

1 **From typhoon rainfall to slope failure: optimizing susceptibility**
2 **models and dynamic thresholds for landslide warnings in Zixing**
3 **City, China**

4 **Weifeng Xiao¹, Guangchong Yao¹, Zhenghui Xiao¹, Ge Liu^{*2}, Luguang Luo¹, Yunjiang**
5 **Cao¹, Wei Yin³**

6

7 ¹School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and
8 Technology, Xiangtan 411201, China

9 ²Northeast Institute of Geography and Agroecology, CAS, Changchun 130102, China

10 ³Hunan Institute of Geological Disaster Investigation and Monitoring, Changsha 410004, China

11

12 Corresponding author.

13 E-mail address: liuge@iga.ac.cn (Ge Liu)

14 **Abstract:** Typhoon-specific rainfall-induced landslides pose critical hazards in mountainous
15 regions, yet existing warning systems inadequately capture the distinct rainfall dynamics of
16 these extreme events. To address this limitation, we propose an integrated framework
17 combining optimized susceptibility predictions with dynamic rainfall thresholds tailored to
18 typhoon patterns. The approach enhances machine learning accuracy through buffer-based
19 negative sampling and variable weighting. It also introduces a spatiotemporal rainfall analysis
20 to distinguish between short-term intense downpours and cumulative soil saturation. Tested in
21 Zixing City, Hunan Province, China, where over 700 landslides were triggered by Typhoon
22 Gaemi, the framework proved effective. The support vector machine (SVM) model achieved
23 the best performance using frequency ratio (FR) inputs with a 0.5 km buffer (F1-score: 0.859,
24 AUC: 0.914), correctly classifying 86.4% of landslides as high or very high susceptibility.
25 The rainfall analysis identified 24-hour intensity combined with 7-day antecedent rainfall as
26 the optimal trigger, effectively capturing both immediate and cumulative moisture effects.
27 Spatially, rhyolite and granite slopes and areas near roads emerged as hotspots for failure

28 (distance < 800 m, FR = 1.499 for roads; FR = 1.546 for rhyolite). The integrated warning
29 system shows high spatial efficiency, with high-risk areas covering only 34.2% of the study
30 region yet capturing 71.4% of historical landslides. Additionally, the framework generated
31 high-risk zone maps that align strongly with historical events. This work highlights the unique
32 nature of typhoon-driven slope instability and provides a transferable framework for disaster
33 risk reduction in cyclone-prone regions.

34 **Keywords:** Typhoon-induced landslide; Slope failure; Hazard warning system; Dynamic
35 thresholds; Landslide susceptibility mapping

36 1 Introduction

37 Landslides pose significant threats to mountainous regions globally (Froude and Petley,
38 2018), especially in areas where steep terrain, complex geology (Thiene et al., 2017), and
39 extreme weather events like typhoons intersect. In Southeast China, typhoon-induced
40 landslides have become a growing concern due to the region's rapid urbanization and the
41 increasing variability in climate patterns (Gariano and Guzzetti, 2016; Fan et al., 2018). The
42 Nanling Mountains, in southern China, are particularly vulnerable to landslides due to a
43 combination of extreme topographic relief and complex geological conditions during the
44 typhoon season (Zou et al., 2023).

45 Typhoons typically bring prolonged antecedent rainfall, followed by intense, short bursts
46 of precipitation (Li et al., 2019). These conditions create unique hydrological environments
47 that exceed the complexity of typical rainfall-triggered landslides (Chung and Li, 2022).
48 These events trigger slope failures through cumulative soil saturation and sudden hydrological
49 stress, challenging traditional landslide prediction methods (Yang et al., 2017). Despite
50 advances in landslide susceptibility prediction (LSP) and rainfall threshold modeling, current
51 approaches remain inadequate. Three critical limitations persist: severe data imbalance effects,
52 suboptimal integration of variable selection with machine learning algorithms, and lack of

53 spatially-explicit rainfall thresholds for typhoon-specific conditions (Segoni et al., 2018a;
54 Regmi et al., 2024).

55 Most existing studies employ ad-hoc buffer distances without systematic optimization,
56 leading to inconsistent model performance across different geological settings (Lombardo and
57 Mai, 2018). Traditional methods attempt to mitigate this imbalance by randomly sampling
58 non-landslide points across the study area (Steger et al., 2016; Dou et al., 2023). However,
59 random selection can introduce spatial bias, as non-landslide points might include areas that
60 are unstable but have not yet been identified as landslide-prone (Kalantar et al., 2018).

61 To address this limitation, more recent approaches have employed buffer-based negative
62 sampling, which systematically excludes non-landslide points near known landslide sites.
63 This method assumes that adjacent areas share similar environmental conditions (e.g., slope,
64 lithology) and therefore should not be classified as “stable” (Achu et al., 2022). Several
65 studies have tested varying buffer distances, ranging from tens to thousands of meters, to
66 determine the optimal distance for different regions. However, systematic evaluation of buffer
67 distance optimization coupled with variable weighting methods remains largely unexplored.

68 LSP is primarily focused on identifying areas prone to slope failure, based on static
69 environmental factors such as topography, lithology, land cover, and hydrology (Zêzere et al.,
70 2017; Guo et al., 2024). Traditional approaches to LSP often rely on deterministic and
71 statistical methods, including information value (IV), certainty factor (CF), frequency ratio
72 (FR), logistic regression (LR), and weight of evidence (WOE). These methods quantify the
73 relationship between historical landslide occurrences and predisposing factors using linear or
74 semi-linear approaches (Ciurleo et al., 2017; Reichenbach et al., 2018). However, these
75 methods oversimplify the complex, nonlinear interactions that govern slope stability
76 (Merghadi et al., 2020).

77 In contrast, machine learning (ML) algorithms, such as support vector machine (SVM)
78 and light gradient boosting machine (LightGBM), have emerged as powerful alternatives.
79 SVM excels in high-dimensional classification tasks and effectively identifies optimal
80 hyperplanes separating landslide-prone from stable areas (San, 2014; Huang and Zhao, 2018).
81 LightGBM offers superior scalability and computational efficiency for processing large
82 geospatial datasets (Sun et al., 2023). Both SVM and LightGBM capture intricate
83 relationships among variables without restrictive assumptions, making them superior to
84 traditional methods in terms of predictive accuracy (Yang et al., 2023). However, frameworks
85 that systematically integrate variable weighting methods with advanced ML algorithms for
86 LSP optimization are lacking.

87 For temporal prediction, existing rainfall threshold approaches predominantly use
88 generalized regional thresholds that inadequately capture local geological heterogeneity and
89 typhoon-specific rainfall patterns (Guzzetti, 2021; Banfi and De Michele, 2024). These
90 thresholds are typically defined based on cumulative or intensity-duration (I-D) rainfall values
91 (Piciullo et al., 2017; Segoni et al., 2018a). In typhoon-prone regions, dynamic rainfall
92 thresholds are crucial due to the unique combination of long-duration antecedent rainfall and
93 sudden high-intensity bursts of precipitation (Guzzetti et al., 2020). Traditional empirical
94 methods fail to provide spatially continuous threshold surfaces that account for local
95 environmental variability (Piciullo et al., 2018).

96 Recent advances have integrated multi-temporal rainfall parameters with advanced
97 statistical techniques to optimize rainfall thresholds (Segoni et al., 2015; Huang et al., 2022),
98 accounting for diverse triggering mechanisms. Additionally, spatial interpolation methods,
99 such as Kriging, have been applied to generate continuous rainfall threshold surfaces that
100 allow for local variations in geological and environmental conditions (Kenanoglu et al., 2019;
101 Segoni et al., 2018b). This approach, when combined with high-resolution susceptibility maps,

102 contributes to the development of integrated hazard warning systems that can dynamically
103 adjust to typhoon-specific rainfall-induced scenarios (Piciullo et al., 2018; Mirus et al., 2018).

104 This study examines Zixing City, a mountainous region in southeastern Hunan Province,
105 frequently affected by typhoon-induced extreme rainfall. Its steep slopes, fractured geology,
106 and high sensitivity to rapid pore-pressure increase render it particularly vulnerable (Ma et al.,
107 2025). The large number of landslides (>700) triggered by Typhoon Gaemi in July 2024
108 provides a valuable dataset for model calibration and validation.

109 Here we developed an integrated framework that combines (i) optimized buffer distances
110 for negative sampling, (ii) bivariate weighting methods (IV, CF, FR) with advanced machine
111 learning classifiers (SVM, LightGBM), and (iii) spatially continuous, typhoon-specific
112 rainfall thresholds derived through Kriging interpolation. The specific objectives are to (1)
113 determine optimal buffer distances that minimize spatial bias in imbalanced datasets, (2)
114 evaluate the performance gain from coupling bivariate weights with machine learning
115 algorithms, (3) establish dynamic rainfall thresholds suited to typhoon rainfall patterns, (4)
116 generate continuous threshold surfaces via Kriging, and (5) integrate high-resolution
117 susceptibility maps with these thresholds to support an operational early warning system. This
118 approach improves landslide prediction in typhoon-prone mountainous regions and provides a
119 transferable methodology for similar environments.

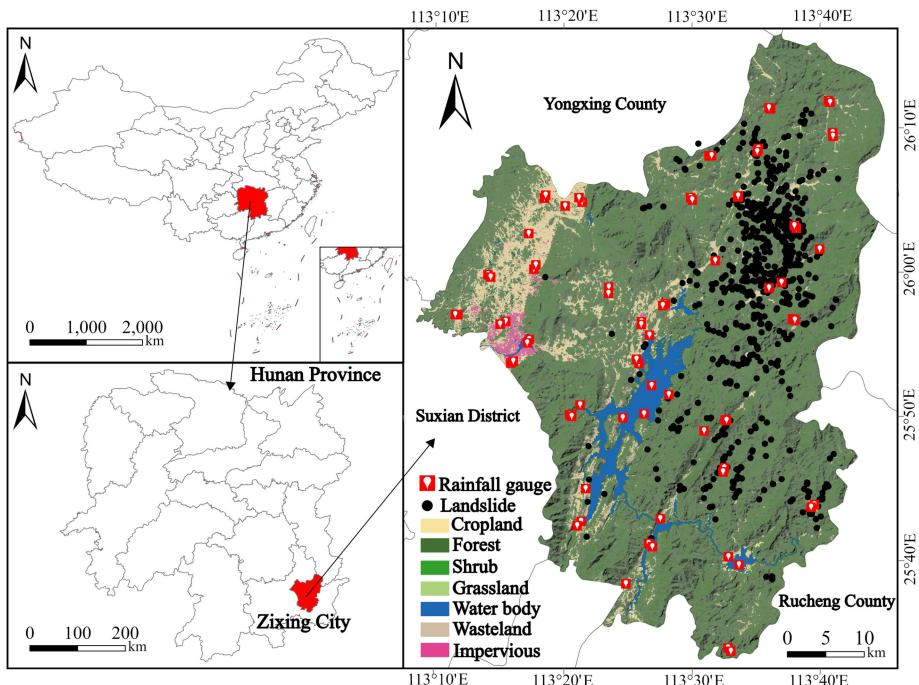
120 **2 Study area and data sources**

121 **2.1 Study area**

122 Zixing City ($25^{\circ}34' - 26^{\circ}18' \text{ N}$, $113^{\circ}08' - 113^{\circ}44' \text{ E}$), covering $2,747 \text{ km}^2$ in southeastern
123 Hunan Province, China (Fig. 1), is located within the Nanling Mountains geological province.
124 Situated approximately 400 km inland from the South China Sea, Zixing lies at the
125 intersection of the Nanling Mountains and low hills, forming a watershed divide between the
126 Yangtze and Pearl River basins. The region is characterized by steep topography, with

127 elevations ranging from 125 to 1,691 meters and slopes exceeding 30° across 78% of the area.
128 This mountainous terrain, combined with fractured geology and active NE-SW trending faults
129 such as the Chaling-Yongxing Fault Zone, creates a permeable fracture network that
130 facilitates groundwater drainage.

131 The climate of Zixing is subtropical monsoon, with annual precipitation averaging 1,550
132 mm, 70% of which occurs from April to September. Typhoons significantly contribute to
133 rainfall, inducing rapid pore-pressure increases in shallow aquifers (3–8 m depth). These
134 climatic and geological conditions make Zixing particularly vulnerable to landslides,
135 providing a valuable context for this study. The extensive landslide dataset triggered by
136 Typhoon Gaemi in July 2024 (>700 events) serves as a critical resource for model calibration
137 and validation.



138

139 **Figure 1** Geographical distribution of the study area, landslides and rainfall gauges.

140 **2.2 Data collection and preprocessing**

141 **2.2.1 Compilation of landslide catalogue**

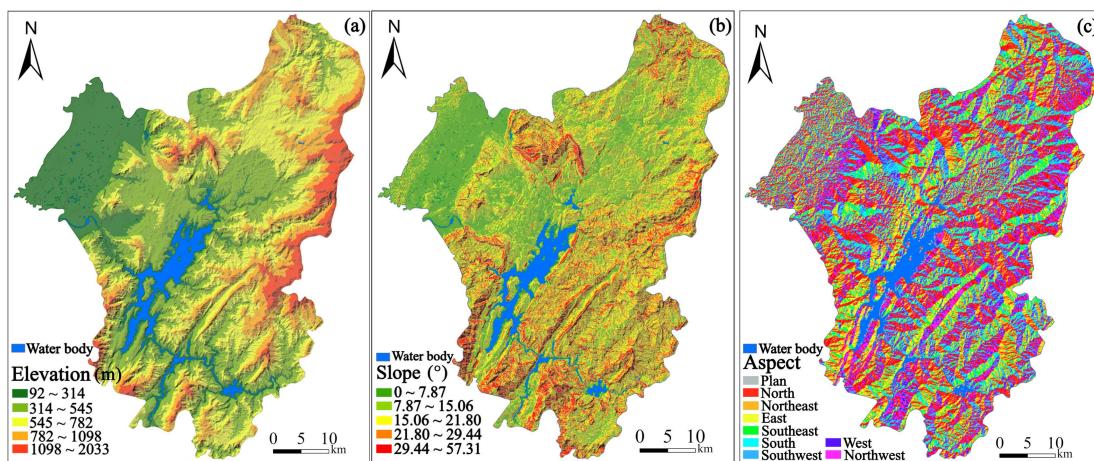
142 A comprehensive inventory of 705 landslide events triggered by Typhoon Gaemi on July
143 27, 2024, was compiled from the Hunan Center for Natural Resources Affairs. The landslide

144 locations were verified through field inspections and high-resolution satellite imagery to
145 ensure spatial accuracy and completeness of the dataset.

146 **2.2.2 Landslide conditioning factors and data sources**

147 Based on extensive literature reviews and the geoenvironmental characteristics of the
148 study area, twelve conditioning factors were selected for landslide susceptibility analysis:
149 elevation, slope gradient, slope orientation, curvature, topographic wetness index (TWI),
150 stream power index (SPI), normalized difference vegetation index (NDVI), distances to roads,
151 rivers, and faults, and lithology (Fig. 2).

152 Topographic factors (elevation, slope gradient, slope orientation, TWI, SPI, and
153 curvature) were extracted from a 30-meter digital elevation model (DEM) obtained from the
154 Geospatial Data Cloud (<https://www.gscloud.cn>). Environmental factors including NDVI and
155 proximity variables (distances to roads, rivers, and fault lines) were derived from 1:50,000-
156 scale cartographic maps and Landsat 8 OLI imagery from the same platform. Geological
157 composition and structural data were acquired from 1:100,000-scale geological maps.



158

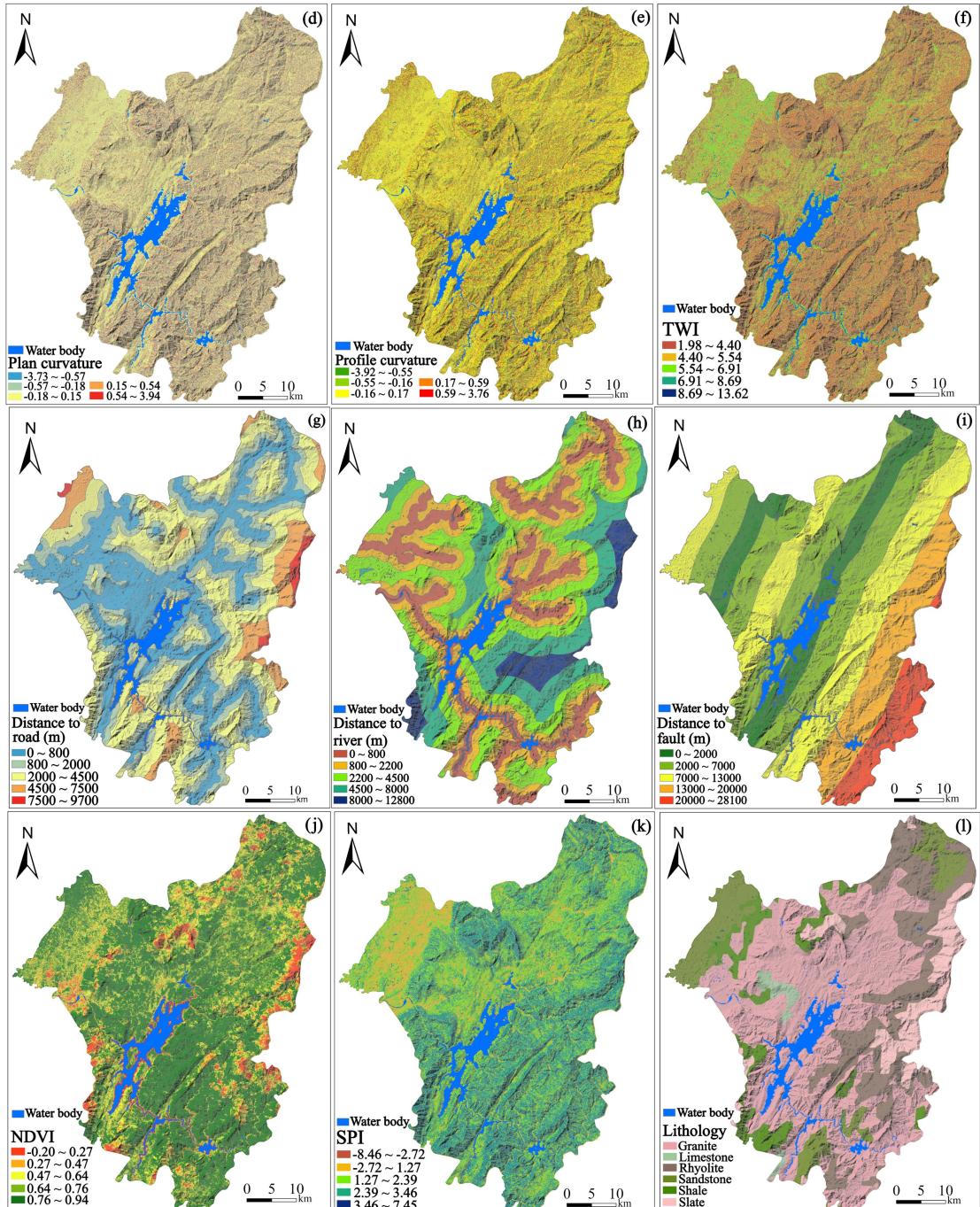


Figure 2 Landslide-related conditioning factors.

2.2.3 Data preprocessing and spatial standardization

We transformed all conditioning factors into continuous statistical measures using IV, CF, and FR methods and then resampled them to a uniform 60-meter resolution. This resolution was selected to balance computational efficiency with scale appropriateness for regional landslide analysis while maintaining compatibility with the available geological map scale (1:100,000).

169 The study area was divided into 60×60 meter grid cells, with landslides smaller than the
170 grid resolution aggregated to the nearest cell centroid. Multiple landslides within a single cell
171 were treated as one event to maintain spatial independence required for machine learning
172 modeling. This preprocessing approach ensures statistical validity by minimizing spatial
173 autocorrelation effects while providing adequate representation of landslide distribution
174 patterns across the study area.

175 **2.2.4 Rainfall data collection and spatial distribution**

176 Rainfall data for the study were obtained from 12 automatic rain gauge stations
177 strategically distributed across Zixing City and its surrounding areas (Fig. 1). These stations,
178 operated by the Hunan Meteorological Administration, provided hourly precipitation records
179 during Typhoon Gaemi (July 20–30, 2024) and the preceding antecedent period. The spatial
180 distribution of gauge stations ensured adequate coverage of the study area's topographic and
181 climatic gradients.

182 To assign rainfall parameters (H1, H12, H24, H72, and D7) to each of the 705 landslide
183 points, we employed the Kriging interpolation to generate spatially continuous rainfall
184 surfaces from discrete gauge measurements. This geostatistical method accounts for spatial
185 autocorrelation in rainfall patterns and provides optimal unbiased estimates by weighting
186 nearby observations based on their spatial proximity and correlation structure.

187 Spherical variogram models were fitted to the rainfall data through iterative optimization,
188 with model selection based on minimum Akaike Information Criterion (AIC) values. The
189 interpolation accuracy was rigorously evaluated through leave-one-out cross-validation,
190 where each gauge station was sequentially removed and its rainfall values predicted using the
191 remaining 11 stations. Four statistical metrics were used to assess performance: Root Mean
192 Square Error (RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and Nash-
193 Sutcliffe Efficiency (NSE).

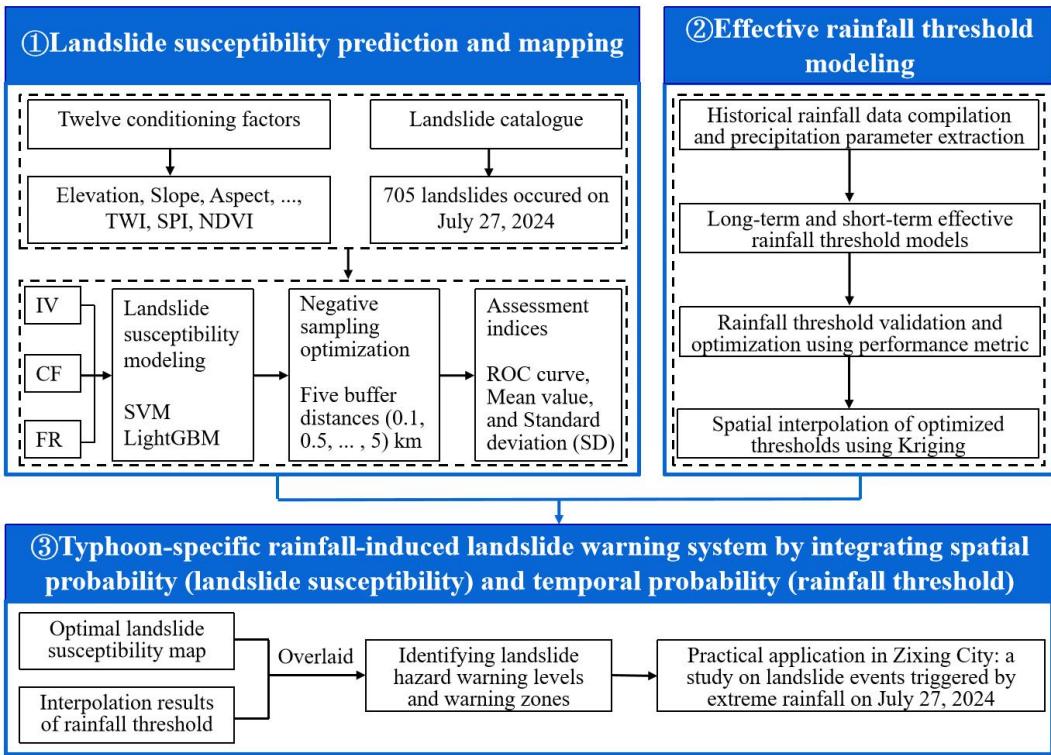
Table 1 Kriging interpolation accuracy assessment for rainfall parameters.

Parameter	RMSE (mm)	MAE	R	NSE
H1	4.2	3.1	0.76	0.71
H12	11.7	8.9	0.83	0.78
H24	16.3	12.6	0.87	0.82
H72	24.8	18.4	0.81	0.77
D7	29.6	22.7	0.78	0.73

195 The validation results demonstrated acceptable interpolation accuracy across all rainfall
 196 parameters, with correlation coefficients ranging from 0.76 to 0.87 and Nash-Sutcliffe
 197 Efficiency values between 0.71–0.82. Despite some limitations inherent to the sparse gauge
 198 network in mountainous terrain, the interpolation performance was deemed sufficient for
 199 regional landslide susceptibility analysis, ensuring reasonable spatial representation of
 200 precipitation patterns across the study area.

201 3 Methodologies

202 This study proposes an integrated framework for optimizing LSP and typhoon-specific
 203 rainfall thresholds within hazard warning systems (Fig. 3). The framework includes the
 204 following key components: (1) landslide susceptibility prediction and mapping, utilizing
 205 twelve conditioning factors prioritizing typhoon-induced hydrological responses (e.g., TWI,
 206 SPI) and 705 landslide records from July 27, 2024, optimized with five buffer distances and
 207 evaluated using ROC curves; (2) dynamic rainfall threshold modeling based on typhoon
 208 rainfall parameterization, validated and spatially interpolated using Kriging; and (3) the
 209 integration of spatial and temporal probabilities to develop a typhoon-specific rainfall-induced
 210 landslide warning system, demonstrated through a case study in Zixing City.



211

212 **Figure 3** Technical framework for developing a typhoon-specific rainfall-induced landslide warning system.

213 **3.1 Landslide susceptibility prediction and mapping**

214 **3.1.1 Machine learning models: selection rationale and implementation**

215 We selected SVM and LightGBM to address three key challenges in typhoon-specific
 216 rainfall-induced landslide prediction: (1) severe class imbalance (landslides <0.5% of study
 217 area), (2) complex non-linear interactions between rainfall and terrain factors, and (3)
 218 computational efficiency for operational early warning.

219 SVM excels in binary classification with limited samples through structural risk
 220 minimization (Kalantar et al., 2018; Wang et al., 2020), making it suitable for typhoon-
 221 triggered landslide mapping. Its margin-maximization approach handles the class imbalance
 222 between stable and landslide areas, while the RBF kernel captures localized failure patterns
 223 under concentrated typhoon rainfall. The regularization parameter C prevents overfitting to
 224 specific typhoon events, ensuring model transferability. The SVM optimization problem is
 225 defined as:

226
$$\min_{w,b,\xi} \frac{1}{2} w^T w + C \sum_{i=1}^n \xi_i \quad (1)$$

227 subject to the constraint:

228
$$y_i (w^T \phi(x_i) + b) \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad i = 1, \dots, n \quad (2)$$

229 where w is the normal vector to the hyperplane, b is the bias term, ξ_i are slack
 230 variables, $\phi(x_i)$ maps input vectors to a higher-dimensional space, and y_i denotes the class
 231 label (-1 or 1) for each sample x_i . We optimized the RBF kernel parameters using grid-search
 232 with 5-fold cross-validation, where $C \in [0.1, 100]$ and $\gamma \in [0.001, 1]$. Across all
 233 configurations (three input methods \times five buffer distances), optimal values varied as follows:
 234 $C = 5\text{--}15$ and $\gamma = 0.10\text{--}0.25$, with median values of $C = 10$ and $\gamma = 0.15$.

235 LightGBM complements SVM through gradient boosting with sequential error
 236 correction, offering distinct advantages for regional-scale landslide mapping. Its histogram-
 237 based algorithm enables efficient processing of large spatial datasets (Sun et al., 2023; Sahin,
 238 2020). Additionally, LightGBM automatically captures complex feature interactions. The
 239 minimized objective function is expressed as:

240
$$L = \sum_{i=1}^N (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^M \|\theta_j\|^2 \quad (3)$$

241 where y_i is the true label, \hat{y}_i is the predictive value, λ is a regularization parameter, and
 242 θ_j represents the parameters of the model. We optimized LightGBM hyperparameters through
 243 Bayesian optimization. The optimal hyperparameters ranged as: `num_leaves = 25` -- 35 ,
 244 `learning_rate = 0.03` -- 0.08 , and `max_depth = 6` -- 10 . Early stopping with a 50-round patience
 245 window resulted in model convergence at 120 -- 220 trees across different scenarios.

246 **3.1.2 Input variable weighting methods**

247 The IV method, grounded in information theory, assesses how different factors
 248 contribute to landslide susceptibility within a study area (Niu et al., 2024). Factors such as

249 distance to roads and lithology were weighted higher in Zixing City due to their interaction
 250 with typhoon-induced soil saturation. The IV for each evaluation factor is determined using
 251 the formula below:

$$252 \quad IV(F_i, K) = \ln \frac{N_i / N}{S_i / S} \quad (4)$$

253 where $IV(F_i, K)$ is the information value of evaluation factor F_i in relation to landslide event K ,
 254 N_i refers to the number of landslides, N is the total number of landslides, S_i represents the area
 255 covered by factor F_i , and S is the total area of the study area.

256 The CF method is a widely utilized probabilistic technique for assessing the likelihood of
 257 landslide occurrences (Zhao et al., 2021). It quantifies the prior probability of a landslide
 258 initiation under specific conditions of influential factors, utilizing spatial data from known
 259 landslide locations. The expression of CF is as follows:

$$260 \quad CF = \begin{cases} \frac{PP_a - PP_s}{PP_s(1-PP_a)}, & PP_a < PP_s \\ \frac{PP_a - PP_s}{PP_a(1-PP_s)}, & PP_a \geq PP_s \end{cases} \quad (5)$$

261 where CF is the certainty factor indicating the degree of association between an influential
 262 factor and potential landslide occurrence. It is derived from two area-proportional measures:
 263 PP_a , the proportion of landslide points within a specific factor class (number of landslide
 264 points in the class / total area of the class); and PP_s , the proportion of landslide points across
 265 the entire study region (total number of landslide points / total area of the region).

266 The FR is a prevalent method in statistical analysis that assesses the relative impact of
 267 various factors on the incidence of landslides (Panchal et al., 2021). An elevated FR value
 268 denotes a more significant influence of a factor on the likelihood of landslides. The FR is
 269 determined by the following equation:

$$270 \quad FR = \frac{N_i / N}{S_i / S} \quad (6)$$

271 where FR is the frequency ratio, N_i represents the number of landslides within the area
272 corresponding to the conditioning factor, N is the total number of landslides, S_i is the area
273 covered by the conditioning factor and S is the total area of the study region.

274 **3.1.3 Buffer distance optimization and uncertainty assessment for LSP**

275 To generate negative (non-landslide) samples for LSP, areas within buffer distances of d
276 = 0.1, 0.5, 1.0, 2.0, and 5.0 km around landslide locations were excluded, with balanced
277 negative samples ($n = 705$) randomly selected from remaining stable areas for each distance.
278 The optimal buffer distance was determined by evaluating SVM and LightGBM model
279 performance using AUC, Precision, Recall, and F1-score metrics.

280 The selection of buffer distances (0.1–5.0 km) was based on Zixing's geomorphological
281 considerations and practices commonly reported in LSP. This range encompasses multiple
282 spatial scales: slope-scale processes (0.1–0.5 km), catchment-scale features (1.0–2.0 km), and
283 regional-scale geological units (5.0 km). The evaluation ensures optimal spatial representation
284 without a priori assumptions about scale dependencies (Chang et al., 2023).

285 Prediction uncertainty was assessed using the mean and standard deviation (SD) of
286 predicted landslide susceptibility values. Lower mean and SD values indicate reduced
287 prediction uncertainty and more concentrated susceptibility patterns, suggesting higher model
288 confidence in LSP (Huang et al., 2022), thereby complementing the buffer distance
289 optimization process.

290 **3.2 Effective rainfall threshold modeling**

291 **3.2.1 Rainfall parameterization and threshold calculation**

292 Typhoon-induced landslides are generally influenced by a combination of antecedent
293 moisture conditions and immediate precipitation, rather than by isolated rainfall events
294 (Mondini et al., 2023; Tufano et al., 2021). To account for the cumulative impact of multi-day

295 rainfall while incorporating hydrological processes such as evapotranspiration and drainage,
296 we adopted the concept of effective rainfall (P_e), calculated as:

297

$$P_e = \sum_{i=0}^n k^i P_i \quad (7)$$

298 where P_i represents the daily rainfall on the i -th day preceding landslide occurrence, n denotes
299 the number of antecedent days considered, and k is the effective rainfall decay coefficient
300 (Segoni et al., 2018a). For hourly rainfall parameterization, P_i is derived as:

301

$$P_i = \sum_{j=1}^{24} R_{ij} \quad (8)$$

302 where R_{ij} is the hourly rainfall at the j -th hour of the i -th day.

303 3.2.2 Long-term and short-term rainfall parameters

304 Rainfall-triggered landslides are generally triggered by two dominant mechanisms:
305 prolonged low-intensity rainfall and short-duration high-intensity storms. Based on statistical
306 analysis of historical landslide events in Hunan Province (Xiao et al., 2025), a 7-day
307 antecedent period was identified as optimal for characterizing long-term rainfall impacts.
308 Consequently, the 7-day effective rainfall (D7) was selected as the long-term parameter.
309 Short-term rainfall metrics were defined as cumulative precipitation over 1 hour (H1), 12
310 hours (H12), 24 hours (H24), and 72 hours (H72) preceding landslide initiation. These
311 intervals capture distinct rainfall characteristics: H1 reflects extreme short-term intensity for
312 rapid slope failures, H12 and H24 represent sub-daily to daily precipitation critical for
313 intermediate responses, and H72 accounts for multi-day storm sequences.

314 3.2.3 Rainfall threshold model development

315 The threshold modeling framework comprises three sequential steps:

316 (1) Parameter calculation: For each landslide sample, short-term rainfall parameters (H1,
317 H12, H24, and H72) and the long-term rainfall parameter (D7) are calculated. The ratios of

318 short-term parameters to the long-term parameter are computed as: $R1=H1/D7$, $R12=H12/D7$,
319 $R24=H24/D7$, and $R72=H72/D7$.

320 (2) Threshold setting: Long-to-short-term ratio coefficients ($RC1$, $RC12$, $RC24$, and
321 $RC72$) are introduced as thresholds to determine the dominant rainfall pattern for each
322 landslide. These thresholds are used to classify landslides into short-term or long-term
323 Typhoon-induced categories.

324 (3) Coefficient optimization: A cyclic trial-and-error method is employed to determine
325 the optimal ratio coefficients ($RC1$, $RC12$, $RC24$, and $RC72$), maximizing the accuracy and
326 reliability of the model.

327 **3.2.4 Optimal ratio coefficient threshold determination**

328 The process of determining the optimal long-to-short-term ratio coefficient threshold is
329 demonstrated using $H12-D7$ as an example. The process for the remaining coefficients ($H1-D7$,
330 $H24-D7$, and $H72-D7$) follows a similar approach. A 5-fold cross-validation method is
331 applied, with the following procedure:

332 (1) Rainfall data extraction for landslide locations: For each of the 705 landslide points,
333 $R12$ and $D7$ values are extracted from these interpolated surfaces at the exact landslide
334 coordinates, ensuring that each landslide location receives rainfall values derived from the
335 spatially weighted contributions of all nearby gauge stations. $R12$ and $D7$ values for each
336 landslide are calculated using Equations (7) and (8).

337 (2) Data preparation: The dataset is divided into five equal parts for cross-validation,
338 with each part serving as a test set while the remaining four serve as the training set.

339 (3) Initial threshold setting: An initial threshold for $RC12$ is set based on the minimum
340 value in the training set.

341 (4) Threshold evaluation: For each fold, the $RC12$ threshold is compared with the $R12$
342 value of samples in the test set. If $RC12 < R12$, the prediction is considered a failure.

343 Prediction accuracy is calculated for each RC12 threshold, adjusting in 0.001 increments until
344 the highest prediction accuracy is achieved.

345 (5) Optimal RC12 threshold determination: The RC12 threshold with the highest
346 prediction accuracy is selected for each fold. The final RC12 threshold is determined by
347 averaging the optimal thresholds from all five folds.

348 **3.2.5 Spatial distribution of optimal threshold**

349 According to the optimal ratio coefficient threshold determined in section 3.2.4 and the
350 long-term and short-term rainfall parameters obtained through interpolation, the threshold
351 spatial distribution for the study area can be derived. Taking H12/D7 as an example, the
352 process is as follows:

353 First, by dividing the H12 values of each landslide point by the optimal ratio coefficient
354 RC12, the corresponding D7 thresholds for each landslide point can be calculated. These D7
355 thresholds serve as a basis for applying the Kriging interpolation method to obtain the spatial
356 distribution map of the D7 thresholds across the entire study area.

357 Next, by multiplying the D7 values of each landslide point by the ratio coefficient RC12,
358 the corresponding H12 thresholds for each landslide point can be determined. Subsequently,
359 utilizing these H12 thresholds, the Kriging interpolation method is applied once more to
360 generate the spatial distribution map of the H12 thresholds for the entire study area.

361 **3.3 Typhoon-specific rainfall-induced landslide warning system**

362 In order to effectively prevent typhoon-specific rainfall-induced landslide hazards,
363 constructing a comprehensive landslide warning system is crucial. This system integrates LSP
364 with critical rainfall thresholds, combining spatial probability and temporal probability to
365 predict the risk of landslide occurrence and the timing of potential events.

366 **3.3.1 Construction of the landslide warning system**

367 Using the natural breaks point method, the LSP is categorized into five levels of spatial
 368 probability: very low (S1), low (S2), moderate (S3), high (S4), and very high (S5). These
 369 levels represent varying degrees of susceptibility to landslides in different regions, forming
 370 the basis for assessing landslide risks when combined with rainfall data. Paralleling the LSP
 371 categorization, rainfall thresholds are also divided into five levels using the natural breaks
 372 point method, representing temporal probability: very low (T1), low (T2), moderate (T3),
 373 high (T4), and very high (T5). A lower rainfall threshold indicates a higher likelihood of
 374 typhoon-induced landslides, thus signaling a greater risk of landslide events.

375 **Table 2** Classification of landslide hazard warning zones by integrating landslide susceptibility levels
 376 (S1~S5) with rainfall threshold levels (T1~T5).

Landslide hazard warning zones	T1	T2	T3	T4	T5
S1 (very low)	No warning zone (2 nd level)	No warning zone (1 st level)			
S2 (low)	3 rd level warning zone	No warning zone (2 nd level)	No warning zone (2 nd level)	No warning zone (1 st level)	No warning zone (1 st level)
S3 (moderate)	4 th level warning zone	3 rd level warning zone	3 rd level warning zone	No warning zone (2 nd level)	No warning zone (1 st level)
S4 (high)	5 th level warning zone	4 th level warning zone	3 rd level warning zone	No warning zone (2 nd level)	No warning zone (1 st level)
S5 (very high)	5 th level warning zone	5 th level warning zone	4 th level warning zone	3 rd level warning zone	No warning zone (2 nd level)

377 The matrix-based integration of LSP results and rainfall thresholds, as presented in Table
 378 2 (Segoni et al., 2015), highlights the correlation between landslide susceptibility and rainfall
 379 intensity. As the levels of landslide hazard warnings escalate from the 1st level, indicating no
 380 warning, to the 5th level, which signifies the highest alert, the likelihood of landslide
 381 occurrences correspondingly increases. Areas categorized in higher hazard zones correspond
 382 to regions with a heightened risk of landslides. This hazard warning system provides a spatial
 383 framework for risk assessment and early warning, generating hazard zonation maps that can
 384 be integrated into operational landslide monitoring and warning protocols. This underscores
 385 the importance of implementing more effective geological disaster prevention strategies, as
 386 thoroughly discussed in the literature by Huang et al. (2022).

387 **4 Landslide susceptibility prediction using machine learning models**

388 **4.1 Statistical analysis of conditioning factors**

389 The statistical analysis reveals distinct patterns of landslide susceptibility across all
390 conditioning factors (Table S1 in the Supplement). Topographic factors demonstrate clear
391 elevation-dependent behavior, with maximum susceptibility occurring at intermediate
392 elevations (545–782 m, FR=1.637, IV=0.389), suggesting optimal conditions where
393 weathering processes and slope instability converge. Slope gradient exhibits peak
394 susceptibility in the moderate range (7.87–15.06°, FR=1.522, IV=0.343), indicating
395 insufficient driving forces at gentler slopes and potential debris removal at steeper gradients.
396 South-facing aspects show enhanced susceptibility (FR=1.299, IV=0.230), likely attributable
397 to intensified weathering from solar radiation and moisture cycles.

398 Morphological indices reveal significant correlations with landslide occurrence. Profile
399 curvature demonstrates highest susceptibility in convex areas (0.17–0.59, FR=1.480,
400 IV=0.480), where stress concentration promotes slope failure. TWI shows strong positive
401 correlation with wetness, peaking at high values (8.69–13.62, FR=1.799, IV=0.444),
402 confirming the critical role of water accumulation in slope destabilization. SPI indicates
403 maximum susceptibility in moderate stream power ranges (1.27–2.39, FR=1.298, IV=0.229),
404 reflecting optimal erosional conditions.

405 Proximity factors exhibit contrasting patterns based on infrastructure type. Distance to
406 roads shows strong inverse correlation with landslide occurrence (0–800 m, FR=1.499,
407 IV=0.333), indicating anthropogenic disturbance effects. Conversely, distance to faults
408 reveals a bimodal pattern with peak susceptibility at intermediate distances (7–12 km,
409 FR=1.439, IV=0.305), suggesting regional structural influence rather than localized fault-
410 induced instability. Environmental factors demonstrate vegetation's protective role, with
411 moderate NDVI values (0.64–0.76) showing elevated susceptibility (FR=1.854, IV=0.015),

412 representing the transition zone between bare soil vulnerability and established vegetation
413 stability. Lithological analysis reveals pronounced material control, with rhyolite (FR=1.546,
414 IV=0.353) and granite (FR=1.247, IV=0.198) showing enhanced susceptibility due to
415 intensive weathering and joint development, while sedimentary rocks (slate, shale, limestone,
416 sandstone) exhibit strong resistance (FR<0.21) owing to their structural integrity and lower
417 weathering susceptibility.

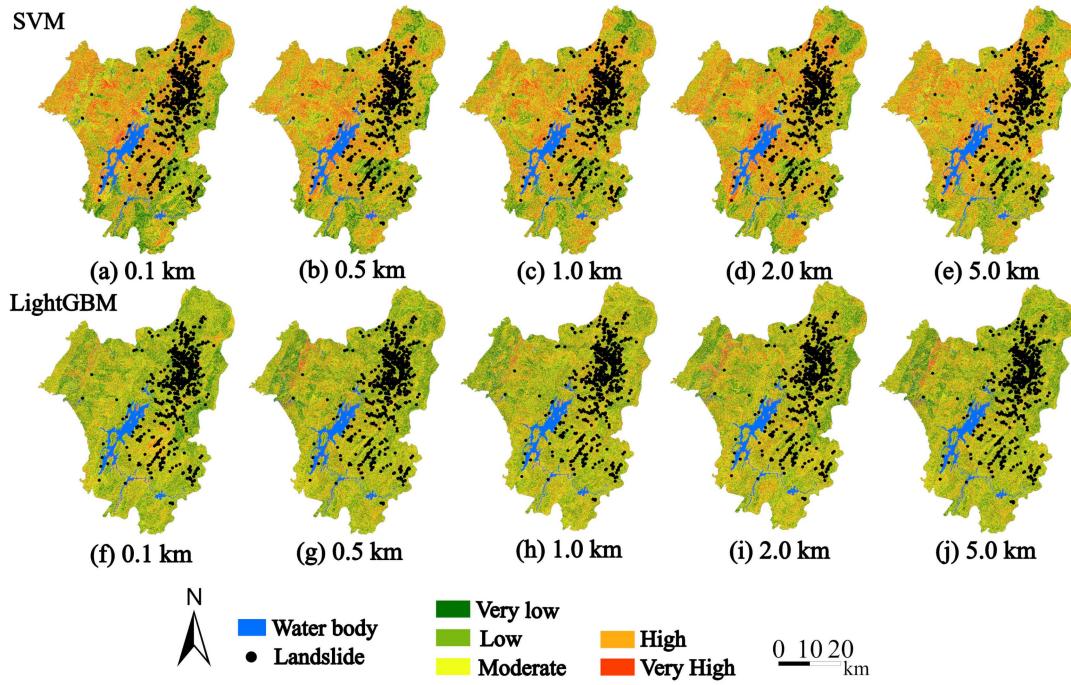
418 **4.2 Landslide susceptibility modeling in Zixing City**

419 Prior to model development, multicollinearity analysis was conducted using variance
420 inflation factor (VIF) to ensure statistical reliability of the conditioning factors. The analysis
421 revealed method-specific multicollinearity patterns: IV and CF methods showed no
422 significant multicollinearity issues (all VIF < 10), while the FR method exhibited
423 multicollinearity in four variables (SPI, Aspect, Plan curvature, and Distance to rivers with
424 VIF > 10), which were subsequently excluded from FR-based modeling (Table S2 in the
425 supplement). Following this preprocessing, landslide susceptibility prediction was performed
426 using SVM and LightGBM models with the three distinct weighting methods (IV, CF, and
427 FR). Susceptibility levels were categorized into five classes using the natural breaks
428 classification method, with non-landslide samples strategically selected by excluding buffer
429 zones of varying distances (0.1, 0.5, 1.0, 2.0, and 5.0 km) around documented landslide
430 locations to optimize model performance and reduce spatial bias.

431 **4.2.1 IV-based modeling performance**

432 The IV-derived susceptibility maps (Fig. 4) revealed distinct spatial patterns between the
433 two models across varying buffer distances. At smaller scales, the SVM model demonstrated
434 more detailed classification, with a higher degree of overlap between high susceptibility areas
435 and actual landslide locations. The LightGBM model's classification was smoother, with a
436 lower degree of overlap between high susceptibility areas and actual landslide locations.

437 Notably, this performance discrepancy diminished progressively with increasing buffer
438 distances.



439

440 **Figure 4** Landslide susceptibility map based on SVM and LightGBM models using the IV input.

441 **4.2.2 CF-based modeling performance**

442 In CF-based modeling (Fig. 5), the SVM model's high and very high landslide
443 susceptibility areas at smaller scales were more extensive than in the IV mode, with actual
444 landslide locations more frequently distributed within these high-risk areas. As the scale
445 increased, the high susceptibility areas gradually decreased. The LightGBM model also
446 showed a relatively smooth distribution, with some high susceptibility areas identified at
447 smaller scales gradually integrating as the scale increased, following a similar trend to the
448 SVM model.



Figure 5 Landslide susceptibility map based on SVM and LightGBM models using the CF input.

4.2.3 FR-based modeling performance

Regarding the FR input (Fig. 6), the SVM model identified a significant number of high and very high landslide susceptibility areas at smaller scales compared to the IV and CF inputs, which closely matched the actual locations of landslides. As the buffer scale expanded, these high-risk areas generally diminished and the distribution became smoother. Conversely, the LightGBM model delivered more uniform results, offering broader moderate-risk distributions, with a small number of high susceptibility areas that did not align with the actual landslide locations. As the scale increased, the high susceptibility areas identified by the LightGBM model gradually diminished, showing greater consistency with the SVM model results at the higher scale.

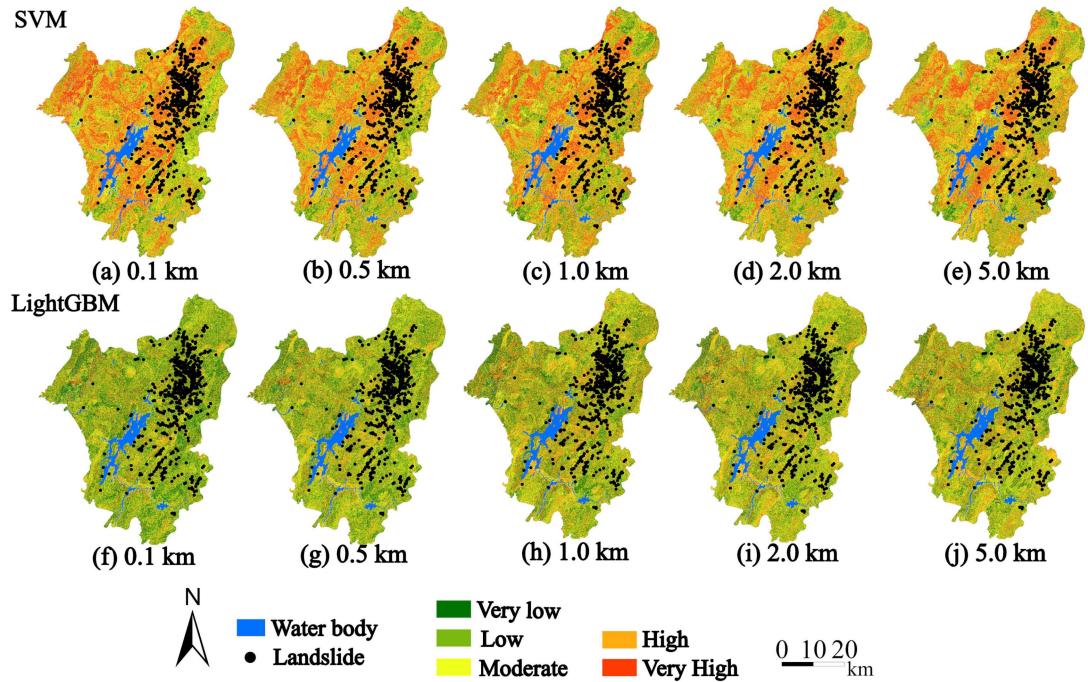


Figure 6 Landslide susceptibility map based on SVM and LightGBM models using the FR input.

4.3 Uncertainty analysis of LSP results

4.3.1 LSP accuracy evaluation and comparative performance

Table S2 (in the Supplement) demonstrates contrasting performance characteristics between the two machine learning approaches across different spatial scales and input configurations. LightGBM consistently achieved high AUC values (0.915–0.921) and maintained stable F1-scores (0.838–0.850) across all buffer distances and input methods, indicating robust generalization capability. In contrast, SVM exhibited pronounced sensitivity to parameter combinations, with performance varying significantly across different buffer distances (F1-scores ranging from 0.681 to 0.859) and input methods, particularly showing notable degradation with FR input at extreme spatial scales (0.1 km and 5.0 km).

Two configurations emerged as comprehensively superior: SVM with FR input at 0.5 km and 2.0 km buffer distances, both achieving F1-scores of 0.859. These optimal configurations not only maintained competitive AUC values (0.914 and 0.913 respectively) but demonstrated superior precision-recall balance compared to corresponding LightGBM configurations (F1-scores: 0.854 and 0.856). The high recall values (0.845 and 0.851) coupled with robust

478 precision (0.873 and 0.867) indicate enhanced sensitivity to landslide-prone areas while
479 minimizing false positive predictions. This bimodal performance pattern suggests that
480 intermediate buffer distances effectively capture fault-related geomorphological processes
481 influencing slope stability.

482 Independent validation on the test set confirmed the robustness of these optimal
483 configurations, with SVM-FR models at 0.5 km and 2.0 km buffer distances achieving F1-
484 scores of 0.847 and 0.852 respectively, representing minimal performance degradation from
485 training results. The consistent AUC values (0.909 and 0.908) on the test set further validate
486 the models' discriminative capability and indicate absence of overfitting, confirming the
487 reliability of these configurations for practical landslide susceptibility assessment applications.

488 **4.3.2 LSP distribution characteristics across conditions**

489 In addition to the performance metrics, the distribution characteristics of landslide
490 susceptibility predictions revealed fundamental differences between the models (Figs. S1–S3
491 in the Supplement). LightGBM generated smoother, more symmetrical distributions with
492 lower mean susceptibility values (0.196–0.320) and smaller standard deviations (0.099–
493 0.187), indicating stable and uniform predictions. In contrast, SVM exhibited greater
494 variability, with irregular distributions, higher mean values (0.303–0.515), and larger standard
495 deviations (0.112–0.214). Notably, SVM's mean susceptibility under FR input rose sharply
496 (0.446–0.515), while LightGBM maintained lower means despite moderately broader
497 deviations (0.160–0.187).

498 Therefore, SVM is preferable for FR-based modeling at 0.5 km and 2.0 km buffers,
499 where spatial precision is prioritized over prediction uniformity. The SVM model achieved its
500 highest accuracy at the 0.5 km buffer, classifying 86.4% of recorded landslides in high and
501 very high susceptibility zones (Fig. 6b). At the 2.0 km buffer (Fig. 6d), it still correctly

502 classified 82.1% of landslides in these zones. As a result, Fig. 6b is selected as the final
503 landslide susceptibility map.

504 **5 Landslide risk assessment in Zixing City**

505 **5.1 Critical rainfall thresholds for landslides in Zixing City**

506 We evaluated four rainfall threshold models (H1-D7, H12-D7, H24-D7, and H72-D7)
507 through 5-fold cross-validation, with their optimal ratio coefficient (RC) thresholds and
508 prediction accuracies summarized in Table 3. The H24-D7 model, coupling 24-hour rainfall
509 during landfall with 7-day antecedent moisture, achieved the highest accuracy (71.8%) by
510 effectively capturing both cumulative saturation and abrupt triggering by typhoon rainfall
511 bursts. Notably, the H24-D7 model exhibited stable performance across all folds, with
512 accuracy ranging narrowly between 68.8% (Fold 1) and 74.6% (Fold 4), reflecting robust
513 generalizability.

514 **Table 3** Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation.

Model	Fold 1 RC/Accuracy	Fold 2 RC/Accuracy	Fold 3 RC/Accuracy	Fold 4 RC/Accuracy	Fold 5 RC/Accuracy	Average RC/Accuracy
H1-D7	0.032/56.5	0.062/29.7	0.076/35.5	0.022/53.6	0.040/47.8	0.047/44.6
H12-D7	0.077/54.2	0.167/46.6	0.243/48.3	0.267/47.7	0.154/45.3	0.182/48.5
H24-D7	0.472/68.8	0.436/72.3	0.422/73.1	0.459/74.6	0.414/70.2	0.440/71.8
H72-D7	0.789/56.5	0.776/59.4	0.781/63.1	0.802/51.4	0.783/60.1	0.787/58.1

515 In contrast, the H1-D7 and H12-D7 models displayed marked instability: H1-D7
516 accuracy fluctuated between 29.7% (Fold 2) and 56.5% (Fold 1), while H12-D7 thresholds
517 (RC12: 0.077–0.267) corresponded to accuracies of 45.3–48.3%. The H72-D7 model showed
518 moderate performance variability (accuracy: 51.4–63.1%) despite consistently high RC72
519 thresholds (>0.78).

520 These results highlight the critical role of temporal rainfall parameter selection. The
521 superior performance of the H24-D7 model (24-hour short-term rainfall and 7-day antecedent
522 rainfall) suggests that a 24-hour duration optimally captures both immediate landslide triggers

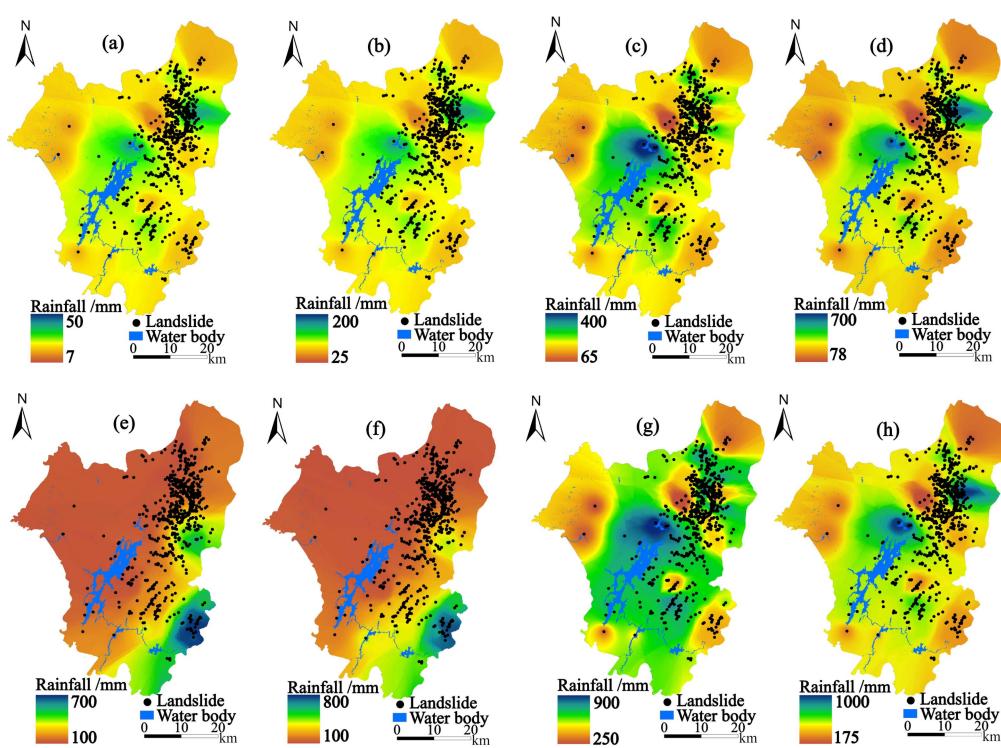
523 and cumulative hydrological effects, balancing sensitivity and stability. Shorter (H1/H12) or
 524 longer (H72) durations either overemphasize transient rainfall spikes or dilute critical
 525 triggering signals.

526 **5.2 Spatio-temporal distribution of rainfall thresholds**

527 Fig. 7 illustrates the spatial distribution of rainfall-triggered landslide thresholds derived
 528 from four models (RC1, RC12, RC24, and RC72) across multiple temporal scales (1-hour,
 529 12-hour, 24-hour, 72-hour, and 7-day) within the study area.

530 **5.2.1 Short-term predictions (1-hour to 12-hour scales)**

531 At the 1-hour scale (Fig. 7a), the RC1 model generated thresholds ranging from 7 to 50
 532 mm, with 65.2% of landslides occurring in moderate threshold zones (20–30 mm). This
 533 indicates the model's effectiveness in detecting slope failures under short-duration rainfall. In
 534 contrast, the RC12 model on the 12-hour scale (Fig. 7b) showed a wider threshold range (25–
 535 200 mm), with 62.9% of landslides in mid-to-high threshold regions (80–130 mm). This
 536 mismatch suggests that the 12-hour cumulative data may underestimate rainfall impacts in
 537 specific topographic settings.



538

539 **Figure 7** Distribution of typhoon rainfall thresholds under various optimal RC ratios: (a) 1-hour RC1-based, (b)
540 12-hour RC12-based, (c) 24-hour RC24-based, (d) 72-hour RC72-based, (e) 7-day RC1-based, (f) 7-day RC12-
541 based, (g) 7-day RC24-based, and (h) 7-day RC72-based.

542 **5.2.2 Mid-term predictions (24-hour to 72-hour scales)**

543 The RC24 model at the 24-hour scale (Fig. 7c) displayed a threshold range of 65–400
544 mm, with 87.1% of landslides occurring within moderate thresholds (100–250 mm) and
545 12.3% in higher thresholds (>250 mm). This indicates a more accurate capture of rainfall
546 intensity effects. At the 72-hour scale (Fig. 7d), the RC72 model produced thresholds between
547 78–700 mm, with 59.2% of landslides in mid-to-high threshold regions (200–500 mm).
548 Although the RC72 model demonstrated reasonable sensitivity to prolonged rainfall, its upper
549 threshold (700 mm) may result in conservative risk predictions for some geological settings.

550 **5.2.3 Long-term predictions (7-day scale)**

551 At the 7-day scale, significant differences emerge across models in terms of predicted
552 rainfall thresholds and landslide points. The RC1 model (Fig. 7e) shows a threshold range of
553 100–700 mm, with landslide points predominantly concentrated in the lower rainfall ranges.
554 While these low-threshold landslides may indicate localized risks, the model's conservative
555 threshold distribution fails to effectively capture landslides triggered by higher rainfall
556 amounts, potentially overlooking more significant events.

557 The RC12 model (Fig. 7f), with a threshold range of 100–800 mm, also shows a
558 concentration of landslide points in the lower rainfall ranges. Despite a wider threshold range,
559 the similarity to the RC1 model suggests that RC12 may also underutilize its capacity to
560 predict higher typhoon-induced landslides, leading to under-prediction in areas experiencing
561 moderate to heavy precipitation.

562 In contrast, the RC24 model (Fig. 7g) exhibits a balanced threshold range (250–900 mm)
563 and effectively identifies landslide points in both moderate and high rainfall categories. This
564 balance enables RC24 to capture the full spectrum of typhoon-induced landslides, accurately
565 identifying risks across different rainfall intensities.

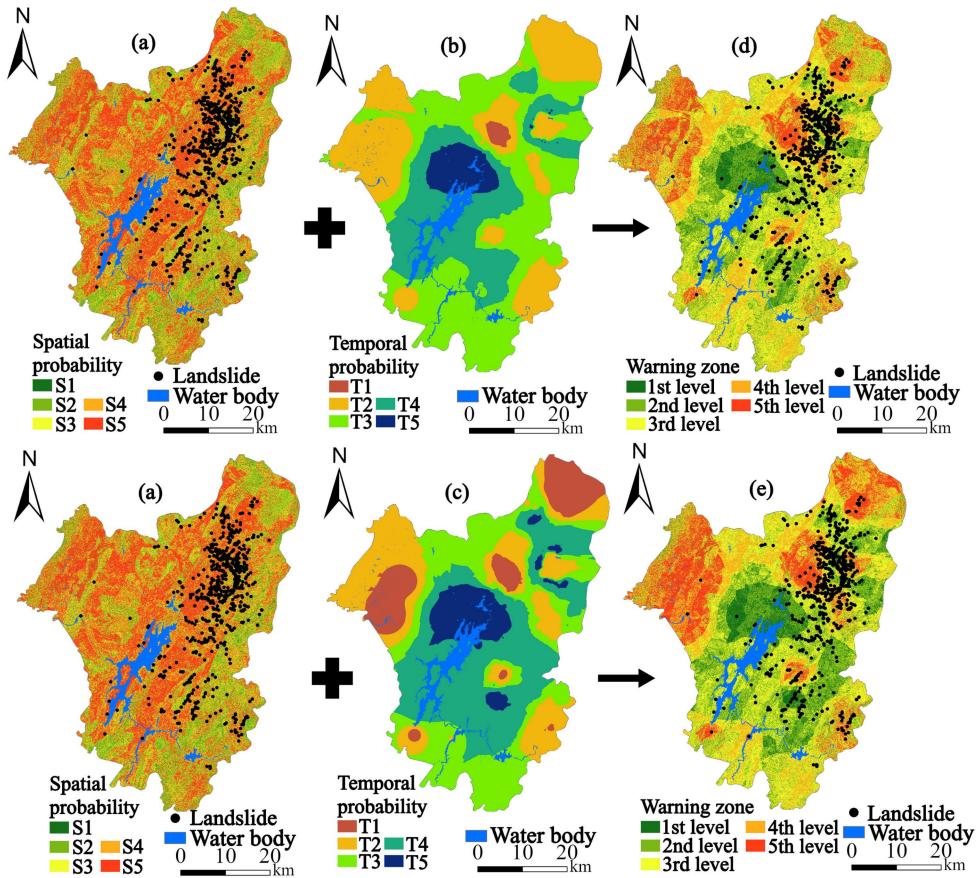
566 The RC72 model (Fig. 7h) shows a concentration of landslide points in the higher
567 rainfall range (175–1000 mm). While it predicts landslides accurately under heavy rainfall
568 conditions, the model may overestimate risks in some regions and neglect potential landslides
569 associated with lower rainfall thresholds.

570 Based on the above analysis, the RC24 model is the optimal choice, which aligns with
571 the findings in Section 5.1. Its effectiveness is evident as it demonstrates superior stability and
572 accuracy in both the 24-hour and 7-day timescales. The RC24 model's balanced threshold
573 range allows it to accurately assess landslide risks across varying rainfall intensities. This
574 makes it the most reliable choice for practical landslide hazard warning applications.

575 **5.3 Landslide hazard warning system for Zixing City**

576 Based on the optimal LSP results (Fig. 6b) and the validated RC24 rainfall threshold
577 model, a spatially explicit landslide hazard warning system was established for Zixing City.
578 The integration of spatial probability (LSP) and temporal probability (rainfall thresholds)
579 followed the matrix classification outlined in Table 2.

580



582 **Figure 8** Landslide warning zones generated by overlaying spatial and temporal probability maps: (a) optimal
 583 spatial probability, (b) 24-hour RC24-based rainfall threshold, (c) 7-day RC24-based rainfall threshold, (d)
 584 overlay of (a) and (b), and (e) overlay of (a) and (c).

585 Five susceptibility levels in the LSP map (Fig. 6b) were replaced with five spatial
 586 probabilities (S1–S5) (Fig. 8a), respectively. Simultaneously, the spatially interpolated 24-
 587 hour rainfall thresholds (H24) (Fig. 8b) and 7-day effective rainfall thresholds (D7) (Fig. 8c)
 588 derived from the RC24 model were classified into five temporal probability levels (T1–T5)
 589 using the natural breaks method. Spatial overlay analysis was performed to combine the
 590 susceptibility levels (S1–S5) with the rainfall threshold levels (T1–T5), generating two hazard
 591 warning zone maps: H24-based (Fig. 8d) and D7-based (Fig. 8e).

592 Quantitative assessment of both warning systems reveals distinct performance
 593 characteristics. The 24-hour threshold system (Fig. 8d) demonstrates superior predictive
 594 efficiency, with 71.4% of historical landslides occurring within high to very high warning
 595 zones (Levels 3–5) while covering only 34.2% of the total area, resulting in an efficiency ratio

596 of 2.09 and a risk density of 49.0 landslides per 1000 high-risk grid cells. The spatial
597 distribution shows concentrated high-risk areas primarily in the central region, characterized
598 by steep slopes ($>21.80^\circ$), weathered granite lithology, and road proximity (0–800 m). This
599 focused distribution indicates effective identification of areas most sensitive to short-term
600 intense rainfall triggers.

601 The 7-day threshold system (Fig. 8e) exhibits broader spatial coverage, with high-risk
602 zones encompassing 42.7% of the study area and capturing 68.7% of historical landslides,
603 yielding a lower efficiency ratio of 1.61 and risk density of 37.8 landslides per 1000 grid cells.
604 This system effectively identifies extended vulnerable areas in northern and eastern regions,
605 reflecting cumulative rainfall effects on slope stability. The expanded coverage captures zones
606 where prolonged antecedent moisture interacts with moderate-to-high susceptibility
607 conditions.

608 Statistical validation confirms the complementary nature of both systems. The 24-hour
609 system achieves higher spatial efficiency (efficiency ratio 2.09 vs. 1.61) and landslide
610 concentration (risk density 49.0 vs. 37.8), making it optimal for immediate typhoon response
611 and targeted emergency resource allocation. Conversely, the 7-day system provides
612 comprehensive coverage for prolonged rainfall scenarios, essential for early warning during
613 extended typhoon events despite its broader spatial distribution and lower concentration
614 efficiency. The combined application of both systems enables dynamic hazard assessment,
615 addressing both rapid-onset failures during typhoon landfall and delayed failures following
616 sustained precipitation.

617 **6 Discussion**

618 **6.1 Model selection strategy and optimization of LSP**

620 Our comparative analysis of SVM and LightGBM across different input methods (IV,
621 CF, FR) and buffer distances shows distinct performance patterns crucial for model selection
622 in typhoon-induced LSP. SVM exhibited marked sensitivity to configuration parameters, with
623 F1-scores varying from 0.681 to 0.859 depending on buffer distance and input method.
624 LightGBM maintained more stable performance (F1-scores: 0.838–0.850) across all
625 configurations. These differences reflect fundamental algorithmic characteristics: SVM's
626 kernel-based approach effectively captures localized patterns when properly tuned, while
627 LightGBM's ensemble structure delivers consistent results across varying data conditions.

628 SVM's superior performance at 0.5–2.0 km buffer distances with FR weighting builds on
629 findings by Kalantar et al. (2018) and Bogaard and Greco (2018). This buffer range appears
630 effective for capturing the spatial patterns of typhoon-induced failures in our study area. FR
631 weighting's effectiveness supports Reichenbach et al. (2018) and Yan et al. (2019), who found
632 that frequency-based methods excel at quantifying terrain-landslide relationships. In typhoon
633 conditions, FR effectively weights critical factors including road proximity and weathered
634 granite lithology.

635 These performance patterns justify our dual-model approach. SVM, though requiring
636 careful calibration, enables precise delineation of high-risk zones essential for emergency
637 response, with SVM-FR at 0.5 km achieving peak accuracy ($F1=0.859$). LightGBM's
638 robustness suits operational contexts requiring consistent predictions under variable
639 conditions. Our results suggest that effective model selection depends on matching
640 algorithmic strengths to specific application requirements rather than identifying a universally
641 superior algorithm.

642 **6.2 Rainfall threshold modeling and typhoon-specific mechanisms**

643

644 The H24-D7 model achieved 71.8% accuracy, outperforming alternative temporal
645 windows (Table 3). The optimal RC24 value of 0.440 (with inter-fold variation of 0.414–
646 0.472) indicates that landslides typically occur when 24-hour rainfall constitutes
647 approximately 44% of the preceding 7-day accumulation. This pattern is consistent with the
648 multi-temporal triggering framework proposed by Nolasco-Javier and Kumar (2018) for
649 typhoon contexts, where both antecedent saturation and short-term intensity contribute to
650 slope failure. However, the specific hydrological mechanisms underlying this ratio require
651 verification through in-situ soil moisture monitoring. The H1-D7 and H12-D7 models showed
652 lower and more variable accuracy (44.6% and 48.5% respectively), suggesting that shorter
653 accumulation periods may inadequately represent the cumulative soil saturation process
654 relevant to this region's geological conditions (Kirschbaum and Stanley, 2018).

655 Spatial patterns in rainfall thresholds reveal systematic variations across the study area.
656 Southeastern regions exhibit elevated H24 thresholds exceeding 250 mm (Fig. 7c), while
657 northern areas show reduced thresholds of 100–150 mm. These spatial variations align with
658 findings by Lee et al. (2018) and Cho et al. (2022) regarding topographic controls on
659 typhoon-induced landslides, though the specific mechanisms require further investigation
660 with detailed meteorological analysis. The spatially distributed thresholds derived through
661 Kriging interpolation (Table 1) provide location-specific values that improve upon uniform
662 regional thresholds typically employed in operational systems (Segoni et al., 2018b).

663 The consistent performance across the five validation folds (68.8–74.6% accuracy)
664 demonstrates the model's stability when applied to different spatial subsets of the landslide
665 inventory. This suggests the H24-D7 relationship captures generalizable rainfall-slope
666 response patterns rather than site-specific anomalies, though validation with independent
667 typhoon events would further confirm model robustness.

668 **6.3 Integration of susceptibility and rainfall thresholds for landslide warning**

669 The integrated warning system combines static susceptibility surfaces with spatially
670 continuous rainfall thresholds following the matrix framework in Table 2. The H24-based
671 system (Fig. 8d) captured 71.4% of historical landslides within high to very high warning
672 zones (Levels 3–5) covering 34.2% of the study area, yielding an efficiency ratio of 2.09. The
673 D7-based system (Fig. 8e) identified 68.7% of landslides across 42.7% of the area (efficiency
674 ratio: 1.61). These focused distributions contrast with the broader spatial coverage typically
675 required by uniform regional thresholds (Guzzetti et al., 2020), though direct comparative
676 validation would be needed to quantify the performance gain.

677 The dual-threshold configuration provides complementary perspectives suited to
678 different phases of typhoon evolution, with D7 reflecting cumulative moisture conditions and
679 H24 capturing immediate triggering rainfall. This combination addresses the compound
680 rainfall mechanisms documented in typhoon-affected regions (Gariano et al., 2015; Nolasco-
681 Javier and Kumar, 2018), though the optimal application strategy for operational warning
682 would require integration with real-time meteorological forecasting systems.

683 Spatially continuous thresholds (Fig. 8b, c) address terrain-induced variability more
684 effectively than point-based approaches. The Kriging interpolation method provides threshold
685 estimates across the entire study area, accounting for spatial autocorrelation in rainfall
686 patterns (Table 1). However, threshold accuracy depends on rain gauge density and may
687 decline in areas distant from monitoring stations, as indicated by the interpolation validation
688 metrics (R: 0.76–0.87, NSE: 0.71–0.82). The framework advances beyond existing point-
689 based threshold systems (Segoni et al., 2018b; Guzzetti et al., 2020) by providing spatially
690 explicit hazard assessment, though regional adaptation of threshold parameters would be
691 necessary for application in different geological settings.

692 The modular design allows the framework to be adapted for operational landslide early
693 warning, though practical implementation would require integration with meteorological

694 monitoring infrastructure, standardized protocols for warning dissemination, and post-event
695 validation procedures to maintain system reliability. These operational considerations extend
696 beyond the methodological scope of this study but represent important directions for future
697 development of typhoon-specific landslide warning systems.

698 **6.4 Limitations and future research directions**

699 Despite promising advancements, this study has limitations owing to the complexity of
700 typhoon-induced landslides. First, the model's validation relies solely on landslides from
701 Typhoon Gaemi. While this single event provided a comprehensive dataset, validating against
702 multiple, varied typhoons is crucial for model robustness. Typhoons differ significantly in
703 intensity, rainfall patterns, forward speed, and seasonality, all of which can influence
704 threshold parameters. For instance, a slow-moving typhoon with higher cumulative rainfall
705 and lower peak intensity could alter the optimal H24-D7 ratios. Future research should
706 incorporate landslide inventories from typhoons with contrasting characteristics to assess
707 threshold transferability and develop adaptive parameterization. The framework's modular
708 design readily facilitates this by allowing recalibration of the RC24 coefficient for different
709 typhoon types.

710 Second, the current study primarily addresses rainfall-induced landslides, overlooking
711 other potential contributing factors. Future work should explore integrating multiple
712 triggering mechanisms, including earthquakes, human-induced slope modifications, and
713 typhoon rainfall, for a more comprehensive hazard assessment.

714 Third, the study doesn't explicitly address the potential impacts of climate change on
715 typhoon rainfall and landslide occurrence. As climate change alters typhoon frequency,
716 intensity, and tracks, future studies should incorporate climate projections specific to
717 typhoon-prone regions. This will enable the development of forward-looking landslide
718 warning systems that can adapt to the evolving threats posed by typhoon-specific rainfall.

719 Fourth, while this study demonstrates the effectiveness of ML approaches, further
720 refinement is possible. Future research should explore advanced deep learning techniques and
721 ensemble methods to better capture the complex, non-linear relationships between typhoon-
722 related variables (e.g., rainfall intensity, duration, antecedent moisture) and slope stability.
723 These advanced methods may offer improved predictive accuracy, more robust uncertainty
724 quantification, and ultimately, more reliable hazard warnings.

725 Finally, climate projections for Southeast China show a 15–25% increase in peak
726 typhoon rainfall by 2080 (RCP8.5), which could alter the H24–D7 landslide thresholds from
727 this study. Higher atmospheric moisture may lower D7 thresholds, while greater rainfall
728 intensity could require new H24 parameters. Shifting typhoon tracks and seasonality might
729 also change which areas are vulnerable. Future work must use downscaled climate data to
730 create non-stationary thresholds, ensuring the long-term reliability of warning systems in the
731 region.

732 **7 Conclusions**

733 This study establishes a novel integrated framework combining optimized LSP with
734 typhoon-specific rainfall threshold modeling for comprehensive hazard assessment in
735 mountainous regions. Through systematic analysis of 705 landslides triggered by Typhoon
736 Gaemi in Zixing City, several key insights emerge:

737 (1) Buffer distance optimization proves critical for typhoon-induced landslide modeling,
738 with SVM-FR combinations at 0.5–2.0 km distances achieving superior performance (F1-
739 score: 0.859) compared to conventional approaches. This spatial scale effectively captures
740 typhoon-induced moisture infiltration patterns that differ fundamentally from other triggering
741 mechanisms.

742 (2) The H24-D7 threshold model demonstrates exceptional stability (71.8% accuracy
743 across 5-fold validation), successfully characterizing the dual-phase failure mechanism unique

744 to typhoons: prolonged antecedent saturation coupled with intense precipitation bursts during
745 typhoon passage.

746 (3) Spatially distributed rainfall thresholds reveal significant heterogeneity, reflecting
747 complex interactions between typhoon structure and local topography that contradict uniform
748 regional threshold assumptions in existing operational systems.

749 (4) The integrated warning system achieves operational efficiency through dual-
750 threshold configuration: H24 thresholds provide immediate response capability during
751 typhoon landfall, while D7 thresholds enable early detection of vulnerable areas approaching
752 saturation conditions.

753 (5) This framework addresses three critical gaps in current landslide prediction:
754 systematic buffer optimization for imbalanced datasets, effective integration of variable
755 weighting with machine learning algorithms, and development of typhoon-specific spatially
756 explicit thresholds.

757

758
759

760 *Code and data availability.* The source code and data will be made available on request.

761 *Competing interests.* The contact author has declared that none of the authors has any
762 competing interests.

763 *Author contributions.* **Weifeng Xiao:** Writing-review & editing, Validation,
764 Conceptualization. **Guangchong Yao:** Visualization, Validation, Data curation. **Zhenghui
765 Xiao:** Writing-review & editing, Formal analysis. **Ge Liu:** Correspondence, Funding
766 acquisition. **Luguang Luo:** Visualization, Validation, Investigation, Data curation. **Yunjiang
767 Cao:** Visualization, Formal analysis, Data curation. **Wei Yin:** Validation, Investigation.

768 *Acknowledgments.* This research was jointly funded by the National Key Research and
769 Development Program of China (2024YFD1500602), the Research Project on Natural

770 Resources of Hunan Provincial Department of Natural Resources (No. HBZ20240112), and
771 the National Natural Science Foundation of China (No. 42171385, U2243230).

772

773

774

775

776 **References**

777 Achu, A. L., Aju, C. D., Pham, Q. B., Reghunath, R., and Anh, D. T.: Landslide susceptibility modeling
778 using hybrid bivariate statistical - based machine - learning method in a highland segment of Southern
779 Western Ghats, India, *Environ. Earth Sci.*, 81, 361, <https://doi.org/10.1007/s12665-022-10464-z>, 2022.

780 Banfi, F. and De Michele, C.: Temporal clustering of precipitation driving landslides over the Italian
781 Territory, *Earths Future*, 12, e2023EF003885, <https://doi.org/10.1029/2023EF003885>, 2024.

782 Bogaard, T. and Greco, R.: Hydrological perspectives on precipitation intensity-duration thresholds for
783 landslide initiation: proposing hydro-meteorological thresholds, *Nat. Hazards Earth Syst. Sci.*, 18, 31–39,
784 <https://doi.org/10.5194/nhess-18-31-2018>, 2018.

785 Calvello, M. and Piciullo, L.: Assessing the performance of regional landslide early warning models: the
786 EDuMaP method, *Nat. Hazards Earth Syst. Sci.*, 16, 103–122, <https://doi.org/10.5194/nhess-16-103-2016>, 2016.

788 Chang, Z. L., Huang, J. S., Huang, F. M., Bhuyan, K., Meena, S. R., and Catani, F.: Uncertainty analysis of
789 non-landslide sample selection in landslide susceptibility prediction using slope unit-based machine
790 learning models, *Gondwana Res.*, 117, 307–320, <https://doi.org/10.1016/j.gr.2023.02.007>, 2023.

791 Cho, W., Park, J., Moon, J., Cha, D. H., Moon, Y. M., Kim, H. S., Noh, K. J., and Park, S. H.: Effects of
792 topography and sea surface temperature anomalies on heavy rainfall induced by Typhoon Chaba in 2016,
793 *Geosci. Lett.*, 9, 29, <https://doi.org/10.1186/s40562-022-00230-1>, 2022.

794 Chung, C. C. and Li, Z. Y.: Rapid landslide risk zoning toward multi-slope units of the Neikuihui tribe for
795 preliminary disaster management, *Nat. Hazards Earth Syst. Sci.*, 22, 1777–1794,
796 <https://doi.org/10.5194/nhess-22-1777-2022>, 2022.

797 Ciurleo, M., Cascini, L., and Calvello, M.: A comparison of statistical and deterministic methods for
798 shallow landslide susceptibility zoning in clayey soils, Eng. Geol., 223, 71–81,
799 <https://doi.org/10.1016/j.enggeo.2017.04.023>, 2017.

800 Dou, H. Q., He, J. B., Huang, S. Y., Jian, W. B., and Guo, C. X.: Influences of non - landslide sample
801 selection strategies on landslide susceptibility mapping by machine learning, Geomat. Nat. Haz. Risk, 14,
802 1–15, <https://doi.org/10.1080/19475705.2023.2285719>, 2023.

803 Fan, W., Wei, Y. N., and Deng, L. S.: Failure modes and mechanisms of shallow debris landslides using an
804 artificial rainfall model experiment on Qin-ba Mountain, Int. J. Geomech., 18, 04017157,
805 [https://doi.org/10.1061/\(ASCE\)GM.1943 - 5622.0001068](https://doi.org/10.1061/(ASCE)GM.1943 - 5622.0001068), 2018.

806 Fan, X. M., Scaringi, G., Korup, O., West, A. J., van Westen, C. J., Tanyas, H., Hovius, N., Hales, T. C.,
807 Jibson, R. W., Allstadt, K. E., Zhang, L. M., Evans, S. G., Xu, C., Li, G., Pei, X. J., Xu, Q., & Huang, R.
808 Q. (2019). Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts.
809 Reviews of Geophysics, 57(2), 421-503. <https://doi.org/10.1029/2018RG000626>.

810 Froude, M. J., and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth
811 Syst. Sci., 18, 2161–2181, <https://doi.org/10.5194/nhess - 18 - 2161 - 2018>, 2018.

812 Gariano, S. L., Brunetti, M. T., Iovine, G., Melillo, M., Peruccacci, S., Terranova, O., Vennari, C., and
813 Guzzetti, F.: Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily,
814 southern Italy, Geomorphology, 228, 653–665, <https://doi.org/10.1016/j.geomorph.2014.10.019>, 2015.

815 Gariano, S. L., and Guzzetti, F.: Landslides in a changing climate, Earth - Sci. Rev., 162, 227–252,
816 <https://doi.org/10.1016/j.earscirev.2016.08.011>, 2016.

817 Guo, W. X., Ye, J., Liu, C. B., Lv, Y. J., Zeng, Q. Y., and Huang, X.: An approach for predicting landslide
818 susceptibility and evaluating predisposing factors, Int. J. Appl. Earth Obs., 135, 104217,
819 <https://doi.org/10.1016/j.jag.2024.104217>, 2024.

820 Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., and Melillo, M.:
821 Geographical landslide early warning systems, Earth - Sci. Rev., 200, 102973,
822 <https://doi.org/10.1016/j.earscirev.2019.102973>, 2020.

823 Guzzetti, F.: Invited perspectives: Landslide populations - can they be predicted?, Nat. Hazards Earth Syst.
824 Sci., 21, 1467–1471, <https://doi.org/10.5194/nhess - 21 - 1467 - 2021>, 2021.

825 Huang, F., Chen, J., Liu, W., Huang, J., Hong, H., and Chen, W.: Regional rainfall - induced landslide
826 hazard warning based on landslide susceptibility mapping and a critical rainfall threshold,
827 *Geomorphology*, 408, 108236, <https://doi.org/10.1016/j.geomorph.2022.108236>, 2022.

828 Huang, Y., and Zhao, L.: Review on landslide susceptibility mapping using support vector machines,
829 *Catena*, 165, 520–529, <https://doi.org/10.1016/j.catena.2018.03.003>, 2018.

830 Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., and Mansor, S.: Assessment of the effects of
831 training data selection on the landslide susceptibility mapping: A comparison between support vector
832 machine (SVM), logistic regression (LR), and artificial neural networks (ANN), *Geomat. Nat. Haz. Risk*,
833 9, 49–69, <https://doi.org/10.1080/19475705.2017.1407368>, 2018.

834 Kenanoglu, M. B., Ahmadi - Adli, M., Toker, N. K., and Huvaj, N.: Effect of unsaturated soil properties on
835 the intensity-duration threshold for rainfall triggered landslides, *Tek. Dergi*, 30, 9009–9027,
836 <https://doi.org/10.18400/tekderg.414884>, 2019.

837 Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for
838 Situational Awareness, *Earths Future*, 6, 505–523, <https://doi.org/10.1002/2017EF000715>, 2018.

839 Lee, J. T., Ko, K. Y., Lee, D. I., You, C. H., and Liou, Y. C.: Enhancement of orographic precipitation in
840 Jeju Island during the passage of Typhoon Khanun (2012), *Atmos. Res.*, 201, 58–71,
841 <https://doi.org/10.1016/j.atmosres.2017.10.013>, 2018.

842 Li, Y. L., Lin, Y. L., and Wang, Y. Q.: A numerical study on the formation and maintenance of a long -
843 lived rainband in Typhoon Longwang (2005), *J. Geophys. Res. Atmos.*, 124(19), 10401–10426,
844 <https://doi.org/10.1029/2019JD030600>, 2019.

845 Liu, L. L., Zhang, Y. L., Xiao, T., and Yang, C.: A frequency ratio - based sampling strategy for landslide
846 susceptibility assessment, *Bull. Eng. Geol. Environ.*, 81, 360, <https://doi.org/10.1007/s10064-022-02836-3>, 2022.

848 Lombardo, L., and Mai, P. M.: Presenting logistic regression - based landslide susceptibility results, *Eng.*
849 *Geol.*, 244, 14–24, <https://doi.org/10.1016/j.enggeo.2018.07.019>, 2018.

850 Ma, H., Wang, F. W., Fu, Z. J., Feng, Y. Q., You, Q., and Li, S.: Characterizing the clustered landslides
851 triggered by extreme rainfall during the 2024 typhoon Gaemi in Zixing City, Hunan Province, China,
852 *Landslides*, 22, 2311–2329, <https://doi.org/10.1007/s10346-025-02510-1>, 2025.

853 Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., and Abderrahmane,
854 B.: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm
855 performance, *Earth-Sci. Rev.*, 207, 103225, <https://doi.org/10.1016/j.earscirev.2020.103225>, 2020.

856 Mirus, B. B., Becker, R. E., Baum, R. L., and Smith, J. B.: Integrating real-time subsurface hydrologic
857 monitoring with empirical rainfall thresholds to improve landslide early warning, *Landslides*, 15, 1909–
858 1919, <https://doi.org/10.1007/s10346-018-0995-z>, 2018.

859 Mondini, A. C., Guzzetti, F., and Melillo, M.: Deep learning forecast of rainfall-induced shallow landslides,
860 *Nat. Commun.*, 14, 10.1038/s41467-023-38135-y, <https://doi.org/10.1038/s41467-023-38135-y>, 2023.

861 Niu, H. T., Shao, S. J., Gao, J. Q., and Jing, H.: Research on GIS-based information value model for
862 landslide geological hazards prediction in soil - rock contact zone in southern Shaanxi, *Phys. Chem.*
863 *Earth*, 133, 103515, <https://doi.org/10.1016/j.pce.2023.103515>, 2024.

864 Nocentini, N., Medici, C., Barbadori, F., Gatto, A., Franceschini, R., del Soldato, M., Rosi, A., and Segoni,
865 S.: Optimization of rainfall thresholds for landslide early warning through false alarm reduction and a
866 multi-source validation, *Landslides*, 21, 557–571, <https://doi.org/10.1007/s10346-023-02176-7>, 2024.

867 Nolasco-Javier, D. and Kumar, L.: Deriving the rainfall threshold for shallow landslide early warning
868 during tropical cyclones: a case study in northern Philippines, *Nat. Hazards*, 90, 921–941,
869 <https://doi.org/10.1007/s11069-017-3081-2>, 2018.

870 Panchal, S., and Shrivastava, A. K.: A comparative study of frequency ratio, Shannon's entropy and
871 analytic hierarchy process (AHP) models for landslide susceptibility assessment, *ISPRS Int. J. Geo-Inf.*,
872 10, 603, <https://doi.org/10.3390/ijgi10090603>, 2021.

873 Piciullo, L., Calvello, M., and Cepeda, J. M.: Territorial early warning systems for rainfall - induced
874 landslides, *Earth-Sci. Rev.*, 179, 228–247, <https://doi.org/10.1016/j.earscirev.2018.02.013>, 2018.

875 Piciullo, L., Gariano, S. L., Melillo, M., Brunetti, M. T., Peruccacci, S., Guzzetti, F., and Calvello, M.:
876 Definition and performance of a threshold - based regional early warning model for rainfall - induced
877 landslides, *Landslides*, 14, 995–1008, <https://doi.org/10.1007/s10346-016-0750-2>, 2017.

878 Regmi, N. R., Walter, J. I., Jiang, J. L., Orban, A. M., and Hayman, N. W.: Spatial patterns of landslides in
879 a modest topography of the Ozark and Ouachita Mountains, USA, *Catena*, 245, 108344,
880 <https://doi.org/10.1016/j.catena.2024.108344>, 2024.

881 Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically - based
882 landslide susceptibility models, *Earth-Sci. Rev.*, 180, 60–91,
883 <https://doi.org/10.1016/j.earscirev.2018.03.001>, 2018.

884 Sahin, E. K.: Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping,
885 *Geocarto Int.*, 37, 2441–2465, <https://doi.org/10.1080/10106049.2020.1831623>, 2022.

886 San, B. T.: An evaluation of SVM using polygon-based random sampling in landslide susceptibility
887 mapping: The Candir catchment area (western Antalya, Turkey), *Int. J. Appl. Earth Obs.*, 26, 399–412,
888 <https://doi.org/10.1016/j.jag.2013.09.010>, 2014.

889 Segoni, S., Lagomarsino, D., Fanti, R., Moretti, S., and Casagli, N.: Integration of rainfall thresholds and
890 susceptibility maps in the Emilia Romagna (Italy) regional - scale landslide warning system, *Landslides*,
891 12, 773–785, <https://doi.org/10.1007/s10346-014-0502-0>, 2015.

892 Segoni, S., Piciullo, L., and Gariano, S. L.: A review of the recent literature on rainfall thresholds for
893 landslide occurrence, *Landslides*, 15, 1483–1501, <https://doi.org/10.1007/s10346-018-0966-4>, 2018a.

894 Segoni, S., Rosi, A., Lagomarsino, D., Fanti, R., and Casagli, N.: Brief communication: Using averaged
895 soil moisture estimates to improve the performances of a regional - scale landslide early warning system,
896 *Nat. Hazards Earth Syst. Sci.*, 18, 807–812, <https://doi.org/10.5194/nhess-18-807-2018>, 2018b.

897 Steger, S., Brenning, A., Bell, R., and Glade, T.: The propagation of inventory - based positional errors into
898 statistical landslide susceptibility models, *Nat. Hazards Earth Syst. Sci.*, 16, 2729–2745,
899 <https://doi.org/10.5194/nhess-16-2729-2016>, 2016.

900 Sun, D. L., Wu, X. Q., Wen, H. J., and Gu, Q. Y.: A LightGBM-based landslide susceptibility model
901 considering the uncertainty of non-landslide samples, *Geomat. Nat. Haz. Risk*, 14, 2213807,
902 <https://doi.org/10.1080/19475705.2023.2213807>, 2023.

903 Sun, Y., Zhang, J., Wang, H. A., and Lu, D. G.: Probabilistic thresholds for regional rainfall induced
904 landslides, *Comput. Geotech.*, 166, 106040, <https://doi.org/10.1016/j.compgeo.2023.106040>, 2024.

905 Thiene, M., Shaw, W. D., and Scarpa, R.: Perceived risks of mountain landslides in Italy: Stated choices for
906 subjective risk reductions, *Landslides*, 14, 1077–1089, <https://doi.org/10.1007/s10346-016-0741-3>, 2017.

907 Tufano, R., Formetta, G., Calcaterra, D., and De Vita, P.: Hydrological control of soil thickness spatial
908 variability on the initiation of rainfall-induced shallow landslides using a three - dimensional model,
909 *Landslides*, 18, 3367–3380, <https://doi.org/10.1007/s10346-021-01681-x>, 2021.

910 Xiao, W. F., Zhou, Z. Y., Ren, B. Z., and Deng, X. P.: Integrating spatial clustering and multi - source
911 geospatial data for comprehensive geological hazard modeling in Hunan Province, *Sci. Rep.*, 15, 1982,
912 [https://doi.org/10.1038/s41598-024-84825 - y](https://doi.org/10.1038/s41598-024-84825-y), 2025.

913 Yan, F., Zhang, Q. W., Ye, S., and Ren, B.: A novel hybrid approach for landslide susceptibility mapping
914 integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model,
915 *Geomorphology*, 327, 170–187, <https://doi.org/10.1016/j.geomorph.2018.10.024>, 2019.

916 Yang, C., Liu, L. L., Huang, F. M., Huang, L., and Wang, X. M.: Machine learning - based landslide
917 susceptibility assessment with optimized ratio of landslide to non-landslide samples, *Gondwana Res.*,
918 123, 198–216, <https://doi.org/10.1016/j.gr.2022.05.012>, 2023.

919 Yang, K. H., Uzuoka, R., Thuo, J. N., Lin, G. L., and Nakai, Y.: Coupled hydro-mechanical analysis of two
920 unstable unsaturated slopes subject to rainfall infiltration, *Eng. Geol.*, 216, 13–30,
921 <https://doi.org/10.1016/j.enggeo.2016.11.006>, 2017.

922 Zêzere, J. L., Pereira, S., Melo, R., Oliveira, S. C., and Garcia, R. A. C.: Mapping landslide susceptibility
923 using data-driven methods, *Sci. Total Environ.*, 589, 250–267,
924 <https://doi.org/10.1016/j.scitotenv.2017.02.188>, 2017.

925 Zhao, Z., Liu, Z. Y., and Xu, C.: Slope unit-based landslide susceptibility mapping using certainty factor,
926 support vector machine, random forest, CF-SVM and CF-RF models, *Front. Earth Sci.*, 9, 589630,
927 <https://doi.org/10.3389/feart.2021.589630>, 2021.

928 Zou, Y., Wei, Z. F., Zhan, Q. M., and Zhou, H. J.: An extreme storm over the Nanling Mountains during
929 Typhoon Bilis and the roles of terrain, *Nat. Hazards*, 116, 795–815, <https://doi.org/10.1007/s11069-022-05699-9>, 2023.