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Abstract: Typhoon-specific rainfall-induced landslides pose critical hazards in mountainous14

regions, yet existing warning systems inadequately capture the distinct rainfall dynamics of15

these extreme events. To address this limitation, we propose an integrated framework16

combining optimized susceptibility predictions with dynamic rainfall thresholds tailored to17

typhoon patterns. The approach enhances machine learning accuracy through buffer-based18

negative sampling and variable weighting. It also introduces a spatiotemporal rainfall analysis19

to distinguish between short-term intense downpours and cumulative soil saturation. Tested in20

Zixing City, Hunan Province, China, where over 700 landslides were triggered by Typhoon21

Gaemi, the framework proved effective. The support vector machine (SVM) model achieved22

the best performance using frequency ratio (FR) inputs with a 0.5 km buffer (F1-score: 0.859,23

AUC: 0.914), correctly classifying 86.4% of landslides as high or very high susceptibility.24

The rainfall analysis identified 24-hour intensity combined with 7-day antecedent rainfall as25

the optimal trigger, effectively capturing both immediate and cumulative moisture effects.26

Spatially, rhyolite and granite slopes and areas near roads emerged as hotspots for failure27
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(distance < 800 m, FR = 1.499 for roads; FR = 1.546 for rhyolite). The integrated warning28

system shows high spatial efficiency, with high-risk areas covering only 34.2% of the study29

region yet capturing 71.4% of historical landslides. Additionally, the framework generated30

high-risk zone maps that align strongly with historical events. This work highlights the unique31

nature of typhoon-driven slope instability and provides a transferable framework for disaster32

risk reduction in cyclone-prone regions.33

Keywords: Typhoon-induced landslide; Slope failure; Hazard warning system; Dynamic34

thresholds; Landslide susceptibility mapping35

1 Introduction36

Landslides pose significant threats to mountainous regions globally (Froude and Petley,37

2018), especially in areas where steep terrain, complex geology (Thiene et al., 2017), and38

extreme weather events like typhoons intersect. In Southeast China, typhoon-induced39

landslides have become a growing concern due to the region's rapid urbanization and the40

increasing variability in climate patterns (Gariano and Guzzetti, 2016; Fan et al., 2018). The41

Nanling Mountains, in southern China, are particularly vulnerable to landslides due to a42

combination of extreme topographic relief and complex geological conditions during the43

typhoon season (Zou et al., 2023).44

Typhoons typically bring prolonged antecedent rainfall, followed by intense, short bursts45

of precipitation (Li et al., 2019). These conditions create unique hydrological environments46

that exceed the complexity of typical rainfall-triggered landslides (Chung and Li, 2022).47

These events trigger slope failures through cumulative soil saturation and sudden hydrological48

stress, challenging traditional landslide prediction methods (Yang et al., 2017). Despite49

advances in landslide susceptibility prediction (LSP) and rainfall threshold modeling, current50

approaches remain inadequate. Three critical limitations persist: severe data imbalance effects,51

suboptimal integration of variable selection with machine learning algorithms, and lack of52



3

spatially-explicit rainfall thresholds for typhoon-specific conditions (Segoni et al., 2018a;53

Regmi et al., 2024).54

Most existing studies employ ad-hoc buffer distances without systematic optimization,55

leading to inconsistent model performance across different geological settings (Lombardo and56

Mai, 2018). Traditional methods attempt to mitigate this imbalance by randomly sampling57

non-landslide points across the study area (Steger et al., 2016; Dou et al., 2023). However,58

random selection can introduce spatial bias, as non-landslide points might include areas that59

are unstable but have not yet been identified as landslide-prone (Kalantar et al., 2018).60

To address this limitation, more recent approaches have employed buffer-based negative61

sampling, which systematically excludes non-landslide points near known landslide sites.62

This method assumes that adjacent areas share similar environmental conditions (e.g., slope,63

lithology) and therefore should not be classified as “stable” (Achu et al., 2022). Several64

studies have tested varying buffer distances, ranging from tens to thousands of meters, to65

determine the optimal distance for different regions. However, systematic evaluation of buffer66

distance optimization coupled with variable weighting methods remains largely unexplored.67

LSP is primarily focused on identifying areas prone to slope failure, based on static68

environmental factors such as topography, lithology, land cover, and hydrology (Zêzere et al.,69

2017; Guo et al., 2024). Traditional approaches to LSP often rely on deterministic and70

statistical methods, including information value (IV), certainty factor (CF), frequency ratio71

(FR), logistic regression (LR), and weight of evidence (WOE). These methods quantify the72

relationship between historical landslide occurrences and predisposing factors using linear or73

semi-linear approaches (Ciurleo et al., 2017; Reichenbach et al., 2018). However, these74

methods oversimplify the complex, nonlinear interactions that govern slope stability75

(Merghadi et al., 2020).76



4

In contrast, machine learning (ML) algorithms, such as support vector machine (SVM)77

and light gradient boosting machine (LightGBM), have emerged as powerful alternatives.78

SVM excels in high-dimensional classification tasks and effectively identifies optimal79

hyperplanes separating landslide-prone from stable areas (San, 2014; Huang and Zhao, 2018).80

LightGBM offers superior scalability and computational efficiency for processing large81

geospatial datasets (Sun et al., 2023). Both SVM and LightGBM capture intricate82

relationships among variables without restrictive assumptions, making them superior to83

traditional methods in terms of predictive accuracy (Yang et al., 2023). However, frameworks84

that systematically integrate variable weighting methods with advanced ML algorithms for85

LSP optimization are lacking.86

For temporal prediction, existing rainfall threshold approaches predominantly use87

generalized regional thresholds that inadequately capture local geological heterogeneity and88

typhoon-specific rainfall patterns (Guzzetti, 2021; Banfi and De Michele, 2024). These89

thresholds are typically defined based on cumulative or intensity-duration (I-D) rainfall values90

(Piciullo et al., 2017; Segoni et al., 2018a). In typhoon-prone regions, dynamic rainfall91

thresholds are crucial due to the unique combination of long-duration antecedent rainfall and92

sudden high-intensity bursts of precipitation (Guzzetti et al., 2020). Traditional empirical93

methods fail to provide spatially continuous threshold surfaces that account for local94

environmental variability (Piciullo et al., 2018).95

Recent advances have integrated multi-temporal rainfall parameters with advanced96

statistical techniques to optimize rainfall thresholds (Segoni et al., 2015; Huang et al., 2022),97

accounting for diverse triggering mechanisms. Additionally, spatial interpolation methods,98

such as Kriging, have been applied to generate continuous rainfall threshold surfaces that99

allow for local variations in geological and environmental conditions (Kenanoglu et al., 2019;100

Segoni et al., 2018b). This approach, when combined with high-resolution susceptibility maps,101
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contributes to the development of integrated hazard warning systems that can dynamically102

adjust to typhoon-specific rainfall-induced scenarios (Piciullo et al., 2018; Mirus et al., 2018).103

This study examines Zixing City, a mountainous region in southeastern Hunan Province,104

frequently affected by typhoon-induced extreme rainfall. Its steep slopes, fractured geology,105

and high sensitivity to rapid pore-pressure increase render it particularly vulnerable (Ma et al.,106

2025). The large number of landslides (>700) triggered by Typhoon Gaemi in July 2024107

provides a valuable dataset for model calibration and validation.108

Here we developed an integrated framework that combines (i) optimized buffer distances109

for negative sampling, (ii) bivariate weighting methods (IV, CF, FR) with advanced machine110

learning classifiers (SVM, LightGBM), and (iii) spatially continuous, typhoon-specific111

rainfall thresholds derived through Kriging interpolation. The specific objectives are to (1)112

determine optimal buffer distances that minimize spatial bias in imbalanced datasets, (2)113

evaluate the performance gain from coupling bivariate weights with machine learning114

algorithms, (3) establish dynamic rainfall thresholds suited to typhoon rainfall patterns, (4)115

generate continuous threshold surfaces via Kriging, and (5) integrate high-resolution116

susceptibility maps with these thresholds to support an operational early warning system. This117

approach improves landslide prediction in typhoon-prone mountainous regions and provides a118

transferable methodology for similar environments.119

2 Study area and data sources120

2.1 Study area121

Zixing City (25°34′–26°18′ N, 113°08′–113°44′ E), covering 2,747 km² in southeastern122

Hunan Province, China (Fig. 1), is located within the Nanling Mountains geological province.123

Situated approximately 400 km inland from the South China Sea, Zixing lies at the124

intersection of the Nanling Mountains and low hills, forming a watershed divide between the125

Yangtze and Pearl River basins. The region is characterized by steep topography, with126
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elevations ranging from 125 to 1,691 meters and slopes exceeding 30° across 78% of the area.127

This mountainous terrain, combined with fractured geology and active NE-SW trending faults128

such as the Chaling-Yongxing Fault Zone, creates a permeable fracture network that129

facilitates groundwater drainage.130

The climate of Zixing is subtropical monsoon, with annual precipitation averaging 1,550131

mm, 70% of which occurs from April to September. Typhoons significantly contribute to132

rainfall, inducing rapid pore-pressure increases in shallow aquifers (3–8 m depth). These133

climatic and geological conditions make Zixing particularly vulnerable to landslides,134

providing a valuable context for this study. The extensive landslide dataset triggered by135

Typhoon Gaemi in July 2024 (>700 events) serves as a critical resource for model calibration136

and validation.137

138

Figure 1 Geographical distribution of the study area, landslides and rainfall gauges.139

2.2 Data collection and preprocessing140

2.2.1 Compilation of landslide catalogue141

A comprehensive inventory of 705 landslide events triggered by Typhoon Gaemi on July142

27, 2024, was compiled from the Hunan Center for Natural Resources Affairs. The landslide143
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locations were verified through field inspections and high-resolution satellite imagery to144

ensure spatial accuracy and completeness of the dataset.145

2.2.2 Landslide conditioning factors and data sources146

Based on extensive literature reviews and the geoenvironmental characteristics of the147

study area, twelve conditioning factors were selected for landslide susceptibility analysis:148

elevation, slope gradient, slope orientation, curvature, topographic wetness index (TWI),149

stream power index (SPI), normalized difference vegetation index (NDVI), distances to roads,150

rivers, and faults, and lithology (Fig. 2).151

Topographic factors (elevation, slope gradient, slope orientation, TWI, SPI, and152

curvature) were extracted from a 30-meter digital elevation model (DEM) obtained from the153

Geospatial Data Cloud (https://www.gscloud.cn). Environmental factors including NDVI and154

proximity variables (distances to roads, rivers, and fault lines) were derived from 1:50,000-155

scale cartographic maps and Landsat 8 OLI imagery from the same platform. Geological156

composition and structural data were acquired from 1:100,000-scale geological maps.157

158

https://www.gscloud.cn/
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159

160

161
Figure 2 Landslide-related conditioning factors.162

2.2.3 Data preprocessing and spatial standardization163

We transformed all conditioning factors into continuous statistical measures using IV,164

CF, and FR methods and then resampled them to a uniform 60-meter resolution. This165

resolution was selected to balance computational efficiency with scale appropriateness for166

regional landslide analysis while maintaining compatibility with the available geological map167

scale (1:100,000).168
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The study area was divided into 60 × 60 meter grid cells, with landslides smaller than the169

grid resolution aggregated to the nearest cell centroid. Multiple landslides within a single cell170

were treated as one event to maintain spatial independence required for machine learning171

modeling. This preprocessing approach ensures statistical validity by minimizing spatial172

autocorrelation effects while providing adequate representation of landslide distribution173

patterns across the study area.174

2.2.4 Rainfall data collection and spatial distribution175

Rainfall data for the study were obtained from 12 automatic rain gauge stations176

strategically distributed across Zixing City and its surrounding areas (Fig. 1). These stations,177

operated by the Hunan Meteorological Administration, provided hourly precipitation records178

during Typhoon Gaemi (July 20–30, 2024) and the preceding antecedent period. The spatial179

distribution of gauge stations ensured adequate coverage of the study area's topographic and180

climatic gradients.181

To assign rainfall parameters (H1, H12, H24, H72, and D7) to each of the 705 landslide182

points, we employed the Kriging interpolation to generate spatially continuous rainfall183

surfaces from discrete gauge measurements. This geostatistical method accounts for spatial184

autocorrelation in rainfall patterns and provides optimal unbiased estimates by weighting185

nearby observations based on their spatial proximity and correlation structure.186

Spherical variogram models were fitted to the rainfall data through iterative optimization,187

with model selection based on minimum Akaike Information Criterion (AIC) values. The188

interpolation accuracy was rigorously evaluated through leave-one-out cross-validation,189

where each gauge station was sequentially removed and its rainfall values predicted using the190

remaining 11 stations. Four statistical metrics were used to assess performance: Root Mean191

Square Error (RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and Nash-192

Sutcliffe Efficiency (NSE).193
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Table 1 Kriging interpolation accuracy assessment for rainfall parameters.194
Parameter RMSE (mm) MAE R NSE

H1 4.2 3.1 0.76 0.71

H12 11.7 8.9 0.83 0.78

H24 16.3 12.6 0.87 0.82

H72 24.8 18.4 0.81 0.77

D7 29.6 22.7 0.78 0.73

The validation results demonstrated acceptable interpolation accuracy across all rainfall195

parameters, with correlation coefficients ranging from 0.76 to 0.87 and Nash-Sutcliffe196

Efficiency values between 0.71–0.82. Despite some limitations inherent to the sparse gauge197

network in mountainous terrain, the interpolation performance was deemed sufficient for198

regional landslide susceptibility analysis, ensuring reasonable spatial representation of199

precipitation patterns across the study area.200

3 Methodologies201

This study proposes an integrated framework for optimizing LSP and typhoon-specific202

rainfall thresholds within hazard warning systems (Fig. 3). The framework includes the203

following key components: (1) landslide susceptibility prediction and mapping, utilizing204

twelve conditioning factors prioritizing typhoon-induced hydrological responses (e.g., TWI,205

SPI) and 705 landslide records from July 27, 2024, optimized with five buffer distances and206

evaluated using ROC curves; (2) dynamic rainfall threshold modeling based on typhoon207

rainfall parameterization, validated and spatially interpolated using Kriging; and (3) the208

integration of spatial and temporal probabilities to develop a typhoon-specific rainfall-induced209

landslide warning system, demonstrated through a case study in Zixing City.210
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211

Figure 3 Technical framework for developing a typhoon-specific rainfall-induced landslide warning system.212

3.1 Landslide susceptibility prediction and mapping213

3.1.1 Machine learning models: selection rationale and implementation214

We selected SVM and LightGBM to address three key challenges in typhoon-specific215

rainfall-induced landslide prediction: (1) severe class imbalance (landslides <0.5% of study216

area), (2) complex non-linear interactions between rainfall and terrain factors, and (3)217

computational efficiency for operational early warning.218

SVM excels in binary classification with limited samples through structural risk219

minimization (Kalantar et al., 2018; Wang et al., 2020), making it suitable for typhoon-220

triggered landslide mapping. Its margin-maximization approach handles the class imbalance221

between stable and landslide areas, while the RBF kernel captures localized failure patterns222

under concentrated typhoon rainfall. The regularization parameter C prevents overfitting to223

specific typhoon events, ensuring model transferability. The SVM optimization problem is224

defined as:225
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where w is the normal vector to the hyperplane, b is the bias term, ξi are slack229

variables, ϕ(xi) maps input vectors to a higher-dimensional space,and yi denotes the class230

label (-1 or 1) for each sample xi. We optimized the RBF kernel parameters using grid-search231

with 5-fold cross-validation, where C ∈ [0.1, 100] and γ ∈ [0.001, 1]. Across all232

configurations (three input methods × five buffer distances), optimal values varied as follows:233

C = 5–15 and γ = 0.10–0.25, with median values of C = 10 and γ = 0.15.234

LightGBM complements SVM through gradient boosting with sequential error235

correction, offering distinct advantages for regional-scale landslide mapping. Its histogram-236

based algorithm enables efficient processing of large spatial datasets (Sun et al., 2023; Sahin,237

2020). Additionally, LightGBM automatically captures complex feature interactions. The238

minimized objective function is expressed as:239
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where iy is the true label, iŷ is the predictive value,  is a regularization parameter, and241

j represents the parameters of the model. We optimized LightGBM hyperparameters through242

Bayesian optimization. The optimal hyperparameters ranged as: num_leaves = 25–35,243

learning_rate = 0.03–0.08, and max_depth = 6–10. Early stopping with a 50-round patience244

window resulted in model convergence at 120–220 trees across different scenarios.245

3.1.2 Input variable weighting methods246

The IV method, grounded in information theory, assesses how different factors247

contribute to landslide susceptibility within a study area (Niu et al., 2024). Factors such as248
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distance to roads and lithology were weighted higher in Zixing City due to their interaction249

with typhoon-induced soil saturation. The IV for each evaluation factor is determined using250

the formula below:251
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where IV(Fi, K) is the information value of evaluation factor Fi in relation to landslide event K,253

Ni refers to the number of landslides, N is the total number of landslides, Si represents the area254

covered by factor Fi, and S is the total area of the study area.255

The CF method is a widely utilized probabilistic technique for assessing the likelihood of256

landslide occurrences (Zhao et al., 2021). It quantifies the prior probability of a landslide257

initiation under specific conditions of influential factors, utilizing spatial data from known258

landslide locations. The expression of CF is as follows:259
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where CF is the certainty factor indicating the degree of association between an influential261

factor and potential landslide occurrence. It is derived from two area-proportional measures:262

PPa, the proportion of landslide points within a specific factor class (number of landslide263

points in the class / total area of the class); and PPs, the proportion of landslide points across264

the entire study region (total number of landslide points / total area of the region).265

The FR is a prevalent method in statistical analysis that assesses the relative impact of266

various factors on the incidence of landslides (Panchal et al., 2021). An elevated FR value267

denotes a more significant influence of a factor on the likelihood of landslides. The FR is268

determined by the following equation:269
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where FR is the frequency ratio, Ni represents the number of landslides within the area271

corresponding to the conditioning factor, N is the total number of landslides, Si is the area272

covered by the conditioning factor and S is the total area of the study region.273

3.1.3 Buffer distance optimization and uncertainty assessment for LSP274

To generate negative (non-landslide) samples for LSP, areas within buffer distances of d275

= 0.1, 0.5, 1.0, 2.0, and 5.0 km around landslide locations were excluded, with balanced276

negative samples (n = 705) randomly selected from remaining stable areas for each distance.277

The optimal buffer distance was determined by evaluating SVM and LightGBM model278

performance using AUC, Precision, Recall, and F1-score metrics.279

The selection of buffer distances (0.1–5.0 km) was based on Zixing’s geomorphological280

considerations and practices commonly reported in LSP. This range encompasses multiple281

spatial scales: slope-scale processes (0.1–0.5 km), catchment-scale features (1.0–2.0 km), and282

regional-scale geological units (5.0 km). The evaluation ensures optimal spatial representation283

without a priori assumptions about scale dependencies (Chang et al., 2023).284

Prediction uncertainty was assessed using the mean and standard deviation (SD) of285

predicted landslide susceptibility values. Lower mean and SD values indicate reduced286

prediction uncertainty and more concentrated susceptibility patterns, suggesting higher model287

confidence in LSP (Huang et al., 2022), thereby complementing the buffer distance288

optimization process.289

3.2 Effective rainfall threshold modeling290

3.2.1 Rainfall parameterization and threshold calculation291

Typhoon-induced landslides are generally influenced by a combination of antecedent292

moisture conditions and immediate precipitation, rather than by isolated rainfall events293

(Mondini et al., 2023; Tufano et al., 2021). To account for the cumulative impact of multi-day294
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rainfall while incorporating hydrological processes such as evapotranspiration and drainage,295

we adopted the concept of effective rainfall (Pe), calculated as:296
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where Pi represents the daily rainfall on the i-th day preceding landslide occurrence, n denotes298

the number of antecedent days considered, and k is the effective rainfall decay coefficient299

(Segoni et al., 2018a). For hourly rainfall parameterization, Pi is derived as:300
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where Rij is the hourly rainfall at the j-th hour of the i-th day.302

3.2.2 Long-term and short-term rainfall parameters303

Rainfall-triggered landslides are generally triggered by two dominant mechanisms:304

prolonged low-intensity rainfall and short-duration high-intensity storms. Based on statistical305

analysis of historical landslide events in Hunan Province (Xiao et al., 2025), a 7-day306

antecedent period was identified as optimal for characterizing long-term rainfall impacts.307

Consequently, the 7-day effective rainfall (D7) was selected as the long-term parameter.308

Short-term rainfall metrics were defined as cumulative precipitation over 1 hour (H1), 12309

hours (H12), 24 hours (H24), and 72 hours (H72) preceding landslide initiation. These310

intervals capture distinct rainfall characteristics: H1 reflects extreme short-term intensity for311

rapid slope failures, H12 and H24 represent sub-daily to daily precipitation critical for312

intermediate responses, and H72 accounts for multi-day storm sequences.313

3.2.3 Rainfall threshold model development314

The threshold modeling framework comprises three sequential steps:315

(1) Parameter calculation: For each landslide sample, short-term rainfall parameters (H1,316

H12, H24, and H72) and the long-term rainfall parameter (D7) are calculated. The ratios of317
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short-term parameters to the long-term parameter are computed as: R1=H1/D7, R12=H12/D7,318

R24=H24/D7, and R72=H72/D7.319

(2) Threshold setting: Long-to-short-term ratio coefficients (RC1, RC12, RC24, and320

RC72) are introduced as thresholds to determine the dominant rainfall pattern for each321

landslide. These thresholds are used to classify landslides into short-term or long-term322

Typhoon-induced categories.323

(3) Coefficient optimization: A cyclic trial-and-error method is employed to determine324

the optimal ratio coefficients (RC1, RC12, RC24, and RC72), maximizing the accuracy and325

reliability of the model.326

3.2.4 Optimal ratio coefficient threshold determination327

The process of determining the optimal long-to-short-term ratio coefficient threshold is328

demonstrated using H12-D7 as an example. The process for the remaining coefficients (H1-329

D7, H24-D7, and H72-D7) follows a similar approach. A 5-fold cross-validation method is330

applied, with the following procedure:331

(1) Rainfall data extraction for landslide locations: For each of the 705 landslide points,332

R12 and D7 values are extracted from these interpolated surfaces at the exact landslide333

coordinates, ensuring that each landslide location receives rainfall values derived from the334

spatially weighted contributions of all nearby gauge stations. R12 and D7 values for each335

landslide are calculated using Equations (7) and (8).336

(2) Data preparation: The dataset is divided into five equal parts for cross-validation,337

with each part serving as a test set while the remaining four serve as the training set.338

(3) Initial threshold setting: An initial threshold for RC12 is set based on the minimum339

value in the training set.340

(4) Threshold evaluation: For each fold, the RC12 threshold is compared with the R12341

value of samples in the test set. If RC12<R12, the prediction is considered a failure.342
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Prediction accuracy is calculated for each RC12 threshold, adjusting in 0.001 increments until343

the highest prediction accuracy is achieved.344

(5) Optimal RC12 threshold determination: The RC12 threshold with the highest345

prediction accuracy is selected for each fold. The final RC12 threshold is determined by346

averaging the optimal thresholds from all five folds.347

3.2.5 Spatial distribution of optimal threshold348

According to the optimal ratio coefficient threshold determined in section 3.2.4 and the349

long-term and short-term rainfall parameters obtained through interpolation, the threshold350

spatial distribution for the study area can be derived. Taking H12/D7 as an example, the351

process is as follows:352

First, by dividing the H12 values of each landslide point by the optimal ratio coefficient353

RC12, the corresponding D7 thresholds for each landslide point can be calculated. These D7354

thresholds serve as a basis for applying the Kriging interpolation method to obtain the spatial355

distribution map of the D7 thresholds across the entire study area.356

Next, by multiplying the D7 values of each landslide point by the ratio coefficient RC12,357

the corresponding H12 thresholds for each landslide point can be determined. Subsequently,358

utilizing these H12 thresholds, the Kriging interpolation method is applied once more to359

generate the spatial distribution map of the H12 thresholds for the entire study area.360

3.3 Typhoon-specific rainfall-induced landslide warning system361

In order to effectively prevent typhoon-specific rainfall-induced landslide hazards,362

constructing a comprehensive landslide warning system is crucial. This system integrates LSP363

with critical rainfall thresholds, combining spatial probability and temporal probability to364

predict the risk of landslide occurrence and the timing of potential events.365

3.3.1 Construction of the landslide warning system366
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Using the natural breaks point method, the LSP is categorized into five levels of spatial367

probability: very low (S1), low (S2), moderate (S3), high (S4), and very high (S5). These368

levels represent varying degrees of susceptibility to landslides in different regions, forming369

the basis for assessing landslide risks when combined with rainfall data. Paralleling the LSP370

categorization, rainfall thresholds are also divided into five levels using the natural breaks371

point method, representing temporal probability: very low (T1), low (T2), moderate (T3),372

high (T4), and very high (T5). A lower rainfall threshold indicates a higher likelihood of373

typhoon-induced landslides, thus signaling a greater risk of landslide events.374

Table 2 Classification of landslide hazard warning zones by integrating landslide susceptibility levels375
(S1~S5) with rainfall threshold levels (T1~T5).376

Landslide hazard
warning zones

T1 T2 T3 T4 T5

S1 (very low) No warning
zone (2nd level)

No warning
zone (1st level)

No warning
zone (1st level)

No warning
zone (1st level)

No warning
zone (1st level)

S2 (low) 3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (2nd level)

No warning
zone (1st level)

No warning
zone (1st level)

S3 (moderate) 4th level
warning zone

3rd level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (1st level)

S4 (high) 5th level
warning zone

4th level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (1st level)

S5 (very high) 5th level
warning zone

5th level
warning zone

4th level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

The matrix-based integration of LSP results and rainfall thresholds, as presented in Table377

2 (Segoni et al., 2015), highlights the correlation between landslide susceptibility and rainfall378

intensity. As the levels of landslide hazard warnings escalate from the 1st level, indicating no379

warning, to the 5th level, which signifies the highest alert, the likelihood of landslide380

occurrences correspondingly increases. Areas categorized in higher hazard zones correspond381

to regions with a heightened risk of landslides. This hazard warning system provides a spatial382

framework for risk assessment and early warning, generating hazard zonation maps that can383

be integrated into operational landslide monitoring and warning protocols. This underscores384

the importance of implementing more effective geological disaster prevention strategies, as385

thoroughly discussed in the literature by Huang et al. (2022).386
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4 Landslide susceptibility prediction using machine learning models387

4.1 Statistical analysis of conditioning factors388

The statistical analysis reveals distinct patterns of landslide susceptibility across all389

conditioning factors (Table S1 in the Supplement). Topographic factors demonstrate clear390

elevation-dependent behavior, with maximum susceptibility occurring at intermediate391

elevations (545-782 m, FR=1.637, IV=0.389), suggesting optimal conditions where392

weathering processes and slope instability converge. Slope gradient exhibits peak393

susceptibility in the moderate range (7.87–15.06°, FR=1.522, IV=0.343), indicating394

insufficient driving forces at gentler slopes and potential debris removal at steeper gradients.395

South-facing aspects show enhanced susceptibility (FR=1.299, IV=0.230), likely attributable396

to intensified weathering from solar radiation and moisture cycles.397

Morphological indices reveal significant correlations with landslide occurrence. Profile398

curvature demonstrates highest susceptibility in convex areas (0.17–0.59, FR=1.480,399

IV=0.480), where stress concentration promotes slope failure. TWI shows strong positive400

correlation with wetness, peaking at high values (8.69–13.62, FR=1.799, IV=0.444),401

confirming the critical role of water accumulation in slope destabilization. SPI indicates402

maximum susceptibility in moderate stream power ranges (1.27–2.39, FR=1.298, IV=0.229),403

reflecting optimal erosional conditions.404

Proximity factors exhibit contrasting patterns based on infrastructure type. Distance to405

roads shows strong inverse correlation with landslide occurrence (0–800 m, FR=1.499,406

IV=0.333), indicating anthropogenic disturbance effects. Conversely, distance to faults407

reveals a bimodal pattern with peak susceptibility at intermediate distances (7–12 km,408

FR=1.439, IV=0.305), suggesting regional structural influence rather than localized fault-409

induced instability. Environmental factors demonstrate vegetation's protective role, with410

moderate NDVI values (0.64–0.76) showing elevated susceptibility (FR=1.854, IV=0.015),411
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representing the transition zone between bare soil vulnerability and established vegetation412

stability. Lithological analysis reveals pronounced material control, with rhyolite (FR=1.546,413

IV=0.353) and granite (FR=1.247, IV=0.198) showing enhanced susceptibility due to414

intensive weathering and joint development, while sedimentary rocks (slate, shale, limestone,415

sandstone) exhibit strong resistance (FR<0.21) owing to their structural integrity and lower416

weathering susceptibility.417

4.2 Landslide susceptibility modeling in Zixing City418

Prior to model development, multicollinearity analysis was conducted using variance419

inflation factor (VIF) to ensure statistical reliability of the conditioning factors. The analysis420

revealed method-specific multicollinearity patterns: IV and CF methods showed no421

significant multicollinearity issues (all VIF < 10), while the FR method exhibited422

multicollinearity in four variables (SPI, Aspect, Plan curvature, and Distance to rivers with423

VIF > 10), which were subsequently excluded from FR-based modeling (Table S2 in the424

supplement). Following this preprocessing, landslide susceptibility prediction was performed425

using SVM and LightGBM models with the three distinct weighting methods (IV, CF, and426

FR). Susceptibility levels were categorized into five classes using the natural breaks427

classification method, with non-landslide samples strategically selected by excluding buffer428

zones of varying distances (0.1, 0.5, 1.0, 2.0, and 5.0 km) around documented landslide429

locations to optimize model performance and reduce spatial bias.430

4.2.1 IV-based modeling performance431

The IV-derived susceptibility maps (Fig. 4) revealed distinct spatial patterns between the432

two models across varying buffer distances. At smaller scales, the SVM model demonstrated433

more detailed classification, with a higher degree of overlap between high susceptibility areas434

and actual landslide locations. The LightGBM model's classification was smoother, with a435

lower degree of overlap between high susceptibility areas and actual landslide locations.436
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Notably, this performance discrepancy diminished progressively with increasing buffer437

distances.438

439

Figure 4 Landslide susceptibility map based on SVM and LightGBM models using the IV input.440

4.2.2 CF-based modeling performance441

In CF-based modeling (Fig. 5), the SVM model's high and very high landslide442

susceptibility areas at smaller scales were more extensive than in the IV mode, with actual443

landslide locations more frequently distributed within these high-risk areas. As the scale444

increased, the high susceptibility areas gradually decreased. The LightGBM model also445

showed a relatively smooth distribution, with some high susceptibility areas identified at446

smaller scales gradually integrating as the scale increased, following a similar trend to the447

SVM model.448
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449

Figure 5 Landslide susceptibility map based on SVM and LightGBM models using the CF input.450

4.2.3 FR-based modeling performance451

Regarding the FR input (Fig. 6), the SVM model identified a significant number of high452

and very high landslide susceptibility areas at smaller scales compared to the IV and CF453

inputs, which closely matched the actual locations of landslides. As the buffer scale expanded,454

these high-risk areas generally diminished and the distribution became smoother. Conversely,455

the LightGBM model delivered more uniform results, offering broader moderate-risk456

distributions, with a small number of high susceptibility areas that did not align with the457

actual landslide locations. As the scale increased, the high susceptibility areas identified by458

the LightGBM model gradually diminished, showing greater consistency with the SVM459

model results at the higher scale.460
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461

Figure 6 Landslide susceptibility map based on SVM and LightGBM models using the FR input.462

4.3 Uncertainty analysis of LSP results463

4.3.1 LSP accuracy evaluation and comparative performance464

Table S2 (in the Supplement) demonstrates contrasting performance characteristics465

between the two machine learning approaches across different spatial scales and input466

configurations. LightGBM consistently achieved high AUC values (0.915–0.921) and467

maintained stable F1-scores (0.838–0.850) across all buffer distances and input methods,468

indicating robust generalization capability. In contrast, SVM exhibited pronounced sensitivity469

to parameter combinations, with performance varying significantly across different buffer470

distances (F1-scores ranging from 0.681 to 0.859) and input methods, particularly showing471

notable degradation with FR input at extreme spatial scales (0.1 km and 5.0 km).472

Two configurations emerged as comprehensively superior: SVM with FR input at 0.5 km473

and 2.0 km buffer distances, both achieving F1-scores of 0.859. These optimal configurations474

not only maintained competitive AUC values (0.914 and 0.913 respectively) but demonstrated475

superior precision-recall balance compared to corresponding LightGBM configurations (F1-476

scores: 0.854 and 0.856). The high recall values (0.845 and 0.851) coupled with robust477
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precision (0.873 and 0.867) indicate enhanced sensitivity to landslide-prone areas while478

minimizing false positive predictions. This bimodal performance pattern suggests that479

intermediate buffer distances effectively capture fault-related geomorphological processes480

influencing slope stability.481

Independent validation on the test set confirmed the robustness of these optimal482

configurations, with SVM-FR models at 0.5 km and 2.0 km buffer distances achieving F1-483

scores of 0.847 and 0.852 respectively, representing minimal performance degradation from484

training results. The consistent AUC values (0.909 and 0.908) on the test set further validate485

the models' discriminative capability and indicate absence of overfitting, confirming the486

reliability of these configurations for practical landslide susceptibility assessment applications.487

4.3.2 LSP distribution characteristics across conditions488

In addition to the performance metrics, the distribution characteristics of landslide489

susceptibility predictions revealed fundamental differences between the models (Figs. S1–S3490

in the Supplement). LightGBM generated smoother, more symmetrical distributions with491

lower mean susceptibility values (0.196–0.320) and smaller standard deviations (0.099–492

0.187), indicating stable and uniform predictions. In contrast, SVM exhibited greater493

variability, with irregular distributions, higher mean values (0.303–0.515), and larger standard494

deviations (0.112–0.214). Notably, SVM's mean susceptibility under FR input rose sharply495

(0.446–0.515), while LightGBM maintained lower means despite moderately broader496

deviations (0.160–0.187).497

Therefore, SVM is preferable for FR-based modeling at 0.5 km and 2.0 km buffers,498

where spatial precision is prioritized over prediction uniformity. The SVM model achieved its499

highest accuracy at the 0.5 km buffer, classifying 86.4% of recorded landslides in high and500

very high susceptibility zones (Fig. 6b). At the 2.0 km buffer (Fig. 6d), it still correctly501
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classified 82.1% of landslides in these zones. As a result, Fig. 6b is selected as the final502

landslide susceptibility map.503

5 Landslide risk assessment in Zixing City504

5.1 Critical rainfall thresholds for landslides in Zixing City505

We evaluated four rainfall threshold models (H1-D7, H12-D7, H24-D7, and H72-D7)506

through 5-fold cross-validation, with their optimal ratio coefficient (RC) thresholds and507

prediction accuracies summarized in Table 3. The H24-D7 model, coupling 24-hour rainfall508

during landfall with 7-day antecedent moisture, achieved the highest accuracy (71.8%) by509

effectively capturing both cumulative saturation and abrupt triggering by typhoon rainfall510

bursts. Notably, the H24-D7 model exhibited stable performance across all folds, with511

accuracy ranging narrowly between 68.8% (Fold 1) and 74.6% (Fold 4), reflecting robust512

generalizability.513

Table 3 Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation.514

Model Fold 1
RC/Accuracy

Fold 2
RC/Accuracy

Fold 3
RC/Accuracy

Fold 4
RC/Accuracy

Fold 5
RC/Accuracy

Average
RC/Accuracy

H1-D7 0.032/56.5 0.062/29.7 0.076/35.5 0.022/53.6 0.040/47.8 0.047/44.6

H12-D7 0.077/54.2 0.167/46.6 0.243/48.3 0.267/47.7 0.154/45.3 0.182/48.5

H24-D7 0.472/68.8 0.436/72.3 0.422/73.1 0.459/74.6 0.414/70.2 0.440/71.8

H72-D7 0.789/56.5 0.776/59.4 0.781/63.1 0.802/51.4 0.783/60.1 0.787/58.1

In contrast, the H1-D7 and H12-D7 models displayed marked instability: H1-D7515

accuracy fluctuated between 29.7% (Fold 2) and 56.5% (Fold 1), while H12-D7 thresholds516

(RC12: 0.077–0.267) corresponded to accuracies of 45.3–48.3%. The H72-D7 model showed517

moderate performance variability (accuracy: 51.4–63.1%) despite consistently high RC72518

thresholds (>0.78).519

These results highlight the critical role of temporal rainfall parameter selection. The520

superior performance of the H24-D7 model (24-hour short-term rainfall and 7-day antecedent521

rainfall) suggests that a 24-hour duration optimally captures both immediate landslide triggers522
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and cumulative hydrological effects, balancing sensitivity and stability. Shorter (H1/H12) or523

longer (H72) durations either overemphasize transient rainfall spikes or dilute critical524

triggering signals.525

5.2 Spatio-temporal distribution of rainfall thresholds526

Fig. 7 illustrates the spatial distribution of rainfall-triggered landslide thresholds derived527

from four models (RC1, RC12, RC24, and RC72) across multiple temporal scales (1-hour,528

12-hour, 24-hour, 72-hour, and 7-day) within the study area.529

5.2.1 Short-term predictions (1-hour to 12-hour scales)530

At the 1-hour scale (Fig. 7a), the RC1 model generated thresholds ranging from 7 to 50531

mm, with 65.2% of landslides occurring in moderate threshold zones (20–30 mm). This532

indicates the model's effectiveness in detecting slope failures under short-duration rainfall. In533

contrast, the RC12 model on the 12-hour scale (Fig. 7b) showed a wider threshold range (25–534

200 mm), with 62.9% of landslides in mid-to-high threshold regions (80–130 mm). This535

mismatch suggests that the 12-hour cumulative data may underestimate rainfall impacts in536

specific topographic settings.537

538
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Figure 7 Distribution of typhoon rainfall thresholds under various optimal RC ratios: (a) 1-hour RC1-based, (b)539
12-hour RC12-based, (c) 24-hour RC24-based, (d) 72-hour RC72-based, (e) 7-day RC1-based, (f) 7-day RC12-540

based, (g) 7-day RC24-based, and (h) 7-day RC72-based.541

5.2.2 Mid-term predictions (24-hour to 72-hour scales)542

The RC24 model at the 24-hour scale (Fig. 7c) displayed a threshold range of 65–400543

mm, with 87.1% of landslides occurring within moderate thresholds (100–250 mm) and544

12.3% in higher thresholds (>250 mm). This indicates a more accurate capture of rainfall545

intensity effects. At the 72-hour scale (Fig. 7d), the RC72 model produced thresholds between546

78–700 mm, with 59.2% of landslides in mid-to-high threshold regions (200–500 mm).547

Although the RC72 model demonstrated reasonable sensitivity to prolonged rainfall, its upper548

threshold (700 mm) may result in conservative risk predictions for some geological settings.549

5.2.3 Long-term predictions (7-day scale)550

At the 7-day scale, significant differences emerge across models in terms of predicted551

rainfall thresholds and landslide points. The RC1 model (Fig. 7e) shows a threshold range of552

100–700 mm, with landslide points predominantly concentrated in the lower rainfall ranges.553

While these low-threshold landslides may indicate localized risks, the model's conservative554

threshold distribution fails to effectively capture landslides triggered by higher rainfall555

amounts, potentially overlooking more significant events.556

The RC12 model (Fig. 7f), with a threshold range of 100–800 mm, also shows a557

concentration of landslide points in the lower rainfall ranges. Despite a wider threshold range,558

the similarity to the RC1 model suggests that RC12 may also underutilize its capacity to559

predict higher typhoon-induced landslides, leading to under-prediction in areas experiencing560

moderate to heavy precipitation.561

In contrast, the RC24 model (Fig. 7g) exhibits a balanced threshold range (250–900 mm)562

and effectively identifies landslide points in both moderate and high rainfall categories. This563

balance enables RC24 to capture the full spectrum of typhoon-induced landslides, accurately564

identifying risks across different rainfall intensities.565
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The RC72 model (Fig. 7h) shows a concentration of landslide points in the higher566

rainfall range (175–1000 mm). While it predicts landslides accurately under heavy rainfall567

conditions, the model may overestimate risks in some regions and neglect potential landslides568

associated with lower rainfall thresholds.569

Based on the above analysis, the RC24 model is the optimal choice, which aligns with570

the findings in Section 5.1. Its effectiveness is evident as it demonstrates superior stability and571

accuracy in both the 24-hour and 7-day timescales.The RC24 model's balanced threshold572

range allows it to accurately assess landslide risks across varying rainfall intensities. This573

makes it the most reliable choice for practical landslide hazard warning applications.574

5.3 Landslide hazard warning system for Zixing City575

Based on the optimal LSP results (Fig. 6b) and the validated RC24 rainfall threshold576

model, a spatially explicit landslide hazard warning system was established for Zixing City.577

The integration of spatial probability (LSP) and temporal probability (rainfall thresholds)578

followed the matrix classification outlined in Table 2.579

580
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581

Figure 8 Landslide warning zones generated by overlaying spatial and temporal probability maps: (a) optimal582
spatial probability, (b) 24-hour RC24-based rainfall threshold, (c) 7-day RC24-based rainfall threshold, (d)583

overlay of (a) and (b), and (e) overlay of (a) and (c).584

Five susceptibility levels in the LSP map (Fig. 6b) were replaced with five spatial585

probabilities (S1–S5) (Fig. 8a), respectively. Simultaneously, the spatially interpolated 24-586

hour rainfall thresholds (H24) (Fig. 8b) and 7-day effective rainfall thresholds (D7) (Fig. 8c)587

derived from the RC24 model were classified into five temporal probability levels (T1–T5)588

using the natural breaks method. Spatial overlay analysis was performed to combine the589

susceptibility levels (S1–S5) with the rainfall threshold levels (T1–T5), generating two hazard590

warning zone maps: H24-based (Fig. 8d) and D7-based (Fig. 8e).591

Quantitative assessment of both warning systems reveals distinct performance592

characteristics. The 24-hour threshold system (Fig. 8d) demonstrates superior predictive593

efficiency, with 71.4% of historical landslides occurring within high to very high warning594

zones (Levels 3–5) while covering only 34.2% of the total area, resulting in an efficiency ratio595
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of 2.09 and a risk density of 49.0 landslides per 1000 high-risk grid cells. The spatial596

distribution shows concentrated high-risk areas primarily in the central region, characterized597

by steep slopes (>21.80°), weathered granite lithology, and road proximity (0–800 m). This598

focused distribution indicates effective identification of areas most sensitive to short-term599

intense rainfall triggers.600

The 7-day threshold system (Fig. 8e) exhibits broader spatial coverage, with high-risk601

zones encompassing 42.7% of the study area and capturing 68.7% of historical landslides,602

yielding a lower efficiency ratio of 1.61 and risk density of 37.8 landslides per 1000 grid cells.603

This system effectively identifies extended vulnerable areas in northern and eastern regions,604

reflecting cumulative rainfall effects on slope stability. The expanded coverage captures zones605

where prolonged antecedent moisture interacts with moderate-to-high susceptibility606

conditions.607

Statistical validation confirms the complementary nature of both systems. The 24-hour608

system achieves higher spatial efficiency (efficiency ratio 2.09 vs. 1.61) and landslide609

concentration (risk density 49.0 vs. 37.8), making it optimal for immediate typhoon response610

and targeted emergency resource allocation. Conversely, the 7-day system provides611

comprehensive coverage for prolonged rainfall scenarios, essential for early warning during612

extended typhoon events despite its broader spatial distribution and lower concentration613

efficiency. The combined application of both systems enables dynamic hazard assessment,614

addressing both rapid-onset failures during typhoon landfall and delayed failures following615

sustained precipitation.616

6 Discussion617

6.1 Model selection strategy and optimization of LSP618

619
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Our comparative analysis of SVM and LightGBM across different input methods (IV,620

CF, FR) and buffer distances shows distinct performance patterns crucial for model selection621

in typhoon-induced LSP. SVM exhibited marked sensitivity to configuration parameters, with622

F1-scores varying from 0.681 to 0.859 depending on buffer distance and input method.623

LightGBM maintained more stable performance (F1-scores: 0.838–0.850) across all624

configurations. These differences reflect fundamental algorithmic characteristics: SVM's625

kernel-based approach effectively captures localized patterns when properly tuned, while626

LightGBM's ensemble structure delivers consistent results across varying data conditions.627

SVM's superior performance at 0.5–2.0 km buffer distances with FR weighting builds on628

findings by Kalantar et al. (2018) and Bogaard and Greco (2018). This buffer range appears629

effective for capturing the spatial patterns of typhoon-induced failures in our study area. FR630

weighting's effectiveness supports Reichenbach et al. (2018) and Yan et al. (2019), who found631

that frequency-based methods excel at quantifying terrain-landslide relationships. In typhoon632

conditions, FR effectively weights critical factors including road proximity and weathered633

granite lithology.634

These performance patterns justify our dual-model approach. SVM, though requiring635

careful calibration, enables precise delineation of high-risk zones essential for emergency636

response, with SVM-FR at 0.5 km achieving peak accuracy (F1=0.859). LightGBM's637

robustness suits operational contexts requiring consistent predictions under variable638

conditions. Our results suggest that effective model selection depends on matching639

algorithmic strengths to specific application requirements rather than identifying a universally640

superior algorithm.641

6.2 Rainfall threshold modeling and typhoon-specific mechanisms642

643
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The H24-D7 model achieved 71.8% accuracy, outperforming alternative temporal644

windows (Table 3). The optimal RC24 value of 0.440 (with inter-fold variation of 0.414–645

0.472) indicates that landslides typically occur when 24-hour rainfall constitutes646

approximately 44% of the preceding 7-day accumulation. This pattern is consistent with the647

multi-temporal triggering framework proposed by Nolasco-Javier and Kumar (2018) for648

typhoon contexts, where both antecedent saturation and short-term intensity contribute to649

slope failure. However, the specific hydrological mechanisms underlying this ratio require650

verification through in-situ soil moisture monitoring. The H1-D7 and H12-D7 models showed651

lower and more variable accuracy (44.6% and 48.5% respectively), suggesting that shorter652

accumulation periods may inadequately represent the cumulative soil saturation process653

relevant to this region's geological conditions (Kirschbaum and Stanley, 2018).654

Spatial patterns in rainfall thresholds reveal systematic variations across the study area.655

Southeastern regions exhibit elevated H24 thresholds exceeding 250 mm (Fig. 7c), while656

northern areas show reduced thresholds of 100–150 mm. These spatial variations align with657

findings by Lee et al. (2018) and Cho et al. (2022) regarding topographic controls on658

typhoon-induced landslides, though the specific mechanisms require further investigation659

with detailed meteorological analysis. The spatially distributed thresholds derived through660

Kriging interpolation (Table 1) provide location-specific values that improve upon uniform661

regional thresholds typically employed in operational systems (Segoni et al., 2018b).662

The consistent performance across the five validation folds (68.8–74.6% accuracy)663

demonstrates the model's stability when applied to different spatial subsets of the landslide664

inventory. This suggests the H24-D7 relationship captures generalizable rainfall-slope665

response patterns rather than site-specific anomalies, though validation with independent666

typhoon events would further confirm model robustness.667

6.3 Integration of susceptibility and rainfall thresholds for landslide warning668



33

The integrated warning system combines static susceptibility surfaces with spatially669

continuous rainfall thresholds following the matrix framework in Table 2. The H24-based670

system (Fig. 8d) captured 71.4% of historical landslides within high to very high warning671

zones (Levels 3–5) covering 34.2% of the study area, yielding an efficiency ratio of 2.09. The672

D7-based system (Fig. 8e) identified 68.7% of landslides across 42.7% of the area (efficiency673

ratio: 1.61). These focused distributions contrast with the broader spatial coverage typically674

required by uniform regional thresholds (Guzzetti et al., 2020), though direct comparative675

validation would be needed to quantify the performance gain.676

The dual-threshold configuration provides complementary perspectives suited to677

different phases of typhoon evolution, with D7 reflecting cumulative moisture conditions and678

H24 capturing immediate triggering rainfall. This combination addresses the compound679

rainfall mechanisms documented in typhoon-affected regions (Gariano et al., 2015; Nolasco-680

Javier and Kumar, 2018), though the optimal application strategy for operational warning681

would require integration with real-time meteorological forecasting systems.682

Spatially continuous thresholds (Fig. 8b, c) address terrain-induced variability more683

effectively than point-based approaches. The Kriging interpolation method provides threshold684

estimates across the entire study area, accounting for spatial autocorrelation in rainfall685

patterns (Table 1). However, threshold accuracy depends on rain gauge density and may686

decline in areas distant from monitoring stations, as indicated by the interpolation validation687

metrics (R: 0.76–0.87, NSE: 0.71–0.82). The framework advances beyond existing point-688

based threshold systems (Segoni et al., 2018b; Guzzetti et al., 2020) by providing spatially689

explicit hazard assessment, though regional adaptation of threshold parameters would be690

necessary for application in different geological settings.691

The modular design allows the framework to be adapted for operational landslide early692

warning, though practical implementation would require integration with meteorological693
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monitoring infrastructure, standardized protocols for warning dissemination, and post-event694

validation procedures to maintain system reliability. These operational considerations extend695

beyond the methodological scope of this study but represent important directions for future696

development of typhoon-specific landslide warning systems.697

6.4 Limitations and future research directions698

Despite promising advancements, this study has limitations owing to the complexity of699

typhoon-induced landslides. First, the model’s validation relies solely on landslides from700

Typhoon Gaemi. While this single event provided a comprehensive dataset, validating against701

multiple, varied typhoons is crucial for model robustness. Typhoons differ significantly in702

intensity, rainfall patterns, forward speed, and seasonality, all of which can influence703

threshold parameters. For instance, a slow-moving typhoon with higher cumulative rainfall704

and lower peak intensity could alter the optimal H24-D7 ratios. Future research should705

incorporate landslide inventories from typhoons with contrasting characteristics to assess706

threshold transferability and develop adaptive parameterization. The framework’s modular707

design readily facilitates this by allowing recalibration of the RC24 coefficient for different708

typhoon types.709

Second, the current study primarily addresses rainfall-induced landslides, overlooking710

other potential contributing factors. Future work should explore integrating multiple711

triggering mechanisms, including earthquakes, human-induced slope modifications, and712

typhoon rainfall, for a more comprehensive hazard assessment.713

Third, the study doesn't explicitly address the potential impacts of climate change on714

typhoon rainfall and landslide occurrence. As climate change alters typhoon frequency,715

intensity, and tracks, future studies should incorporate climate projections specific to716

typhoon-prone regions. This will enable the development of forward-looking landslide717

warning systems that can adapt to the evolving threats posed by typhoon-specific rainfall.718
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Fourth, while this study demonstrates the effectiveness of ML approaches, further719

refinement is possible. Future research should explore advanced deep learning techniques and720

ensemble methods to better capture the complex, non-linear relationships between typhoon-721

related variables (e.g., rainfall intensity, duration, antecedent moisture) and slope stability.722

These advanced methods may offer improved predictive accuracy, more robust uncertainty723

quantification, and ultimately, more reliable hazard warnings.724

Finally, climate projections for Southeast China show a 15–25% increase in peak725

typhoon rainfall by 2080 (RCP8.5), which could alter the H24–D7 landslide thresholds from726

this study. Higher atmospheric moisture may lower D7 thresholds, while greater rainfall727

intensity could require new H24 parameters. Shifting typhoon tracks and seasonality might728

also change which areas are vulnerable. Future work must use downscaled climate data to729

create non-stationary thresholds, ensuring the long-term reliability of warning systems in the730

region.731

7 Conclusions732

This study establishes a novel integrated framework combining optimized LSP with733

typhoon-specific rainfall threshold modeling for comprehensive hazard assessment in734

mountainous regions. Through systematic analysis of 705 landslides triggered by Typhoon735

Gaemi in Zixing City, several key insights emerge:736

(1) Buffer distance optimization proves critical for typhoon-induced landslide modeling,737

with SVM-FR combinations at 0.5–2.0 km distances achieving superior performance (F1-738

score: 0.859) compared to conventional approaches. This spatial scale effectively captures739

typhoon-induced moisture infiltration patterns that differ fundamentally from other triggering740

mechanisms.741

(2) The H24-D7 threshold model demonstrates exceptional stability (71.8% accuracy742

across 5-fold validation), successfully characterizing the dual-phase failure mechanism unique743



36

to typhoons: prolonged antecedent saturation coupled with intense precipitation bursts during744

typhoon passage.745

(3) Spatially distributed rainfall thresholds reveal significant heterogeneity, reflecting746

complex interactions between typhoon structure and local topography that contradict uniform747

regional threshold assumptions in existing operational systems.748

(4) The integrated warning system achieves operational efficiency through dual-749

threshold configuration: H24 thresholds provide immediate response capability during750

typhoon landfall, while D7 thresholds enable early detection of vulnerable areas approaching751

saturation conditions.752

(5) This framework addresses three critical gaps in current landslide prediction:753

systematic buffer optimization for imbalanced datasets, effective integration of variable754

weighting with machine learning algorithms, and development of typhoon-specific spatially755

explicit thresholds.756
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