typhoon landfall, while D7 thresholds enable early detection of vulnerable areas approaching 751 

saturation conditions. 752 

(5) This framework addresses three critical gaps in current landslide prediction: 753 

systematic buffer optimization for imbalanced datasets, effective integration of variable 754 

weighting with machine learning algorithms, and development of typhoon-specific spatially 755 

explicit thresholds. 756 
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Tables 935 

Table 1 Kriging interpolation accuracy assessment for rainfall parameters. 936 

Parameter RMSE (mm) MAE 

(mm) 

R NSE 

H1 4.2 3.1 0.76 0.71 

H12 11.7 8.9 0.83 0.78 

H24 16.3 12.6 0.87 0.82 

H72 24.8 18.4 0.81 0.77 

D7 29.6 22.7 0.78 0.73 

 937 

Table 2 Classification of landslide hazard warning zones by integrating landslide susceptibility levels 938 
(S1~S5) with rainfall threshold levels (T1~T5). 939 

Landslide hazard 

warning zones 

T1 T2 T3 T4 T5 

S1 (very low) 
No warning 

zone (2nd level) 

No warning 

zone (1st level) 

No warning 

zone (1st level) 

No warning 

zone (1st level) 

No warning 

zone (1st level) 

S2 (low) 
3rd level 

warning zone 

No warning 

zone (2nd level) 

No warning 

zone (2nd level) 

No warning 

zone (1st level) 

No warning 

zone (1st level) 

S3 (moderate) 
4th level 

warning zone 

3rd level 

warning zone 

3rd level 

warning zone 

No warning 

zone (2nd level) 

No warning 

zone (1st level) 

S4 (high) 
5th level 

warning zone 

4th level 

warning zone 

3rd level 

warning zone 

No warning 

zone (2nd level) 

No warning 

zone (1st level) 

S5 (very high) 
5th level 

warning zone 

5th level 

warning zone 

4th level 

warning zone 

3rd level 

warning zone 

No warning 

zone (2nd level) 

 940 

Table 3 Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation. 941 

Model 
Fold 1 

RC/Accuracy 

Fold 2 

RC/Accuracy 

Fold 3 

RC/Accuracy 

Fold 4 

RC/Accuracy 

Fold 5 

RC/Accuracy 

Average 

RC/Accuracy 

H1-D7 0.032/56.5 0.062/29.7 0.076/35.5 0.022/53.6 0.040/47.8 0.047/44.6 

H12-D7 0.077/54.2 0.167/46.6 0.243/48.3 0.267/47.7 0.154/45.3 0.182/48.5 

H24-D7 0.472/68.8 0.436/72.3 0.422/73.1 0.459/74.6 0.414/70.2 0.440/71.8 

H72-D7 0.789/56.5 0.776/59.4 0.781/63.1 0.802/51.4 0.783/60.1 0.787/58.1 

 942 

Figure captions 943 

Figure 1 Geographical distribution of the study area, landslides and rainfall gauges. 944 

Figure 2 Landslide-related conditioning factors. 945 

Figure 3 Technical framework for developing a typhoon-specific rainfall-induced landslide warning 946 

system. 947 
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Figure 4 Landslide susceptibility map based on SVM and LightGBM models using the IV input. 948 

Figure 5 Landslide susceptibility map based on SVM and LightGBM models using the CF input. 949 

Figure 6 Landslide susceptibility map based on SVM and LightGBM models using the FR input. 950 

Figure 7 Distribution of typhoon rainfall thresholds under various optimal RC ratios: (a) 1-hour RC1-based, 951 

(b) 12-hour RC12-based, (c) 24-hour RC24-based, (d) 72-hour RC72-based, (e) 7-day RC1-based, (f) 7-day 952 

RC12-based, (g) 7-day RC24-based, and (h) 7-day RC72-based. 953 

Figure 8 Landslide warning zones generated by overlaying spatial and temporal probability maps: (a) optimal 954 

spatial probability, (b) 24-hour RC24-based rainfall threshold, (c) 7-day RC24-based rainfall threshold, (d) 955 

overlay of (a) and (b), and (e) overlay of (a) and (c). 956 
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 979 

 980 

 981 

 982 

 983 

 984 

Supplement 985 

Table S1 IV, CF and FR values for each conditioning factor. 986 

Conditioning factors Factor grading Landslides IV CF FR 

 

Elevation (m) 

92~314 81 -0.493 -0.679 0.507 

314~545 255 0.218 0.246 1.279 

545~782 312 0.389 0.493 1.637 

782~1098 57 -0.505 -0.704 0.495 

1098~2033 0 -1 0 0 

 

Slope (°) 

0~7.87   91 -0.347 -0.427 0.653 

7.87~15.06 267 0.343 0.420 1.522 

15.06~21.80 219 0.168 0.184 1.202 

21.80~29.44 112 -0.213 -0.240 0.786 

29.44~57.31 16 -0.756 -1.411 0.2440 

 

 

 

Aspect 

Plan 0 -1 0 0 

North 74 -0.102 -0.109 0.897 

Northeast 67 -0.058 -0.060 0.942 

East 70 -0.120 -0.128 0.800 

Southeast 105 0.116 0.123 1.131 

South 102 0.230 0.261 1.299 

Southwest 96 0.144 0.156 1.169 

West 96 0.039 0.039 1.040 

Northwest 95 -0.071 -0.074 0.929 

 

Plan curvature 

-3.73~-0.57 36 -0.275 -0.321 0.725 

-0.57~-0.18 

 

189 0.250 0.287 1.333 

-0.18~0.15 284 0.000 0.000 1.000 

0.15~0.54 156 -0.059 -0.061 0.941 

0.54~3.94 40 0.373 -0.467 0.627 
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Profile curvature 

-3.92~-0.55 19 -0.608 -0.935 0.392  

 -0.55~-0.16 114 -0.240 -0.274  

 

0.760  

 -0.16~0.17 260 -0.112 -0.119  

 

0.888  

 0.17~0.59 253 0.480 0.392  

 

1.480  

 0.59~3.76 59 0.276 0.324  

 

1.382  

 
 

TWI 

1.98~4.40    151 

 

-0.393  

 

-0.499  

 

0.607  

 
4.40~5.54    297 

 

0.245  

 

0.280  

 

1.324  

 
5.54~6.91    132 

 

-0.011  

 

-0.011  

 

0.989  

 
6.91~8.69    73 

 

0.046  

 

0.047  

 

1.048  

 
8.69~13.62    52 

 

0.444  

 

0.587  

 

1.799  

 
 

Distance to road (m) 

0~800    350 

 

0.333  

 

0.405  

 

1.499  

 
800~2000    194 

 

-0.011  

 

-0.011  

 

0.989  

 
2000~4500    153 

 

-0.277  

 

-0.324  

 

0.723  

 
4500~7500    8 -0.857  

-1.000  

 

-1.942  

 

0.143  

 
7500~9700    0 -1.000  

 

0.001  

 

0.001 

 

Distance to river (m) 

0~800    152 

 

0.147  

 

0.158  

 

1.172  

 
800~2200    205 

 

0.081  

 

0.085  

 

1.088  

 
2200~4500    218 

 

0.010  

 

0.010  

 

1.010  

 
4500~8000    101 

 

-0.229  

 

-0.260  

 

0.771  

 
8000~12800    29 

 

-0.278  

 

-0.325  

 

0.722  

 
 

Distance to fault (m) 

0~2000     64 

 

-0.380  

 

-0.478  

 

0.620  

 
2000~7000    262 

 

0.062  

 

0.064  

 

1.066  

 
7000~12000    286 

 

0.305  

 

0.364  

 

1.439  

 
12000~18000    62 

 

-0.414  

 

-0.535  

 

0.586  

 
18000~28100    31 

 

-0.398  

 

-0.508  

 

0.602  

 
 

NDVI 

-0.20~0.27    2 

 

-0.956  

 

-3.133  

 

0.044  

 
0.27~0.47    29 

 

-0.446  

 

-0.591  

 

0.554  

 
0.47~0.64    108 

 

0.217  

 

0.245  

 

1.278  

 
0.64~0.76    296 

 

0.015  

 

0.617  

 

1.854  

 
0.76~0.94    270 

 

-0.255  

 

-0.295  

 

0.745  

 
 

 

SPI 

-8.46~-2.72    0 

 

-1.000  

 

0.000  

 

0.000  

 
-2.72~1.27    108 

 

0.250  

 

0.288  

 

1.334  

 
1.27~2.39    370 

 

0.229  

 

0.261  

 

1.298  

 
2.39~3.46    180 

 

-0.320  

 

-0.386  

 

0.680  

 
3.46~7.45    47 

 

-0.356  

 

-0.440  

 

0.644  

 



 47  

 

 

Lithology 

Slate    8 

 

-0.856  

 

-1.938  

 

0.144  

 
Shale    10 

1 

-0.798  

 

-1.601  

 

0.202  

 
Limestone    1 -0.907  

 

-2.376  

 

0.093  

 
Sandstone    3 -0.958  

 

-3.179  

 

0.042  

 
Granite    485 0.198  

 

0.221  

 

1.247  

 
Rhyolite    198 0.353  

 

0.436  

 

1.546  

 
 987 

Table S2 Performance metrics of SVM and LightGBM models across different buffer distances and input 988 
methods (Training set). 989 

Buffer 

Distance (km) 
Model Input Method AUC Precision Recall F1-score 

 

 

 

0.1 

 

SVM 

IV 0.831 

 

0.798 0.752 0.774 

CF 0.812 0.781 0.736 0.758 

FR 0.720 0.695 0.668 0.681 

 

LightGBM 

IV 0.919 0.964 0.823 0.843 

CF 0.919 0.867 0.821 0.843 

FR 0.915 0.859 0.818 0.838 

 

 

 

0.5 

 

 

SVM 

 

IV 0.825 0.792 0.743 0.767 

CF 0.820 0.786 0.739 0.762 

FR 0.914 0.873 0.845 0.859 

 

LightGBM 

IV 0.920 0.866 0.825 0.845 

CF 0.920 0.868 0.823 0.845 

FR 0.921 0.881 0.829 0.854 

 

 

 

1.0 

 

SVM 

 

IV 0.826 0.794 0.745 0.769 

CF 0.819 0.783 0.741 0.761 

FR 0.721 0.698 0.671 0.684 

 

LightGBM 

IV 0.920 0.867 0.827 0.844 

CF 0.920 0.869 0.825 0.846 

FR 0.916 0.861 0.822 0.841 

 

 

 

2.0 

 

SVM 

 

IV 0.826 0.795 0.747 0.770 

CF 0.834 0.801 0.756 0.778 

FR 0.913 0.867 0.851 0.859 

 

LightGBM 

IV 0.920 0.868 0.829 0.848 

CF 0.920 0.870 0.821 0.848 

FR 0.918 0.882 0.831 0.856 

  IV 0.823 0.791 0.741 0.765 
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5.0 

SVM 

 

CF 0.883 0.843 0.798 0.820 

FR 0.721 0.697 0.669 0.683 

 

LightGBM 

IV 0.919 0.865 0.831 0.850 

CF 0.918 0.871 0.829 0.850 

FR 0.916 0.862 0.823 0.842 

 990 
 991 
 992 

Table S3 Variance Inflation Factor (VIF) analysis for landslide conditioning factors. 993 
Conditioning factors IV method CF method FR method 

Elevation (m) 2.34 2.41 2.36 

Slope (°) 3.67 3.52 3.88 

Aspect 1.89 1.94 12.45 

Profile curvature 2.15 2.08 2.33 

Plan curvature 1.76 1.82 11.23 

TWI 4.23 4.18 4.11 

Distance to road (m) 3.45 3.38 4.12 

Distance to river (m) 6.78 6.92 10.56 

Distance to fault (m) 2.56 2.63 2.41 

NDVI 2.91 2.87 3.15 

SPI 5.67 5.84 13.89 

Lithology 1.98 2.05 1.87 

Note: VIF values > 10 indicate multicollinearity issues and variables were excluded from analysis. 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 
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 1004 

 1005 
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 1007 
 Figure S1 Landslide susceptibility predictions distribution based on IV input variable selection. 1008 
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 1010 
 Figure S2 Landslide susceptibility predictions distribution based on CF input variable selection. 1011 
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 1013 
 Figure S3 Landslide susceptibility predictions distribution based on FR input variable selection. 1014 
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